Ю.И. Гагарин, К.Ю. Гагарин, В.И. Соколов

## ОБОБЩЁННОЕ БЫСТРОЕ ПРЕОБРАЗОВАНИЕ УОЛША-ХААРА

U.I. Gagarin, K.U. Gagarin, V.I. Sokolov

### GENERALIZED FAST WALSH-HAAR TRANSFORM

Представлены математические модели синтеза быстрых ортогональных преобразований в базисах, совмещающих свойства Уолша и Хаара-функций.

Ключевые слова: ортогональные преобразования, базисные функции, математические модели, матрица преобразования, сжатие цифровых изображений.

Presented mathematic models of synthesis of fast orthogonal transforms in bases with combined Walsh and Haar functions properties.

Keywords: fast orthogonal transforms, mathematic models, functions of basis, matrix of transform, picture compression

Преобразование Хаара [1] по сравнению с известными ортогональными преобразованиями обладает той особенностью, что анализирующая часть его базисных функций является изменяемой и по длине, и по величине масштабирующего коэффициента. Получение посредством преобразования Хаара как глобальных, так и локальных спектральных оценок, а также наличие быстрых вычислительных алгоритмов нашли применение для сжатия и спектрально-временного анализа одномерных и двумерных цифровых сигналов, включая гидрометеорологические системы наблюдения и прогноза.

Особенности построения преобразования Хаара затрудняло теоретическое обобщение и применение его с другими ортогональными преобразованиями.

В настоящей публикации представлены результаты исследований методов синтеза быстрых алгоритмов и применений ортогональных преобразований, совмещающих свойства Уолша и Хаара-преобразований.

1. Векторно-матричные модели обобщённого дискретного преобразования Хаара.

Известно, что непрерывные базисные функции преобразования Хаара могут быть заданы [2] в виде

$$h(0,0,t) = 1, \quad t \in [0,1)$$

$$2^{r/2}, \quad npu \frac{m-1}{2^r} \le t < \frac{m-1/2}{2^r}$$

$$h(r,m,t) = -2^{r/2}, \quad npu \frac{m-1/2}{2^r} \le t < \frac{m}{2^r}$$

$$0, \quad \partial \pi \operatorname{scex} \operatorname{ocmaльных} \operatorname{значений} t,$$

$$(1)$$

$$e \partial e 0 \le r < \log_2 N, 1 \le m \le 2^r$$
.

Посредством дискретизации функций (1) строятся матрицы преобразования Хаара (ПХ). Например, ортогональная матрица ПХ для N=8 имеет вид

Обобщим функции Хаара (1) следующим образом [3]:

$$\chi(r,m,t) = \begin{vmatrix} a^{r/k} \\ -a^{r/k} \\ 0 \end{vmatrix}$$
 при ограничениях на значения  $t,r,m,$  указанных для функций Хаара, (2)

 $\chi(0,0,t) = 1; k -$ целое число,

 $a \in R$  либо C; R – поле вещественных чисел,

C — поле комплексных чисел.

Выполнив переход от функций (2) к дискретным функциям, можно строить матрицы вновь полученного обобщённого преобразования.

В качестве примера приведем ортогональную матрицу обобщённого преобразования Хаара с параметрами  $a=3,\,k=2,\,N=8,$  полученную на основании выражения (2):

Для получения ортонормированного векторного пространства строк полученную матрицу домножим на диагональную матрицу нормирующих коэффициентов:

$$D_8^{(1)} = diag(\frac{1}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{18}}, \dots, \frac{1}{\sqrt{18}}).$$

Заметим, что в практике матричных вычислений (например, в компьютерных системах математического моделирования) нормирующий коэффициент используется совместно только с обратной матрицей. Для матриц  $\chi_8^{(h)}$ ,  $\left(\chi_8^{(h)}\right)^{-1}$  преобразования Хаара нормирующим коэффициентом может являться либо  $N_0 = \frac{1}{8}$  – для одной из матриц, либо  $N_0 = \frac{1}{\sqrt{8}}$  – для обеих матриц.

Ненулевые элементы, одинаковые в каждой из строк матриц преобразования Хаара в поле вещественных чисел, часто называют масштабирующими коэффициентами.

Однако в быстрых алгоритмах умножения вектора на матрицу масштабирующие объединены с нормирующими коэффициентами.

Тогда ортонормированную матрицу  $\chi_8$  в поле R можно записать в блочном виде:

$$D_8 = D_8^{(1)} \cdot D_8^{(2)} = diag \left\{ \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{1}{2}, \frac{1}{2}, \left(\frac{1}{\sqrt{2}}\right)_4 \right\},$$

где  $D_8^{(2)}=diag(1,1,\sqrt{3},\sqrt{3},(3)_4)$  — диагональная матрица масштабирующих коэффициентов;  $(y)_m$  — повторение в записи т раз элемента у.

Полученная форма матрицы  $\chi_8$  легко может быть обобщена на любые ранее указанные значения параметров a, k и  $N=2^n$ . При этом диагональная матрица нормирующих коэффициентов в поле R примет общий вид

$$D_{N} = diag \left\{ \frac{1}{\sqrt{2^{n}}}, \frac{1}{\sqrt{2^{n}}}, \frac{1}{\sqrt{2^{n-1}}}, \frac{1}{\sqrt{2^{n-1}}}, \left(\frac{1}{\sqrt{2^{n-2}}}\right)_{4}, \left(\frac{1}{\sqrt{2^{n-3}}}\right)_{8}, \dots, \left(\frac{1}{\sqrt{2}}\right)_{2^{n-1}} \right\}, (3)$$

т.е. значения элементов матрицы  $D_N$  не зависят от значений параметров a и k.

Тогда матрицу обобщённого дискретного преобразования можно представить в виде произведения двух матриц:

$$\chi_N = D_N \cdot \hat{\chi}_N,$$

где  $\hat{\chi}_N$  — ортогональная матрица, элементами которой являются 0,1,-1.

# 2. Матрично-рекурсивные и факторизованные формы быстрых алгоритмов обобщённого преобразования Хаара

Для построения быстрых алгоритмов воспользуемся [3] блочно-матричной рекурсивной формой

$$\widetilde{\chi}_{2N} = \begin{pmatrix} \chi_N & \chi_N \\ I_N \cdot a^{n/k} & -I_N \cdot a^{n/k} \end{pmatrix}, \tag{4}$$

где  $n = \log_2 N$ ,  $I_N -$ единичная матрица .

Блочно-матричная рекурсия (4) является обобщением блочно-матричной рекурсии ДПХ [2] и связана с матрицей  $\chi_N$  следующим выражением:

$$\chi_N = \left(\widetilde{J}_N^{(0)}\right)' \widetilde{\chi}_N \widetilde{J}_N', \tag{5}$$

где  $\widetilde{J}_N^{(0)} = diag(\widetilde{J}_1, \widetilde{J}_4, ..., \widetilde{J}_{N/4}, \widetilde{J}_{N/2})$  — блочная матрица инверсных перестановок;  $\widetilde{J}_N$  — матрица двоично-инверсных перестановок.

Блочно матричную форму [4] приведем к факторизованной форме:

$$\widetilde{\chi}_{2N} = \begin{pmatrix} \chi_N & \chi_N \\ I_N \cdot a^{n/k} & -I_N \cdot a^{n/k} \end{pmatrix} = \\
= \begin{pmatrix} I_{N/2} & 0 \\ 0 & I_{N/2} a^{\frac{n-1}{k}} \end{pmatrix} \begin{pmatrix} \chi_N & 0 \\ 0 & I_{N/2} \end{pmatrix} \begin{pmatrix} I_{N/2} & I_{N/2} \\ I_{N/2} & -I_{N/2} \end{pmatrix}.$$
(6)

Подставляя матричную форму (6) и введя матрицу нормирующих коэффициентов  $D_N$ , из выражения (5) получим:

$$\chi_N = D_N \cdot \widetilde{J}_N^{(0)'} \cdot \widetilde{\chi}_N^{(1)} \cdot \widetilde{J}'_N, \tag{7}$$

где

$$\widetilde{\chi}_{N}^{(1)} = \begin{pmatrix} \chi_{N} & \chi_{N} \\ I_{N} & -I_{N} \end{pmatrix}, \quad \widetilde{\chi}_{2}^{(1)} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \tag{8}$$

 $D_N$  – матрица нормирующих коэффициентов, определенных выражением (3).

Матрицу обратного обобщенного преобразования можно записать в виде:

$$\widetilde{\chi}_N^{-1} = J_N^{\sim} \cdot \widetilde{\chi}_N^{(1)'} \cdot \widetilde{J}_N^{(0)'} \cdot D_N \,.$$

На основе блочно-матричной рекурсивной формы (8) строится матричнофакторизованная форма, соответствующая быстрому алгоритму обобщённого преобразования

$$\begin{split} &\chi_{N}^{(\phi)} = D_{N} \left( \tilde{J}_{N}^{(0)} \right) diag \left\{ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, I_{N-2} \right\} \times \dots \\ &\times diag \left\{ \begin{pmatrix} I_{N/4} & I_{N/4} \\ I_{N/4} & -I_{N/4} \end{pmatrix}, I_{N/2} \right\} \times \begin{pmatrix} I_{N/2} & I_{N/2} \\ I_{N/2} & -I_{N/2} \end{pmatrix} \begin{pmatrix} \tilde{J}_{N} \end{pmatrix} \end{split} \tag{9}$$

По сути, форма (9) соответствует известным быстрым алгоритмам ПХ [2]. Из данной формы легко можно получить быстрые алгоритмы ПХ по Эндрюсу без матриц двоично-инверсных перестановок, если воспользоваться известной [3] пошаговой их заменой четно-нечетных перестановок. На рис. 2 приведен пример векторного ориентированного графа для быстрого алгоритма ПХ длины N=16.

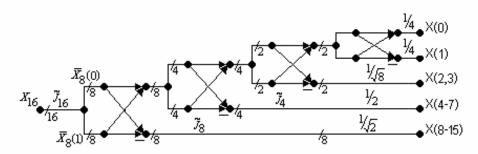


Рис. 1. Векторный граф быстрого прямого преобразования Хаара N=16

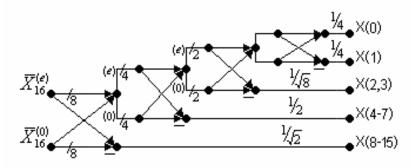


Рис. 2. Векторный граф быстрого ПХ без двоично-инверсных перестановок

Рассматривая матрично-факторизованную форму (9) с позиции сходства с быстрыми алгоритмами дискретных преобразований по прямоугольным функциям Уолша [2], несложно перейти к следующей более обобщённой форме:

$$\chi_{N}^{(\phi)} = D_{N} \left( \tilde{J}_{N}^{(\mu_{0})} \right) diag \left\{ A_{\mu}, I_{N-\mu} \right\} \times \dots \times \left( A_{\mu} \otimes I_{N/\mu} \left( \tilde{J}_{N}^{(\mu)} \right) \right), \tag{10}$$

где  $A_{\mu}=A_{2}^{[\log_{2}\mu]}-$  матрица Адамара,  $\widetilde{J}_{N}^{(\mu_{0})}-$  блоковая матрица  $\mu$ -ично-инверсных перестановок,  $\widetilde{J}_{N}^{(\mu)}-$  матрица  $\mu$ -ично-инверсной перестановки.

В результате получили (с учётом факторизации  $A_{\mu}$ ) матрично-факторизованную форму быстрых алгоритмов преобразования Уолша-Хаара по основанию  $\mu$ . На рис. 3 представлен сигнальный граф быстрого преобразования Уолша-Хаара по основанию четыре для N=16.

Из формул (9) и (10) можно построить псевдогнездовые быстрые алгоритмы двумерного прямого и обратного преобразований:

$$\chi_{N^{2}}^{(\phi)} = \left(\chi_{N}^{(\phi)} \otimes \chi_{N}^{(\phi)}\right) = \left(D_{N} \otimes D_{N}\right) \left(\tilde{J}_{N}^{(0)} \otimes \tilde{J}_{N}\right) \left(\tilde{\chi}_{N}^{(\phi)} \otimes \tilde{\chi}_{N}^{(\phi)}\right) \left(\tilde{J}_{N} \otimes \tilde{J}_{N}\right) \left(\tilde{J}_{N} \otimes \tilde$$

Рис. 3. Векторный граф быстрого Уолша-Хаара преобразования

#### 3. Результаты экспериментальных исследований

Полученный новый тип ортогональных преобразований был исследован в технологиях одноитерационного пофрагментного  $8\times8$  сжатия полутонового неподвижного  $256\times256$  изображения, представленного BMP файлом типа «Лена» (рис. 4).





Рис. 4. a – исходное изображение;  $\delta$  – восстановленное изображение

Ниже в таблице приведены сравнительные качественные характеристики для различных быстрых ортогональных преобразований: К – коэффициент сжатия; А – количество сложений / пкс; М – количество умножений /пкс;  $\Delta$  и  $\Delta^2$  – средняя и среднеквадратичная ошибки соответственно.

| Тип и размер<br>изображения | Алгоритм<br>быстрого    | Коэффи-<br>циент | Кол-во арифметиче-<br>ских операций/пикс. |       | Погрешности восст. изображения |            |
|-----------------------------|-------------------------|------------------|-------------------------------------------|-------|--------------------------------|------------|
|                             | преобразования          | сжатия К         | A                                         | M     | Δ                              | $\Delta^2$ |
| ВМРфайл «Lena», 256×256     | Xaapa<br>8×8            | 10,5             | 1,8                                       | 2 сдв | 2,5                            | 10,5       |
| -«-                         | Уолша-Хаара<br>по осн.4 | 10,4             | 2                                         | 1 сдв | 2,5                            | 11         |
| -«-                         | Уолша<br>8×8            | 10,5             | 3                                         | 3сдв  | 2,5                            | 11         |
|                             | БКП 8×8                 | 13,5             | 7,25                                      | 2,2   | 2,4                            | 10         |

#### Заключение

- 1. Обобщение блочно-матричных рекурсий, известных для дискретного пребразования Хаара, позволило получить новый тип быстрых преобразований, совмещающих свойства Уолша и Хаара-пребразований.
- 2. Преимущества применения быстрых Уолша-Хаара-преобразований для сжатия фотографического изображения, продемонстрированного в примере, несложно обобщить на другие виды сигналов, особенно при их обработке в больших объёмах и в условиях реального времени, характерных, например, для гидрометеорологии [5].

#### Литература

- 1. Haar A. Zur theorie der ortogonalen funktionensysteme. Math. Ann. 69 (1910), 331-371; 71 (1912) 38-53.
- 2. *Ахмед Н., Рао К.Р.* Ортогональные преобразования при обработке цифровых сигналов. М.: Связь, 1980.
- 3. Соколов В.И., Гагарин К.Ю. Быстрые алгоритмы обобщённых хааро-подобных преобразований // Мат-лы Всеросс. межвуз. конф. «XXXV неделя науки СПбГПУ», 2006, ч. XII, с. 37-39.
- 4. *Гагарин Ю.И*. Математические модели и алгоритмы быстрых ортогональных преобразований. СПб.: изд. СПбГТУ, 1999.
- 5. Привальский В.Е. Модели временных рядов с приложениями в гидрометеорологии. СПб.: Гидрометеоиздат, 1992.