А.О. Семенов

ВАРИАЦИИ КОНЦЕНТРАЦИИ АТОМОВ О(¹D) В ВЕРХНЕЙ АТМОСФЕРЕ, ОБУСЛОВЛЕННЫЕ ИЗМЕНЧИВОСТЬЮ ПОТОКА СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

A.O. Semenov

VARIATIONS OF O(¹D) ATOM CONCENTRATION IN THE UPPER ATMOSPHERE CAUSED BY SOLAR FLUX VARIABILITY

Выполнен анализ временных вариаций скорости фотодиссоциации кислорода и озона в мезосфере и нижней термосфере, обусловленных изменением потока солнечного излучения за период с 1979 по 2005 г. Исследована зависимость высотного профиля концентрации O(⁴D) от уровня солнечной активности и зенитного угла Солнца. Выявлен пик концентрации O(⁴D) на высотах 85–95 км, возникающий в сумеречных условиях.

Ключевые слова: нижняя термосфера и мезосфера, фотодиссоциация, кислород, озон, радиационные процессы.

Variations of O_2 and O_3 photolysis rate in the mesosphere and lower thermosphere caused by solar flux variability are analyzed in the interval 1979-2005. Vertical profile of $O(^{1}D)$ concentration as a function of solar activity level and solar zenith angle is studied. Peak of $O(^{4}D)$ concentration during twilight is revealed at 85-95 km altitudes.

Key words: the lower thermosphere and the mesosphere, the photolysis, the oxygen, the ozone, radiative processes.

Введение

Поглощение коротковолнового солнечного излучения в диапазоне длин волн 120–320 нм молекулами кислорода и озона на высотах нижней термосферы и мезосферы (60–130 км) является ключевым механизмом нагревания атмосферы на этих высотах. Поглощение излучения в указанном диапазоне длин волн приводит к фотодиссоциации молекулярного кислорода и озона, в результате чего часть поглощенной энергии сразу переходит в тепло, а часть остается в виде внутренней энергии образующихся при фотодиссоциации электронно и/или колебательно возбужденных продуктов фотолиза. Энергия последних частично перераспределяется между другими компонентами атмосферы и, в конечном счете, либо также переходит в тепло в результате их неупругих столкновений, либо высвечивается в мировое пространство.

Метастабильный атом кислорода $O({}^{1}D)$ является продуктом фотодиссоциации кислорода в континууме Шумана–Рунге (120–175 нм) и озона в полосах Хартли (175–320 нм). Часть энергии $O({}^{1}D)$ в столкновениях с молекулами N_{2} и O_{2} переходит в колебания последних. В результате резонансного обмена колебательным квантом молекул N_{2} с CO_{2} часть первоначальной энергии $O({}^{1}D)$ через колебания N_{2} передается в колебания $CO_{2}(001)$ с последующим высвечиванием в 4,3 мкм полосе CO_{2} .

Таким образом, расчет скорости фотодиссоциации кислорода и озона в атмосфере и определение концентрации $O(^{1}D)$ является исходной задачей как для энергетики мезосферы и нижней термосферы, так и для исследования химических и радиационных процессов в атмосфере.

Входной информацией для расчета скорости фотодиссоциации является поток внеатмосферного коротковолнового солнечного излучения. Измерения потока ультрафиолетового солнечного излучения возможны только из-за пределов земной атмосферы. Первые ракетные измерения в 1940-х годах и последующие спутниковые измерения в 1960-х годах показали существенное отличие солнечного излучения в ультрафиолетовой области спектра от чернотельного излучения и его сильные вариации со временем в зависимости от уровня солнечной активности. Одна из первых моделей вариаций интенсивности спектрального распределения внеатмосферного солнечного излучения была предложена в работе [6] на основе измерений спутника Atmospheric Explorer с его калибровкой по ракетным измерениям. Модель строится на основе набора опорных солнечных спектров, которые масштабируются в зависимости от уровня солнечной активности путем привязки спектров к регулярно измеряемым наземными методами параметрам солнечной активности, главным из которых является поток F_{107} солнечного излучения в радиодиапазоне на длине волны 10,7 см. Несовершенство приборов 1970-х годов и методики их калибровки сказалось на точности указанных измерений, погрешность которых достигает 30-100 % для некоторых длин волн [20].

Последующие измерения спектров ультрафиолетового солнечного излучения приборами на спутниках SME (Solar Mesosphere Explorer, 1981–1989) и UARS (Upper Atmosphere Research Satellite, 1991–2001), а также ракетные измерения позволили получить более точные опорные спектры для улучшения указанной модели. В настоящее время спектр солнечного излучения непрерывно измеряется в продолжающихся спутниковых экспериментах TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) с января 2002 г. и SORCE (Solar Radiation and Climate Experiment) с февраля 2003 г. Результаты этих измерений регулярно обновляются на сайте Лаборатории атмосферной и космической физики Колорадского университета: http://lasp.colorado.edu/lisird/. Композитный спектр, предложенный в работе [4] для каждого дня на основе линейной регрессии имеющихся данных измерений шести спутниковых экспериментов с 1979 по 2005 г., позволяет впервые выполнить анализ временной изменчивости скорости фотодиссоциации O₂ и O₃ за этот интервал времени.

Метод расчета скорости фотодиссоциации O_2 и O_3 и концентрации $O(^1D)$

Ослабление в атмосфере спектральной плотности потока солнечного излучения F_{λ} на длине волны λ на высоте z есть

$$F_{\lambda}(\theta, z) = F_{\lambda}^{\infty} e^{-\tau(\theta, \lambda, z)}, \qquad (1)$$

101

МЕТЕОРОЛОГИЯ

где F_{λ}^{∞} – плотность внеатмосферного потока солнечного излучения; τ – оптическая толщина атмосферы в направлении на Солнце, которая для солнечных зенитных углов (СЗУ) θ , не превышающих 90°, определяется по формуле [15]:

$$\tau(\theta \le 90^{\circ}, \lambda, z) = \sum_{i=O_2, O_3} \sigma_i(\lambda) \int_z^{\infty} n_i(z') f(\theta, z, z') dz'.$$
⁽²⁾

Здесь суммирование по индексу *i* ведется по компонентам атмосферы O₂ и O₃, поглощающим на заданной длине волны λ ; n_i – концентрация этих компонент, а σ_i – сечение поглощения. Функция $f(\theta, z, z')$ учитывает сферичность атмосферных слоев:

$$f(\theta, z, z') = \left(1 - (R + z)^2 \sin^2 \theta / (R + z')^2\right)^{-1/2},$$
(3)

где R – радиус Земли. Для СЗУ θ больших 90° оптическая толщина записывается в виде [15]: $\tau(\theta > 90° \lambda z) =$

$$= \sum_{i=O_2,O_3} \sigma_i(\lambda) \left(2 \int_{z_0}^{\infty} n_i(z') f(90^\circ, z_0, z') dz' - \int_{z}^{\infty} n_i(z') f(\theta, z, z') dz' \right),$$
(4)

где

$$z_0 = (R+z)\sin\theta - R .$$
 (5)

В выражениях (4) и (5) высота z должна быть больше высоты z_s экранирования земной поверхностью,

$$z_s = R / \sin \theta - R, \tag{6}$$

ниже которой солнечное излучение (для заданного угла θ > 90°) не проникает и соответственно оптическая толщина полагается бесконечно большой.

Интегралы в выражениях (2) и (4) вычисляются численно. Атмосфера разбивается на слои толщиной 1 км, внутри которых задаются средние значения концентраций атмосферных компонент. Эти значения выносятся из-под знака интегрирования в выражениях (2) и (4) отдельно для каждого атмосферного слоя. Оставшиеся интегралы для каждого слоя вычисляются с помощью разностных представлений, следуя работе [10]. Эффект сферичности атмосферных слоев наиболее сильно проявляется при больших C3V ($\theta > 80^\circ$), тогда как при малых C3V выражения (2) и (4) переходят в приближение плоско-параллельных слоев, когда функция $f(\theta, z, z') \equiv 1/\cos\theta$.

В расчете использовались сечения поглощения O₂ в континууме Шумана-Рунге (120–175 нм) – из [7, 21], в континууме Герцберга (192–240 нм) – из [9, 17], на длине волны линии водорода Лайман-α (121,6 нм) – из параметризации [14]. Для расчета поглощения излучения O₂ в полосах Шумана-Рунге использовалась параметризация [9] с учетом частичного перекрывания этих полос кон-102 тинуумом Герцберга. Сечения поглощения О₃ в полосах Хартли (175–320 нм) заимствованы из [17].

Фотодиссоциация O_2 при поглощении солнечного излучения с длиной волны меньше 175 нм приводит к образованию атома $O(^1D)$ с квантовым выходом 1 в диапазоне длин волн 139–175 нм. Для интервала длин волн 120–139 нм квантовый выход $O(^1D)$ испытывает резкие изменения от 0 до 1 [13]. Поглощения солнечного излучения в полосах Хартли приводит к образованию атомов $O(^1D)$ с квантовым выходом около 0,9, уменьшающимся для длин волн ближе к краям интервала полосы Хартли [1].

Скорость фотодиссоциации $J_{\Delta\lambda}$ молекул O_2 или O_3 в расчете на одну молекулу в интервале длин волн $\Delta\lambda$ на высоте *z* для СЗУ θ есть

$$J_{\Delta\lambda}(\theta, z) = \int_{\Delta\lambda} \sigma(\lambda) F_{\lambda}(\theta, z) d\lambda, \qquad (7)$$

где σ – сечение поглощения молекул O_2 или O_3 . В верхних слоях атмосферы, пока атмосфера остается оптически тонкой для O_2 и O_3 , скорость фотодиссоциации на одну молекулу практически постоянна и равна

$$J_{\Delta\lambda}^{\infty} = \int_{\Delta\lambda} \sigma(\lambda) F_{\lambda}^{\infty} d\lambda .$$
 (8)

Поскольку сечение поглощения и оптическая толщина изменяются с длиной волны медленнее (за исключением полос Шумана-Рунге), чем поток солнечного излучения, для достаточно узкого интервала $\Delta\lambda$ в (7) можно вынести средние значения $\bar{\tau}_{\Delta\lambda}$ и $\bar{\sigma}_{\Delta\lambda}$ на этом интервале из-под знака интегрирования и с учетом (1) получить:

$$J_{\Delta\lambda}(\theta, z) = F^{\infty}_{\Delta\lambda} \overline{\sigma}_{\Delta\lambda} e^{-\overline{\tau}_{\Delta\lambda}(\theta, z)}, \qquad (9)$$

где

$$F_{\Delta\lambda}^{\infty} = \int_{\Delta\lambda} F_{\lambda}(\infty) d\lambda$$
 (10)

– интегральный поток внеатмосферного солнечного излучения в интервале Δλ.
 В данной работе был выбран спектральный интервал Δλ равный 1 нм.

Объемная скорость образования атомов $O(^{T}D)$ в результате фотодиссоциации молекул O_2 или O_3 на высоте *z* определяется по формуле:

$$g_i(z) = n_i(z) \sum_{\Delta\lambda} \overline{\beta}_{\Delta\lambda} J_{\Delta\lambda}(z) , \qquad (11)$$

где $\overline{\beta}_{\Delta\lambda}$ – квантовый выход атомов O(¹D) в интервале длин волн $\Delta\lambda$, а суммирование ведется по всем интервалам длин волн.

В предположении фотохимического равновесия концентрация атомов O(¹D) определяется по формуле [3]

$$n_{\rm O(^1D)} = \frac{g_{\rm O_2} + g_{\rm O_3}}{A_{\rm 1D} + n_{\rm N_2}k_{\rm N_2} + n_{\rm O_2}k_{\rm O_2} + n_{\rm O}k_{\rm O} + n_{\rm O_3}k_{\rm O_3}},$$
(12)

где $A_{1D} = 7,45 \cdot 10^{-3}$ с⁻¹ [11] – суммарный коэффициент спонтанного излучения с уровня ¹D; k_i – константы скорости столкновительной деактивации уровня ¹D *i*-той компонентой атмосферы, зависящие от температуры. Профили концентраций атмосферных компонент n_i взяты из модели NRLMSISE-00 и из [8,12], а k_i – из [2].

Вариации скорости фотодиссоциации O₂ и O₃ в зависимости от уровня солнечной активности

В зависимости от уровня солнечной активности изменяется поток солнечного излучения. Соответственно скорости фотодиссоциации, нагревания атмосферы и образования атомов O(¹D) испытывают временные вариации. Ранее делались оценки этих вариаций путем анализа изменчивости индексов солнечной активности (MgII и $F_{10,7}$) [5, 18], привязанных к потокам солнечного излучения на фиксированной длине волны, для которых имеются долговременные ряды наблюдений. Это позволяет грубо оценить размах вариаций и их периоды, но для точного определения амплитуды вариаций скорости фотодиссоциации и нагревания необходимо использовать полный спектр солнечного излучения соответствующего спектрального диапазона. В настоящей работе впервые для оценки временных вариаций скорости фотодиссоциации O₂ в континууме Шумана–Рунге и O₃ в полосах Хартли использован среднесуточный композитный спектр солнечного излучения [4] для временного интервала 1979–2005 гг. соответствующих спектральных диапазонов с учетом весового вклада каждого спектрального интервала в соответствии с сечением поглощения кислорода и озона.

На рис. 1, *а* представлены относительные изменения скорости фотодиссоциации O_2 в континууме Шумана-Рунге и O_3 в полосах Хартли для временного интервала с 1979 по 2005 г. Размах вариаций скорости фотодисоциации в течение 11-летнего солнечного цикла составляет около 25 % для континуума Шумана-Рунге и около 5 % для полос Хартли. Кроме 11-летней периодичности солнечное излучение испытывает ярко выраженные 27-дневные осцилляции, связанные с периодом вращения Солнца, и квазидвухлетние осцилляции (КДО). Чтобы выделить отдельно последние, требуется исключить 11-летние и 27дневные вариации. Это было сделано с использованием методики из работы [18]. Сглаживанием временного ряда с помощью скользящего усреднения за 27 дней исключаются все вариации с периодом меньше 27 дней. Аналогичное сглаживание для достаточно большого периода (например, 2–4 года) оставляют только долгопериодические колебания, соответствующие 11-летнему циклу. Для исключения КДО, следуя [18], сглаживание производится за 26 месяцев. Относительная разность между центрированным скользящим средним за 27 дней и таким же средним за 26 месяцев в процентном выражении

$$\delta J^{\infty} = ((\langle J^{\infty} \rangle_{27d} - \langle J^{\infty} \rangle_{26m}) / \langle J^{\infty} \rangle_{26m}) 100\%$$
(13)

позволяет выделить только вариации с периодами от 27 дней до 26 месяцев (рис. 1, б). Для временного интервала с 1979 по 2005 г. размах вариаций КДО для скорости фотодиссоциации в континууме Шумана-Рунге и в полосах Хартли получается соответственно около 10 и 2 %.

Высотный профиль концентрации атомов O(¹D)

На рис. 2, *а* представлен высотный профиль концентрации атомов $O({}^{1}D)$, рассчитанный по формуле (12) для весеннего равноденствия в средних широтах (сплошная кривая) и на экваторе (пунктирная). Изменения обусловлены различием профиля концентрации O_{3} . Для сравнения на рис. 2, *а* показан также расчет концентрации $O({}^{1}D)$ по модели [16]. Повышенное содержание $O({}^{1}D)$ выше

МЕТЕОРОЛОГИЯ

80 км, прежде всего, связано с использованием в [16] заниженной константы скорости деактивации $O(^{1}D)$ в столкновениях с молекулами N_{2} по сравнению с последними экспериментальными измерениями, проведенными независимо несколькими группами исследователей [2]. Столкновения с N_{2} являются главным фактором тушения состояния $O(^{1}D)$ на высотах 60–130 км. На рис. 2, *а* штрих-пунктирной кривой для сравнения показан расчет с использованием старого заниженного значения этой константы. Относительное изменение концентрации, обусловленное изменением уровня солнечной активности от низкой к высокой за время 11-летнего солнечного цикла, представлено на рис. 2, *б*.

Рис. 2. *а* – высотные профили концентрации O(¹D) для весеннего равноденствия и умеренной солнечной активности в средних широтах (сплошная) и на экваторе (штрихи), точечная кривая из [16], штрих-пунктир – с использованием заниженного значения скорости деактивации O(¹D) в столкновениях с N₂; *б* – относительное изменение профиля O(¹D) при переходе от низкого уровня солнечной активности к высокому в течение 11-летнего солнечного цикла.

При увеличении C3У (рис. 3, *a*) оптическая толщина атмосферы увеличивается, и скорость фотодиссоциации уменьшается. При этом уменьшение сильнее выражено на высотах нижней термосферы и нижней мезосферы, где велики концентрации соответственно O_2 и O_3 . Вблизи мезопаузы из-за малой концентрации O_3 атмосфера в полосах Хартли остается оптически тонкой и поэтому скорость фотодиссоциации слабо зависит от изменения C3У. Вследствие этого в сумеречных условиях на высотах 85-95 км проявляется локальный максимум концентрации $O(^1D)$. Днем, путем передачи энергии возбуждения $O(^1D)$ через колебания N_2 к CO_2 , усиливается эмиссия 4,3 мкм CO_2 в широком диапазоне высот, а в сумеречных условиях это усиление локализуется в узком слое 85-95км, что подтверждается экспериментальными данными [19].

Рис. 3. *а* – *в*ысотные профили концентрации O(¹D) для разных C3У; *б* – относительный вклад процессов образования атомов O(¹D) для низкого (пунктир) и высокого (сплошная) уровня солнечной активности

На рис. 3, б показан относительный вклад процессов образования атомов $O(^{1}D)$ при фотодиссоциации O_{2} в континууме Шумана-Рунге и линии Лайман- α и в полосх O_{3} Хартли. Выше примерно 90 км доминирует поглощение в континууме Шумана–Рунге, а ниже – в полосах Хартли. В интервале высот 70–90 км вносит небольшой вклад поглощение O_{2} солнечной линии водорода Лайман- α , увеличивающийся в максимуме солнечной активности.

Заключение

Основные результаты работы сводятся к следующему. Максимальный размах вариаций скорости фотодиссоциации O_2 и O_3 для 11-летнего цикла солнечной активности составляет ~25 % в континууме Шумана–Рунге и ~5 % в полосах Хартли и также ~10 % и ~2 % для квазидвухлетних осцилляций. Высотный профиль концентрации $O(^{1}D)$ в мезосфере и нижней термосфере варьируется в пределах 30 % за 11-летний цикл солнечной активности. Профиль концентрации $O(^{1}D)$ сильно зависит от величины зенитного угла Солнца. В сумеречных условиях возникает пик концентрации $O(^{1}D)$ на высотах 85-95 км.

Литература

- 1. Янковский В.А., Кулешова В.А., Мануйлова Р.О., Семенов А.О. Восстановление содержания озона из спутниковых наблюдений на основе новой модели электронно-колебательной кинетики продуктов фотолиза озона и молекулярного кислорода // Изв. РАН. Физика атм. и океана, 2007, 43, № 4, 514-527.
- Blitz M.A., Dillon T.J., Heard D.E., Pilling M.J., Trought I.D. Laser induced fluorescence studies of the reactions of O(¹D₂) with N₂, O₂, N₂O, CH₄, H₂, CO₂, Ar, Kr and n-C₄H₁₀ // Phys. Chem. Chem. Phys., 2004, 6, 2162–2171.

МЕТЕОРОЛОГИЯ

- 3. Brasseur G.P., Solomon S. Aeronomy of the middle atmosphere. Dordrecht: Springer, 2005. 644 p.
- DeLand, M.T., Cebula R.P. Creation of a composite solar ultraviolet irradiance data set // J. Geophys. Res., 2008, 113, A11103, doi:10.1029/2008JA013401.
- DeMajistre R., Yee J.-H., Zhu X. Parameterizations of oxygen photolysis and energy deposition rates due to solar energy absorption in the Schumann-Runge continuum // Geophys. Res. Let., 2001, 28, 3163-3166.
- 6. *Hinteregger H.E., Fukui K., Gilson B.R.* Observational, reference and model data on solar EUV from measurements on AE-E // Geophys. Res. Let., 1981, 8, 1147-1150.
- Hudson R.D. Critical review of ultraviolet photoabsorption cross sections for molecules of astrophysical and aeronomic interest // Rev. Geophys. Space Phys., 1971, 9, 305-406.
- 8. *Keating G.M., Chen C.* Extensions to the CIRA reference models for middle atmosphere ozone //Adv. Space Res., 1993, 13, 45-54.
- 9. Kockarts G. Penetration of solar radiation in the Schumann-Runge bands of molecular oxygen: a robust approximation // Ann. Geophys., 1994, 12, 1207-1217.
- Kylling A., Stamnes K., Tsay S.-C. A reliable and efficient two-stream algorithm for spherical radiative transfer: documentation of accuracy in realistic layered media // J. Atmos. Chem., 1995, 21, 115-150.
- 11. Link, R., Cogger L.L. A Reexamination of the OI 6300-Å nightglow //J. Geophys. Res., 1988, 93(A9), 9883–9892.
- Llewellyn E.J., McDade I.C. A reference model for atomic oxygen in the terrestrial atmosphere // Adv. Space Res., 1996, 18, 209-226.
- 13. *Nee J.B., Lee P.C.* Detection of O(¹D) produced in the photodissociation of O₂ in the Schumann-Runge continuum // J. Phys. Chem. A, 1997, 101, 6653-6657.
- 14. *Reddmann T., Uhl R.* The H Lyman-α actinic flux in the middle atmosphere // Atmos. Chem. Phys., 2003, 3, 225-231.
- 15. Rees M.H. Physics and chemistry of the upper atmosphere. Cambridge Univ. Press, 1989. 290 p.
- Rodrigo R., López-Moreno J.J., López-Puertas M., Moreno F., Molina A. Neutral atmospheric composition between 60 and 220 km: A theoretical model for mid-latitudes // Planet. Space Sci. 1986, 34, 723-743.
- Sander S.P., Friedl R.R., Ravishankara A.R. et al. Chemical kinetics and photochemical data for use in atmospheric studies / NASA-JPL Publication 02–25, Evaluation Number 14. Pasadena, CA, 2003. – 334 p.
- Troshichev O.A., Gabis I.P. Variations of solar UV irradiance related to short-term and medium-term changes of solar activity // J. Geophys. Res., 1998, 103(A9), 20659-20667.
- 19. *Vollmann K., Grossmann K.U.* Excitation of 4.3 m CO₂ emissions by O(¹D) during twilight // Adv. Space Res., 1997, 20, 1185-1189.
- Woods T.N., Rottman G.J. Solar ultraviolet variability over time periods of aeronomic interest // Atmospheres in the Solar System: Comparative aeronomy / Eds.: M. Mendillo M., A. Nagy, H. Waite //Geophys. Mon., 2002, 130, 151-167.
- Yoshino K., Parkinson W.H., Ito, K., Matsui T. Absolute absorption cross-section measurements of Schumann–Runge continuum of O₂ at 90 and 295 K // J. Molec. Spect., 2005, 229, 238–243.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 10-05-90739-моб_ст).

Работа выполнена при поддержке Министерства образования и науки в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы (государственный контракт № 14.740.11.0742).