

ţ

С. П. Перов

А. Х. Хргиан

СОВРЕМЕННЫЕ ПРОБЛЕМЫ АТМОСФЕРНОГО ОЗОНА

ЛЕНИНГРАД ГИДРОМЕТЕОИЗДАТ 1980 Посвящена проблеме озона в се современном развитни, химическим и физическим свойствам молекулы озона, методам его наблюдении, фотохимическим теориям озона, взаимодеиствующего с соединениями азога, хлора и т д, данным о его вертикальном распределении и общем содержании в различные сезоны и над различными широтами, образованию, переносу и разрушению озона в стратосфере и тропосфере и динамическим свойствам озона в связи с общей циркуляциеи атмосферы Внимание уделено новеншим исследованиям озона, в том числе антропогенным влияниям на озон, и фотохимии озона

Предназначена для учащихся, научных работников и инженеров, связанных в своей деятельности с проблемами атмосферы и ее освоения

The book «The Modern Problems of Atmospheric Ozone by S P Pe rov and A Kh Khrgian deals with the modern concept of ozone problem the chemical and physical properties of ozone molecule observational practices, photochemical theory of ozone interacting with mitrogen, chlorine and other compounds data on ozone vertical distribution general cycle of formation, transport and destruction of ozone and total content during different seasons and in various latitudes in stratosphere and troposphere dynamical properties of ozone in connection with atmospheric circulation. Attention is paid to recent investigations of ozone as well as anthiopogenic impact on ozone and its photochemistry.

The monograph is meant for students, research workers and cogineers dealing with atmospheric problems

История научных идей, которые возникали, развивались и порой снова впадали в безвестность, очень поучительна для того, кто хочет понять пути человеческого познания. Так, например, теория рассеяния света, возникшая в XIX в. с целью объяснить лишь голубой цвет неба, в наше время стала важнейшим орудием исследования атмосферы

Когда в 1938 г известный английский геофизик Сидней Чепмен делал в Москве, в большом зале Гидрометеорологического института, доклад об изучении верхней атмосферы (незадолго до этого он опубликовал первые опыты фотохимической теории ионосферы и слоя озона), один из молодых слушателей задал ему вопрос «Зачем оно нужно²» В ответ Чепмен привел рассказ об одной светской даме, посетившей лабораторию известного профессора и спросившей его иронически: «Какая польза от изобретения еще одного нового прибора²» На это профессор, рассердившись, ответил «Скажите, какая польза от еще одного новорожденного ребенка²»

Прошли годы, и проблема верхней атмосферы (и атмосферного озона) из новорожденного ребенка выросла во взрослого, очень деятельного и разносторонних способностей человека, занявшего в науке прочное место И прикладные задачи авиации, и динамика атмосферы, вопросы ее загрязнения и климата, и сами условия жизни человека оказались зависящими от изменений малой составляющей атмосферы — озона

Взрыв исследований в серечине XX в сделал свой большой вклад и в учение об озоне Возникли новые методы наблюдении, в том числе космические, собраны обширные данные о распределении озона, построены его уточненные теории и, говоря языком современной геофизики, модели озона атмосферы Этими исследованиями заинтересовались также бнологи, социологи и экономисты.

В книге «Физика атмосферного озона» [127] мы попытались, начав с исторических данных, изложить физические основы учения об озоне В данной монографии мы показываем, в каком направлении это учение развивалось далее и, главное, какие проблемы оно породило. Сюда относятся биологическая опасность озона и регулируемой им ультрафиолетовой радиации, необходимость создания метрологии озона, развитие фотохимии атмосферы, содержащей окислы азота и хлора, выяснение мощности больших источников и стоков озона, оценка создаваемого им в верхней атмосфере нагревания и многое другое. Изучение этих проблем сейчас идет вширь и вглубь, привлекая многих специалистов смежников. Но именно геофизики должны заботиться об единстве исследований, о совместимости методов измерений, о правильном физическом смысле моделей и о том, чтобы в прикладных исследованиях использовались точные данные об озоне. В объединении новых данных состояла одна из задач нашей монографии.

Главы I и V—IX написаны А. Х. Хргианом, гл. II—IV— С. П. Перовым.

Как и при написании предыдущей монографии 1973 г., неоценимую помощь оказали нам коллеги из Международной комиссии по атмосферному озону — А. С. Бритаев, Г. П. Гущин, Г. И. Кузнецов (СССР), Х. У. Дютш (Швейцария) — ныне Президент Комис-сии, А. Дзевульская-Лосева (ПНР), Р. Божков (ВМО), В. Аттманшпахер, Х. Петцольд, П. Фабиан (ФРГ), Б. У. Бовилль (Канада), П. Крутцен (Швеция), К. Грасник (ГДР), А. Мани (Индия), Д. Уолшоу (Англия) — секретарь Комиссии, А. Васси, Б. Луатьер, Ж. Виллен, П. Эмдье (Франция) и Э. Хилсенрат, **Д. Хит (США).** Они помогли нам присылкой регулярных выпусков «Ozone data for the World», наблюлений обсерватории Хоэнпейссенберг (ФРГ), наблюдений Института геофизики Польской Академии наук, трудов Лаборатории атмосферной физики Технологического института в Цюрихе и многочисленных оттисков новейших исследований. Наши советские коллеги Г. П. Гущин, В. М. Искандарова, Г. У. Каримова, А. Л. Ошерович, А. И. Репнев, Д. Ф. Харчилава много помогли как материалами, так и при составлении библиографии по атмосферному озону на русском языке за 1975-1978 гг. Большое значение для работы имели и опубликованные в 1973 и 1978 гг. труды международных симпозиумов по озону в Арозе (1972) и в Дрездене (1976).

Авторы выражают благодарность Л.С. Рябовой и Н.А. Петренко за большую и квалифицированную помощь в подготовке рукописи, библиографии и таблиц для монографии.

§ 1. Проблема озона

Проблема озона возникла — лучше сказать, была признана важной проблемой физики атмосферы - только полвека тому назал. Именно в 1920-х гг. было обнаружено, что верхняя атмосфера обладает рядом особенных свойств, отсутствующих у нижних слоев воздуха. Так, в 1923 г. был открыт в ней теплый слой как путем сумеречных наблюдений, которые делал В. Г. Фесенков в Харькове, так и путем наблюдений за возгоранием и угасанием метеоров, выполненных Ф. А. Линдеманом и Г. М. Добсоном в Англии. Еще ранее В. Слайфер и Р. Рэлей описали таинственное, как тогда казалось, свечение ночного неба, рождающееся тоже в верхней атмосфере и включавшее зеленые и красные спектральные линии. Через два года после открытия Фесенкова и Добсона Дж. Мак-Леннан в США доказал, что в ночном небе светится атомарный кислород. и положил этим самым начало атмосферной химии свободных радикалов. Среди последних обнаружился позднее и светящийся интенсивно на ночном небе (в инфракрасных лучах спектра) гидроксил ОН. В том же 1925 г. В. И. Виткевич в Москве обнаружил и замечательные акустические свойства верхней атмосферы, обусловленные, в частности, сезонной сменой ее циркуляции.

В 1925 г. были также экспериментально определены высоты главных ионосферных слоев и определена в них высокая концентрация свободных электронов, а в 1927 г. было открыто и поглощение радиосигналов в области ниже слоя *E*, там, где мы теперь помещаем слой *D* с его необычными химическими свойствами — с обилием свободных радикалов. В 1928 г. наблюдалось впервые «мировое эхо» — отражение радиосигналов от магнитосферы Земли — первое свидетельство о существовании этой крайней области атмосферы.

В 1930...1931 гг. С. Чепмен в Англии предложил первую фотохимическую теорию озона («кислородную»), образующегося при упругих столкновениях молекул О₂ и атомов О с третьей молекулой М. Таким образом за короткое время был обнаружен ряд процессов и свойств верхней атмосферы. Со многими из них был связан озон, и это придавало большой интерес его наблюдению.

В 1926 ... 1931 гг. были созданы новые приборы для наблюдения озона и его вертикального распределения, определены его оптические характеристики, открыты многие пункты наблюдений и даже сделана попытка выяснить, как меняется озон с прохождением циклонов и антициклонов. В 1929 г. в Париже был проведен первый ме ждународный симпозиум, посвященный озону, а в 1931 г. П. Геті опубликовал и первую монографию об атмосферном озоне, пере веденную на русский язык в 1933 г.

Эта вспышка интереса была очень полезной для прогресса учения об озоне — так, например, сконструированный тогда спектрофотометр Добсона до сих пор служит основой сети наблюдений озона во всем мире. Интерес этот, однако, заглох в начале 1930-х гг. То была эпоха развития динамической метеорологии, гораздо более актуальной в ту пору задачи, чем наблюдение верхних слоев.

Ракетная техника, развившаяся в пору второй мировой войны, заставила вновь заинтересоваться проблемой более высоких слоев атмосферы, для наблюдений которых она, кстати, предложила и отличные «носители» приборов. Уже в 1946 и 1949 гг. с помощью трофейных ракет V-2 в США были выполнены первые наблюдения озона до высот 35...70 км. В 1947 г. один из авторов этих строк опубликовал обзор скромных еще в то время знаний об озоне, в том числе о переносе озона течениями атмосферы.

Вскоре появились почти одновременно уже четыре подробных обзора проблемы озона. Монография Р. Крэга (США, 1950) была посвящена главным образом результатам наблюдений озона, книга И. А. Прокофьевой (СССР, 1951) — выводам теории, методам и результатам наблюдений, монография Ш. Фабри (Франция, 1951) физическим свойствам озона и способам его определения, книга К. Лангло (Норвегия, 1952) — метеорологическим связям озона. С этого момента внимание к озону атмосферы прочно утвердилось в программах работ многих метеорологических служб.

В 1954 г. на сессии Международной ассоциации метеорологии и физики атмосферы (МАМФА) в Риме К. Р. Раманатан, основываясь на данных отличной сети станций Индии, сделал доклад, пробивший новый путь в науке, «Атмосферный озон и общая циркуляция атмосферы». Там же Абдул Халек доложил об открытии им озонного мирового минимума над Афганистаном, а А. Брюер о связи озона с различными характеристиками вихря в атмосфере, в том числе с вертикальными движениями последней. Немного позднее независимо К. Раманатан в Индии и Г. И. Кузнецов в СССР открыли «континентальный эффект» озона. Г. И. Кузнецову принадлежит и установление связи колебаний озона умеренного пояса и индекса циркуляции — наиболее крупномасштабной из динамических связей озона.

Международный геофизический год 1957-58 г. дал энергичный толчок развитию сети наблюдений озона. Так, в СССР был построен упрощенный новый озонометр, позволивший организовать наблюдения во многих пунктах нашей обширной страны. С 1960 г. началась при содействии Всемирной метеорологической организации и Канадской метеорологической службы регулярная публикация данных всей мировой озонометрической сети (об общем количествеозона). И практика и необходимость проверить теорию озонного слоя требовали, конечно, данных о вертикальном распределении озона в атмосфере. В МГГ был рекомендован для этого «метод обращения», предложенный еще в 1931 г. П. Гетцем. Но вместе с тем шла разработка озонных зондов. Вскоре появились хорошие модели электрохимического зонда А. Брюера (Англия) и хемилюминесцентного зонда В. Регенера (США). Ряд регулярных (еженедельных) зондирований был сделан в 1962... 1964 гг. над США и распространен затем на некоторые другие части Американского материка, на Антарктиду и океаны. О классических сериях таких зондирований, сделанных в Швейцарии, ФРГ и также в США, мы скажем ниже, в гл. V. Материал этих зондирований очень ценен и для теории озона, и для опытов его прогноза.

Самолетные зондирования озона тропосферы, предпринятые в СССР в 1960 г. А С. Бритаевым, открыли дополнительно путь для изучения связей переноса озона, облаков и стратификации атмосферы.

Примерно с 1965—1966 гг. бурное развитие наблюдений озона несколько замедлилось, уступив место работе теоретической мысли. Эта новая стадия науки об озоне должна была оправдать усилия, затраченные на наблюдения [128].

Новая эпоха была отмечена большим интересом к фотохимической теории озона. Первый опыт обобщения теории дал Х. У. Дютш в 1946 г Лишь в 1965 г. Б. Хант в США выступил с новым вариантом теории, указав на сильное влияние водяного пара стратосферы и порождаемых им радикалов ОН и НО₂ на фотохимию озона, на более сильное разрушение озона, чем предполагавшееся старой, кислородной теорией. В 1965 . . 1968 гг в СССР был опубликован ряд работ В И. Бекорюкова, Ю. А Шафрина, В М. Березина и др. Они создали «фотодинамическую теорию», учитывавшую уже турбулентность, вертикальные движения и общую циркуляцию атмосферы

Новое, весьма плодотворное и эффектное развитие фотохимическая теория получила в 1970 г, когда П. Крутцен в Швеции высказал идею о влиянии азотных соединений Он обратил внимание на окислы азота, выбрасываемые сверхзвуковыми самолетами В этом, предполагалось, состоит опаснейшее загрязнение атмосферы, угрожающее разрушить слой озона и поставить человечество под большую радиационную опасность от ультрафиолетовой радиации Солнца. Выяснилось, что искусственные азотные удобрения, применяемые сейчас в большом количестве, тоже увеличивают количество окислов азота в атмосфере Позднее, в 1974 г, распространилась идея, что фреоны, широко применяемые в холодильной и другой промышленности, тоже разрушают озон

Современное исследование озона идет под знаком этих тревожных, беспокоящих уже широчайшие круги общественности представлений о загрязнении, угрожающем озону, и о необходимости наблюдать за его изменениями. Следить надо, конечно, и за наличием в атмосфере малых, но влияющих на озон газовых примесей. Следует развивать и фотохимическую теорию в ее наиболее совершенной форме — в виде различных фотодинамических моделей атмосферы. Их ценность зависит только от того, как успешно они объясняют известное нам химическое строение атмосферы.

Новая эпоха отмечена появлением в США и в СССР искусственных спутников Земли, наблюдающих атмосферный озон. Эти наблюдения дают огромное количество информации, за один месяц превышающей количественно весь материал, собранный наблюдателями прежних лет. Использование этого материала для развития новых идей о закономерностях озона — страница ближайшего будущего науки.

§ 2. Озон и жизнь

Величайшую важность не только для исторической геологии, но и для современного человека имеет вопрос о соотношении жизни и озона, который имеется в атмосфере. Можно полагать, что жизнь — растительный и животный мир — смогла развиться на Земле только тогда, когда возник достаточно мощный «озонный щит», предохраняющий ее от ультрафиолетовой радиации Солнца. Ясно, что об этом щите и его судьбе мы должны заботиться и в настоящее время;

Хотя возраст Земли оценен сейчас довольно точно — около 4,5.10⁹ лет, о первичной атмосфере Земли нам известно очень мало. Если Земля возникла из космического протопланетного облака, в составе которого вначале содержался в большой пропорции водород, то несомненно этот водород был очень рано потерян Землей. Геологи полагают, что известная нам атмосфера Земли вторичная, образовавшаяся из вулканических газов или выделенная из геологических пород. В этих газах не было свободного кислорода (как почти нет его в атмосферах других планет). Такая вулканическая атмосфера Земли содержала около 109 лет назад, вероятно, лишь H₂, H₂Ô, N₂ и CO₂. Тогда на Земле почти не было жизни. Проникавшая сквозь такую атмосферу ультрафиолетовая радиация с длиной волны менее 307 нм могла разрушать ДНК живых клеток (лучше сказать, препятствовать их размножению, если бы они возникли). Лишь мощный слой воды мог в те далекие времена защитить живое вещество от радиации. Позднее (и мы увидим ниже, что означает это слово «позднее») в атмосфере появился кислород, а из него возник и зашитный слой озона.

А. Можно полагать, что водяной пар (например, пар вулканических газов) начал разлагаться под действием ультрафиолетовой радиации с $\lambda = 134 \dots 237$ нм по реакции $H_2O + h v \rightarrow OH + H$. При этом атомы водорода H могли ускользать из верхней горячей атмосферы — такой процесс изучен сейчас хорошо — со скоростью $10^7 \dots 10^8$ атомов с 1 см² в секунду. В дальнейшем при реакции $OH + OH \rightarrow H_2O + O$ образовывался свободный кислород.

Э. Хестведт и С. Хенриксен [257] в исследовании, опубликованном в университете в Осло в 1973 г., полагают, что именно таков был главный источник кислорода в атмосфере давних геологических эпох. Специалисты геологи, однако, считают, что так возникавший О₂ почти весь быстро расходовался на окисление пород земной поверхности.

В. Известно, что фотосинтез растений, вначале первичных одноклеточных водорослей (защищенных слоем воды от избыточной радиации), а затем и более сложных водорослей тоже мог выделять свободный кислород. Это могло происходить, например, по реакции $CO_2 + H_2O \rightarrow HCOH + O_2$. Продуктом дальнейшего преобразования молекул НСОН было живое вещество. Этому процессу отводят первое место Л. Беркнер и Л. Маршалл [153], пишущие, что до возникновения жизни, в отсутствие больших океанических областей, источники кислорода были незначительны, а поглощение его на окисление было велико, так что равновесный уровень его был низок ([153, с. 310]).

При этом важна более точная оценка опасной радиации, которая первоначально тормозила возникновение живого вещества. Так, в работе Беркнера и Маршалла было принято, что для жизни для ДНК — опасна спектральная область с $\lambda = 240 \dots 285$ нм при энергетической освещенности в этой области более 10^{-3} Вт·м⁻². Позднее М. Ратнер и Дж. Уокер [364] выбрали другой критерий. Хотя у более длинных волн эффект, разрушающий ДНК, убывает, энергия лучей Солнца в этих волнах много больше, а защитная способность других органических веществ, окружающих клеточное ядро, мала. При этом опасной дозой ультрафиолетовой радиации является 10^{-1} Вт·м⁻² для всей области спектра с $\lambda \ll 302$ нм.

Так или иначе процессы A и B привели к самому замечательному событию всей геологической истории — к так называемому эволюционному взрыву. После того как в архейской эре сотни миллионов лет существовали лишь примитивные организмы — бактерии и водоросли, отчасти даже анаэробные организмы в мелководных морях и озерах, в палеозойской эре развитие жизни быстро поднялось на высокую ступень. В силурийский период происходило развитие богатой жизни в море, где появились многочисленные роды рыб, а в конце его, около 440 млн. лет назад, появилась растительность на суше — предки современных папоротниковидных и плаунов. В следующем периоде — девонском, примерно 370 млн. лет назад, расцвела пышным цветом и животная жизнь на суше в покрывавших ее уже богатых лесах. Так начался период усиленнейшего фотосинтеза и быстрого накопления кислорода O_2 в атмосфере.

Отложения каменного угля свидетельствуют как об ассимиляции атмосферной углекислоты, так и о выделении кислорода в атмосферу. Несомненно, что в образовавшейся кислородной атмосфере возник слой озона, а озонный экран, вначале, конечно, вблизи поверхности Земли. При содержании кислорода около 0,1 современного его количества (PAL — present atmospheric level) слой озона приподнялся уже в стратосферу

Рисунок 1 показывает, как слой озона, зародившийся при концентрации кислорода около $3 \cdot 10^{-4}$ PAL, вскоре достиг на уровне максимума озона концентрации $N_3 = 10^{13}$ молекул в 1 см³ и постепенно распространился в более высокие слои атмосферы при накоплении O_2 от $3 \cdot 10^{-4}$ PAL до 1 PAL [257]. Замечательно, что расчет фотохимического равновесия образующегося таким образом

Рис 1 Развитие слоя озона при увеличении количества кислорода в земной атмосфере от 3 10-4 от его современного количества (PAL) до настоящего времени По [257]

озонного слоя и его эволюции, сделанный Хестведтом и Хенриксеном, принявшими во внимание водородные реакции, а также новейшие расчеты Блэка и Карвера [156], рассмотревших реакции с метаном CH₄ и окислами азота NO_x, дали почти такие же результаты, как и расчеты для простой кислородной атмосферы, сделанные Ратнером и Уокером.

На рис. 2 показано, как пропускала такая формирующаяся со временем — с накоплением кислорода — озоносфера радиацию Солнца до поверхности Земли. Почти вся радиация с $\lambda < 280$ нм отфильтровывалась уже при $2 \cdot 10^{-2}$ PAL. Этот момент, вероятно, отметил собой появление развитой жизни на суше.¹ Еще несколько ранее при $(2 \dots 3) \cdot 10^{-3}$ PAL такому отфильтровыванию помогал слой воды толщиной примерно 2 м, также ослабляющий ультрафиолетовую радиацию. Тогда, наверное, жизнь могла начать раз-

¹ Более новые расчеты Левина поднимают этот предел до 10-1 РАL.

виваться интенсивно в воде, в теплых прибрежных водах или неглубоких озерах.

Что можно сказать теперь о гипотезах А и В?

Если учесть, что источником кислорода была фотодиссоциация водяного пара, то эволюционный взрыв мог произойти лишь при очень быстром — по геологической шкале времени — насыщении атмосферы водяным паром, который начал энергично разлагаться на солнечном свету. При этом приходится допустить, что водоемы,

Рис 2 Пропускание (отн ед) ультрафиолетовой радиации Солнца слоем озона, образующимся при различном содержании кислорода в атмосфере, от 3·10-4 PAL до его современного уровня По [257]

подходящие для развития в них жизни, появились на Земле раньше этого события — более раннее развитие жизни в них хорошо доказано геологическими данными.

Если же предположить, что жизнь сама постепенно образовала фотосинтетический источник кислорода, после того как процесс А или жизнь в море создали первичное повышение уровня кислорода до (2...3)·10⁻³ PAL, то быстрота эволюционного взрыва хорошо объясняется таким механизмом с сильной положительной обратной связью. Объясняется и последовательность развития жизни в воде и на суше.

§ 3. Проблемы новейшего времени

Исследование геологической истории кислорода и озона представляет большой интерес. Когда в 1970 г. возникла идея о влиянии инжектируемых в воздух стратосферной авиацией окислов азота на возможное разрушение слоя озона, оказалось, что она имеет ближайшее отношение к проблеме озон—жизнь. Опасность ультрафиолетового ожога, которой подвергнется при разрушении озона биосфера (и все человечество), весьма очевидна. Сходную роль в разрушении озона, вероятно, могут играть и азотные удобрения [187].

В 1974 г. возникло также представление о каталитическом разрушении озона хлором, заносимым в стратосферу фреонами СF_xCl_y — веществами, которые широко применяются в холодильной и аэрозольной технике. Один из дальнейших поборников этой гипотезы в США Г. Джонстон писал в 1975 г., также ссылаясь и на роль авиации, что, если только не вмешаются какие-либо специальные, неизвестные механизмы, загрязнение стратосферы (авиацией и фреонами) создаст сильное убывание (large reduction) стратосферного озона. Подробные вычисления, учитывающие двумерные и трехмерные движения атмосферы, позволили сделать определенные выводы для случая фреонов, когда сильное убывание озона неизбежно [273].

Эти выводы вызвали сенсацию. Всемирная метеорологическая организация выступила в 1976 г. с проектом «Глобального исследования и мониторинга озона» и рекомендовала странам --- членам ВМО вести регулярные наблюдения за озоном для определения трендов и будущих угроз озонному щиту и для оценки возможного влияния изменений озона на климат. Проект энергично поддержала и Международная комиссия по атмосферному озону. В марте 1977 г. этот вопрос был рассмотрен в «Программе Организации Объединенных Наций по окружающей среде (UNEP)». В мае того же года в Женеве собрались специалисты, изучившие современные приборы и возможности координированных наблюдений наиболее биологически активной части солнечного спектра — между 290 и 320 нм (которую мы в дальнейшем будем сокращенно обозначать УФ-В). 1978 г. специальный циркуляр ВМО уже рекомендовал государствам организацию наблюдений ультрафиолетовой радиации.

Идея об опасности разрушения слоя озона и о ее далеко идущих последствиях привела к созданию в США специальной «Программы определения климатических влияний» (СІАР) (под общим руководством Департамента транспорта США), подразумевая под последними эффекты выбросов стратосферной авиации. С этой целью в 1972... 1975 гг. было созвано четыре конференции специалистов по проблемам авиации, физике атмосферы, по загрязнению и озону, и издано три общирных обзора. Аналогичная программа по изучению последствий стратосферных полетов (COVOS) была создана во Франции.

Следует заметить, что в настоящее время главной чертой распределения радиации УФ-В по земному шару является ее широтная зависимость. Вычисления показывают, что тропический пояс должен получать до 360... 420 Вт.ч.м⁻² УФ-В за месяц. Ее приход в умеренных и полярных широтах особенно зимой гораздо меньше.

Таким образом, разрушение озона должно по-разному сказаться в тропической и умеренной зоне на населении, по-разному приспо-

собленном (акклиматизированном) к избытку радиации. В результате мы приходим как к проблемам климатологии радиации, так и к более сложным биологическим и даже общественным проблемам.

Вернемся, однако, к геофизическим аспектам озона.

Как мы увидим в гл. VIII, распределение озона сильно зависит от течений атмосферы. Существует общая циркуляция озона между тропиками и полярной областью: движениями меньшего масштаба озон переносится в циклонах и струйных течениях и пр. Описаны даже вторжения, к счастью очень кратковременные, богатого озоном воздуха в нижнюю, обитаемую тропосферу.

Нередко наблюдаемые изменения озона помогают распознать формы движений воздуха в стратосфере. Они иногда свидетельствуют даже о связи этих движений с такими сугубо тропосферными объектами, как фронты и фе́ны [211]. Исследование физических связей озона стало ценно для специалистов по динамике атмосферы. Такова, например, связь весенней либо осенней перестройки циркуляции стратосферы с нагреванием последней, вызванным озоном. Пока, однако, такие связи еще очень мало используют в обиходе синоптики.

Более простой, возможно, является разрабатываемая сейчас задача прогноза локальной концентрации озона «на месте», т. е. на эшелоне стратосферного самолета. Действительно, по данным «Глобальной программы анализа проб атмосферы» (GASP), в кабине такого самолета нагнетаемый туда воздух содержит до 40% от концентрации озона во внешней стратосфере и может быть непосредственно вреден пассажирам и команде.

Следует помнить, что в концентрации более 5.10⁻⁶ по объему озон — ядовитый газ, опасный из-за вызываемого им раздражения дыхательных путей и его канцерогенных свойств.

В последние годы выяснилось, что развитие промышленности и автотранспорта рождает особое и мощное загрязнение в городах, в котором участвует и озон. Между окислами азота и несгоревшими углеводородами, например, выхлопных газов на солнечном свету происходят разнообразные фотохимические реакции, образующие, в частности, озон. В городах возникает так называемый фотохимшческий смог — густая дымка, содержащая до 1 мг·м⁻³ озона. Она поражает растительность, раздражает дыхательные пути и слизистую оболочку глаз человека и т. д. Впервые описанный в Лос-Анджелесе такой смог теперь наблюдается во многих больших городах США и Европы, в особенности в Голландии. Не исключено его появление и в СССР.

Изучение смога заставляет обратить более пристальное внимание на фотохимию нижней тропосферы и ее примесей. С другой стороны, науку сейчас интересует вопрос о различных возможных источниках озона в тропосфере.

Чтобы понять связь фотохимических и динамических процессов, в которых участвует озон тропосферы и стратосферы, очень полезны теоретические модели озонного слоя, описывающие его режим — либо стационарный, либо меняющийся в течение суток. сезона и пр. Эти модели учитывают, что на озон могут влиять многие малые составляющие как естественные (метан CH₄, закись азота N₂O), так и загрязняющие атмосферу соединения хлора и пр. Олномерные и особенно двумерные модели озоносферы сложны, требуют знания скоростей многих реакций, потоков солнечной радиации и пр. Параметры их, описывающие турбулентность и течения возлуха, должны быть совместимы, а результаты расчетов малых составляющих атмосферы - соответствовать данным наблюдений. В то же время такие модели очень полезны, они указывают рациональное направление будущих исследований и наблюдений озона и связанных с ним явлений загрязнения и изменения радиации. В своем докладе на сессии МАМФА в 1974 г. в Мельбурне Х. У. Дютш сказал, что, если сейчас основное внимание уделяется решению комбинированной проблемы фотохимии и транспорта озона, в булушем предпочтение будет отдаваться исследованию зависимости между озоном и динамикой стратосферы — сложной системы с обратной связью [215].

Глава II

фИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОЗОНА

§ 4. Общие сведения об озоне. Его молекулярные и термодинамические константы

Химический элемент кислород существует в атмосфере в виде трех аллотропических видоизменений: O_2 — молекулярном, O атомарном и O_3 — трехатомном, называемом озоном и образуемом при химическом соединении первых двух. Поэтому многие свойства молекулы озона могут быть лучше поняты, исходя из свойств молекулярного и атомарного кислорода. Это в особенности относится к реакциям чепменовского цикла (§ 11), в которых участвуют все три разновидности кислорода O, O_3 .

На основании изучения спектральных свойств озона были получены сведения о строении его молекулы. Как отмечено в [102], молекула O₃ явилась классическим примером использования спектральных данных для расчета длин связей и размеров центрального угла. Согласно общепринятой в настоящее время модели молекулы O₃, атомы в ней располагаются в вершинах равнобедренного тупоугольного треугольника, причем расстояния между атомами равны (1,278 ±0,003) · 10⁻⁸ см, а значение центрального угла составляет 116°50′ ±30′. Масса молекулы O₃¹⁶ составляет 7,97 · 10⁻²³ г.

В молекулу озона могут входить атомы более тяжелых изотопов кислорода О¹⁷ и О¹⁸. По приближенным оценкам в атмосферном озоне содержится около 0,21% молекул О¹⁶О¹⁸О¹⁶ и 0,41% молекул О¹⁶О¹⁸. Учет кроме основного и других изотопов делается при расчете параметров тонкой структуры полос поглощения озоном в ИК области.

Газообразный озон при стандартных температуре и давлении имеет плотность $\rho_{30} = 2,144 \cdot 10^{-3} \text{ г} \cdot \text{см}^{-3}$. Теплоемкость газа c_p уменьшается с понижением температуры: при 473 K $c_p =$ = 904 Дж · кг⁻¹ · K⁻¹, при 273 K c_p - 795 Дж кг⁻¹ · K⁻¹, при 100 K $c_p = 690$ Дж · кг⁻¹ · K⁻¹.

Озон сжижается при температуре 161,3 К (температура кипения) в темно-синюю жидкость плотностью 1,46 г см⁻³. Удельная теплота испарения жидкости 316 000 Дж кг⁻¹. При температуре 90 К жидкий озон имеет плотность 1,57 г см⁻³, а непосредственно перед затвердеванием его плотность составляет 1,614 г см⁻³. Температура затвердевания, по данным разных авторов, отличается на 2—3 К и составляет около 78 К. Твердая кристаллическая структура озона имеет темно-фиолетовый цвет.

Характерный запах озона ощущается при концентрации 10-4 %. Некоторые считают присутствие запаха озона чуть ли не показа-

телем чистоты воздуха. В действительности, как показывают биологические и медицинские исследования, озон — сильнодействующий яд, обладающий, помимо общетоксического действия, такими свойствами, как мутагенность, канцерогенность, радиомиметический эффект (действие на кровь подобно ионизирующей радиации). По токсичности озон превосходит, например, синильную кислоту.

Озоно-кислородные смеси взрывоопасны при концентрациях озона от 20 до 100%. Именно взрывоопасность концентрированных смесей озона долгое время была основным препятствием к исследованию его физических и химических свойств. Несмотря на то что промышленное производство озона существовало еще с начала XX в., наиболее фундаментальные свойства его молекулы были исследованы в 50-х гг., когда во многих странах были предприняты попытки использования концентрированного озона в качестве окислителя в ракетных системах.

Потенциал ионизации озона 12,8 эВ, сродство к электрону по разным данным 1,9...2,7 эВ, т. е. достаточно сильно (более сильным сродством обладают только фтор и его окислы, а также нестабильные частицы — атомы и свободные радикалы).

Полезные сведения о физико-химических свойствах озона читатель найдет в монографии С. Д. Разумовского и Г. Е. Заикова [102].

§ 5. Единицы измерения озона

Специалисты, работающие в различных областях физики, химии, биологии, метеорологии, обычно используют свои, часто весьма специфичные единицы измерения количества озона. Многие из этих единиц несут печать истории и традиций, другие вошли в моду совсем недавно.

Основной единицей измерения озона следует считать концентрацию (количество) молекул в единичном объеме N_3 . Эта величина называется также числовой плотностью частиц (молекул или атомов). Она выражается в м⁻³, см⁻³. Очевидно, эта единица имеет ясный физический смысл; другие единицы количества озона могут быть образованы с помощью ее на основе фундаментальных констант физики — чисел Авогадро N_{Λ} , Лошмидта N_{L} , постоянной Больцмана k и закона для идеального газа

$$p = NkT = N_{\rm L} \, \frac{R}{N_{\rm A}} T. \tag{5.1}$$

Напомним, что один моль газа при стандартном давлении (1,013·10⁵ Па = 1013 мбар) и температуре (273,16 К) занимает объем $V_0 = 22,4136$ л. При этом число молекул в объеме V_0 равно $N_{\rm A} = 6,022$ 169·10²³ (число Авогадро). Число молекул в 1 см³ — число Лошмидта $N_{\rm L} = N_{\rm A}/V_0 = 2,686$ 84·10¹⁹. Универсальная газовая постоянная равна $R = kN_{\rm A} = 8,3144$ Дж·К⁻¹·Кмоль⁻¹, $k = 1,3806 \cdot 10^{-23}$ Дж·К⁻¹.

С помощью соотношения (5.1) можно перейти от концентрации озона N_3 к его парциальному давлению p_3 , выражаемому обычно в нанобарах. Эта единица используется для представления измерений озона химическими озонозондами.

Для характеристики удельного количества озона употребительна так называемая плотность (парциальная плотность) озона ρ_3 , выражаемая в мкг·м⁻³. p_3 и ρ_3 связаны друг с другом через температуру:

$$p_3 = 1,7322 \cdot 10^{-3} T \rho_3. \tag{5.2}$$

В настоящее время в физико-химических исследованиях озоносферы часто используется единица — отношение смеси, не вполне точно иногда называемая относительной концентрацией. Этой единицей пользуются также специалисты по контролю окружающей среды и гигиенисты для описания чистоты приземного воздуха:

$$r_{3v} = N_3 / N = p_3 / p. \tag{5.3}$$

Употребительны следующие единицы: млн⁻¹ (10^{-6} по объему), млрд⁻¹ (10^{-9}).

Кроме объемного используется также массовое отношение плотностей озона и воздуха, выражаемое, как и r_{3v} , в безразмерных единицах (микрограммах озона на грамм воздуха):

$$r_{3m} = \frac{M_{O_1}}{M} r_{3v} = 1,6571r_{3v}, \tag{5.4}$$

где $M_{O_i} = 47,9982$ и M = 28,9644 — молекулярные массы озона и воздуха (по углеродной шкале).

Рассмотренные выше «химические» единицы количества озона, в частности выражаемые в граммах или миллиграммах на 100 м³, употреблялись химиками еще в середине прошлого века. Возникновение современных оптических методов наблюдения озона привело к образованию и употреблению такого понятия, как приведенная толща озона. Она выражается в единицах длины: сантиметрах, миллиметрах или микронах. Общее количество (содержание) озона в атмосфере, обозначаемое далее через X, в вертикальном столбе воздуха над наблюдателем определяется толщиной того слоя, который образовал бы весь озон в этом столбе, если его привести к нормальным условиям: p = 1013 мбар, T = 273,16 К. Для X используются такие единицы: атмосферо-сантиметры (атм-см) и миллиатмосферо-сантиметры (матм-см), которые в последнее время стали называть единицами Добсона — Д. Е. (в иностранной транскрипции — D. и.). По модели озоносферы для средних широт [292] Х = 0,345 атм-см = 345 Д. Е. Эта величина эквивалентна количеству озона в 7,39.10-3 кг, или 9,27.1022 молекул, содержащихся в вертикальном столбе атмосферы с сечением 1 м².

Чтобы характеризовать приземную концентрацию озона или его вертикальное распределение при измерениях оптическим способом, используют приведенную толщу на пути в 1 км. Эту величину

обозначают є и измеряют в атм-см. Ее можно связать с парциальным давлением озона в нанобарах через температуру воздуха T:

$$p_3 = 10 \frac{R}{V_0} T \varepsilon = 37,0951 T \varepsilon, \qquad (5.5)$$

а также с парциальной плотностью озона в кг м-3

$$\rho_{3} = 10^{-5} \left(\frac{M_{O_{3}}}{V_{0}} \right) \epsilon = 2,1415 \cdot 10^{-5} \epsilon.$$
 (5.6)

Коэффициенты для взаимного перевода единиц измерения озона N_3 , ρ_3 и є содержатся в табл. 1.

Общее количество озона в атмосфере Х можно выразить через

$$X = \int_{z_{u}}^{z_{MAKC}} 4,6697 \cdot 10^{4} \rho_{3} dz = -4,6697 \cdot 10^{4} \int_{p_{1}}^{p_{MRH}} \frac{\rho_{3}}{g\rho} d\rho =$$
$$= \frac{4,6697 \cdot 10^{4}}{g} \cdot 1,6571 \int_{p}^{p} \binom{(z_{0})}{(z_{MAKC})} p_{3} d\ln p.$$
(5.7)

При этом в (5.7) использовано уравнение гидростатики $dp = -g\rho dz$, где g — ускорение свободного падения, ρ — плотность воздуха. Если использовать шкалу давлений в логарифмическом масштабе для обозначения высоты $\left(\lg \frac{p}{p_0} \sim z\right)$, то по измеренной кривой распределения озона можно легко перейти к суммарной оптической толще по формуле (5.7). Такой прием используется при анализе озонограммы, узаконенной Всемирной метеорологической организацией формой представления результатов зондирования с помощью озонозондов. Озонограмма (см. рис. 43) объединена с эмаграммой (термодинамической диаграммой) для удобства сравнения стратификации озона и температуры 1127]. Шкала геометрических высот, нанесенная справа, рассчитана для стандартного распределения температуры и поэтому может отличаться от истинной высоты, соответствующей данному давлению. При запусках озонозондов, полет которых прослеживается рациолокатором,

шкала давлений (слева по оси ординат) вычисляется по барометрической формуле, причем температура, как правило, измеряется датчиком, установленным на озонозонде.

На озонограмме приведены также линии равных отношений смеси $r_{3m} = 1,657$ $p_3/p = \text{const.}$ При вертикальных движениях воздуха, если пренебречь фотохимическими процессами (роль которых практически ничтожна ниже 30 км), r_{3m} остается постоянным, а парциальное давление озона p_3 изменяется: уменьшается при подъеме и увеличивается при опускании воздушных масс. При интенсивном перемешивании воздуха в слое r_{3m} выравнивается. Из анализа бертикальных зондирований атмосферы химическими озоно-

	ни 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Концентраци	н молекул <i>№</i>	Плотис	ocra p,	Приведени ая, то	ылща на 1 км е
Величина	измерения	CM ^t	M - 5	Mkr·m ^{-s}	Kľ M ⁻³	атм•см•км-1	Д Е км-1
Концентрация	CM – 3	(0)	(6)	1,255(10)	1,255 (19)	2,687 (14)	2,687 (11)
Molekyi Na	₹₩	(9)	(0)	1,255 (16)	1,255 (25)	2,687 (20)	2,687 (17)
Плотность	MKr M-3	7,970 (—11)	7,970 (—17)	(0)	(6)	2,141 (4)	2,141 (1)
603	Kr M <i>-3</i>	7,970(20)	7,970 (—26)	(6)	(0)	2,141 (5)	2,141 (8)
Приведенная	ath cm·km ⁻¹	3,722 (15)	3,722 (—2)	4,670 (5)	4,670(4)	(0)	(3)
103444 AA 1 KM	Д Е км-1	3,722 (—12)	3,722 (—18)	4,670 (-2)	4,670 (7)	(3)	(0)
Примечани Брейтик приведенн	∣ ие Числовск нойтолще ⊾ВД	г обках означает Е.км ⁻¹ Име	I степень десяти ем е = 4,670 10	і Например, д гр <u>.</u>	ана плотност	ь (₀₃ в кг м ⁻³ Р	і Необходимо пе-

Таблица 1. Коэффициенты перевода единиц измерения количества озона

зондами следует, что, как правило, в тропосфере турбулентность развита гораздо сильнее, чем в стратосфере. Тропопауза обычно является той границей, где высотный градиент dr_{3m}/dz резко увеличивается (см. подробнее § 36).

В практике озонометрических наблюдений вертикального распределения озона с помощью химических и оптических озонозондов используется прием сравнения с общим содержанием озона X, измеренным наземным прибором. Если с помощью оптического метода определяется среднее содержание озона ε_i в каждом слое толщиной Δz_i , то общее содержание озона X_n в слоях определяется простым суммированием: $X_n = \sum_{i=1}^n \overline{\varepsilon_i} \Delta z_i$. При этом так называемый остаточный озон $X - X_n \ll X$ может включать некоторое количество озона в тропосфере, где измерения оптическим методом затруднены из-за сильного аэрозольного влияния, а также весь оставшийся озон выше максимальной высоты зондирования (обычно 30 . . 35 км). Оценку $X - X_n$ можно сделать, используя данные табл. 2, составленной по среднеширотной модели [292], для которой X = 0.345 атм-см 345 Д. Е.

Таблица 2 Абсолютное и относительное содержание озона в слоях толщиной 10 км по модели [292]

	С юн Δг, атмосферы км									
Содержание озона	0	10	10	20	20	30	30	40	40	50
Абсолютное Д Е Относительное, °0	26 7	,6 ,7	11 3	9,8 4,8	14: 4	2,6 1,4	43 13	,0 ,6	7 2	,5 ,2

Изменчивость в слое 0...10 км составляет 75°, а в слое 30...50 км — 15% [292]. Поэтому при сравнении данных по X, измеренному наземным прибором с точностью 5°, и вычисленному по результатам оптического зондирования озонозондом в слое 10...30 км с точностью 10% и данным табл. 2, может быть расхождение до 23°, В действительности, изменчивость озона в рассмотренных слоях может быть гораздо больше, чем по модели [292], и расхождение в определении X двумя методами будет, по-видимому, превосходить 30%.

Не менее важным является этот вопрос при использовании химических озонозондов, поскольку коэффициент пересчета показаний прибора в абсолютное содержание определяется по X (см. § 24).

§ 6. Некоторые физико-химические свойства озона

Химические свойства озона отличаются двумя главными особенностями — нестойкостью и окисляющей способностью. Находясь в воздухе в малых количествах, озон разлагается сравнительно медленно, присутствие в воздухе NO₂, Cl₂ и других газов-катализаторов (в отсутствие солнечного света), а также каталитическое действие окислов некоторых металлов (Ag, Cu, Fe, Mn) ускоряют разложение озона.

При повышении температуры разложение озона ускоряется. Термическое разложение озона стало классическим примером так называемой спиново-разрешенной термодиссоциации, который часто приводится в учебниках по химической кинетике. Механизм реакции можно представить следующим образом:

$$O_3 + M \underset{k_1}{\underset{k_1}{\underset{k_1}{\Rightarrow}}} O_2 + O + M,$$
 (6.1)

$$O + O_8 \xrightarrow{k_2} 2O_2. \tag{6.2}$$

Константы скоростей в (6.1) и (6.2) следующие: $k_1 = 7,8 \cdot 10^{14} \times \exp(-23\,340/RT) \operatorname{см}^3 \cdot \operatorname{моль}^{-1} \cdot \operatorname{c}^{-1}, k'_1 = 1,24 \cdot 10^{13} \exp(-1090/RT) \operatorname{cm}^6 \cdot \operatorname{моль}^{-1} \cdot \operatorname{c}^{-1}, k_2 = 2,9 \pm 0,9 \cdot 10^{12} \exp(-3700/RT) \operatorname{cm}^3 \cdot \operatorname{мonb}^{-1} \cdot \operatorname{c}^{-1}$.

Термический распад O₃ изучался в струевых (см. § 8) и статических условиях при T = 360 K, а также методом ударных волн при T = 800 K. Реакция (6 2) приводит к кажущемуся удвоению скорости мономолекулярного распада, однако при высоких температурах в ударной волне влияние этой реакции уменьшается, что приводит к переходу от удвоенной к нормальной скорости мономолекулярнои диссоциации. Между данными при прямой и обратной реакциях не наблюдается существенного различия [121]. На рис. 3 и 4 приведены результаты экспериментов разных авторов по определению температурных зависимостей коэффициентов в (6.1) и (6.2), суммированных в [273].

При сравнительно низких температурах стратосферы и мезосферы обратная реакция (6.1) является главной для образования атмосферного озона, ее коэффициент измерен в настоящее время с точностью в несколько процентов. Реакция (6.2) долгое время считалась главным каналом деструкции (гибели) атмосферного озона. Сейчас доказана решающая роль в деструкции озона малых примесных составляющих атмосферы: окислов азота, хлора, водородосодержащих компонентов, играющих роль газов-катализаторов.

Озон обладает сильными окислительными свойствами. При обычной температуре большинство металлов окисляются озоном. Серебро чернеет в воздухе, содержащем озон, с ртутью он образует окись HgO. Озон способен образовывать озониды щелочных металлов, из которых лучше других известны озониды калия и аммония Озониды имеют красный цвет и парамагнитны. Последнее обусловлено ионом O_3^- . Озониды могут рассматриваться как стабильные радикалы. Как мы видели в § 4, присоединение электрона к молекуле озона сопровождается выделением энергии примерно 2 эВ. Энергия разрыва связи О—О в ионе O_3^- , по-видимому, меньше энергии диссоциации молекулы O_3^- . В ряду молекулярных анионов

Рис 3 Зависимость константы скорости k_1 реакции (6 1) от температуры по данным разных авторов Пунктир— Kh'_1 где K — константа Равновесия [273]

Рис 4 Зависимость константы скорости k₂ реакции (6 2) от температуры по данным разных авторов [273]

кислорода О₃⁻ наименее прочен, хотя длина связи у него меньше, чем у О₃ и О₂, и составляет (1,19...1,22)·10⁻⁸ см; центральный угол у иона О₃⁻ около 100° [102]. В большинстве реакций окисления один атом кислорода входит

В большинстве реакций окисления один атом кислорода входит в состав продуктов, а два выделяются в виде молекулы О₂ Одним из исключений из этого правила является пример с SO₂:

 $3SO_2 + O_3 \rightarrow 3SO_3$.

Реакции озона с различными газами в атмосфере приведены в приложении 1. Константы этих реакций в большинстве своем были уточнены в последние годы в связи с общим интересом к атмосферному озону. Исключение, пожалуй, составляют реакции озона с окислами азота NO и NO₂, изученные достаточно подробно еще в 50-е гг. Реакция

$$NO + O_3 \rightarrow NO_2 + O_2$$

является главным каналом деструкции озона в атмосфере Земли Она интересна также тем, что сопровождается хемилюминесценцией в видимой и ИК областях. Другая, важная для физики атмосферы, реакция

$$H + O_3 \rightarrow OH + O_2$$

приводит также к возбуждению радикалов ОН и к возникновению мощной гидроксильной эмиссии на высотах 70. 100 км.

В качестве одного из парадоксов следует отметить химическое взаимодействие довольно инертной молекулы азота с озоном при сравнительно низких температурах Реакция

$$N_2 + O_3 \rightarrow N_2O + O_2$$

протекает менее чем за 1 мин при 570 К, но выход продуктов мал вследствие каталитического разложения озона. Другой интересный факт связан с неожиданно обнаруженной способностью озона окислять платину и ее аналоги [102]

Гетерогенные реакции озона (с поверхностями) представляют интерес по нескольким причинам. в связи с необходимостью транспортировать газовые смеси, содержащие озон, для подбора эффективных катализаторов — разрушителей озона в газовых промышленных отходах, для борьбы с сильным разрушающим действием озона на некоторые материалы (резины, пластики), используемые в авиации, электротехнике и других отраслях, а также при работе с озоном в лабораторных установках.

Стекло, фторопласты, некоторые металлы и их окислы (N₁, W, CrO₃, CdO, B₁₂O₃) сравнительно мало влияют на скорость распада озона. Другие окислы более эффективны, например N₁O, N₁O—Fe₃O₄, гопкалит (смесь окислов марганца) увеличивают разложение в 10... 100 раз по сравнению с указанными выше. Особенно активно идет разложение на активированном угле, металлах переменной валентности (Mn, Co, Fe), фосфорном ангидриде P₂O₅, перекиси бария BaO₂. Большинство чистых металлов покрывается пленкой окисла: PbO₂, AgO или Ag₂O₃, HgO.

Взаимодействие озона с тефлоном (фторопластом), стеклом, нержавеющей сталью, алюминием, полиэтиленом, поливинилом, майларом и алюминиевой фольгой изучалось при пропускании воздуха с микроконцентрациями озона через трубки, сделанные из исследуемых материалов [136]. Трубки из чистого тефлона пропускали озон без потерь. Стеклянные трубки для достижения такого эффекта требовали небольшого экспонирования в озоне. Трубки из нержавеющей стали, алюминиевые трубки и фольга, пленки из майлара должны были выдерживаться в озоне (при концентрациях порядка 10⁻² млн⁻¹) в течение нескольких часов, прежде чем они обеспечивали сохранность 90% и более от начального содержания озона. Более быстрая обработка озоном достигалась при нескольких экспонированиях в пределах от 5 до 15 мин при концентрациях 10 млн⁻¹. Авторы рекомендуют использовать при измерениях озона в небольших потоках только тефлон и стекло, так как все другие материалы нуждаются в предварительной тщательной обработке озоном [136]. Поверхности из тефлона являются наиболее подходящими, если учесть еще, что тефлон достаточно хороший вакуумный материал. Однако и тефлон может химически взаимодействовать с озоном, правда очень медленно, с выделением таких продуктов, как CO₂ и CF₂O [195].

Очень давно было замечено свойство озона разрушать натуральный каучук. Современные разновидности синтетического каучука обладают различной стойкостью к озону. Бутадиен-стирольная и бутадиен-нитрильная резины в этом отношении похожи на натуральный каучук. Напротив, этиленпропиленовый фторкаучук, а также сульфохлорированный полиэтилен характеризуются отличной стойкостью к действию озона. Разрушение каучука озоном используется как положительное свойство в некоторых простых методах количественного определения содержания озона в атмосферном воздухе (см. § 19).

Одна из важных реакций озона с неорганическими соединениями — разложение иодистого калия КІ — будет рассмотрена в § 19, так как она широко используется в качестве одного из стандартных методов количественного определения озона

К гетерогенным реакциям озона, на которых мы вкратце останавливались выше, стали проявлять пристальный интерес в последние годы в связи с расчетом моделей озоносферы. Принципиальное значение для исследований проблемы тропосферного озона имеют расчеты глобального стока озона у поверхности Земли. По обобщенным данным [127], значения потока озона (в спокойном воздухе), направленного к поверхности, могут меняться в пределах двух порядков. от 10¹⁰ см⁻²·с⁻¹ для морской воды умеренных широт до 10¹² см⁻²·с⁻¹ для кустов можжевельника.

Определенный интерес для исследователей тропосферных процессов (гроз, дождей, туманов) имеет растворимость озона в воде и особенно ее зависимость от температуры. Данные по растворимости озона в воде сильно различаются у разных авторов [102]. При нормальных условиях в 1 л воды растворяется 1 г озона; с уменьшением температуры растворимость увеличивается. Присутствие в растворах следов металлов переменной валентности, сильных кислот и других соединений приводит к каталитическому разложению озона.

В последние годы ряд зарубежных фирм использует в качестве растворителя озона при его больших концентрациях фторхлорметаны (фреоны). Озон, растворенный во фреоне, относительно безопасен в обращении и может долгое время сохраняться в специальных баллонах, в которых он и транспортируется к потребителю.

В заключение отметим очень важные и интересные хемилюминесцентные реакции озона с некоторыми органическими соединениями. Наиболее известна реакция с этиленом C_2H_4 (см. § 19). Насчитывается около 40 красителей, которые в той или иной степени флюоресцируют при наличии озона в воздухе. Таковы родамин С (в иностранной транскрипции В) — 3,6 бис-диэтиламинофлуорангидрохлорид, имеющий формулу $C_{28}H_3CIN_2O_3$, люминол $C_8H_7N_3O_2$ (З-аминофталгидразид), эозин — Y, феносафранин, рибофлавин, эйхрозин. Первые два были использованы при разработке чувствительных, быстрореагирующих анализаторов атмосферного озона, часть из которых подробно описана в § 25.

§ 7. Оптические характеристики озона

Спектральные коэффициенты поглощения озона изучены достаточно подробно. В микроволновой области (9...118). 109 Гц найден 21 переход. Некоторые интенсивные линии уже использованы для измерения озона в атмосфере (см. § 21). Озон имеет ряд колебательно-вращательных полос поглощения в ИК области спектра, в том числе и достаточно сильные с максимумами около 4,75, 9,57 и 14,2 мкм и более слабые с максимумами около 3,28, 3,57 и 5,75 мкм. Ряд слабых полос есть в красной и в ближней ИК области от 711 до 960 нм. Наиболее интересна полоса поглощения озона при $\lambda = 9,57$ мкм (волновое число $\nu = 1043$ см⁻¹), имеющая фундаментальное значение для спутниковых наблюдений озона. Она имеет отчетливую тонкую структуру, т. е. состоит из ряда близко расположенных спектральных линий. Краткий обзор современных знаний о характеристиках полосы λ = 9,57 мкм дан в монографии К. Я. Кондратьева и Ю. М. Тимофеева [71]. Обширные лабораторные исследования поглощения озона в этой полосе были проведены Уолшоу [420] и А. П. Гальцевым [33]. Их данные хорошо согласуются с результатами современных расчетов, в которых учитываются полоса 1103 см-1, полосы других изотопов, а также тонкая структура около 10 000 линий. Одна из трудностей использования лабораторных данных применительно к измерениям в атмосфере — зависимость поглощения озона от давления [127].

Сравнительно интенсивная область поглощения, впервые обнаруженная Шаппюи, занимает интервал 550...610 нм и имеет два отчетливых максимума при $\lambda = 602$ нм и $\lambda = 575$ нм. В газо-образном виде при концентрациях в воздухе 15 . . . 20% озон имеет заметный голубоватый оттенок, который связан с этим поглощением. Известен также эффект, объясняемый поглощением озоном в полосах Шаппюи: при заходе Солнца за горизонт на противоположной стороне небосвода наблюдается серовато-синяя граница земной тени [127].

Значками отмечены области идс коэрфициент поглощения мень не 0.01 см⁻¹

Коэффициенты поглощения озона α (λ) определяются на основе закона Беера-Ламберта

$$I_{L} = I_{0} \cdot 10^{-\alpha \lambda},$$

когда луч света с начальной интенсивностью I_{ui} ослабляется до I_{λ} слоем поглощающего вещества X. Здесь α (λ) — десятичный объемный коэффициент поглощения, измеряемый в см-1. Очевидно, экспоненциальный коэффициент больше в 10,434 раза. Сечение поглощения отдельной молекулы озона $\sigma(\lambda)$ в см² связано с $\alpha(\lambda)$.

$$\alpha (\lambda) = 0.434 N_{\rm L} \sigma (\lambda) \ .$$

На рис. 5 приведены основные полосы, где α (λ)>0,01, в УФ, видимой и ИК областях. Максимальные коэффициенты поглощения

Рис 6 Поглощение озоном в полосах Хюггинса Пунктір — эксперіментальные результалы Грітса и Инна и Танак і (см. в. [263])

Таблица З. Сравнение	сечений поглощения	молекулы	озона	(см²)
при различных длинах	волн [263]			

	Длина волны, нм				
4втор	253 65	289-36	296,73		
Инн и Танака (1953 г.) Херн (1961 г.) Де Мор и Рэгер (1964 г.) Григс (1968 г.) Вигру (1953 г.)	$\begin{vmatrix} 1,14 \ (-17) \\ 1,15 \ (-17) \\ 1,15 \ (-17) \\ 1,13 \ (-17) \\ 1,06 \ (-17) \end{vmatrix}$	1,46 (18) 1,47 (18) 1,48 (18) 1,48 (18) 1,56 (18)	5,75 (—19) 5,96 (—19) 5,86 (—19) 5,98 (—19) 5,85 (—19)		

	Длина волны, нм				
Автор	302,15	331,15	576 95		
Инн и Танака (1953 г) Херн (1961 г) Де Мор и Рэпер (1964 г) Григс (1968 г.) Вигру (1953 г)	2,84 (19) 2,86 (19) 2,84 (19) 2,82 (19)	$5.74 (-21) 4.76 (-21) \overline{5.57} (-21) 4.97 (-21)$	$\begin{array}{r} 4,46 (-21) \\ 4,76 (-21) \\ 4,74 (-21) \\ 4,74 (-21) \end{array}$		

Примечание Число в скобках означает степень десяти

наблюдаются в УФ области. В вакуумном ультрафиолете ($\lambda < 200$ нм) спектр поглощения озона представляет континуум с несколькими диффузными полосами с максимумами 75, 112, 121,6, 133, 145 и 173 нм.

Подробные исследования коэффициентов поглощения озона производились в трех областях спектра: 175...210, 210...360,

Рис 7. Температурная зависимость коэффициента поглощения озоном в полосах Хюггинса по данным Вигру [413] Пунктиром отмечены проинтерполированные данные (верхияя кривая — при 291 К. ниж ияя при 198 К)

450 ... 850 нм. Полоса Хартли (210 . . . 300 нм) была исслелована Инном и Танакой. Григсом (рис. 6). Де Мором и Рэпером, которые использовали источник света непрерывным спектром, и Херном, использовавшим линейчатый источник (см. в [263]). Их данные находятся в хорошем согласии (табл. 3). Вигру изучал температурную зависимость поглощения О₃ в области 245 . . . 345 нм, где на континуум накладываются полосы Хюггинса (табл. 4, рис. 7).

Как видно из табл. 4, эффект уменьшается для корот-

ких длин волн, где, вероятно, он замаскирован экспериментальной погрешностью. Таким образом, это свидетельствует о том, что температурная зависимость связана с полосами, а не с континуумом. Это также доказывает, например, сравнение $\sigma(\lambda)$ при $\lambda = 331,2$ нм и

	Отношение ссчени	й поглощения при ра	азных температурая
Длина волны, нм	σ _{181 K}	σ _{214 K}	σ _{243 K}
	σ ₃₀₀ K	σ300 K	⁰ 300 К
250,0	0,96	0,98	0,98
260,6	0,96	0,98	0,98
269,7	0,97	0,97	0,98
290,6	0,92	0,94	0,96
300,4	0,90	0,91	0,95
310,0	0,88	0,88	0,92
320,0	0,91	0,86	0,90
329,9	0,50	0,57	0,69
331,2	0,90	0,86	0,90

Таблица 4 Температурная зависимость сечения поглощения озона по Вигру

 $\lambda = 329,9$ нм, соответствующих максимумам и минимумам кривых поглощения, приведенных на рис. 6 и 7. Минимум связан с поглощением высокими вращательными уровнями, и, следовательно, σ (λ) должно здесь, как установлено, сильнее зависеть от температуры, чем в максимуме.

В области 175... 210 нм, где расположено важное атмосферное «окно» для солнечной радиации (рис. 8), имеется три источника данных: Григса, Инна и Танаки, Танаки и др. [263]. Рекомендуется использовать последние.

Рис. 8 Интенсивность солнечной раднации в 10⁴ фотон·м⁻² \times с⁻¹ нм⁻¹ на различных высотах в зависимости от длины волны (при нормальном падении солнечных лучей) Точки — интенсивность чинии l_{α} Основное поглощение радиации озоном в центре полосы Хартли происходит между 30 и 40 км

При оптических измерениях озона в воздухе всегда стоит вопрос о специфичности поглощения. Присутствие в воздухе паров ртути, интробензола, бензальдегида может внести ошибки, если используется УФ область. При наземных определениях общего содержания озона X следует учитывать возможную поправку в поглощении за счет атмосферной двуокиси азота. Напомним, что сопоставление наблюдений приземного озона в чистом воздухе высокогорья, проведенных двумя методами — оптическим и химическим, указывает на некоторое дополнительное поглощение УФ области спектра. Оно может быть связано с поглощением гипотетическими комплексами O_2 — O_2 и O_2 — N_2 , исследованными в лабораторных экспериментах В. И. Диановым-Клоковым и его сотрудниками [48].

Глава III

ФОТОХИМИЯ ОЗОНА И ЕГО МОДЕЛИ

В 1929 г. С. Чепмен на симпозиуме по озону в Париже рассмотрел впервые схему фотохимических реакций в воздухе, которая в принципе объясняла существование в атмосфере слоев повышенной концентрации озона и атомарного кислорода. Более обстоятельно теория Чепмена была изложена им в 1930 г. [179]. В дальнейшем шло уточнение этой теории по мере получения новых данных о солнечной радиации и скоростях химических реакций. Однако для согласования наблюдаемых и расчетных данных о плотности озона потребовалось ввести в рассмотрение динамические факторы: циркуляцию, турбулентность, вертикальные потоки воздуха.

Этот перечень важных для проблемы озона динамических факторов настолько широк, что сейчас наметилась тенденция их параметризации, например, путем введения одного или нескольких коэффициентов турбулентности в зависимости от масштабов и размерности модели.

Другое развивающееся направление, чисто фотохимическое, было связано с расширением наших знаний о химическом составе и реакциях в атмосфере — об азотных, водородных и других соединениях и их важной роли как катализаторов — разрушителей озона. Это расширение резко увеличило количество рассматриваемых в теории озона химических реакций.

Современная фотохимическая модель озоносферы должна быть основана на возможно более точном знании солнечного спектра и его вариаций, химического состава атмосферы, ослабления потока солнечной радиации за счет ее поглощения и рассеяния в атмосфере, результирующей способности солнечной радиации диссоциировать молекулы различных газов, констант скоростей химических реакций газов атмосферы.

Информация о солнечном спектре, равно как и о составе атмосферы, получается из наблюдений с помощью приборов — детекторов, тщательно калибруемых в лаборатории. Данные о сечениях элементарных процессов поглощения, о скорости фотодиссоциации (фотолиза) и химических реакций основаны на фундаментальных лабораторных измерениях. Остановимся на последнем вопросе подробнее.

§ 8. Сечения поглощения, фотодиссоциации и константы скоростей химических реакций. Лабораторные методы их определения

Внеатмосферный поток «монохроматического» солнечного излучения $q_{\lambda,0}$ ослабляется в атмосфере при проникновении до уровня *z* в соответствии с законом Ламберта—Беера:

$$q_{\lambda}(z) = q_{\lambda 0} \mathrm{e}^{-\tau_{\lambda}(z)} = q_{\lambda 0} T_{\lambda}(z), \qquad (8.1)$$

где $\tau_{\lambda}(z)$ — суммарная оптическая толщина на высоте z, обусловленная всеми поглотителями x_i при заданном зенитном угле Солнца Z.

$$\pi_{\lambda}(z) = \sec Z \sum_{i} \int_{z}^{\infty} \sigma_{\lambda}(x_{i}, h) n(x_{i}, h) dh.$$
(8.2)

Обычно считают сечение поглощения газа σ_{λ} не зависящим от высоты h, однако оно может зависеть от температуры и давления.

На рис. 9 приведены зависимости эффективных сечений поглощения некоторых газов от длины волны, играющие важную роль в фотохимии озона. Отметим, что выражение для τ может быть использовано для определения высотного распределения концентрации интересующей газовой компоненты $n(x_t, h)$.

Лабораторные измерения о, основаны на наблюдении поглощения света в кювете известной длины, содержащей заданное количество поглотителя.

Скорость фотолиза *I* какой-либо молекулы в спектральном интервале $\lambda_1 \dots \lambda_2$ выражается

$$I = \int_{\lambda_1}^{\lambda} \varphi_{\lambda} \sigma_{\lambda} q_{\lambda} d\lambda, \qquad (8.3)$$

где φ_{λ} — вероятность фотолиза молекулы при поглощении одного кванта света, или квантовый выход. Это — статистическая величина, равная отношению количества диссоципрованных молекул к числу поглощенных квантов.

Как правило, требуется учесть и продукты фотолиза, которые могут быть различны в различных участках спектра. При этом квантовым выходом $\varphi(P)$ для формирования данного продукта фотолиза P называется количество его частиц, приходящихся на один фотон, поглощенный молекулой данного типа. Часто под фотолизом молекулы понимают суммарный процесс, включая первичный акт фотолиза молекулы и последующие вторичные реакции. Суммарный квантовый выход Φ при этом может быть больше 1 ($\varphi < 1$ всегда). Например, при фоголизе озона $\Phi(-O_3) = 2$ вследствие реакции $O_3 + hv = O - O_3$ и $O + O_3 = 2O_3$.

Описание аппаратуры и методов измерения φ , наиболее типичных для этой задачи, содержится, например, в работах [276, 321], авторы которых определяли φ для NO₂, HNO₃, O₃.

Рис 9 Сечение поглощения некоторых газов, присутствующих в атмосфере, в зависимости от длины волны Точками отмечены σ указанных газов для линии L_{α} ($\Lambda = 1216$ нм)

Экспериментальные данные (если они есть) по φ и σ обладают следующими недостатками: отсутствие хорошего спектрального разрешения (иногда использованы дискретные наборы длин волн), недостаточная обоснованность достоверности или степени доверительности. Пределы точности данных по φ обычно даются, исходя из дисперсин повторяющихся измерений, и редко бывают менее 10%. Еще более серьезной является проблема абсолютной точности. Единственный практический путь объективной оценки надежности данных по φ — сравнение результатов разных авторов, использующих различную методику. Обзор экспериментальных данных по φ для атмосферных газов дан в [276, 425]. Расчеты скоростей фотолиза различных газов для реальной атмосферы выполнены в [407]

Перейдем к рассмотрению химических реакций, скорости которых можно определить из формул. Например,

$$A + 2B \xrightarrow{k_1} AB_2$$
 (8.4)

Уравнения для концентраций частиц [А], [В], [АВ₂] выражаются через k_i — константу скорости реакции

$$-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} - \frac{d[AB_2]}{dt} = k_t [A] [B]^2.$$
(85)

В атмосфере Земли имеют место как быстрые, так и медленные реакции, в которых участвуют два или три газа. Физический смысл константы k_i , равно как и понятие «быстрой» или «медленной» реакции, можно понять из следующего элементарного описания двойных и тройных столкновений частиц в равновесном максвелловском газе [96]. Пусть смесь газов состоит из частиц трех сортов твердых упругих сфер с циаметром d_i , массой m_i и числовой плотностью N_i , выраженной в см⁻³. Число двойных столкновений частиц первого и второго сорта

$$n_{1,2} = N_1 N_2 v_{1,2} \sigma_{1,2}, \tag{8.6}$$

где средняя относительная скорость пары частиц $v_{12} = \left(\frac{8kT}{\pi m_{12}}\right)^{1/2}$, T =абсолютная температура, k = постоянная Больцмана, $\frac{1}{m_{12}} = \frac{1}{m_1} + \frac{1}{m_2}$, а среднее кинетическое сечение $\sigma_{12} = \pi d_{12}^2$ определяется через среднии диаметр стольновении $d_{12} = \frac{1}{2} (d_1 - d_2)$. Для тройных стольновении

$$n_{123} = n_{12} \left(p_{13} + p_{23} \right) - n_{12} \left(\frac{n_{13}}{V_1} - \frac{n_{23}}{V_2} \right) \tau_{12}, \tag{87}$$

где p — вероятность столкновения третьей частицы в момент столкновения двух частиц, $\tau_{1,2} = d v_{1,2}$ — время столкновения

2 Jakas No 2550

Подставляя в формулы $d = 3 \cdot 10^{-8}$ см, $m = 2,7 \cdot 10^{-23}$ г (для атома кислорода), получим для интервала температур 130 . . . 300 К

$$n_{12} = (2,1 \pm 0,4) \cdot 10^{-10} N_1^2 \text{ cm}^{-3} \cdot \text{c}^{-1},$$

$$n_{123} = (2,1 \pm 0,4) \cdot 10^{-32} N_1 N_2 N_3 \text{ cm}^{-3} \cdot \text{c}^{-1}.$$

Предположение о твердых упругих сферах приводит, таким образом, к скоростям реакций, имеющим значение 10^{-10} см⁻³·с⁻¹ для двойных и 10^{-32} см⁻⁶·с⁻¹ для тройных реакций. Кинетическая теория газов позволяет учесть зависимость эффективного диаметра молекул $\sigma_{3\phi}$ от температуры, пользуясь, например, моделью Сэзерленда (притягивающиеся сферы). Для многих реакций, однако, более существенна температурная зависимость в форме Аррениуса $Ae^{-E/RT}$; A — так называемый предэкспоненциальный множитель, E — энергия активации, R — газовая постоянная.

Примерами быстрых реакций являются реакция дезактивации возбужденного атома O (¹D): O (¹D) + M $\stackrel{k}{\rightarrow}$ O (³P) + M, константа которой меняется в зависимости от рода частиц M от 5 · 10⁻¹¹ до 5 · 10⁻¹⁰. К быстрым реакциям ($k \approx 10^{-11}$) относятся, например, очень важные процессы с участием окислов азота:

$$N + NO \rightarrow N_2 + O(^{3}P),$$

$$NO_2 + O(^{3}P) \rightarrow NO + O_2.$$

Реакции озона с О, ОН, NO, имеющие константу, на три порядка меньшую (10⁻¹⁴), являются еще достаточно быстрыми по сравнению с его реакцией с NO₂ ($k \approx 10^{-17}$), SO₂ ($k < 10^{-22}$), CH₄ ($k \approx 10^{-24}$).

Наиболее известными, исследованными ранее других тройными реакциями являются

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M,$$

$$O(^{3}P) + O(^{3}P) + M \rightarrow O_{2} + M,$$

константы которых лежат в пределах от 10^{-33} до 10^{-34} (очевидно только несколько процентов тройных столкновений приводят к рекомбинации).

Отметим также известную реакцию Чепмена

$$O({}^{3}P) + O({}^{3}P) + O({}^{3}P) \rightarrow O_{2} + O({}^{1}S),$$
 (8.8)

предложенную им для объяснения свечения ночного неба ($\lambda = 557,7$ нм). Николе оспаривал эффективность этого процесса, которая по его расчету получалась слишком высокой (1%). Однако сравнительно недавно в лаборатории для реакции (8.8) получено $k = 4,8 \cdot 10^{-33}$, что соответствует эффективности 20% (см. в [121]).

Основные данные о константах газофазных химических реакций были получены на основе струевой методики при температурах 200...800 К и общих давлениях (0,1...10) 133,32 Па. Ламинарный пуазейлевый поток смеси реагентов (струя) создается в ре-
акционной трубе при откачке мощным насосом. Для получения атомов и возбужденных молекул в разряднике — диссоциаторе используется радиочастотный (1...300 МГц) разряд с внешними электродами («безэлектродный разряд»). Струевая методика стала мощным и универсальным количественным методом с 1958 г., когда Ф. Кауфман разработал надежный и красивый метод определения концентрации атомов кислорода с помощью хемилюминесцентного титрования двуокисью и окисью азота.

Особо следует отметить дальнейшее развитие струевой методики для исследования реакций с участием простых радикалов в основном состоянии, в частности гидроксильных радикалов (1970—1971 гг.), а также CN, ClO, BrO, HNO [121].

Флэш-фотолиз — второй тип генератора активных частиц относительно чистый, так как выбор длины волны источника (обычно импульсной УФ лампы) позволяет выбрать тип образующихся частиц и степень их возбуждения. Одним из главных ограничений этого метода является относительно низкая концентрация продуктов, однако прогресс лазерной технологии позволяет использовать все большие мощности в импульсе и повышать таким образом концентрацию. Характерный временной масштаб изучаемого явления составляет при этом 1 мкс, на три порядка меньше, чем в разрядном струевом методе. Использование лазеров на красителях в качестве источников фотолиза поможет увеличить спектральную селективность и диапазон и уменьшить временной масштаб изучаемой реакции до 10 нс [139].

Существуют и другие методы создания атомов и радикалов для определения их скоростей реакций: ударная труба, системы с пламенем, импульсный радиолиз. Все они являются менее универсальными и имеют ограниченное применение.

Пожалуй наиболее сложной задачей является создание метода регистрации продуктов изучаемых реакций. Большинство из перечисленных ниже методов измерения количества активных атомов и радикалов представляет интерес и в области исследования химического состава озоносферы и находит здесь есе более широкое применение.

Спектроскопический абсорбционный метод поглощения на известной линейной базе известным компонентом позволяет получать пространственно-временные характеристики реакций с пороговой чувствительностью около 10¹³ см⁻³.

В хемилюминесцентном методе используется свойство некоторых реакций создавать продукты в электронно-возбужденных состояниях, которые переходят в основное энергетическое состояние с испусканием световых квантов (см. § 25).

Метод резонансной флюоресценции заключается в создании и регистрации возбуждаемой в атомах флюоресценции при поглощении ими резонансного излучения, вызываемого, как правило, разрядными лампами с сильным самообращением резонансных линий. Масс-спектрометр является, вероятно, наиболее разносторонне применимым прибором в кинетических исследованиях. Несмотря на методическую сложность этого метода, с его помощью была получена обширная информация о кинетике элементарных реакций, а также непосредственно о составе верхней атмосферы. Пределы обнаруживаемой концентрации в этом методе 10⁷...10⁸ см⁻³.

Электронный парамагнитный резонанс (ЭПР) используется в сравнительно сложных и относительно громоздких радиотехнических системах для детектирования парамагнитных частиц. Чувствительность этого высоко специфичного метода 10¹¹ см⁻³. Лазерный магнитный резонанс, который начали изучать всего несколько лет назад [262], также используется для детектирования парамагнитных молекул, плотность которых превосходит 10⁸ см⁻³.

Наиболее старым и классическим является тепловой метод каталитического датчика, на поверхности которого происходит экзотермическая реакция рекомбинации атомов или радикалов.

Искусное использование этих разнообразных методов позволило в последние годы провести исследование важных для химии озоносферы реакций с участием таких активных составляющих, как O (¹D), O (¹S), H (²S), Cl (²P_{3/2}), Br (²P_{3/2}), OH (X²П), CN (X²Σ⁺), ClO, R₂O и конечно O₃ [121].

О точности получаемых констант скоростей: для струевых методов она определяется ошибками измерения давления, температуры, сечения трубы, скоростей подачи реагентов и составляет около 25%, для флэш-фотолиза она зависит также от учета диффузии продуктов из зоны реакции, но составляет меньшую величину — 10%.

В литературе встречаются случаи, когда константы одних и тех же реакций, измеренные в различных лабораториях и оцениваемые авторами с ошибкой примерно 10%, отличаются на порядок величины. Это большая разница связана с неучитываемыми (или занижаемыми) авторами систематическими ошибками эксперимента [192].

Таким образом, специалисты, разрабатывающие численные модели озоносферы, сталкиваются, как правило, с проблемой выбора наиболее надежной константы из всех, имеющихся в их распоряжении. В последнее время стали появляться обзорные работы, обобщающие богатую информацию по кинетике реакций и анализирующие достоверность результатов с указанием предпочтительных констант [139, 180, 246, 263]. Однако и здесь остается элемент субъективизма.

Задачами ближайшего будущего в области изучения фотохимии озона, как это указано в документе Всемирной метеорологической организации [4], являются как проведение лабораторных исследований, так и проведение критического обзора и оценка существующих данных для выдачи наиболее точных констант в качестве входных параметров моделей. При этом предполагается необходимость получения требуемых констант различными методами. В заключение подчеркнем еще раз, что лабораторный физикохимический эксперимент, являющийся сложным, трудоемким и дорогостоящим, остается тем фундаментом, на котором строится натурный эксперимент в атмосфере и создаются фотохимические модели озоносферы.

§ 9. Солнечное излучение, его вариации, их возможное влияние на озон

Солнечное ультрафиолетовое (УФ) излучение с длинами волн 120 нм $<\lambda < 200$ нм поглощается молекулярным кислородом уже в нижней термосфере и мезосфере (50...120 км), определяя в значительной мере там содержание атомарного кислорода и сопутствующего ему озона. Излучение с бо́льшими длинами волн (200 нм $<\lambda < 300$ нм) поглощается кислородом и озоном в верхней и нижней стратосфере и определяет фотохимию стратосферного озона.

Исследования солнечного УФ излучения ранее проводились хогя и эпизодически, но достаточно детально в области крайнего ультрафиолета (КУФ) с $\lambda < 100 \dots 130$ нм, важного для образования ионосферы. В последние годы эти исследования стали расширяться и дополняться систематическими наблюдениями в длинноволновой области с $\lambda > 100$ нм, включая диапазон ближнего ультрафиолета (БУФ), с $\lambda > 150$ нм. Получено сравнительно много новых, но пока еще сильно отличающихся между собой данных о спектральном распределении энергии и его вариациях.

Здесь уместно сослаться на мысль, высказанную Г. С. Ивановым-Холодным и Г. М. Никольским в предисловии к их монографии «Солнце и ионосфера», что «чисто ионосферные проблемы оказались неразрывно связанными с «чисто солнечными», поскольку для того, чтобы построить физическую модель образования ионосферы, необходимо прежде всего составить представление об условиях образования и характера изменения коротковолнового УФ излучения Солнца» [4]. Эта идея целиком относится и к условиям образования озоносферы. Более совершенные модели озоносферы должны строиться на фундаменте более точных моделей излучения Солнца.

В настоящее время под солнечной моделью обычно понимают совокупность физических параметров, описывающих равновесное состояние самых внешних «сфер», слоев Солнца: фотосферы, хромосферы и короны. Среднее их состояние характеризует модель, в которой сглажены все пространственно-временные неоднородности и возмущения. Ее, очевидно, можно назвать также и статической моделью. Одна из таких моделей была предложена в 1976 г. П. Лемером и описана в обзорной работе П. Бонне [160].

Несколько упрощая картину, можно сказать, что каждому диапазону солнечного спектра соответствует излучающая его опреде-

Рис 10 Интенсивность солнечной радиации в 10⁻³ Вт.м⁻².нм⁻¹ за пределами атмосферы как функция длины волны по данным разных авторов (см в [253])

1 — Доннели и Поул (1973) 2 — Героукс и Свирбаллс (1976) 3 — Брюкнер и др. [1971]. 4 — Аккерман (1971) 7 — Ротман (1974) 6 — Симон (1975) 7 — Текаекара (1973—1974)

Рис 11 Интенсивность сотнечной радиации в 10⁻³ Вт м⁻² нм⁻¹ за пределами атмосферы как функция длины волны в диапазоне 200. 300 нм по данным разных авторов (см. в [253]) 7 — Дониели в Поуп (1973) 2 — Бродфут (1972) 3 — Симон (19⁻⁵), 4 — Текаекара (1973) 1974) 5 — Хит (1973) 6 — Аккерман (1971)

Рис 12 Интенсивность солнечной раднации в 10⁵ фотон м⁻² с⁻¹ нч⁻¹ за пределами атмосферы как функция длины волны для интервала 210 320 им по танным Бродфута (1972) (см. в [253])

ленная область солнечной атмосферы. Для фотохимии озона имеет значение солнечный спектр с $\lambda < 1180$ нм. В инфракрасной и видимой областях спектр является непрерывным, со слабыми линиями поглощения, которые при λ<300 нм становятся более заметными Около λ = 210 нм интенсивность непрерывного спектра Солнца резко падает. В качестве возможной причины обычно рассматривается поглощение All в солнечной атмосфере, которыи имеет здесь порог ионизации и начало континуума Подобные ионизационные пороги и связанные с ними континуумы наблюдаются и в спектре других элементов: H, Mg, Si, Fe и Č Они являются основными поглотителями в области 300 . 120 нм При λ<190 нм в спектре Солнца появляются эмиссионные линии, значение которых быстро возрастает с уменьшением λ по сравнению с линиями поглощения, практически исчезающими при λ<150 нм При λ<140 нм хромосферные и корональные эмиссионные линии начинают доминировать на сэмиссией континуума

Наши знания о солнечном излучении в УФ области спектра основаны на аэростатных, ракетных и спутниковых измерениях. Результаты измерений солнечного спектра, полученные в основном в последние годы, представлены на рис 10—12, взятых из работы Д Хита и М Текаекары [253], обобщающей данные 10 экспериментов, проведенных с 1960 г Данные различных авторов в некоторых областях спектра существенно отличаются результаты Симона, например, ниже результатов Аккермана в интервале 195. 225 нм в несколько раз.

Наиболее полная информация о распределении энергии в УФ спектре Солнца, рекомендуемые значения, а также описание используемых бортовых приборов содержатся в методическом руководстве КОСПАР, подготовленном коллективом специалистов с участием Делабудиньера, Хинтереггера, Шмидтке и Симона [268]

Солнечное излучение, падающее на границу атмосферы, испытывает изменения двух типов Изменения первого типа связаны с эллиптичностью орбиты Земли и создают относительные изменения потока энергии в 6,6% от минимума в начале июля до максимума в начале января. Изменения второго типа, гораздо менее регуляр-

ные, связаны с цикличностью солнечных процессов, а также с внезапными проявлениями солнечной активности. Они проявляются, в частности, в сильных изменениях температуры и плотности термосферы, что было надежно установлено многочисленными наблюдениями за торможением спутников (27-дневная и 11-летняя периодичности). Однако прямых измерений радиации в диапазоне КУФ, ответственном за эту изменчивость термосферы между минимумом и максимумом активности, не проводилось (до 1976 г.). Недостаточно изучен вопрос об амплитуде этих вариаций и для области УФ с λ>120 нм. Д. Хит и М. Текаекара приводят пример 27-дневной изменчивости с довольно значительной амплитудой: от 1% при $\lambda = 300$ нм до 20% для линии L_{α} ($\lambda = 121,6$ нм) [253]. Их данные относятся к периоду максимума солнечной активности. В другой работе, также с участием Хита, проанализированы результаты наблюдений за изменчивостью той же линии при каждом обороте Солнца (27 дней) с апреля 1969 г. по ноябрь 1972 г. Так как обычно у Солнца существует два (реже четыре) магнитных сектора, всего за это время было зафиксировано 117 прохождений границ магнитных секторов Солнца через его центральный меридиан. Наблюдались два максимума радиации, разделенные 13,5 днями. Удвоенная амплитуда колебаний УФ составляет 1,5% [374]. По-видимому, выводы Хита и Текаекары о размере амплитуды, превышающем 10° [253], относятся к исключительным, редким условиям. Обычно же наблюдаемые 27-дневные вариации УФ излучения недостаточны, чтобы вызвать заметные эффекты в мезосфере, как было показано в [92]. Авторы этой работы Г. В. Гридчин, Е. А. Жадин, А. И. Ивановский, В А Марчевский исследовали влияние различных механизмов на формирование статических свойств атмосферы в рамках одномерной модели и сделали следующий вывод Если наблюдаемые вариации в параметрах даже самых нижних слоев атмосферы (например, 27-дневные) реальны, то для их объяснения необходимо привлечь динамическую (резонансную) теорию. Из теории приливов можно получить связь между вариациями давления и потока тепла на нижнем уровне (при условии равенства нулю вертикальной скорости на этом уровне) Для одной мо ны колебаний эта связь имеет вил

$$\iota\sigma\delta P_0 - \frac{\gamma(\gamma-1)}{2C_0} \frac{gH}{h-\gamma H} \delta S_0, \qquad (9 1)$$

где σ — частота возмущений, $\gamma = c_p c_v$ — отношение теплоемкостей, h — динамически эквивалентная глубина, C_0 — скорость звука. Из формулы следует, что для моды $h \approx \gamma H$ имеет место резонанс и амплитуда колебаний δP_0 может быть очень большой даже при малом изменении приложенной силы S_0

Результаты измерений в УФ с $\lambda > 120$ нм, проводившихся в период последнего, 20-го цикла солнечной активности, закончившегося в 1976 г., заставляют сделать предположение о возможной значительной, более 50%, изменчивости в области БУФ [180, 268]. Так, по результатам измерений Видал-Мадьяра, проведенных на спутнике OSO-5 с 1969 по 1975 г., различия энергии линии L_{α} ($\lambda = 121,6$ нм) между максимумом и минимумом активности составляют 40%. Для $\lambda \approx 200$ нм результаты Аккермана с соавторами по измерениям, выполненным при максимуме активности в 1968...1969 гг., на 40...50% выше данных Симона, Салина и Симона, Брюкнера и др., относящихся к 1972...1973 гг. к той же части спектра, когда активность пошла на убыль. Аналогичная тенденция наблюдалась для УФ вблизи $\lambda = 220$ нм также по данным Аккермана (1968...1969 гг.), Бродфута (1970 г.) и Симона

Рис 13 Относительные изменения интенсивности солнечной радиаини как функция длины волны в диапазоне 170 300 нм. (Анализ Д Хита и М Текаекары [253]) Верхияя и нижняя кривые соответствуют максимуму и минимуму солиечно за тивности

(1972. 1973 гг.) [268] Весьма неожиданным явился анализ Д Хита [253] как своих собственных измерений, так и измерении других авторов в период 1964 1975 гг. Как видно из рис 13, изменчивость «максимум—минимум активности» близ границы континуума и полос Шумана—Рунге (λ 185 нм) достигает фактора 3 (!). Такая большая амплитуда в сравнительно длинноволновой области УФ требует существенного пересмогра существующих солнечных моделей [160]

Можно предположить, что отмеченные выше значительные колебания УФ должны сказываться в атмосферных процессах также и ниже 100 км, тем или иным способом влияя на строение атмосферы, в частности на атомарныи кислород и озон Действительно, еще в 1920-е гг. Рэлей и Джонс отметили положительную корреляцию интенсивности зеленой линии (λ - 557,7 нм) атомарного кислорода в свечении ночного неба с относительным числом солнечных иятен R_z в ходе 11-летнего цикла Солнца [5] Для озона, спутника атомарного кислорода, вопрос о существовании и объяснении 11-летнего цикла не является очевидным. В стратомезосфере озон тесно связан с азото- и водородосодержащими компонентами, о поведении которых в этом цикле практически ничего не известно. Отмечен факт повышения температуры стратосферы в зимний период в средних широтах [386], что приводит к увеличению скоростей озоноразрушающих реакций, таких, например, как $O_3 + O \rightarrow 2O_2$, $O_3 + NO \rightarrow NO_2 + O_2$. Это может компенсировать в некоторой мере эффект увеличения УФ радиации.

Статистический анализ связи озона с солнечной активностью приводил иногда к противоположным выводам. Так, например, Кристи нашел для общего содержания озона отрицательную корреляцию с активностью через 22 месяца и положительную корреляцию через 75 месяцев после максимума цикла [182]. Похожие результаты уже получены Виллетом из анализа связи числа солнечных пятен и средней широты пятен на Солнце с усредненным по всему земному шару общим содержанием озона в 1925... 1959 гг. [428]. Однако Ю. Лондон показал, что результаты Виллета статистически незначимы [301]. Изучая корреляцию между числом R_z и средними годовыми значениями X в Арозе (1932... 1969 гг.) и Оксфорде (1951... 1969 гг.), Лондон выяснил, что корреляция эта исчезает при более строгом статистическом анализе [303] (см. гл. VII).

Следует отметить, что амплитуды длиннопериодных изменений общего содержания озона составляют всего несколько процентов, что приблизительно соответствует точности самых надежных приборов Добсона и значительно меньше точности большинства приборов, составляющих мировую сеть.

По-видимому, связь озона с R_z , так же как и ее наблюдения, осложняется такими явлениями, как запыляющие атмосферу вулканические (особенно мощные) извержения, испытания термоядерного оружия в атмосфере, а в последние годы — усиление антропогенных источников окислов азота и хлора.

Нам представляется, что проявления солнечной активности (за счет изменчивости УФ радиации) надо искать в тех слоях атмосферы, где суммарное влияние азотных и водородных компонент минимально и фотохимическое равновесие озона устанавливается достаточно быстро. Как мы увидим ниже, наиболее «подходящим» для этого является слой вблизи стратопахзы (45...55 км). Для поиска таких проявлении в средней стратосфере использовались данные озонозондов. Петцольд, измерявший вертикальное распрелеление озона оптическими озонозондами [340], сделал вывод, что содержание озона в слое его максимума (20 . . 30 км), так же как максимум, линейно растет с числом R_2 . Этот вывод был подвергнут тщательной статистической проверке по данным гораздо более многочисленных выпусков химических озонозондов Лондоном и Дютшем Они рассчитали, в частности, корреляцию озона по слоям с числом солнечных пятен со сдвигом от 1 до 57 месяцев [300]. Как общее количество озона X, так и его количество в стратосфере на

уровнях 10...15 и 28...33 км не обнаружило значимой корреляции с R_z .

Менее надежным, но очень важным ввиду своей доступности является материал наблюдений по методу обращения. Значительные изменения (на 10...20%) озона в верхней стратосфере в период 1960...1970 гг. с максимумом в 1970...1971 гг. указывают на возможное влияние R_2 . А. С. Бритаев, используя данные о вертикальном распределении озона, полученные по наблюдениям эффекта обращения во время МГГ—МГСС, показал, что в периоды активного Солнца имеет место повышение плотности атмосферного озона выше 35...40 км по отношению к периодам спокойного Солнца. Для этой цели А. С. Бритаев использовал средние кривые распределения атмосферного озона за пятилетний период [22]. П. Ф. Бойченко, используя метод обращения, обнаружил 27-дневные вариации озона в стратомезосфере над Волгоградом [15].

§ 10. О фотодиссоциации кислорода и озона

Источником молекул озона в атмосфере является солнечное ультрафиолетовое излучение, диссоциирующее молекулярный кислород. Фотолиз О₂ начинается при $\lambda = 242,4$ нм и имеет место вплоть до порога ионизации ($\lambda = 102,6$ нм). Область 242,4 . . . 202,6 нм, континуум Герцберга, характеризуется слабым поглощением, причем коэффициент поглощения зависит от давления газа (частоты столкновений), приводящего к лоренцовому уширению спектральных линий. В области «вакуумного ультрафиолета» расположены полосы ($\lambda = 200 \dots 175$ нм) и континуум Шумана— Рунге ($\lambda = 125 \dots 175$ нм). Спектральные границы областей являются до некоторой степени условными и слегка варьируют, по данным разных авторов.

Подробный анализ процессов фотодиссоциации кислорода и озона представлен в работах [263, 425]. Поглощение кислородом и области 180 . . . 210 нм сильно меняется с длиной волны, так как на слабый континуум поглощения в этой области накладывается система колебательно-вращательных полос Шумана—Рунге. Метод расчета коэффициентов диссоциации кислорода и других малых примесей, обещающий дать хорошее решение проблемы полос, был недавно предложен Г. Кокартсом [281].

Имеющиеся измерения сечения поглощения O₂ в области континуума Герцберга обладают некоторым расхождением [263], особенно при $\lambda > 230$ нм, где появляется поглощение озоном, и при $\lambda < 215$ нм, где сказывается влияние полос Шумана—Рунге.

Коэффициенты поглощения озона были рассмотрены в г.л. II. Важную роль в фотохимии озона играет не только его фотолиз, но также и продукты этого фотолиза, начинающегося в ближней ИК области при $\lambda = 1180$ нм. Таблица 5 указывает на различные комбинации состояний атома и молекулы кислорода, появление которых

Таблица 5. Энергетические состояния атома О и молекулы О₂ кислорода при фотолизе озона, соответствующие данной длине волны (им)

	O2					
0	$X^{3}\Sigma \overline{g}$	$a^1 \Delta_g$	$b^1 \Sigma_g^+$			
3p	1180	(611)	(463)			
1D	(411)	310	266			
¹ S	(237)	199	179			

Примечание. В скобках указаны длины волн, при которых комбинация состояний является спиново-запрещенной [425].

энергетически возможно при данной (и меньшей) длине волны. Эффективность появления этих продуктов определяется квантовомеханическим правилом сохранения спина молекулы О₃.

Появление атома кислорода в возбужденном состоянии вблизи $\lambda = 310$ нм (D-граница) существенным образом ограничивает глобальное содержание озона в атмосфере, так как ведет к возникновению азотного и водородного циклов, разрушающих озон. По оценке Крутцена [186], сдвиг D-границы, например, на 10 нм в сторону меньших длин волн уменьшает скорость фотолиза CO(¹D) озона более чем на порядок на 16 км, в 4 раза на 25 км, в 2 раза на 30 км и т. д.

Не менее важный аспект этой реакции связан с фотохимическими процессами у поверхности Земли (см. гл. VI). Поэтому было предпринято много усилий, чтобы исследовать квантовую эффективность реакции $O_3 + hv \rightarrow O(^1D) + O_2(a^1\Delta_g)$ в переходной D-зоне. Обзор результатов 15 работ дан в [321]. Автор этой работы Моортгат опубликовал также результаты своих собственных экспериментов, которые можно считать наиболее надежными. Переходная D-зона занимает около 20 нм, в ней происходит плавное возрастание $\varphi(O(^1D))$ от нуля при 320 нм до единицы при 300 нм. Существенна также зависимость $\varphi(T)$. при $\lambda = 313$ нм φ меняется от 0,2 при 200 K до 0,5 при 310 K.

При расчете скоростей фотодиссоцнации возникает вопрос об учете рассеянной раднации. Одним из результатов работы Крутцена [186] является оценка вклада этой радиации в скорость фотолиза O_2 над экватором для различных высот: 50 км — 1%, 30 км — 10% 20 км — 50%, 16 км — 100%. Важную роль в фотолизе озона играет рассеяние, а также отражение от облачного покрова, особенно в полосах Шаппюи. Фиокко и др. [231] рассмотрели эффект поверхностного альбедо и рассеянной молекулами и аэрозолями радиации на фотолиз озона и других важных для аэрономии примесей: NO₂, NO₃, HNO₃, H₂O₂. Учитывалось поглощение O₃, H₂O и O₂ в спектральной области 200 . . . 730 нм. Аэрозоли характеризовались распределением по размерам и их комплексным показателем прелом-

ления. Результаты расчетов показывают, что все эти факторы необходимо учитывать, если ставится задача добиться точности нескольких процентов при расчете концентраций примесей. По мнению авторов, их результаты могут объяснить отрицательные корреляции между содержанием аэрозоля и озона, наблюдавшиеся теми же авторами в слое стратосферного аэрозоля.

§ 11. Кислородный цикл Чепмена

Рассмотрим этот цикл для всей озоносферы, включая нижнюю термосферу. Цикл включает следующие основные процессы и реакции:

$$O_2 + hv \xrightarrow{I_2^*} O(^1D) + O(^3P) \quad \lambda < 175 \text{ hm},$$
 (11.1)

$$\rightarrow O({}^{3}P) - O({}^{3}P) \quad \lambda < 242,4 \text{ HM},$$

$$O + O_{2} + M \xrightarrow{k} O_{3} + M, \qquad (11.2)$$

$$O_3 + hv \rightarrow O_2({}^{1}\Delta_g) + O({}^{1}D) \quad \lambda < 310$$
 нм, (11.3)

$$^{3} O_{2}(\Sigma_{g}^{-}) + O(^{3}P) = \lambda < 1180$$
 HM,
 $O + O_{3} \xrightarrow{k_{4}} 2O_{2},$ (11.4)

$$O - M \xrightarrow{R_1} O_2 + M, \qquad (11.5)$$

$$O(^{1}D) \rightarrow M \xrightarrow{k_{g}} O(^{3}P) \rightarrow M.$$
 (11.6)

Реакция (11.6) еще не рассматривалась Чепменом.

Константы реакций (11.2), (11.5), (11.6), вообще говоря, зависят от природы частицы М. Поэтому для атмосферного воздуха, состоящего вз ι сортов частиц, здесь и в дальнейшем под k_m можно понимать некоторую эффективную величину, определяемую через индивидуальные константы $k_{m\iota} \iota$ -го сорта частиц и числовую плотность последних N_{ι} (или объемное содержание в процентах α_{ι}):

$$k_{m} = \frac{\sum_{i=1}^{n} k_{mi} N_{i}}{\sum_{i=1}^{n} N_{i}} = \sum_{i=1}^{i} k_{mi} \alpha_{i}.$$

Составляя баланс гибели и появления атомов N_1 и молекул кислорода N_2 и озона N_3 , мы получим следующие уравнения для неустановившихся процессов в «чистом» воздухе (состоящем из O_2 , N_2 , O_3 , O), понимая под N_i числовую плотность соответствующего

аллотропического соединения кислорода, а под N — сумму плотностей частиц всех сортов в см⁻³:

$$\frac{dN_2}{dt} + I_2N_2 + k_2N_1N_2N = k_1N_1^2N = 2k_3N_1N_3 + I_3N_3, \quad (11.7)$$

$$\frac{dN_1}{dt} + 2k_1N_1^2N + k_2N_1N_2N + k_3N_1N_3 = 2I_2N_2 + I_3N_3, \quad (11.8)$$

$$\frac{dN_3}{dt} + I_3N_3 + k_3N_1N_3 = k_2N_1N_2N.$$
(11.9)

Сумма (11.8) и (11.9) дает

$$\frac{1}{2} \frac{d(N_1 + N_3)}{dt} + k_3 N_1 N_3 + k_1 N_1 N = I_2 N_2.$$
(11.10)

Здесь под I мы понимаем сумму $I + I^*$. Сумму $N_1 + N_1^* + N_3$ часто называют «нечетным» кислородом и обозначают O_x .

Рассмотрим случай фотохимического равновесия в освещенной Солнцем озоносфере (d/dt = 0). Разрешая (11.9) относительно N_1 , подставляя N_1 в (11.10) и производя необходимые преобразования, получим выражение для N_3 :

$$[N_3]_e = N_2 \left[\frac{I_3 / I_3 k N_2 N (1-x)^2}{I_3 k_1 / k_2 k_3 + N_2 (1-x)} \right]^1, \qquad (11.11)$$

где $x = N_3 k N_1 N_2$, $k = k_2 k_3$ — отношение констант создающей и разрушающей озон реакций, заметно зависящее от температуры. В стратосфере величина x мала, но в мезосфере она постепенно возрастает примерно до 0,1 на 80 км и 0,5 на 90 км.

Для анализа поведения O_x разделим атмосферу на две части условной границей, где днем $N_1 = N_3$ (55... 60 км). Для области ниже этой границы $N_2 \gg I_3 k_1 k_2 k_3$ и (11.11) упрощается:

$$[N_3]_e^2 = \frac{k_2}{k_3} N N_2^2 \frac{I_3}{I_3} .$$
 (11.12)

Процессы установления фотохимического равновесия для атомов O (³P) и O (¹D) определяются уравнениями:

$$\frac{dN_1}{dt} + k_2 N_2 N N_1 = 2I_2 N_2 + I_3 N_3, \qquad (11\ 13)$$

$$\frac{dN_1^*}{dt} + k_q N N_1^* = I_2^* N_2 - I_3^* N_3.$$
(11.14)

Причем в реальных условиях «квазиравновесия» первые члены в правых частях уравнения всегда существенно меньше, чем вторые.

Для оценок времени установления квазиравновесных концентраций получаем следующие формулы:

$$t_1 = \frac{1}{k_2 N_2 N} \approx 2 \frac{T^4 \cdot 10^{-10}}{p^2} ; \quad t_1^* = \frac{1}{k_q N} \approx \frac{6 \cdot 10^-}{p}$$

где p — давление воздуха в миллибарах. На уровне стратопаузы $t_1 \approx 1$ с, $t_1^* \approx 10^{-5}$ с. Таким образом, атомы кислорода быстро «подстраиваются» под озон, содержание которого может сильно отличаться от $[N_3]_e$. В условиях равновесия

$$N_1 = \frac{2I_2N_2 + I_3N_3}{k_2N_2N + k_3N_3}, \qquad (11.15)$$

$$N_1^* = \frac{I_2^* N_2 + I_3^* N_3}{k_q N} \,. \tag{11.16}$$

Подставляя выражение (11.15) в (11.10) и опуская малые члены, получим выражение

$$\frac{dN_3}{dt} + \frac{2k_3I_3N_3^2}{k_2N_2N} = 2I_2N_2, \qquad (11.17)$$

которое является частным случаем специального уравнения Риккати. Определяя время t_3 установления концентрации озона, равной 50% от его фотохимически равновесной величины (11.12), получим

$$t_3 = \frac{\ln 3 [N_3]_e}{4I_2N_2} \approx 0,275 \frac{[N_3]_e}{I_2N_2}.$$
 (11.18)

При этом, очевидно, считается, что начальное содержание было равно нулю. Если, например, взять начальное значение равным половине значения при фотохимическом равновесии $[N_3]_e$, то за t_3 будет достигнуто 80°_0} от $[N_3]_e$ и т. д. Формула (11.18) вместе с упрощенной формулой (11.12) была получена и использована Николе [330] для расчета высотных профилей N_3 и t_3 при различных зенитных углах Солнца (и, следовательно, I) для высот, меньших 55 км (рис. 14). Величина t_3 составляет приблизительно 10^4 с на 50 км, нарастая в глубь стратосферы до 10^5 с на 40 км и достигая почти 100 дней на 30 км. На рис. 14 представлены также результаты расчетов N_1 и N_3 в чистом воздухе, выполненные Гридчиным и др. для мезосферы и термосферы [34]. Отличительной чертой этого расчета является использование самосогласованной одномерной модели, в которой учтены процессы диффузии, включая турбулентную (см. § 18).

Рассмотрим теперь фотохимические процессы для O_x в мезосфере и нижней термосфере, выше выбранного нами уровня 55...60 км. Здесь $N_1 > N_3$, скорость фотодиссоциации озона велика (10⁻², ... 10⁻³ с) и уже N₃ быстро подстраивается под квазиравновесное содержание атомов кислорода. Из (11.9) следует

Рис 14 Высотные профили концентрации атомарного кислорода N₁ и озона N₃ по фотохимической теории Чепмена для кислородно-азотной атмосферы и некоторые результаты измерений N₁ и A₃

I =результаты расчетов N_3 для различных Z боз учета диффузии по [330] 2 (почь) J (день) — N_3 с учетом диффузии по [111] 4 (день) J (почь) — Λ_1 без учето диффузии по [114] 6 — эмпирическая модель Λ_3 для средних широт (см гт IV) 7 результаты диевных измерении N_1 [138] 8 (день) 9 (почь) — результаты измерении Λ_1 [200] I0 по данным экспериментов [344]

Подставляя N₃ в (11.10), получим уравнение, аналогичное (11.17),

$$\frac{dN_1}{dt} + 2k_1N\left(1 + \frac{k_1k_2N_2}{k_1I_3}\right)N_1^2 = 2I_2N_2 \tag{11 20}$$

В освещенной Солнцем атмосфере время установления равновесия на уровне 50% от

$$[N_1]_e = \left[\frac{I_2 V_2}{k_1 N \left(1 - \frac{k_3 k_2 N_2}{k_1 k_3} \right)} \right]$$
(11.21)

$$t_1(50\%) = 0.275 \frac{[N_1]_e}{I_2N_2}$$
,

изменяясь от сотен часов на высоте 90 км до 8 ч на 70 км (табл. 6). Если подставить в формулу (11.21) соответствующие значения ко-эффициентов для уровня 100 км, то получим $[N_1]_e > N_2$, что гово-рит о необходимости рассмотрения в схеме Чепмена процессов диссоциации (11.1). Решение (11.7) имеет вид

$$N_2 = N_2^0 e^{-It} + \frac{k_1 N N_1^2}{I_2} \left(1 - e^{-I_2 t} \right), \qquad (11.22)$$

где N_2^0 — концентрация для t = 0, а I_2 есть сумма $I_2 + I_2^*$ Расчет $t_{2 \text{ dis}} = 1/I_2$ для 100 км дает величину при-мерно $3 \cdot 10^6$ с = 35 суток = 70 дней с 12-часовой освещенностью каждый. При нулевой оптической толще $I_2 \approx 10^{-6}$ с и $t_{2 \text{ dis}} \approx 20$ дней. Таким образом, для установления фотохимического равновесия в термосфере требуется достаточно большое время. Поэтому там необходимо учесть движение и диффузию, которые должны создавать вертикальные потоки атомов О вниз и молекул О₃ вверх.

На рис. 14 кривые N₁, N₃ для дневных и ночных условий взяты по одномерной самосогласованной модели для «чистой» (O_2 , N_2 , O_3 , O) мезотермосферы (50 . . . 500 км), разработанной Гридчиным и др. [114] Расчет сделан для области экватора в период равноденствия. Авторы учли молекулярные и турбулентные процессы вертикального переноса для всех компонент, кроме озона (последний, как мы знаем, быстро подстраивается к атомарному кислороду).

Для оценки времени рекомбинации атомов кислорода почью получаем решение уравнения (118):

$$N_1 = \frac{N_1^0}{1 - 2k_1 \Lambda \Lambda_1^0 t},$$

из которого следует

$$N_{1r} = \frac{n-1}{2k_1 \Lambda_1^0 \Lambda}$$

- характерное время, необходимое для убыли первоначальной концентрации N_1^0 (t - 0) в n раз. Используя модельные расчеты N_1 , можно оценить t_1 при n = 2

на различных высотах в ночных условиях.

Η	км.	•		110	100	90	80	70	60
t_1	с.			10 ⁸	3 107	1,2 10%	4 10°	1,6 100	3 105

Таблица 6 Стандартные параметры атмосферы, коэффициенты реакций, равновесные концентрации озона и атомарного кислорода и характерные времена их установления для кислородной модели Чепмена на высотах от 10 до 100 км

	Высота км						
Парамстр	10	20	30	40	50		
$ \begin{array}{c} V & cm^{-3} \\ N_2 & cm^{-3} \\ TK \\ r_1 & cm^{-6} & c^{-1} \\ k_2 & cm^{-6} & c^{-1} \\ k_3 & cm^{-3} & c \\ r_1 & c^{-1} \\ r_1 & c^{-1} \\ r_1 & c^{-1} \\ r_3 & c $	8,60 (18) 1,80 (18) 223,3 8,49 (-33) 1,08 (-33) 7,48 (-16) 4 0 (-4)	1,85 (18) 3,86 (17) 216,7 9,01 (33) 1,15 (33) 5 50 (16) 1 (12) 4 2 (4) 3,80 (13) 2 71 (7) 1,85 (7)	$\begin{array}{c} 3,83 (17, \\ 8,00 (16) \\ 226,5 \\ 8,24 (-33) \\ 1,04 (-33) \\ 8,25 (-16) \\ 1 (-10) \\ 7,0 (-4) \\ 2,31 (13) \\ 7 94 (5) \\ 5 06 (8) \end{array}$	$\begin{array}{c} 8,31 (16) \\ 1,74 (16) \\ 250,4 \\ 6,75 (-33) \\ 8,46 (-34) \\ 2 02 (-15) \\ 7,0 (-10) \\ 3 4 (-3) \\ 1 47 (12) \\ 3 32 (4) \\ 4 10 (9) \end{array}$	$\begin{array}{c} 2,14 (16) \\ 4,46 (15) \\ 270 7 \\ 5,77 (-33) \\ 7,28 (-34) \\ 4,^{8} (-15) \\ 1,5 (-9) \\ 8 4 (-3) \\ 1 16 (11) \\ 4,78 (3) \\ 1 42 (11) \end{array}$		

	Высота км							
Парамстр	60	70	80	90	100			
$ \begin{array}{c} \lambda & cm^{-3} \\ N_2 & cm^{-3} \\ T & K \\ k_1 & cm^{-n} & c^{-1} \\ k_2 & cm^{-6} & c^{-1} \\ k_3 & cm^{-3} & c \\ & I_2 & c^{-1} \\ & I_3 & c^{-1} \\ [v]_e & cm^{-3} \\ & I_3 & c \\ [v]_1_e & cm^{-3} \\ & I_1 & c $	$\begin{array}{c} 6,44 (15) \\ 1 35 (15) \\ 247 0 \\ 6,93 (-33) \\ 8 63 (-34) \\ 1,84 (-15) \\ 2,2 (-9) \\ 1,04 (-2) \\ 3,40 (10) \\ \hline 3,11 (10) \\ 3,162 (3) \\ 9,64 (9) \\ \hline 4,68 (10) \\ 4,35 (3) \\ 2,40 (5) \end{array}$	1,72 (15) 3,60 (14) 219,6 8,77 (-33) 1,12 (-33) 6,05 (-16) 4 2 (-9) 1 04 (-2) 2,15 (10) 3,16 (11) 5 76 (4) 1,05 (5)	$\begin{array}{c} 3,84 (14) \\ 8,02 (13) \\ 198,6 \\ 1,07 (32) \\ 1,64 (-33) \\ 5 19 (-16) \\ 1,5 (8) \\ 1,04 (2) \\ 2 09 (9) \\ 4,23 (11) \\ 9 69 (6) \\ 2,87 (5) \end{array}$	$\begin{array}{c} 7,17\ (13)\\ 1\ 50\ (13)\\ 198\ 6\\ 1\ 07\ (-32)\\ 1,64\ (-33)\\ 5,19\ (-16)\\ 7,0\ (-8)\\ 1,04\ (-2)\\ 1\ 94\ (8)\\ 1\ 11\ (12)\\ 2,90\ (7)\\ 5\ 87\ (5)\\ \end{array}$	$\begin{array}{c}1&34&(13)\\2,80&(12)\\198&6\\1,07&-32)\\1,64&(-33)\\5&19&(-16)\\3,2&(-7)\\1,04&(-2)\\3&20&(7)\\7&11&(12)\\2&19&(6)\\4,89&(5)\end{array}$			

Примечания 1 Чисто в скобках означает степень десяти Например, 7,0 (—8) есть 7,0 10⁻⁸ Температура и плотность взяты из стандартной атмосферы 2 Значения $[N_3]_e$ и $[N_1]_e$ для высот менее 60 км рассчитаны соответственно по формулам (11 11) и (11 15) для высот более 60 км – по формулам (11 19) и (11 21) Для высоты 60 км приведены результаты расчета соответственно по формулам (11 11) и (11 15) в чистителе и го формулам (11 19) и (11 21) в знаменателе Подведем некоторые итоги нашего рассмотрения чепменовского цикла реакций Схема цикла достаточно хорошо объясняет основные черты распределения озона и атомарного кислорода в стратосфере, мезосфере и нижней термосфере наличие максимума содержания озона в средней стратосфере (25 30 км) и соответственно максимума относительной концентрации (35 40 км), увеличение концентрации О с увеличением высоты и существование максимума абсолютной концентрации его близ 90 100 км, сильную суточную (день—ночь) изменчивость озона выше 60 км и атомарного кислорода ниже 80 км

Количественные оценки концентраций, их сравнение с наблюаемыми, а также оценка характерного времени реакций позволяют с целать следующие важные выводы С увеличением плотности воздуха 1₃ возрастает и озон становится фотохимически более «медлителен» Здесь вступают в силу факторы турбулентного перемешивания и вертикальных перемещений Благодаря им нижняя стратосфера и тропосфера в сильной степени (с точки зрения фотохимии) насыщены озоном, который является здесь трассером атмосферных движений Надо иметь в виду, что благодаря большому времени жизни озона в отсутствие ультрафиолетовой радиации озон может выступать как трассер и на больших высотах, например в полярной области зимой

Аналогична роль атомарного кислорода на высотах 90 100 км, где время его рекомбинации около месяца Наблюдения за ночной эмиссией с $\lambda = 557,7$ нм, проведенные с ИСЗ, уже подтвердили большую роль синоптических процессов для этого важного слоя, пограничного между термосферой и мезосферой [208]

Слой 50 80 км является областью с относительно быстрой отзывчивостью озоносферы к изменениям радиации Солнца, которые вызывают здесь значительные суточные изменения и О и О₃ Ниже 50 км концентрация атомарного кислорода очень мала, а озон изменяется лишь в пределах нескольких процентов (возможно, следуя суточным изменениям температуры и константы k), выше 60 км ночью N_3 увеличивается за счет N_1 , так как днем при h > 60 км всегда $N_1 > N_3$

§ 12. Водородный цикл

До тгое время слема реакций Чепмена была цостаточной как для объяснения немшогочисленных известных фактов, так и для теоретического анализа фотохимии кислорода Уточнение химических констант, появление новых экспериментальных данных указали на недостаточность теорин Чепмена

При расчете глобального образования O₃ с учетом только кислородных реакций, как показал Джонстон [273], получается огромный избыток его Оказалось, что реакция (114) разрушает только около 20% образующегося озона, а перенос озона через тропопаузу составляет всего около 1%. Таким образом, должны существовать дополнительные реакции, приводящие к гибели О₃. Этот эффект должен быть существенным даже при относительно малых содержаниях других газов. Так развилось представление о газах-катализаторах, участвующих в таких циклах реакций с озоном, при которых они вновь восстанавливаются, пройдя цепь химических превращений. Как отметили В. Л. Тальрозе, А. И. Поройкова, И. К. Ларин, П. С. Виноградов, Э. Е. Касимовская [125], важные для озоносферы циклы могут представлять два типа окислительно-восстановительных превращений:

$$\frac{X + O_3 \rightarrow XO + O_2}{XO + O \rightarrow X + O_2},$$

$$\frac{XO + O \rightarrow X + O_2}{O_3 + O \rightarrow 2O_2};,$$

$$\frac{X + O_3 \rightarrow XO + O_2}{XO + O_3 \rightarrow X + 2O_2},$$

$$\frac{XO + O_3 \rightarrow X + 2O_2}{O_3 + O_3 \rightarrow 3O_2}.$$
(12.2)

Следует отметить, что исходное вещество — катализатор должен иметь фотохимическое происхождение, обусловленное первоисточником — солнечной радиацией. С другой стороны, сами фотоны последней могут участвовать в таком, например, каталитическом цикле:

$$X + O_3 \rightarrow XO + O_2,$$

$$XO + O_3 \rightarrow XO_2 + O_2,$$

$$XO_2 + hv \rightarrow X + O_2,$$

$$HTOT: 2O_3 + hv \rightarrow 3O_2$$
(12.3)

Эффективность того или иного катализатора в атмосфере определяется несколькими факторами его содержанием, скоростью его взаимодействия с озоном и атомарным кислородом — «нечетным» кислородом, определяющей их гибель, и, наконец, скоростью его выбывания из цикла Отношение второго фактора к третьему называется длиной цепи в цепном механизме разрушения озона v_x и означает число частиц нечетного кислорода O_x , разрушенных одной частицей катализатора X. В случае кислородного цикла Чепмена катализатором является атом О и

$$\mathbf{v}_{O_{\lambda}} = \frac{2k_3(O)(O_3)}{2k_3(O)(O_3)} = 1.$$

Для других веществ (соединений азота, хлора, водорода и др.) v_x может достигать значений порядка 10⁷. Длина цепи в таком случае определяется уже не химическими реакциями, и ее обрыв связан с физическими процессами турбулентной диффузии, которая удаляет X из стратосферы. «Физический» обрыв цепи можно характе-

ризовать величиной $1/\tau = K_z H^{-2}$, где H = kT/mg — высота однородной атмосферы, а K_z — важный определяющий параметр любой одномерной модели озоносферы, коэффициент турбулентной (вихревой) диффузии. Этот параметр определяется, например, по распределению некоторых других составляющих (CH₄, N₂O, H₂), концентрация которых зависит также от фотохимических реакций. Понятие о характерном времени пребывания примеси τ в данном слое было впервые введено Леттау [299]. В тропосфере $H \approx 7$ км, $K_z = 2 \cdot 10^5$ см²·с⁻¹ и τ — порядка одного месяца. В относительно спокойной стратосфере $H \approx 6,5$ км, $10^3 < K_z < 10^4$ см²·с⁻¹ и 1 год $< \tau < 2$ года.

Таким образом, в модельных расчетах озоносферы огромная роль принадлежит атмосферным динамическим факторам.

Состав малых составляющих — потенциальных катализаторов и их высотное распределение интенсивно изучались в последнее время как экспериментально, так и теоретически с помощью одномерных и других моделей [180]. Исследования показали, что в атмосфере существуют малые примеси (с относительной концентрацией по объему 10⁻⁵... 10⁻¹⁰), которые с точки зрения их воздействия на озон удобно объединить в несколько групп в зависимости от их участия в соответствующем цикле. «нечетного» водорода HO_x (OH, HO_2 , H, H_2O_2 и др), «нечетного» азота NO_x (NO, NO_2 , HNO_3 , N, NO₃, HNO₂, N₂O₃ и др.), «нечетного» хлора ClO_x и брома BrO.. Большинство пз этих веществ находятся в атмосфере в виде газа или пара, некоторые могут входить в состав твердых или жидких частиц — аэрозолей, поверхность которых каталитически активна по отношению к О, Некоторые молекулы или их комплексы могут быть заряженными, т е существуют в виде положительных и отрицательных ионов. Поэтому можно говорить и об аэрозольном и ионном циклах разрушения О_x.

Далее мы рассмотрим последовательно главные циклы химических реакций в озоносфере и их основные характеристики. Водородный цикл, менее существенный для прямого разрушения озона в стратосфере (где он разрушает около 10% озона), становится преобладающим в мезосфере и нижней термосфере. История открытия цикла началась в 1950 г., когда В. И. Красовский и Дж Мейнел показали, что гидроксил ОН является источником интенсивного инфракрасного излучения ночного неба. Это натолкнуло Бейтса и Николе на необходимость изучения фотохимии влажного воздуха В том же 1950 г. они указали на важную роль водородных составляющих Н и ОН как катализаторов химических реакций в мезосфере [151]. Источником Н и ОН в атмосфере является фотолиз H₂O с основной реакцией (см. также [425]):

 $H_2O + hv \rightarrow H + OH (\lambda < 242 \text{ hm})$

В работе Р. Кейдла [170] в 1964 г было отмечено, что такие частицы могут появляться вследствие реакций О (¹D) с метаном, водой и водородом, особенно ниже 60 км. По-видимому, Хэмпсон

{245} был первым, кто предложил в 1965 г. учитывать дополнительную к классической каталитическую цепь реакций для стратосферы:

$$OH + O_3 \rightarrow HO_2 + O_2, \qquad (12.4)$$

$$\frac{\mathrm{HO}_{2} + \mathrm{O}_{3} \rightarrow \mathrm{OH} + 2\mathrm{O}_{2}}{s}$$
(12.5)

Итог: $2O_3 \rightarrow 3O_2$.

Эта идея была использована затем Хантом непосредственно для расчетов профиля озона [265]. Значение константы реакции (12.5), использованное им (10⁻¹⁴), долгое время считалось слишком низким, чтобы объяснить особенности распределения озона в стратосфере. Лабораторные эксперименты последних лет дали еще более низкое значение этой константы (10⁻¹⁵...10⁻¹⁶), что, однако, не умаляет роли данной реакции. Выше 40 км необходимо учесть следующие цепи реакций:

$$OH + O_3 \rightarrow HO_2 + O_2,$$

$$HO_2 + O \rightarrow OH + O_2,$$

$$OH + O \rightarrow H + O_2,$$

$$H + O_3 \rightarrow OH + O_2.$$
(12.6)

Современные данные о распределении водяного пара, метана и молекулярного водорода в атмосфере показывают, что источником радикала ОН в стратосфере являются следующие реакции:

 $\begin{array}{c} H_{2}O\\ CH_{4}\\ H_{2} \end{array} + O(^{1}D) \xrightarrow{a_{1i}} OH + \begin{cases} OH\\ CH_{3} & a_{1i} = \begin{cases} 2,3\\ 1,4\\ H & 1,0 \end{cases} \times 10^{-10}. (12.7)$

Таким образом, наличие O (¹D) в стратосфере (фотолиз $O_3 \rightarrow O_2 + O$ (¹D)) обеспечивает постоянное образование радикала OH в течение дня. Источником трех упомянутых газов является земная поверхность. Диффундируя сквозь воздух вверх, они проникают и в стратосферу. Метан образуется главным образом бактериями в болотах и озерах. Атомарный водород H, радикал перекиси водорода пергидроксил HO₂ и гидроксил OH испытывают быстрые взаимные превращения при участии атома кислорода O. При этом их концентрация стремится к равновесному состоянию. Для полноты исследования необходимо было бы ввести в рассмотрение и такие компоненты, как H_2O_2 , NO_2 и HNO_3 , однако оценки показывают, что их влияние на распределение основных компонент OH и HO мало. Только близ тропопаузы следует учесть реакции с NO и CO:

$$NO + HO_2 \rightarrow NO_2 + OH,$$

 $CO + OH \rightarrow CO_2 + H.$

Обрыв цепей в водородных циклах происходит главным образом при взаимодействии

$$OH + HO_2 \rightarrow H_2O + O_2, \qquad (12.8)$$

сопровождающемся образованием молекул воды, которая может уходить из стратосферы в тропосферу. Эта реакция и ее скоростьявляются одним из весьма важных (и чувствительных) факторовфотохимии стратосферы и, следовательно, фотохимии озона. Скорость этой реакции большая — $10^{-10} \dots 10^{-11}$.

Вода образуется также при реакции двух радикалов ОН:

$$OH + OH \rightarrow H_2O + O,$$
 (12.9)

но скорость этой реакции меньше (2.10-12).

Общий анализ основных реакций с участием водородных соединений позволил М. Николе [330] составить следующее соотношение:

$$\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{a_5 [\text{O}] + a_{36} [\text{CO}]}{a_7 [\text{O}] + a_{26} [\text{NO}] + a_{6b} [\text{O}_3]} \left[\frac{a_1 [\text{M}] [\text{O}_2]}{a_1 [\text{M}] [\text{O}_2] + a_2 [\text{O}_3]} + \frac{a_6 [\text{O}_3]}{a_5 [\text{O}] + a_{36} [\text{CO}]} \right].$$
(12.10)

Основные реакции водородного цикла и их константы скоростей указаны в табл. 7.

Таблица 7. Основные реакции водородного цикла, по М. Николе [330], и их константы [180]

Реакция	Обозначение константы скорости. по [330]	Зпачение константы скорости по [180]
$H + O_2 + M \rightarrow HO_2 M$	<i>a</i> ₁	2,1.10-32 exp $\left(\frac{-290}{T}\right)$ cm ⁶ ·c ⁻¹
$H + O_3 \rightarrow O_2 + OH$	u ₂	$1,2\cdot 10^{-10} \exp\left(\frac{-560}{T}\right) \text{ cm}^{3} \cdot \text{c}^{-1}$
$OH \rightarrow O_2 \rightarrow H$	a ₅	$1,0.10^{-10} \exp\left(-\frac{250}{T}\right) \mathrm{cm}^{3} \mathrm{cm}^{-1}$
$OH \rightarrow O_3 \rightarrow O_2 \rightarrow HO_2$	a ₆	$1,5\cdot10^{-12} \exp\left(-\frac{1000}{T}\right) \mathrm{cm}^{3}\cdot\mathrm{c}^{-1}$
$HO_2 - r O \rightarrow O_2 + OH$	a7	$1,0.10^{-10} \exp\left(-\frac{250}{T}\right) c_{M^3} c^{-1}$
$\mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{2O}_2 + \mathrm{OH}$	a _{eb}	$(7,3\cdot10^{-14} \exp\left(-\frac{1275}{T}\right) \mathrm{cm}^{3}\cdot\mathrm{c}^{-1}$
$OH + HO_2 \rightarrow H_2O + O_2$	a ₁₇	3.10-11 см ³ .с-1
$HO_2 + NO \rightarrow NO_2 + OH$	a26	$8 \cdot 10^{-12} \text{ cm}^3 \cdot \text{c}^{-1}$
$OH + CO \rightarrow CO_2 + H$	a 46	1,4.10 ⁻¹³ cm ³ ·c ⁻¹

На высотах, близких к стратопаузе, выражение (12.10) упроящается:

$$\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{a_5}{a_7} \cdot \frac{a_1[M][O_2]}{a_1[M][O_2] + a_2[O_3]}.$$
 (12.11)

Для мезосферы Андерсон и Донахью [140] использовали следующие выражения, связывающие ОН, НО₂ и Н:

$$\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{[\text{HO}_2]}{[\text{H}]} \frac{a_5[\text{O}]}{a_1[\text{O}_2][\text{M}] + a_2[\text{O}_3]}, \qquad (12.12)$$

$$\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{a_1[O_2][M] + a_8[O_3] \{a_1[O_2][M] + O_8[O_3]\}/a_5[O]}{a_7[O]}, \quad (12.13)$$

Для средней стратосферы

$$\frac{[\mathrm{HO}_2]}{[\mathrm{OH}]} = \frac{a_6}{a_{6b}},$$

а близ тропопаузы

$$\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{a_{36}[\text{CO}] + a_6[\text{O}_3]}{a_{26}[\text{NO}] + a_{6b}[\text{O}_3]}.$$

Экспериментальные данные определения HO_x в озоносфере чрезвычайно скудны. Измерения концентрации (OH), сделанные Андерсоном в интервале высот 45...60 км, дали значение около 5.10⁶ см⁻³. В работе [180] есть ссылка на позднейшие данные Андерсона и Девиса, согласно которым

Высота, км. 7 12 30 40 45 55 [OH], см⁻³ (2 \pm)·10⁶ (4 \pm 2)·10⁶ 3·10⁶ 2·10⁶ 10⁷ 10⁷

При этом отмечено, что большинство данных Андерсона получено при больших зенитных углах Солнца, а данные Девиса — при малых.

Очень важны систематические наблюдения за содержанием водяного пара в стратосфере, так как вода — основной источник ОН по реакции (12.7). Единственный долговременный ряд измерений концентрации H_2O в нижней стратосфере (14... 26 км), выполненных в США [313], обнаруживает в стратосфере увеличение количества водяного пара на 50% между 1964 и 1969 гг., небольшое изменение его между 1970 и 1974 гг. и резкое падение начиная с 1974 г. [180].

§ 13. Азотный цикл

В начале 1968 г. В. Н. Конашенок в работе «О фотохимической теории озона» (Изв. АН СССР. Физика атмосферы и океана, 1968, т. 4, № 7, с. 797—799) проанализировал основные несоответствия между теоретическими и экспериментальными данными об озоне и сделал вывод о существовании дополнительной убыли озона

в слое до 50 км за счет присутствия в атмосфере малых примесей, включая окислы азота NO, NO₂, и их реакций с атомарным кислородом.

В 1968 г. Г. П. Гущин в своей докторской диссертации «Исследование озона в земной атмосфере» рассмотрел вопрос о стационарной и нестационарной концентрации озона в атмосфере, содержащей окислы азота NO и NO2, добавив к классическим реакциям Чепмена (11.1) — (11.5) реакции (13.3), (13.4) и фотолиз NO₂. По его расчетам, в стационарных условиях на высоте 20 км уменьше-ние плотности озона должно составлять около 50% по сравнению с классической равновесной концентрацией. Выше 25 км влияние окислов азота на фотохимию озона, по Г. П. Гущину, оказалось пренебрежимо мало. Отметим, однако, что данные о содержании NO и NO₂ в стратосфере в ту пору (до 1973 г.) почти отсутствовали.

В 1970 г. П. Крутцен высказал мнение, что баланс озона в стратосфере зависит очень сильно от окислов азота NO_x , образующихся за счет окисления закиси азота N_2O , выделяющейся на поверхности Земли [187]. Вслед за этим Джонстон привлек общее внимание, указав на потенциальную опасность частичного разрушения озоносферы вследствие развития сверхзвуковой авиации, загрязняю-щей стратосферу окислами азота [272]. С этого времени началось бурное развитие фотохимии озоносферы, продолжающееся вот уже 10 лет. Закись азота образуется благодаря деятельности микроорганизмов в почве и океане (денитрификация). Газ этот сравнительно инертен и диффундирует вверх через тропосферу в страто-сферу. В стратосфере он распадается при реакции

$$N_2O + O(^1D) \rightarrow 2NO, \qquad (13.1)$$

параллельно с которой идет реакция

$$N_2O + O(^1D) \rightarrow N_2 + O_2.$$
 (13.2)

Скорости этих реакций примерно одинаковы и константы их имеют значение около $5 \cdot 10^{-11}$ [180]. Вертикальное распределение молекул N₂O контролируется также процессом фотодиссоциации

$$N_2O + hv \rightarrow N_2 + O(^1D)$$

(и реакциями (13.1), (13.2)) и в сильной степени зависит от параметра вертикального перемешивания К.

Окись азота — сильный катализатор распада озона:

$$NO + O_3 \xrightarrow{b_4} NO_2 + O_2, \tag{13.3}$$

$$NO_2 + O \xrightarrow{b_3} NO + O_2;$$
 (13.4)

 $b_4 = 2, 1 \cdot 10^{-12}$ exp (— 1450/*T*) см³·с⁻¹; $b_3 = 9, 12 \cdot 10^{-12} \cdot см^3 \cdot c^{-1}$ и почти не зависит от *T* при 235... 350 К. В освещенной Солнцем атмосфере NO₂ диссоциирует:

$$NO_2 + hv \rightarrow NO + O(^{3}P)$$
 ($\lambda < 405$ HM).

⁴Соответствующий коэффициент фотодиссоциации I_{NO_3} близок к 10^{-2} с⁻¹ в мезосфере и верхней стратосфере и уменьшается на уровне 15 км до $8,5\cdot10^{-3}$ с⁻¹, т. е. константа времени этого процесса около 2 мин. Следовательно, в условиях равновесия

$$\frac{[NO_2]}{[NO]} = \frac{b_4[O_3]}{I_{NO_2} + b_3[O]}.$$
 (13.5)

В средней и нижней стратосфере, где $I_{NO_3} \gg b_3$ [O], рассматриваемое отношение (13.5) прямо пропорционально концентрации озона:

$$\frac{[NO_2]}{[NO]} = \frac{b_4}{I_{NO_9}} [O_3].$$
(13.6)

Выше 35 км b_3 [O] $\gg I_{NO_3}$, и это отношение (13.5) уже практически не зависит от [O₃]:

$$\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{b_4 k_2 [M] [O_2]}{b_3 I_3}.$$
 (13.7)

Как показывает расчет, максимум $[NO]/[NO_2] \approx 3$ находится над тропической зоной ($\pm 20^{\circ}$ широты) на высоте около 14 км (± 2 км). Это отношение уменьшается к полюсам как в зимнем, так и в летнем полушарии до 0,3...0,5 в слое 0...20 км и остается близким к 1 в слое 20...30 км. В верхней стратосфере значение отношения возрастает, достигая 4 на 40 км и 50 на 50 км.

Рассмотренная выше схема азотного цикла является упрощенной. В действительности отношение [NO₂]/[NO] может зависеть от быстрых реакций NO + HO₂ → NO₂ + OH, NO + ClO → NO₂ + + Cl₂, константы скоростей которых имеют порядок 10⁻¹¹ см⁻³ с. В этом случае в числителе правой части (13.5) будут два дополнительных члена, [HO₂] $b_{\rm NO+HO}$, и [ClO] $b_{\rm NO+ClO}$. Если принять, например, для высоты 30 км [ClO] = 5 · 10⁸ см⁻³, то [NO₂]/[NO] будет почти в 2 раза больше, чем без учета дополнительных реакций.

Обрыв цепи азотного цикла происходит, в частности, при реакции двуокиси азота с радикалом гидроксила.

$$NO_2 + OH + M \rightarrow HNO_3 + M,$$
 (13.8)

константа которой равна (см. также примечание к приложению 1):

$$b_{22} = \frac{5 \ 10^{-12} [M]}{2,5 \ 10^{18} + [M]} \ \mathrm{CM}^3 \cdot \mathrm{C}^{-1}.$$

Образующаяся азотная кислота может диффундировать в тропосферу и быстро вымываться оттуда. Для баланса HNO₃ важны в последующем реакция

HNO₃ + OH $\xrightarrow{b_{17}}$ H₂O + NO₃ ($b_{27} = 8 \cdot 10^{-14}$ см³ · с) (13.9) и процесс фотолиза при $\lambda < 588$ нм

$$HNO_3 + hv \rightarrow OH + NO_2$$
, $I_{HNO_2} = 10^{-4}c^{-1}$. (13.10)

В условиях фотохимического квазиравновесия отношение

$$\frac{[\text{HNO}_{3}]}{[\text{NO}_{2}]} = \frac{b_{22}[\text{M}][\text{OH}]}{I_{\text{HNO}_{3}} + b_{27}[\text{OH}]}$$
(13.11):

приблизительно равно 1 на 25 км, увеличиваясь до 10 (на высоте 10...15 км под широтой 60...70° зимой) и до 5 (на этих же широтах и высотах летом). Выше 25 км отношение быстро уменьшается до 0,03 на 40 км на всех широтах, за исключением широт, бо́льших 50° зимой, где оно имеет порядок 0,1.

Важная роль атомарного азота для фотохимии термосферы и частично мезосферы была отмечена М. Николе [329] и А. Д. Даниловым [46]. Рассмотрим соответствующие реакции в применении к озоносфере:

$$N + NO \xrightarrow{b_6} N_2 + O$$
 $(b_6 = 8, 2 \cdot 10^{-11} \exp(-410/T)),$ (13.12)

$$N + O_2 \xrightarrow{b_7} NO + O$$
 $(b_7 = 5.5 \cdot 10^{-12} \exp(-3200/T)), (13.13)$

$$NO + hv \rightarrow N + O$$
 ($\lambda \approx 191,2$ HM). (13.14)

Скорости фотодиссоциации I_{NO}, вызванной радиацией Солнца, указаны в табл. 8.

Таблица 8. Скорость фотодиссоциации окиси азота на различных высотах [165]

Высота, км	/ _{NO} c ⁻¹	Высота, км	/ _{NO} c ⁻¹
100 90 80 70	$1,3 10^{-5} \\ 1,3 10^{-5} \\ 1,2 10^{-5} \\ 10^{-5} $	60 50 40 30	$\begin{array}{c} 7 \ 10^{-6} \\ 2,2 \ 10^{-6} \\ 7 \ 10^{-7} \\ 3 \ 10^{-8} \end{array}$

В стратосфере концентрация атомов азота равна

$$[N] = \frac{[NO] I_{NO} + P(N)}{b_6[NO] + b_7[O_2]},$$
(13.15)

где *P* (*N*) — мощность дополнительного к фотодиссоциации источника, атомов N.

Уравнение баланса для окиси азота записывается:

$$\frac{d[NO]}{dt} + [NO] (I_{NO} + b_6 [N]) = b_7 [O_2] [N] + P (NO)$$
$$P (NO) = 2 \cdot 10^{-10} [N_2O] \cdot [O (^1D)].$$
(13.16)

59°

Скорость изменения концентрации «нечетного» азота (NO, NO₂, NO₃, N, HNO₃, HNO₂), в основном определяемого тремя компонентами [165]

$$NO + NO_2 + HNO_3 = NO_x$$
,

может быть записана в виде

$$\frac{d[\mathrm{NO}_{\lambda}]}{dt} + \frac{2b_{6}I_{\mathrm{NO}}[\mathrm{NO}_{\lambda}]^{2}}{R(b_{6}[\mathrm{NO}_{x}] + Rb_{7}[\mathrm{O}_{2}])} = \frac{Rb_{7}[\mathrm{O}_{2}] - b_{6}[\mathrm{NO}_{x}]}{Rb_{7}[\mathrm{O}_{2}] + b_{6}[\mathrm{NO}_{x}]} \cdot P(\mathrm{N}) + P(\mathrm{NO}),$$

где

$$R = \frac{[NO_x]}{[NO]} = 1 + \frac{[NO_2]}{[NO]} + \frac{[HNO_3]}{[NO]},$$

последние члены в этом выражении вычисляются из уже известных нам соотношений (13.5) — (13.7) и (13.11).

Надо помнить, что существует постоянный источник атомов азота — галактические космические лучи, проникающие до самых нижних слоев атмосферы. По расчетам М. Николе [331], соответствующий максимум $\dot{P}(N) = 40$ см⁻³ · с⁻¹ лежит на высотах от 13 до 15 км над геомагнитными широтами, бо́льшими 60°. Это дает суммарный вклад по всем высотам, равный $(5 \pm 1) \cdot 10^7$ см⁻²·с⁻¹ для магнитно-полярных областей и $3 \cdot 10^7$ см⁻²·с⁻¹ для тропических. Амплитуда модуляции P (N), связанная с важным для космических циклом солнечной лучей 11-летним активности. лостигает 12 см⁻³ · с⁻¹ для высот (15 ± 2) км для геомагнитных широт, бо́льших 60°. Существует гипотеза, по которой 11-летние вариации общего содержания озона объясняются этой модуляцпей. Однако поставленный для ее проверки численный эксперимент Рао-Вуппутури [363] для двумерной модели с учетом всех циклов (кроме галоидного) обнаружил лишь незначительное (менее 1°₀) уменьшение отношения смеси озона в нижней полярной стратосфере в результате широтно-высотной зависимости P (NO). Детальные расчеты Брассера и Крутцена, сделанные независимо, дали тот же результат [4].

Повышенная концентрация NO, в особенности в мезосфере и стратосфере, может наблюдаться после мощных протонных вспышек на Солнце [190]. Нанболее примечательные события такого рода на Солнце наблюдались в последние годы в ноябре 1960 г., сентябре 1966 г. и августе 1972 г. Последствия последней чрезвычайно мощной протонной вспышки 4 августа 1972 г. (день 218-й на рис. 15) были зарегистрированы в верхней стратосфере спутником «Нимбус-4» [251] методом обратного ультрафиолетового рассеяния.

Важную роль для фотохимии мезосферы играет также транспорт окиси азота из термосферы, особенно в полярных широтах. На высоте 100 км поток NO вниз зависит от K_{zz} и может достигать $10^9 \text{ см}^{-2} \cdot \text{с}^{-1}$ на 80 км, если $K_{zz} \approx 10^8 \text{ см}^2 \cdot \text{c}^{-1}$ [163]. Учитывая рассмотренные выше основные реакции азотного, водородного и кислородного циклов, можно записать уравнение баланса озона в кислородно-водородно-азотной атмосфере:

$$\frac{d[O_3]}{dt} + 2k_3^e[O_3]^2 + \{a_2[H] + (a_5^e + a_6)[OH] + (a_7^e + a_{6b})[HO_2] + 2b_3^e[NO_3]\}[O_3] = 2I_2[O_3].$$
(13.17)

Рис 15 Временные варнация общего содержания отона вын е 4 мбар (около 40 км) в зависимости от випроты по измерениям методом обратного УФ рассеят ия со слутника «Нимбус-4» в 1972 г на стуста (день 218 и) троизошла ботьшая протонная гелыка с Сотице

Здесь индекс «е» означает, что соответствующая константа должна быть умножена на отношение $\frac{[O\ (^{3}P)]}{[O_{3}]} = \frac{I_{3}}{k_{2}} [M]\ [O_{2}]$.

Вклад различных членов в скорость разрушения озона в стратосфере виден из рис. 16 [163].¹

¹ Авторы работы [221] уточнили значения этих скоростеи в стратосфере и мезосфере Реакция (114), по их оценкам, вносит максимальный вклад в гибель озона на высотах 4.5 50 км. Выше 50 км основная роль принадлежит реакции О + ОН

Мы не учли в (13 17) галоидного цикла, дающего лишь небольшой вклад в суммарную деструкцию озона (в размере нескольких процентов), а также менее значительных (по существующим сейчас представлениям) ионного и аэрозольного циклов (см § 15—17).

Дополнением к рис 16 может служить табл 9, отражающая суммарный вклад различных циклов в скорость деструкции «не-

Рис 16 Суммарная скорость убывания молекул озона (пунктир) и ее составляющие как функции высоты при sec Z = 2 согласно расчетам по уравнению (13 17) Z – зенитны : угол Солнца

четного» кислорода на высотах 15 50 км по оценкам В Л Тальрозе и др [125] и Г Джонстона [273], как видно, отлично совпадающим

- Таким образом, рассмотрение циклов, дополнительных к кислородному, позволило объяснить, во-первых, наблюцавшееся ранее расхождение между расчетными концентрациями озона по чеп-

Цикл	По В Л Тальрозе и др [125]	По Г Дконстону [27]
$\begin{array}{c} O_{\mathbf{x}} \\ HO_{\mathbf{x}} \\ NO_{\mathbf{x}} \\ CIO_{\mathbf{x}} \end{array}$	17 9 70 4	18 11 70 Не рассматривался

Таблица ⁰. Вклад (%) различных циклов в деструкцию «нечетного» кислорода

меновской схеме и результатами наблюдений озона в области фотохимического равновесия (40 км и выше), во-вторых, сбалансировать значения глобального производства и разрушения озона [273]

Важным следствием теории этих циклов является существенное уменьшение характеристического времени t_{O_1} ниже 30 км если в чисто кислородной схеме t_{O_1} увеличивалось с уменьшением высоты, доходя, например, до 10 лет на 20 км, то по новой схеме $t_{O_2} \approx 2$ года на 16 км и затем уменьшается в тропосфере

Для мезосферы и нижней термосферы фотохимические процессы с участием азотных и водородных компонент рассмотрены подробно А Д Даниловым и М Н Власовым [46, 47], И Изаксеном [270], Н П. Бобковым и А Е Микировым [11, 14], Дж Андерсоном и Т Донахью [140] При этом обнаружилась важная роль процессов переноса для распределения малых составляющих атмосферы Следует подчеркнуть, что в этой трудной области исследований атмосферы существуют значительные расхождения как между моделями и экспериментальными данными, так и между самими экспериментальными данными о концентрациях

§ 14. О фотохимическом равновесии озона вблизи стратопаузы (50 км) и его связи с солнечной активностью

Поведение озона вблизи уровня стратопаузы, формируемой как максимум в температурном профиле за счет поглощенной озоном УФ радиации Солнца, представляет интерес по следующим соображениям

Во первых, фотохимическое равновесие при освещении Солнцем здесь устанавливается настолько быстро, что процессами переноса (адвекция и диффузия) можно заведомо пренебречь

Во-вторых, как показывают расчеты, в с тое 45 55 км зависимость равновесной концентрации озона $[N_3]_e \sim I_2/I_3$ по схеме Чепмена от зенитного угла Солнца χ пренебрежимо мала в широких пределах изменения последнего (см рис 14), что существенно облегчает анализ разнородного, полученного при различных χ , экспериментального материала Максимальное влияние изменчивости планетарного альбедо (наличие или отсутствие снега или облаков) на величину I_3 не превосходит на этом уровне нескольких процентов

В-третьи\, суточныи ход концентрации озона на высоте 50 км невелик, менее 10% по [14, 258], что позволяет при дальнейшем анализе включить в рассмотрение и данные ночных наблюдений

Наконец, суммарное влияние присутствующих в атмосфере водородных и азотных озоноактивных составляющих по модельным расчетам [172, 221] минимально именно вблизи уровня 50 км Выше этого уровня резко возрастает родь радикалов ОН и HO₂, ниже — превалирует азотный цикл (NO_x) Учет соответствующих реакций с этими компонентами может быть параметризован в (11.12) Как показал М. Николе [330], для области фотохимического равновесия вблизи стратопаузы из формул (13.17) и (11.12) можно записать

$$[N_3]^2 = \frac{k_2}{k_3} [M] [O_2]^2 \frac{I_2}{I_3 (1+A)}, \qquad (14.1)$$

где

$$A = \frac{a_3[\text{OH}] + a_7[\text{HO}_2] + 2b_3[\text{NO}_2]}{2k_3[N_3]}.$$

Для оценки A используются формула (12.11) и данные табл. 7. Если принять для высоты 50 км [OH] \approx [HO₂] \approx [NO₂] $\approx \approx 10^7$ см⁻³, то получим $A \approx 1$.

Таким образом, для расчета и анализа поведения важного параметра $Y = \frac{I_2}{I_3(1+A)} \sim \frac{[N_3]^2}{k(T)[M]^3}$, $k(T) = \frac{k_2(T)}{k_3(T)}$ необходимо располагать экспериментальными данными о N_3 , M, T. Для уровня 50 км погрешности измерения температуры и плотности воздуха на сети станций ракетного зондирования изменяются в пределах нескольких процентов [350].

Что касается погрешности измерения озона, то для оптического и хемилюминесцентного методов, разработанных в США, она составляет около 10 % [258, 291].

Оценки показывают, что при указанных выше погрешностях измерения N_3 , T и [M] максимальная погрешность определения параметра Y составит 35...40 %.

Имея ряд наблюдений озона в течение длительного периода, можно проследить за изменением его содержания и изменением параметра У в ходе 11-летнего цикла Солнца, с тем чтобы проверить выводы Д. Хита о существовании значительных 11-летних вариаций потоков УФ радиации Солнца в диапазоне 190...270 нм.

Прежде чем перейти к рассмотрению полученных результатов, следует остановиться на обстоятельстве, связанном с температурной зависимостью основной константы химического равновесия озона k (см. § 11). Она играет важную роль в области высот так называемого устойчивого фотохимического равновесия (где $t_3 \le 10$ сут), которая для средних широт расположена приблизительно выше 30 км летом и 40 км зимой:

$$k = \frac{k_2}{k_3} = \frac{1.1 \cdot 10^{-34} e^{510 T}}{1.1 \cdot 10^{-34} e^{-2150/T}} = 10^{-23} e^{2560/T}.$$
 (14.2)

Подставляя (14.2) в (11.12), можно оценить чувствительность озона к температурным изменениям:

$$\frac{1}{[N_3]_e} \frac{d[N_3]_e}{dT} = 0.5 \frac{dk}{k} = -1330 \frac{dT}{T^2}.$$

При T = 270 К и $\Delta T = \pm 10, \pm 20$ К, получим процентное изменение N_3

$$\left(\frac{\Delta [N_3]_e}{[N_3]_e}\right) \approx \mp 20\%, \ \mp 35\%.$$

Взаимозависимость плотности озона и температуры была исследована в работе [148], авторы которой проанализировали синхронные наблюдения этих двух параметров со спутника «Нимбус-4». Для слоя 0,9...1,9 мбар (несколько ниже 50 км) они получили высокий отрицательный коэффициент корреляции - 0,97. Аналогичные выводы следуют из работы Гази, Эбеля и Хита [238], в которой опубликованы карты средних температур и концентраций озона близ поверхности 2 мбар для октября 1970 г. (в области 80°ю, ш.... 80°ю, ш.) и для января 1971 г. (в области 0°... 70° с. ш.). Авторы, предположив существование фотохимического равновесия на уровне 2 мбар (45 км) на экваторе в январе и на 80°ю. ш. в октябре (начало южного полярного дня), получили зависимость $r_{3m}(T)$, которая соответствует числителю в показателе экспоненты (14.2) около 1800. Обратная корреляция озона и температуры, соответствующая практически чисто кислородной схеме Чепмена, установлена теми же авторами по данным измерений гата и Т в экваториальной зоне северного полушария для уровня 2 мбар в январе. Так, увеличение температуры на 10 К с 1 по 30 января 1971 г. сопровождалось 20 %-ным уменьшением содержания озона r_{ат}. Возможная причина этого явления станет ясной из дальнейшего рассмотрения экспериментальных данных о влажности на 50 км в средних и тропических широтах (см. рис. 19).

Полезно оценить температурную зависимость $r_{3m}(T)$ при $A \gg 1$ в случаях кислородно-азотного и кислородно-водородного циклов. Воспользуемся данными о константах соответствующих реакций (см. § 12 и 13): $a_5 = a_7 = 1,0\cdot 10^{-10} e^{-250/T}$, $b_3 = 9\cdot 10^{-12}$. В первом случае $r_{3m} \sim [M]^2 e^{510/T}$, т. е. приблизительно в 2,5 раза слабее, чем для чисто кислородной схемы. Во втором случае кислородно-водородного цикла $r_{3m} \sim [M]^2 e^{760/T}$. Сложнее оценить эту зависимость для кислородно-водородного цикла при $A \approx 1$, что соответствует современным модельным представлениям [221]. Расчет показывает, что при [OH] $\approx [HO_2] = 10^7 \text{ см}^{-3}$, $N_3 = 6\cdot 10^{10} \text{ см}^{-3}$; 260 K < T < 280 K изменение A будет от 1,3 до 2,1, а температурная зависимость будет соответсттвовать $r_{3m} \sim [M] \exp\left(\frac{2400\pm30}{T}\right)$, т. е. практически очень близка к чисто кислородной $\Delta T = \pm 10$ K соответствует $\Delta N_3/N_3 = \mp 18\%$.

Из приведенных простых оценок связи озон — температура можно заключить, что дальнейший анализ такой связи в слое 45... 55 км необходим и может дать дополнительную информацию о концентрациях озоноактивных компонент и их вариациях.

Сейчас мы перейдем к анализу имеющегося экспериментального материала наблюдений озона на высоте 50 км. Таблица 10, состав-

Таблица 10. Результаты измерений концентрации озона на высоте 50 км по солнечной активности — числа Вольфа R_2 и параметр радиоизлучения S_0 (для

Автор	Метод	Широта	Дата	Т,Қ	N, см ⁻³
Джонсон [201]	УФПС	32° с. ш.	14 VI 1949	275	2,345 (16)
Эванс	УФПС Сп\тник	0.50 с.ш.	Апрель — сентябрь	273	2,405 (16)
Крюгер [288]	уФПС	4°сш.	07 111 1965	275	2,266 (16)
Карвер и др.	уфПЛ	30° ю.ш.	09 XII 1965	275	2,335 (16)
Бобков, Микиров	уФПЛ	48°сш.	21 y i 1967	278	2,422 (16)
[12]	УФПЛ	48° с. ш.	21 VI 1967	278	2,422 (16)
	уфПЛ	48° с. ш.	21 VI 1967	278	2,422 (16)
	уфпл	48° с. ш.	23 VI 1967	278	2,422 (16)
	уфПЛ	48°сш.	23 VI 1967	278	2,422 (16)
Крюгер [288]	УФПС	22° с. ш.	17 IX 1967	272	2,280 (16)
	УФПС	22 с.ш.	13 X 1967	273	2,243 (16)
	уФПС	22°сш	19 X 1967	273	2,243 (16)
	УФПС	22° с. ш.	22 X 1967	273	2,243 (16)
	уФПС	22° с. ш.	25 X 1967	273	2,243 (16)
Крюгер [288]	УФПС	59°сш.	19 VII 1968	281	2,604 (16)
Хилсенрат [259]	ХЛ	38 с ш.	16 I X 1 9 68	270	2,311 (16)
Сиссонс [392]	УФПС	30°юш.	09 X I 1 1969	275	2,335 (16)
Хилсенрат [258]	ХЛ	38°сш.	06 111 1970	268	2,025 (16)
	хл	38° с. ш.	07 III 197 0	268	2,025 (16)
Крюгер [288]	γφΠ C	31° с. ш.	18 VI 1970	275	2,337 (16)
	УΦПС	55° с. ш.	17 X 1970	265	2,060 (16)
	УФПС	9сш.	06 XI 1970	274	2,304 (16)
Миллер и др [401]	ОУФР Спутник	20°сш.	Декабрь 1970	273	2,195 (16)
	«Нимбус-4» ОУФР Спутник «Нимбус-4»	20°сш.	Январь 1971	274	2,158 (16)

данным разных авторов, некоторые обобщенные параметры и индексы $\lambda = 10,7$ см)

		$\begin{bmatrix} I_3(1+A) \end{bmatrix}$	$V_{Ne^{2660/T}}$	$\overline{V_{Ne^{1800/T}}}$		S ₀
1 (11)	7,5	1,26(-7)	3,89 (-16)	1,86 (-15)		
,1 (10)	3,51	2,52(-8)	1,74 (16)	0,84 (-15)		
,4 (10)	4,67	5,09 (— 8)	2,46 (-16)	1,18 (-15)	26 26	76,7
,0 (10)	5,10	5,89(-8)	2,66 (-16)	1,27 (15)	15	76,7
,5 (10)	5,81	8,12(-8)	3,12(-16)	1,47 (84	121,3
,0 (11)	6,84	1,12(-7)	3,67 (-16)	1,73 (15)	84 70	122,9
,0 (11)	6,84	1,12(-7)	3,67 (- 16)	1,73(-15)	84 70	122,9
,4 (11)	9,57	2,20 (7)	5,14 (16)	2,41 (15)	83 80	122,9
,0(11)	6,84	1,12(-7)	3,67 (16)	1,73 (— 15)	83	122,6
,3 (10)	5,30	5,82 (8)	2,64 (1,28 (— 15)	36 20	133,1 131,7 197,6
,4 (10)	4,72	4,90 (8)	2,41 (16)	1,17 (15)	65 55	135,4
,6 (10)	6,34	8,84 (— 8)	3,24 (1,57 (15)	50 50	113,3
,1 (10)	3,76	3,11 (— 8)	1,92 (0,93 (15)	80 85	130,1
,7 (10)	4,94	5,36 (8)	2,53 (1,22 (15)	00 93	137,3
,3 (10)	5,27	6,89(-8)	2,88 (1,33 (114	142,1 135,2
,0 (10)	4,50	3,86 (-8)	2,15(-16)	1,06 (-15)	96 113	135,3
17 (11)	7,59	1,30(-7)	3,95 (— 16)	1,89 (88 43	132,0
,0 (10)	6,50	8,48 (8)	3,19 (— 16)	1,59 (44 107	119,7
,0 (10)	4,50	4,07(-8)	2,21 (- 16)	1,10 (103	175,3 175,3
,5 (10)	5,31	6,50(-8)	2,76 (1,32(-15)	111	166,8 184,7
,7 (10)	5,38	5,12(-8)	2,47 (16)	1,25 (-15)	134 94	176, 0 132,4
,3 (10)	5,96	7,82(-8)	3,06 (-16)	1,47 (- 15)	84 67	139,6 150,0
,5 (10)	6,50	9,47 (-8)	3,37 (— 16)	1,62 (89	152,5
,2 (10)	5,50	7,11(-8)	2,92(-16)	1,40 (— 15)		
	,1 (10) ,4 (10) ,0 (10) ,5 (10) ,0 (11) ,0 (11) ,4 (11) ,0 (11) ,3 (10) ,4 (10) ,6 (10) ,1 (10) ,7 (10) ,3 (10) ,0 (10) ,0 (10) ,5 (10) ,5 (10) ,5 (10) ,5 (10) ,2 (10)	,1 (10) $3,51$,4 (10) $4,67$,0 (10) $5,10$,5 (10) $5,81$,0 (11) $6,84$,0 (11) $6,84$,0 (11) $6,84$,0 (11) $6,84$,0 (11) $6,84$,3 (10) $5,30$,4 (10) $4,72$,6 (10) $6,34$,1 (10) $3,76$,7 (10) $4,94$,3 (10) $5,27$,0 (10) $4,50$ 17 (11) $7,59$,0 (10) $6,50$,5 (10) $5,38$,3 (10) $5,96$,5 (10) $6,50$,2 (10) $5,50$,1 (10) $3,51$ $2,52 (-8)$ $,4 (10)$ $4,67$ $5,09 (-8)$ $,0 (10)$ $5,10$ $5,89 (-8)$ $,5 (10)$ $5,81$ $8,12 (-8)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,0 (11)$ $6,84$ $1,12 (-7)$ $,3 (10)$ $5,30$ $5,82 (-8)$ $,4 (10)$ $4,72$ $4,90 (-8)$ $,6 (10)$ $6,34$ $8,84 (-8)$ $,6 (10)$ $6,34$ $8,84 (-8)$ $,7 (10)$ $4,94$ $5,36 (-8)$ $,7 (10)$ $4,94$ $5,36 (-8)$ $,3 (10)$ $5,27$ $6,89 (-8)$ $,0 (10)$ $4,50$ $3,46 (-8)$ $,7 (10)$ $6,50$ $8,48 (-8)$ $,0 (10)$ $4,50$ $4,07 (-8)$ $,5 (10)$ $5,36$ $7,82 (-8)$ $,5 (10)$ $5,96$ $7,82 (-8)$ $,5 (10)$ $5,50$ $7,11 (-8)$,1 (10) $3,51$ $2,52(-8)$ $1,74(-16)$ $,4 (10)$ $4,67$ $5,09(-8)$ $2,46(-16)$ $,0 (10)$ $5,10$ $5,89(-8)$ $2,66(-16)$ $,5 (10)$ $5,81$ $8,12(-8)$ $3,12(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,0 (11)$ $6,84$ $1,12(-7)$ $3,67(-16)$ $,3 (10)$ $5,30$ $5,82(-8)$ $2,64(-16)$ $,3 (10)$ $5,30$ $5,82(-8)$ $2,41(-16)$ $,7 (10)$ $4,94$ $5,36(-8)$ $2,53(-16)$ $,3 (10)$ $5,27$ $6,89(-8)$ $2,88(-16)$ $,3 (10)$ $5,27$ $6,89(-8)$ $2,88(-16)$ $,0 (10)$ $4,50$ $3,86(-8)$ $2,15(-16)$ $,0 (10)$ $4,50$ $4,07(-8)$ $2,21(-16)$ $,5 (10)$ $5,31$ $6,56(-8)$ $2,76(-16)$ $,5 (10)$ $5,36$ $7,82(-8)$ $3,06(-16)$ $,5 (10)$ $5,50$ $7,11(-8)$ $2,92(-16)$,1 (10)3,512,52 (-8)1,74 (-16)0,84 (-15),4 (10)4,675,09 (-8)2,46 (-16)1,18 (-15),0 (10)5,105,89 (-8)2,66 (-16)1,27 (-15),5 (10)5,818,12 (-8)3,12 (-16)1,47 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15),3 (10)5,305,82 (-8)2,64 (-16)1,28 (-15),3 (10)5,305,82 (-8)2,41 (-16)1,17 (-15),6 (10)6,348,84 (-8)3,24 (-16)1,57 (-15),1 (10)3,763,11 (-8)1,92 (-16)0,93 (-15),7 (10)4,945,36 (-8)2,53 (-16)1,22 (-15),3 (10)5,276,89 (-8)2,88 (-16)1,33 (-15),0 (10)4,503,86 (-8)2,15 (-16)1,06 (-15),7 (10)6,508,48 (-8)3,19 (-16)1,59 (-15),5 (10)5,316,56 (-8)2,76 (-16)1,32 (-15),5 (10)5,367,12 (-8)3,06 (-16)1,47 (-15),5 (10)5,50	,1 (10)3,512,52 (-8)1,74 (-16)0,84 (-15),4 (1C)4,675,09 (-8)2,46 (-16)1,18 (-15)26,0 (10)5,105,89 (-8)2,66 (-16)1,27 (-15)15,5 (10)5,818,12 (-8)3,12 (-16)1,47 (-15)84,0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15)84,0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15)84,0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15)83,0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15)83,0 (11)6,841,12 (-7)3,67 (-16)1,73 (-15)83,3 (10)5,305,82 (-8)2,64 (-16)1,28 (-15)36,3 (10)5,305,82 (-8)2,64 (-16)1,57 (-15)55,6 (10)6,348,84 (-8)3,24 (-16)1,57 (-15)50,1 (10)3,763,11 (-8)1,92 (-16)0,93 (-15)80,7 (10)4,945,36 (-8)2,53 (-16)1,22 (-15)93,6 (10)6,503,86 (-8)2,15 (-16)1,06 (-15)113,0 (10)4,503,86 (-8)2,15 (-16)1,06 (-15)113,7 (10)5,385,12 (-8)2,76 (-16)1,32 (-15)103,5 (10)5,316,56 (-8)2,76 (-16)1,22 (-15)103,5 (10)5,367,82 (-8)3,06 (-16)1,47 (-15)89,5 (10)5,507,11 (-8)

Автор	Метод	Широта	Дата	ТК	<i>№</i> см ^{—3}
Крюгер [288]	УФПС	22°сш	24 11 1971	275	2,134 (16)
	УФПС	22°сш	03 111 1971	273	2 185 (16)
Мартини и др [198]	УФПС	48°сш	13 IX 1974	271	2 350 (16)
Гилли и др [240]	ИКР Спутник	38°сш	22 VII 1975	274	2,380 (16)
Хилсенрат [240]	«Нимбус б» ХЛ	38°сш	22 VII 1975	274	2,380 (16)
Крюгер [240]	УФПС	38°сш	22 VII 1975	274	2,380(16)
Мартини и др	УФПС	48 с ш	12 IX 1975	271	2,350 (16)
[198]	УФПС	48°сш	19 IX 1975	271	2,350 (16)
Коньков	хл	48°сш	19 XII 1975	245	1 952 (16)
Перов	хл	48°сш	24 XII 1975	263	1 819 (16)
Крюгер [290] Крюгер [290] Крюгер [291] Гунтер и др [243]	УФПС УФПС УФПС УФПС Спутник	38 с ш 38°с ш 38°с ш 5°с ш	Март 1976 Ман 1976 Июль 1976 17 XII 1976	268 276 274 272	2 025 (16) 2 258 (16) 2 380 (16) 2 294 (16)

Примечание Число в скобках означае⁻⁻ степень десяти например 3 37 рассчитаны по стандартной атмосфере [183] либо взяты из работы автора диации Солнца (Луны), ХЛ — хемилюминесцентный метоз ОУФР — метод (9,6 мкм) раднометра

ленная на основе большого числа ракетных пусков за период с 1949 по 1977 г и с привлечением спутниковых данных, иллюстрирует, с одной стороны, отдельные большие отклонения от среднего (вероятно, из-за больших ошибок некоторых экспериментов), а с другой — явное влияние солнечной активности на N₃ для 50 км. Максимальные концентрации озона на 50 км наблюдаются в годы активности, минимальные — в повышенной годы спокойного Солнца Оценки показывают, что изменениями температуры, плотности и химического состава в периоды максимума и минимума активности Солнца нельзя полностью объяснить этот озонный эффект Увеличение средней температуры стратосферы средних широт с усилением активности должно приводить, согласно Швентеку [386], даже к противоположному эффекту Роль НО, и NO, минимальна на высоте 50 км, однако точная оценка влияния вариаций этих компонент, особенно НО, затруднительна Тем не менее

					-	
[O ₃] см ^{—3}	r _{3m} 10 ⁶ мкг/г	$Y = \frac{I_2}{I_3 (1+A)}$	$\frac{r_{3m}}{\sqrt{Ne^{2660/T}}}$	$\frac{r_{3m}}{V_{Ne} \ 1800/T}$	R _z	S ₀
7,0 (10) 9,4 (10) 4,0 (10) 5,3 (10)	5,43 7,12 2,82 3,70	7,51 (-8) 1,14 (-7) 1,53 (-8) 2,92 (-8)	2,95 (— 16) 3,69 (— 16) 1 36 (— 16) 1,87 (— 16)	1,41 (15) 1,78 (15) 0,66 (15) 0,90 (15)	102 101 93 84 9 7 55 58	$146,3 \\ 150,7 \\ 128,0 \\ 123,8 \\ 104,2 \\ 105,4 \\ 80,5 \\ 80,1 \\ 1000$
5,9(10) 6,5(10) 7,1(10) 6,5(10) 8,0(10) 5,0(10) 5,6(10) 5,7(10) 6,0(10) 3,7(10)	4,10 4,50 5 40 4,90 6 78 4,80 4 60 4,20 4,20 2,67	3,59 (-8) $4,32 (-8)$ $5,63 (-8)$ $4,64 (-8)$ $3 78 (-8)$ $4,30 (-8)$ $4 25 (-8)$ $4,25 (-8)$ $3,76 (-8)$ $1,47 (-8)$	2,07 (-16) $2,27 (-16)$ $2,60 (-16)$ $2,36 (-16)$ $2,13 (-16)$ $2 26 (-16)$ $2 26 (-16)$ $2 25 (-16)$ $2 12 (-16)$ $1 32 (-16)$	$\begin{array}{c} 1,00\ (-15)\\ 1,09\ (-15)\\ 1,27\ (-15)\\ 1,15\ (-15)\\ 1,23\ (-15)\\ 1,23\ (-15)\\ 1,16\ (-15)\\ 1,12\ (-15)\\ 1,07\ (-15)\\ 1,02\ (-15)\\ 0,64\ (-15)\\ \end{array}$	55 58 55 58 80 80 66 51 43 40 26 9	80,5 80,1 80,5 80,1 77,2 75,5 75,5 71,9 71,4 72,0 73,8 84,4 80 4

(-16) есть 3,37 10-16 Температура и плотность атмосферы в день эксперимента (если указано) УФПС (УФПЛ) — метод поглощения ультрафиолетовой ра обратного ультрафиолетового рассеяния ИКР — метод инфракрасного

мы имеем в достаточной степени веский аргумент в пользу вывода Хита об увеличении амплитуды связанных с солнечной активностью колебаний ультрафиолетовой радиации в сторону более коротких длин волн (см рис 13) Основной вклад в I_2 и I_3 на высоте 50 км вносит рациация Солнца соответственно в интервалах 190 210 и 260 270 нм [407] Используя данные рис 13, получим

$$\left(\frac{I_2}{I_3}\right)_{\text{MAKC}} \left(\frac{I_3}{I_2}\right)_{\text{MHII}} = \frac{(I_2)_{\text{MAKC}}}{(I_2)_{\text{MHII}}} \frac{(I_3)_{\text{MIII}}}{(I_3)_{\text{MAKC}}} \approx 2 \ 0.75 = 1.5$$

Эта величина соответствует соотношению нормированных на температуру $(k_2 k_3 = k(T))$ и плотность N концентраций озона r_{3m}

$$\left(\frac{\frac{r_{3 m}}{\sqrt{\frac{k_2}{k_3} N}}}{\sqrt{\frac{k_2}{k_3} N}}\right)_{\text{MARC}} \left(\frac{\frac{r_{3 m}}{\sqrt{\frac{k_2}{k_3} N}}}{\sqrt{\frac{k_2}{k_3} N}}\right)_{\text{MARC}} \approx 1.25$$

и удовлетворительно согласуется с данными табл. 10 и относительным ходом параметра <u>га т</u> на рис. 17. В двух последних графах

 $\sqrt{\frac{k_2}{N\frac{k_2}{k_3}}}$

табл. 10 содержатся индексы солнечной активности, R_z — цюрихские числа (Вольфа) и S_0 ($\lambda = 10,7$ см). Первое число означает индекс, относящийся ко дню, предшествующему рассматриваемому. На рис. 18 представлены величины Y в зависимости от суточных индексов R_z и S_0 .

метра r_{3m} , рассчитанного для высоты 50 км (1), $\sqrt{Ne^{1800/T}}$, вессчитанного для высоты 50 км (1), R_2 (2) в период 1964 1976 гг.

До некоторой степени неожиданный вывод был сделан Ватанабе и Томацу из анализа ракетных наблюдений профилей озона в в страто-и мезосфере (на высоте 35...75 км). В 1965...1975 гг. над Кагосимой (31° с. ш., Япония) было проведено 10 успешных таких запусков, причем был использован метод поглощения ультрафиолетовой радиации Солнца [424]. Эти авторы получили среднюю летнюю концентрацию озона на высоте 50 км, равную $N_3 = (4,18\pm2)\cdot10^{10}$ см⁻³, по результатам трех зондирований, проведенных 23 июня 1966 г., 22 сентября 1973 г. и 26 августа 1975 г. Для семи зимних пусков (13 декабря 1965 г., 5 декабря 1966 г, 12 января 1969 г., 25 января 1970 г., 22 февраля 1972 г., 19 февраля 1973 г., 17 января 1975 г.) средняя величина равнялась (8,41 ±2) 10¹⁰ см⁻³, т. е. была в 2 раза больше, чем летняя. Аналогичное сезонное различие сохранялось для всего интервала высот 35...75 км. По мнению авторов, различие это объясняется сезонным ходом водородных компонент HO_x, зависящим от содер-
жания водяного пара, и, в частности, наблюдаемая разница может объясняться сезонным ходом влажности в мезосфере и изменением концентрации H_2O от 2 до 20 млн⁻¹. Однако этот сезонный эффект не подтверждается данными других авторов (см. табл. 10). Легко заметить также, что летние значения N_3 японских исследователей относятся к годам спокойного Солнца, в то время как большинство зимних приходигся в основном на годы активного Солнца

Рис 18 Результаты расчета параметра Y как функции числа R_2 (а) и как функции S₀ — индекса радиоизлучения Сотчца при $\lambda = 10,7$ см (б) Треугольники — по данным Крюгера [288]

Однако рассмотрение сезонного эффекта озон-вода заслуживает более пристального внимания в связи с результатами прямых ракетных измерений влажности, полученными А. В Федынским и В. А. Юшковым в Центральной аэрологической обсерватории [228]. Был зарегистрирован большой (более чем на порядок) сезонный ход содержания влаги на высотах от 30 до 80 км как для средних, так и для тропических широт северного полушария (рис. 19), а также отмечен большой широтный эффект. На рис. 19 представлены результаты наших расчетов величины У по данным ракетных измерений озона и температуры над о. Уоллопс (38° с. ш.) в течение 1976 г. [293] - периода минимума солнечной активности. Изменчивость Y от зимы к лету составляет около 50°о, т. е. равна тому же значению, что и для эффектов максимум-минимум солнечной активности. Однако заметим, что N₃ над о. Уоллопс почти не меняется с марта по сентябрь и уменьшается к декабрю приблизительно в 1,5 раза — результат, обратный тому, который получили Ватанабе и Томацу.

Сделаем попытку оценить амплитуду сезонных колебаний суммы окислов водорода $[HO_x] = [HO] + [HO_2]$. Имеем $\frac{1+A_s}{1+A_w} = 1,5$ ($I_2/I_3 = \text{const}$). При $A \approx 1$ получим $[HO_x]_s/[HO_x]_w = 2...3$, причем это отношение возрастает при $A \rightarrow 0$.

Если учесть путем соответствующего пересчета в данных табл. 11 и рис. 17 сезонный ход Y в соответствии с кривой 1 на рис. 19, то наш основной вывод не изменится не только в качественном, но и в количественном отношении, по-прежнему

Рис 19 Сезонный ход параметра У на высоте 50 км над о Уоллопс в 1976 г (1), относительного содержания водяного пара над Волгоградом (2) и Тумбой (3) по данным 1977 1979 гг

Из проведенного анализа данных наблюдений за озоном на уровне 50 км следуют два принципиально важных вывода. Первый — о значительных вариациях ультрафиолетовой радиации Солнца, численно согласующихся с результатами анализа Д. Хита. Второй — о соответствующих вариациях поглощаемой атмосферным озоном энергии Солнца, приводящих к большему нагреванию стратосферы и мезосферы в период максимума активности. Это должно проявляться в поведении термодинамических характеристик атмосферы, в ее климате. В частности, нам представляется, что большие широтные контрасты в поглощаемой энергии на стратосферных и мезосферных уровнях зимой должны приводить к усилению макротурбулентного воздухообмена между экватором и полюсом и, как следствие, к возрастанию среднезимней температуры, что и наблюдалось Швентеком [386].

С теоретической точки зрения этот важный вопрос был рассмотрен Л. Р. Ракиповой в 1972 г. [103]. В этой и последующих рабо-

тах [104—106] ею было дано физическое обоснование озонного механизма влияния солнечной активности на климат атмосферы, рассмотрена роль антропогенных факторов и 11-летней цикличности Солнца в вариациях стратосферной циркуляции и температуры.

В работе [141] проанализированы ракетные данные, полученные на сети станций США в 1965... 1976 гг. Несмотря на ряд существенных изменений в методике обработки данных, что важно главным образом для высот, больших 45... 50 км, обнаруживается статистически значимое увеличение температуры (порядка нескольких градусов на высотах 25... 55 км во всех широтных зонах) в период максимума солнечной активности по сравнению с периодом ее минимума. Это подтверждает качественно наши выводы.

Более тщательный анализ связи содержания озона вблизи стратопаузы (50 \pm 5) км с УФ радиацией и температурой можно будет провести уже в ближайшем будущем по мере накопления данных начавшихся в 1976 г. систематических ракетных одновременных наблюдений за озоном, УФ радиацией, температурой [290, 291, 293]

§ 15. Роль галогенов в фотохимии озона. ' Антропогенные воздействия на озоносферу

В 1974 г. в Канадском журнале химии была опубликована большая серия работ, посвященная химии верхней атмосферы. В частности, там были напечатаны статьи: Столярского и Цицероне [400], Вовси и Мак-Элроя [430]. В этих работах впервые был введен в рассмотрение хлорный цикл разрушения озона.

Атомарный хлор, исключительно активный реагент, в стратосфере образуется при фотолизе хлористого метила CH₃Cl, имеющего естественное земное (океаническое) происхождение Естественный хлор дает незначительный вклад в разрушение озона

$$Cl + O_3 \rightarrow ClO + O_2,$$

$$U_{\text{TOT}}: \frac{ClO + O \rightarrow Cl + O_2,}{O + O_3 \rightarrow 2O_2,}$$
(15.1)

Каталитическая эффективность ClO_x уменьшается реакцией

$$ClO + NO \rightarrow NO_2 + Cl$$
 (15.2)

с последующей диссоциацией NO₂

$$NO_2 + hv \rightarrow NO + O.$$
 (15.3)

Стоком хлора является образование соляной кислоты HCl, в основном при реакциях хлора с метаном и радикалом перекиси водорода.

 $CH_4 + Cl \rightarrow HCl + CH_3,$ (15.4)

$$HO_2 + CI \rightarrow HCI + O_2. \tag{15.5}$$

73

Равновесие между ClO_x и HCl определяется именно этими двумя реакциями и реакцией восстановления

$$HCl + OH \rightarrow H_2O + Cl.$$
(15.6)

Константы скоростей для наиболее важных реакций, включающих хлор, сейчас известны достаточно хорошо. Необходимо отметить, что катализ разрушения озона хлором приблизительно в 6 раз эффективнее катализа окисью азота, но вместе с тем превращение в «инертную» соляную кислоту также более эффективно, чем превращение в «инертную» азотную кислоту, так что оба процесса в итоге фактически сравнимы по эффективности.

В том же 1974 г. всеобщее внимание (и не только специалистов) привлекла работа Молины и Роуланда [320], обративших внимание на антропогенный быстро усиливающийся источник хлора в озоносфере — фторхлорметаны (или фреоны). Фторхлорметаны CFCl₃ и CF₂Cl₂ (имеющие коммерческие наименования «фреон-11» и «фреон-12») широко используются в холодильниках и в качестве газапропеллента — в бытовых аэрозольных баллончиках. Фреоны инертные газы, и поэтому легко проникают из тропосферы в стратосферу, где на высотах 30...40 км диссоциируют под действием УФ радиации в области «окна» 180...225 нм между полосами Шумана—Рунге и Хартли (см. рис. 8).

По оценкам Ассоциации химиков-производителей США, суммарное глобальное производство фреона-11 к 1976 г. составило $3,43 \cdot 10^9$ кг и фреона-12 — $5,08 \cdot 10^9$ кг [4] в год при ежегодном увеличении на 10 . . . 15 %. В настоящее время вклад антропогенных ClO_x в деструкцию озона мал (менее 1 %), но можно ожидать, что за счет долгоживущих (десятки лет) в атмосфере фреонов сч возрастает со временем. При продолжающемся выбросе фторхлорметанов концентрация ClO_x может возрасти в ближайшее десятилетие в несколько десятков раз и количество озона в атмосфере Земли вследствие (15.1) и (15.2) значительно уменьшится [4].

Такие количественные оценки суммарного уменьшения озона основаны на расчетах с использованием одномерных моделей с переносом --- вертикальной турбулентной диффузией, описываемой параметром К22. Эти расчеты включают средние концентрации ряда важных атмосферных составляющих, найденные из натурных экспериментов, и наиболее точные из полученных в последнее время оценок скоростей (измеренных в лаборатории) около ста химических реакций. Если брать средние для земного шара расчеты, без учета широтных и долготных различий, то в настоящее время антропогенное разрушение озона лежит в пределах от 0,5 до 2 %, а долговременный эффект (к 2000 г.) в установившемся случае продолжающегося выброса фреонов со скоростью на уровне производства в 1972 г. может составить около 10 % от среднего количества озона с фактором неопределенности около 2 раз Предварительные расчеты с помощью моделей, учитывающих широтные вариации, дали для разрушения озона то же значение.

Атомы хлора могут высвобождаться в стратосфере также при реакциях с участием других молекул (CCl₄ CH₃Cl, CH₃Cl₃, CHClF₂ и т. д.). Атмосферная химия четыреххлористого углерода схожа с химией фреонов. Главный его вероятный сток — фотолиз. Но количество CCl₄, выбрасываемого в атмосферу в настоящее время, мало по сравнению с количеством фторхлорметанов. Оценки других источников газообразного хлора, включая промышленность, вулканическую деятельность и будущие старты космических аппаратов, приведены в работе [384].

Хлоруглеродные молекулы, содержащие С—H-связи (CH₃Cl, CH₃CCl₃, CHClF₂), имеют сильный сток в тропосфере в виде, например, таких реакций:

$$CH_{3}Cl + OH \rightarrow H_{2}O + CH_{2}Cl, \qquad (15.7)$$

$$CHClF_2 + OH \rightarrow H_2O + CClF_2.$$
(15.8)

Молекулы, содержащие двойные углеродные связи, например $CCl_2 = CCl_2$ и $CHCl = CCl_2$, также в основном удаляются реакциями, происходящими в тропосфере. Тем не менее небольшая доля каждой такой составляющей процикает в стратосферу и освобождает здесь атомы Cl. Поэтому важен непрерывный мониторинг этих дополнительных составляющих и оценка для каждой из них относительной роли тропосферного и стратосферного стоков. Этот вывод в еще большей степени относится к фреонам. Как было отмечено совещанием экспертов ПООНПОС,¹ одним из наиболее критических факторов в их бюджете является возможность тропосферного стока фреонов. Поскольку ежегодно диссоциирует всего около 1 % общего количества фреонов, даже малый тропосферный сток оказал бы на их накопление огромное влияние. Например, если тропосферный сток составляет всего 2 % от производства фреонов, максимальное разрушение озона уменьшится на 2/3.

Укажем на один из возможных варнантов тропосферного стока гетерогенный фотолиз. Группа исследователей во главе с Ф. Корте (ФРГ) установила, что фреоны (11 и 12), адсорбированные силикагелями, разлагаются под действием солнечного ультрафиолета, при этом выделяются углекислый газ и водородный хлорид [91]. Адсорбционные характеристики исследованных силикагелей сходны с теми же характеристиками многих разновидностей пыли и песка, реально существующих в тропосфере.

Важная особенность гипотетического процесса разрушения озона показана на рис. 20, на котором представлено ожидаемое процентное уменьшение озона как функция высоты для 1972, 2000 и 2025 гг. Обращает на себя внимание резкий пик вблизи уровня

¹ ПООНПОС — Программа ООН по окружающей среде Совещание экспертов ПООНПОС, назначенных правительствами, межправительственными и неправительственными организациями, проходило в Вашингтоне (США) 1—9 мая 1977 г и было посвящено озонному слою

40 км, т. е. близ области, где фреоны наиболее быстро диссоциируют и где преимущественно образуется озон. Согласно рис. 20, наблюдать уменьшение озона за счет хлорного цикла лучше всего близ высоты 40 км. Для этой цели, очевидно, пригодны спутниковые методы обратного УФ рассеяния, ракетные методы и наземные наблюдения по эффекту обращения. В некоторых из имеющихся измерений, сделанных методом обращения (рис. 21), как указывается в отчете экспертов ПООНПОС, можно обнаружить следы уменьшения озона на этих высотах в недавнем прошлом, но гораздо от-

Рис 20 Уменьшение озона в результате выброса фторхлорметанов на уровне их производства в 1973 г в зависимости от высоты Показаны результагы расчетов по модели Крутцена для 1972, 2000 и 2025 гг

четливее увеличение озона на этих высотах обнаруживается между 1963 и 1973 гг. Последнее, как мы уже видели, могло быть связано с влиянием солнечной активности.

Амплитуды колебаний солержания озона в слое 42...47 км составляют, по Энджеллу и Коршоверу [4], для 4 европейских, 3 японских, З индийских и 2 австралийских станций 20...25%. а для станций Кагосима и около 40 %, что Брисбен практически совпадает с оценкой. полученной по ракетным данным для 50 км. Следует отметить, что тренды озона в этом слое подобны трендам в более низких слоях, а также тренду в общем содержании озона, хотя в последнем случае амплитуда егосущественно

меньше. Учитывая точность метода обращения, как косвенного метода, сейчас нельзя с уверенностью утверждать, что тенденция роста изменений озона с высотой реальна, а не связана с методикой эксперимента.

В литературе имеется указание на уменьшение озона в верхней стратосфере над австралийскими станциями вслед за извержением вулкана Агунг в марте 1963 г. (о. Бали, Индонезия, 8° ю. ш. и 115° в. д.). На рис. 22 видно, что уменьшение запаздывало в точках, удаленных по широте от места извержения, так, как будто облако пыли распространилось меридионально. Поскольку высота облака вулканической пыли вряд ли превышала 25...30 км, а убывание озона, как указывалось, растет с высотой до 50 км, возможно, что указанного уменьшения озона не было и что наблюдения по методу обращения в замутненной атмосфере могут быть неточны [4].

Рис 21. Временные вариации содержания озона (отклонения в процентах от среднего) в слоях стратосферы 32 37, 37 42 и 42 47 км по наблюдениям с помощью спектрофотометра Добсона методом обращения на станциях в Европе (*a*), Японии (б), Индии (в) и Австралии (г)

Среднее вычислено для всего интервала наблюдений (годовые вариации исключены) к последовательным сезонным значениям дважды применено сглаживание 1—2-1 (с де лением на 4)

Рис 22 Временные вариации содержания озона (отклонения в процентах от среднего) в слое 42 47 км в Брисбене (27 ю ш, 153 в д), Аспендеиле (38 ю ш, 145 в д) и Кагосиме (31 с ш, 131 в д) по наблюдениям эффекта обращения

Годовые варнации исключены, но сезонные значения не сглажены. Стрелкой отмечено время извержения Агунга

Рассматривая антропогенное влияние на озоносферу, мы должны здесь вновь вернуться к азотному циклу, рассмотренному в § 13. В 1946 г. Я. Б. Зельдович опубликовал работу, ставшую классической, об азотно-кислородных реакциях в воздухе, нагретом до высоких температур. Важным следствием процессов термической диссоциации газов воздуха является образование атомов О и N и окиси азота NO [67]:

$$O_2 + M \rightarrow O + O + M, \qquad (15.9)$$

$$O + N_2 \rightarrow N + NO. \tag{15.10}$$

Окись азота эффективно образуется при температурах, превышающих 2000 К, например при ядерных взрывах и в реактивных двигателях. Последний источник может стать серьезной проблемой фотохимии стратосферы в случае появления большого флота высотных самолетов. Этой проблеме, как и проблеме фторхлорметанов, в последние годы были посвящены обширные исследования [67, 144, 163, 256, 272]. Хотя имеются значительные неопределенности и в измерениях имеющихся NO_x в атмосфере, и в теории (в последнем случае порядка фактора 2), роль NO_x в фотохимии озона до-статочно хорошо установлена. Сейчас можно было сделать два основных вывода. Во-первых, планируемая на ближайшее время сверхзвуковая транспортная авиация благодаря малой высоте полета (17 км) и ограниченному числу (менее 50) не должна оказать существенного или отличного от естественных изменений влияния на озон. Однако большой флот сверхзвуковой авиации, действующий на больших высотах, согласно модельным прогнозам, может заметно повлиять на слой озона, так что общий уровень выбросов двигателей, возможно, следует определить международным соглашением [4]. Основные оценки суммированы в табл. 11 (результаты отчета по Программе оценок воздействия на климат (ПОВК)) и табл. 12 (отчет Национальной Академии наук США), относящихся к северному полушарию. Более высокие оценки в табл. 12 объясняются в основном использованием в моделях других коэффициентов вертикального турбулентного перемешивания, полученных, в частности, путем изучения распределения в стратосфере углерола-14.

В последнее время была также выдвинута теория о том, что увеличенное использование сельскохозяйственных удобрений и растений, способных к фиксированию азота, может повлиять на круговорот азота и повести к увеличению количества закиси азота N_2O , выделяющейся с поверхносги Земли и проникающей затем в страгосферу. Это явление может увеличить эффективность азотного цикла и уменьшить содержание озона. Указанный источник N_2O может также возрасти за счет увеличения кислотности осалков. Проблема является чрезвычайно сложной, поскольку требует тщательного рассмотрения глобального круговорота азота с учетом многих источников, стоков, резервуаров и обратных связей между ними. Суть вопроса в следующем. Основная часть азота

				Процент умснь	шения озона в сев	ерном полушарии
Тип самолета	Сгорание в год топлива',	Высота, км	Удельный выброс (УВ) без контроля, г/кт топлива		KOI	троль
	L			без контроля	1/6 от сегодняш- нсго	'/ ₁₀ от сегодняш- него
Дозвуковые 2 707/DC-8	r01 1	11	0	0,0034	0,000 70	0,00070
232/DC-10/L-1011	1,5 10%	11	15	0,010	0,002 0	0,00020
232/747	2,1 10°	11	15	0,014	0,0025	0,00025
232/747-SP	2,0 10	13,5	. 15	0,079	0,014	0,0014
Сверхзвуковые «Коньорд»	4 108	13,5	18	0,39	0,068	0,0068
	3 10%	16,5				
Будущие свсрхзвуковые	3.10^{8} 0.10^{9}	16,5 16,5	18	1,74	0,32	0,032

Оценка доли уменьшения озона на 100 самолетов, действующих в стратосфере

Таблица 11

¹ Дозвуковые предполагаются работающими на больших высотах 5,4 ч в день, 365 дней в геду. сверхзвуковые — 4,4 ч в день, 365 дней в году. ² Существующий дозвуковом флот состоит из 1217 машин 707/DC-8, 232/DC-10/L-10011 и 232/747, летающих на средней & ыксоте 11 км. По той же оценке, он вызывает уменьшение озона на 0,1 %.

Уменьшение Фактор неопре-Тип самолета озона. % деленности. % Дозвуковые существ лющие 0.02 10 0,2 10 проектируемые Сверхзвуковые существующие 0,7 3 3 2 прежде проектировавшиеся

Таблица 12. Уменьшение стратосферного озона на 100 самолетов, действующих в стратосфере

(около $4 \cdot 10^{15}$ т) существует в атмосфере Земли в виде молекулярного азота. Остальная часть ($6 \cdot 10^{14}$ т) распределена между отложениями (96 %), океаном (3 %), почвой (0,04 %) и биосферой, масса которой составляет всего лишь 10^{10} т (10^{-3} %) на суше и 8 10^8 т (10^{-4} %) в океане. Тем не менее именно биологические процессы регулируют обмен азота между этими двумя резервуарами Азот — основной элемент питания, но прежде чем он может попасть в состав живых тканей, он должен быть фиксирован, т. е. превращен из газообразного N₂ в такие полезные для биосферы соединения, как аммиак NH₃ и ион NO₃⁻. При этом расходуется энергия диссоциации молекулы N₂, равная 226 ккал (946 кДж) на моль Как правило, это происходит или в результате побочного процесса при горении — в моторах самолетов или автомобилей, или в стационарных источниках энергии, или в результате применения удобрений в сельском хозяйстве 1

Фиксация N_2 должна уравновешиваться (в геологическом масштабе времени) обратным процессом денитрификации, благодаря которому азот снова возвращается в атмосферу в форме N_2 и N_2O (и в некоторых случаях NO). Легко показать, что при отсутствии этого обратного процесса запасы атмосферного N_2 истощились бы за время порядка 10^7 лет Основная часть азота биосферы возвращается в атмосферу в виде N_2 , выход N_2O относительно суммы $N_2 + N_2O + 0,5$ NO, обозначаемый через α [275], может варьироваться от 0,025 до 0,1 для суши и от 0 до 1 для океана. (Наиболее вероятное глобальное значение α составляет 5...8 %). Величина α для почвы зависит от температуры, влажности, содержания кислорода и кислотности (щелочности). Как мы уже видели (см. § 13), бо́льшая часть (95 %) N_2O в стратосфере разлагается, образуя N_2 , но 5 % ее разлагается с образованием NO, и это именно тот источник окиси азота, который дает главный вклад в баланс NO₄

Ожидается, что увеличенная фиксация азота, которая возросла вследствие химизации сельского хозяйства за последние 25 лет

¹ По оценкам, приведенным в [4], в 1974 г естественные процессы в ос новном за счет симбиотических ассоциаций бактерий (Rhizobium) с растениями семейства бобовых составили общий источник фиксированного N₂ в 1,8-10⁸ т в год В том же году сгорание и образование из азотных удобрений давало приблизительно одинаковый вклад — 4 10⁷ т в фиксацию N₂.

в 30 раз и вырастет по крайней мере еще в 5 раз к началу XXI в., приведет и к соответствующему увеличению скорости денитрификации, образованию N₂O, NO и, следовательно, уменьшению озона. Г. Джонсон оценивает процентное уменьшение озона $\Delta N_3/N_3$, предполагая прирост азотных удобрений в 10⁸ т в год, по формуле

$$\frac{\Delta N_3}{N_3} = 1,5\beta\alpha\tau,\tag{15.11}$$

где β — коэффициент, учитывающий эффективность денитрификации в течение нескольких десятилетий ($\beta \approx 0.6$); τ — время жизни N_2O в атмосфере, по различным оценкам, 5 лет $<\!\tau <\!160$ лет. Таким образом, при $\tau=80$ лет и $\alpha=0.1$ содержание озона уменьшится на 12 %.

Несколько меньший эффект был получен в расчете С. Лиу, Р. Цицероне, Т. Донахью и У. Чемейдса [394], которые сделали вывод, что будущий рост и использование азотных удобрений, производимых промышленностью, может вызвать в течение следующих 50 лет глобальное уменьшение озона на 1...2 %. Однако, спустя столетия, содержание озона может уменьшиться на 10%, если почва будет являться основным источником атмосферного N₂O.

Убыль озона может быть еще больше, если генетиками будут созданы новые зерновые культуры, способные к симбиотической фиксации азота тем же способом, что у бобовых. Могут существовать кратковременные смещения между аэробными и анаэробными процессами, а также увеличение кислотности дождя. Оба эти процесса ведут к росту количества N₂O. Различные виды промышленной деятельности, например выброс серы при сгорании ископаемого топлива и плавление сульфидов металлов, ведут к тому же результату.

Проблема загрязнения тропосферы окислами азота относится как к стратосферному, так и к тропосферному озону. Количество последнего хотя и мало по сравнению с первым, но тем не менее составляет заметную часть общего содержания Количество озона в тропосфере можег возрасти за счет превращения NO в NO₂ с последующим фотолизом, образованием атомарного кислорода (и затем озона) по реакциям:

$$H_{2}O + O({}^{1}D) \rightarrow 2OH,$$

$$CH_{4} + OH \rightarrow H_{2}O + CH_{3},$$

$$CH_{3} + O_{2} + M \rightarrow CH_{3}O_{2} + M,$$

$$CH_{3}O_{2} + NO \rightarrow CH_{3}O + NO_{2},$$

$$NO + HO_{2} \rightarrow OH \qquad NO_{2},$$

$$NO_{2} + hv \rightarrow NO + O.$$
(15.12)

Образование озона в приземном слое может резко возрастать в сильно загрязненных городских и промышленных районах, где имеется новый источник активного водорода — углеводороды, выделяющиеся при сжигании ископаемого топлива. Содержание HO₂, в основном ответственного за превращение NO в NO₂ в «чистой» атмосфере, возрастает на несколько порядков как следствие окисления углеводородов. Образуются и другие радикалы типа RO₂, также содействующие образованию озона RO₂ + O₂ → RO + O₃. Локально образующийся таким путем озон может переноситься на большие расстояния.

Возрастание озона при реакциях (15.12) в серхней тропосфере за счет выброса NO из двигателей самолетов явилось сеоего рода фотохимическим сюрпризом при анализе антропогенных аспектов азотного цикла. Другим сюрпризом была реакция с образованием нитрата хлора

$$ClO + NO_2 \rightarrow ClNO_3$$
,

влияющая на химический обрыв цепей в азотном и хлорном циклах каталитического разрушения озона. Потенциальная важность этой реакции для фотохимии озона была понята не сразу. Однако именно с учетом этой реакции окончательная оценка уменьшения озона в отчете Национальной Академии наук США за счет продолжающегося выброса фреонов на уровне 1973 г. была снижена с 14 до 7,5 °, или в 1,85 раза. Последующие расчеты и измерения показали, что концентрация нитрата хлора в стратосфере много меньше 2 млрд⁻¹, т. е. значительно меньше, чем считалось ранее. Вероятной причиной этой низкой концентрации является более эффективная реакция гидроксила с двуокисью азота, чем с окисью хлора, из-за которой скорость реакции

 $ClO + NO_2 + M \rightarrow ClONO_2 + M$

много медленнее скорости реакции

 $OH + NO_2 + M \rightarrow HNO_3 + M.$

Именно из-за этого цифра 7,5 % является заниженной.

Не исключено, что такие чисто «фотохимпческие» неожиданности могут встретиться и в дальнейшем. Так, сейчас не выяснена до конца роль водяного пара, содержание которого может возрасти в стратосфере при повышении температуры тропической тропопаузы за счет перераспределения энергии, благодаря разрушению озона фреонами вблизи уровня 30 км. (Существенный источник энергии сосредоточен в полосах Шаппюи, где количество солнечных квантов велико). Увеличение количества радикалов ОН в результате реакции

$$H_2O + O(^1D) \rightarrow 2OH$$

ведет к разрушению хлористого водсрода и сбразованию каталитически активного хлора.

$$HCl + OH \rightarrow H_2O + Cl.$$

Оценки антропогенных елияний различных еешеств на озон проводятся детальнее с помсщью моделей различной сложности, примеры которых будут рассмотрены в § 18.

§ 16. Аэрозольный цикл атмосферного озона

Так называемый эффект «стенки», сильно осложняющий лабораторные исследования химических реакций, важных для аэрономии, существует и в верхней атмосфере. Он обусловлен гетерогенными процессами на аэрозольных частицах, в большей или меньшей степени влияющих на баланс малых составляющих атмосферы и в том числе озона. Например, время, за которое молекула сталкивается с частицей аэрозоля, составляет приблизительно 10⁴ с на высоте 20 км. Для таких относительно инертных в химическом отношении газов, как озон, время пребывания в нижней стратосфере, которое определяется динамикой воздухообмена с тропосферой, равно $10^7 \dots 10^8$ с. Поэтому даже при эффективности гибели на поверхности 10^{-4} убыль рассматриваемого газа будет значительной. Назовем этот процесс аэрозольным циклом.

Этот цикл действует и в мезосфере на высотах 80... 100 км. Здесь наблюдаются слои повышенной концентрации мелких частиц (в том числе мезосферные облака), концентрации активных атомов и радикалов О, Н, ОН и др. велики, а относительная частота столкновений молекул с аэрозолем может быть больше, чем в стратосфере.

В верхней атмосфере, где длина свободного пробега газовой частицы l велика по сравнению с характерным размером частиц $\bar{r}, l \gg \bar{r}$, можно использовать для изучения аэрозольного цикла простые формулы свободномолекулярного режима. Поток атомов или молекул на единицу поверхности в секунду выражается через концентрацию n и среднюю арифметическую скорость $\bar{v} = (8RT/\pi M)$. Здесь R - rазовая постоянная, T - температура, M - молекулярный вес. Он равен $Q = n\bar{v}/4$. Если предположить, что частицы имеют сферическую форму и радиус \bar{r} , то их общая поверхность, приходящаяся на 1 см³ воздуха, составит

$$\frac{4\pi \bar{r}^2 C_m}{\frac{4}{3}\pi \bar{r}^3 \rho} = \frac{3C_m}{\bar{r}\rho},$$
 (16.1)

где ρ — плотность аэрозольного вещества в г·см⁻³, C_m — его массовая концентрация в воздухе, также в г·см⁻³, хотя обычно она выражается в мкг·м⁻³. Считая гибель частиц на поверхности реакцией первого порядка, запишем ее скорость в виде

$$-\frac{dn}{dt} = \frac{n\overline{v}}{4} \frac{3C_m}{\overline{r}\rho} \gamma$$
(16.2)

и характерное время аэрозольного цикла та:

$$\tau_a = \frac{4\rho \bar{r}}{3C_m \gamma \bar{v}}, \qquad (16.3)$$

где у — коэффициент гибели атома или молекулы на поверхности.

В плотных слоях атмосферы l может быть соизмеримо или даже меньше \bar{r} . В случае произвольного числа Кнудсена $Kn = l/\bar{r}$. В. И. Смирнов [111] получил для потока частиц, исчезающих на единичной поверхности сферы,

$$Q' = \frac{Dn}{\bar{r}\left(1 + \lambda_0\left(\gamma\right) \frac{l}{\bar{r}}\right)}.$$
 (16.4)

Здесь $D \approx 1/3 \, \overline{vl}$ — коэффициент диффузии, а $\lambda_0(\gamma) = \lambda_0(1) + \frac{4(1-\gamma)}{3\gamma}$,

 λ_0 (1) монотонно изменяется от 1,3 при Кп = ∞ до 0,7 при Кп = 0. При Кп \approx 1, λ_0 (1) \approx 1, $\gamma \ll$ 1, $Q \approx Q'$, т. е. даже для самых крупных частиц ($\bar{r} = 10$ мкм) в стратосфере можно использовать соотношение (16.2), как это было сделано в [171]. При Кп \rightarrow 0 необходимо употреблять более общую формулу (16 4).

Чтобы рассчитать аэрозольный сток озоноактивной компоненты за счет процессов рекомбинации, сорбции, коагуляции и др., необходимо иметь информацию о концентрации, спектре и микрофизических характеристиках частиц и изучить поверхностные явления на границе двух фаз при условиях, господствующих в стратосфере.

Интенсивные исследования аэрозоля верхней атмосферы начались еще в 1960-х гг., однако проблема происхождения и природы этих частиц до конца не решена и сегодня [72]. Главными источниками стратосферных аэрозолей являются. а) мощные извержения вулканов, выбрасывающих пыль и газы непосредственно в стратосферу, б) перенос тропосферных аэрозолей через тропопаузу мощными конвективными потоками в низких широтах, в) космическое вещество в виде пыли и метеоритов [56].

Космический источник аэрозолей бывает двух видов Субмикронные внеземные частицы из межпланетного пространства могут достигать поверхности Земли в почти неизменном виде благодаря их плавному торможению в самых верхних слоях атмосферы. Более крупные частицы испытывают частичное или полное расплавление, которое приводит к рассеянию капель или паров в воздухе. Оценивая размеры частиц, образовавшихся за счет конденсации паров, теряющихся с поверхности метеоров при их вхождении в агмосферу, Росинский и Сноу предположили, что диаметры частиц должны быть приблизительно пропорциональны размеру метеора и обычно не превышают 0,01 мкм (10 нм), при этом объемные медианные диаметры частиц достигают от $4 \cdot 10^{-4}$ до $8 \cdot 10^{-3}$ мкм через 1 мин после испарения [83]. В работе А. К. Рыбакова [107] суммированы результаты измерений метеорных тел, наблюдений метеоров, изучения микрократеров на образцах лунных пород и других методов, на основе которых подсчитан приток метеорного вещества в атмосферу Земли — 2,5 · 10⁴ т в год, что существенноменьше оценок, принятых ранее, 10⁶ . . . 10⁷ т в год [83]. Приняв в качестве источника космической пыли величину со значением 10⁵ т в год, средние радиус и плотность частиц $\bar{r} = 10^{-6}$ см, $\bar{\rho} = 9$ г · см⁻³, получим поток частиц $n_p v_s = 10^3$ см⁻² · с⁻¹. При скоростях оседания $v_s \approx 1$ см · с⁻¹ плотность частиц $n_p \approx 10$ см⁻³. Эта оценка удовлетворительно согласуется с оценкой 15 . . . 50 см⁻³. [140], полученной для мезосферного слоя над летним полюсом. Это может служить косвенным аргументом в пользу вывода о коагуляционной природе мезосферных облаков, возникающих при сравнительно высокой относительной влажности воздуха и высоких значениях счетной концентрации аэрозольных частиц [101].

Оценим характерное время гетерогенных реакций атомов кислорода τ_a (О) и водорода τ_a (Н), которые достаточно эффективно могут рекомбинировать на чистых металлах и их окислах [84, 429]. Взяв $\rho = 9$ г см⁻³, $C_m = 7 \cdot 10^{-14}$ г·см⁻³, $v_s = 1$ см·с⁻¹, получим

$$\tau_a(O) \approx 3 \cdot 10^9 \overline{r} / \gamma_O; \quad \tau_a(H) \approx 8 \cdot 10^9 \overline{r} / \gamma_H,$$

что при $\gamma = 0, 1 \dots 0, 01$ [429] и $r < 10^{-6}$ см Гдает $\tau_a(O) \leqslant 3 \cdot 10^4 \dots 3 \cdot 10^5$ с, $\tau_a(H) \leqslant 8 \cdot 10^3 \dots 8 \cdot 10^4$ с. Эти значения сравнимы со временем турбулентной диффузии в области мезопаузы: $\tau_d = 10^4 \dots 10^6$ с при $K_{zz} = 10^5 \dots 10^7$ см² · с⁻¹.

По мере коагуляции и оседания концентрация частиц уменьшается, размер растет, трансформируется их распределение по размерам [155] При благоприятных термодинамических условиях в атмосфере образуются аэрозольные слои и даже облачные системы — мезосферные (серебристые) и перламутровые (на высоте 30... 40 км) облака. С. Д. Андреев, Л. С. Ивлев, Н. К. Спажакина, Е. Л. Янченко, собрав данные о преимущественных высотах появления аэрозольных слоев в северном полушарии, нашли, что в летней стратосфере эти высоты около 45, 30, 24 и 18 км, уменьшаясь на несколько километров от экватора к полюсу [101]. Для высот, меньших 25... 30 км, занос аэрозолей из тропосферы уже становится значительным и концентрация частиц возрастает. Аэрозольные слои в средней стратосфере часто считают сульфатными, вероятно образующимися при окислении сернистого газа вулканического происхождения.

Сильные извержения вулканов, заметно влияющие на поведение стратосферы, случаются сравнительно редко. Тем не менее они представляют редкую возможность детальнее наблюдать и исследовать влияние аэрозоля на химию и термодинамику стратосферы. Одним из наиболее катастрофических в историческую эпоху было извержение Кракатау (Индонезия) в 1883 г. Оно вызвало подъем эруптивных облаков на высоту 30 км. Последним очень мощным извержением явилось извержение вулкана Агунг на о. Бали (8° ю. ш., Индонезия) 17 марта 1963 г. Как и при извержении Кракатау, частицы и газы были выброшены высоко в стратосферу. Влияние этого события на оптические характеристики атмосферы (в частности, замутненность) наблюдалось затем в течение нескольких лет [184]. Появление повышенного содержания аэрозолей вызвало подъем температуры воздуха в стратосфере приблизительно на 5° С. Повышение температуры было наибольшим на уровне 17...19 км, где с апреля по июнь 1963 г. наблюдалась максимальная замутненность.

Данные по методу обращения, полученные на австралийских станциях, указывают на уменьшение концентрации озона в средней и верхней стратосфере в последующие несколько лет. Однако истинный механизм этого явления остался неизвестен. Возможно, он связан с выбросом при извержении большого количества газообразного хлора [384], эффективного катализатора гибели озона. В связи с этим интересна и поучительна история наблюдения и интерпретации слоя пониженного (примерно на 20 %) количества озона на высоте 20 . . . 21 км, существовавшего в период извержения Агунга. Этот достаточно тонкий, около 2 км, слой был зарегистрирован над несколькими станциями с помощью озонозондов и описан Дютшем [212] и Питтоком [346]. Слой существовал достаточно долго, над Боулдером (США), например, он отмечался с 8 марта по 10 апреля 1963 г. После извержения Агунга, которое произошло, как сказано, 17 марта, над Боулдером и другими станциями наблюдался слой пыли на тех же самых высотах, что и слой, обедненный озоном. Питток вначале предположил, что произошло каталитическое разрушение озона на аэрозольных частицах [345], но потом отказался от этой гипотезы и присоединился к объяснению Дютша о квазигоризонтальной адвекции бедного озоном тролического воздуха [212] Грэмс и Фиокко [242] 1 нашли отрицательную корреляцию между содержанием пылевых частиц, выброшенных Агунгом, и содержанием озона в слое 15 . . . 20 км, считая пыль ответственной за изменчивость озона, но не развили дальше эту идею.

Одной из причин, почему Питток отказался от каталитического механизма, было относительно малое содержание частиц, другой — низкая, как он полагал, эффективность разрушения озона на поверхности аэрозолей. Согласно современным представлениям, большая часть стратосферного аэрозоля состоит из капелек серной кислоты (кристаллов) и раствора сульфата аммония, причем процент серной кислоты в них тем больше, чем меньше радиус капли [155]. Растворенные в жидкости соли металлов могут существенно увеличить каталитическую активность капель. По оценкам, приведенным в [171], γ (O₃) лежит в пределах 10^{-4} ... 10^{-6} для частиц почвы и, по-видимому, в этих же пределах для жидкой или кристаллической фазы аэрозоля.

¹ Это было первое применение лидара для наблюдения атмосферного аэрозоля.

Для оценок влияния гетерогенных процессов на озон по формулам (16.1), (16.2) Р. Кейдл, П. Крутцен и Д. Эхальт [171] построили по экспериментальным данным Дж. Розена среднее распределение C_m по высоте (табл. 13) и использовали одноразмерную модель П. Крутцена [189], р было принято равным 2 г.см⁻³. Результаты расчетов приведены на рис. 23 в зависимости от параметра γ/r . На рис. 23 видно, что при любых γ/r эффект гетерогенных реакций на озон резко уменьшается выше 25 км. Приняв $\gamma = 10^{-5}$, r == 0,1 мкм, получим процент уменьшения озона в нижней стратосфере около $\Delta_{103}^{[03]}$ %

ния озона в нижней стратосфере около 700 5 %, что, по-видимому, близко к реальному эффекту.

Важным выводом работы [171] было установление влияния гетерогенных реакций с участием О и О₃ на концентрацию других малых составляющих: возрастание количеств NO и CO, уменьшение HO₂, HNO₃, NO₂, H₂O₂ с тем большим эффектом, чем больше γ/r .

Однако предположение $\dot{C}_m = 0$ при h>25 км [171] является слишком категоричным. В табл. 14, заимствованной из работы Л. С. Ивлева И Б. И. Огородникова, приведены результаты химического анализа аэрозольных проб воздуха на отдельные элементы и их массовые концентрации [56]. Пробы брались на высоте 31 км во время двух дрейфовых полетов аэростатов 19 И 23 августа 1968 г.

Учитывая, что в аэрозолях должны присутствовать такие элементы, как кислород, азот, углерод и др., авторы

Рис 23 Уменьшение концентрации озона для различных высот (в процентах от концентрации, рассчитанной для атмосферы без

аэрозолей) в функции у, r Учтен суммарный эффект разложения озона и рекомбинации атомарного кислорода на поверхности аэрозоля

увеличили суммарную массовую концентрацию в 1,5 раза и получили $C_m = 0,5...0,65$, что почти в 2 раза больше, чем на высоте 18... 19 км по данным табл. 13. Оценка по формуле (16.2) показывает, что убыль О₃ и особенно О при такой C_m может быть су-

Высота, км	<i>С_{т мкг м}—3</i>	Высота, км	С _{т мкг м} —3
15	0,104	21	0,156
17	0,18	23	0,078
18	0,30	25	0,022
19	0,26	26	0,00

Таблица 13 Модель массовой концентрации стратосферного аэрозоля [171]

Элемент Измерения so_4^{-2} Mg AI Ca Cr Fe Ň١ St 0.0250 0.0700 0.0025 0,015 0,036 0.12 0,050 7-й полет 0.0240 0,0025 0,004 0,02 0,005 0,0200 0,015 0,0040 0,0040 Фон 0,0670 0.0680 0,0680 0,068 0,012 0,08 0.0028 й полет 0,0120

Таблица 14. Массовые концентрации (мкг·м^{−3}) элементов в аэрозолях зна высоте 31 км

щественна. Не исключено, что изрезанность профилей $N_1(z)$ и $N_3(z)$, иногда наблюдаемая выше 30 км, объясняется наличием слоев аэрозоля.

Среднее время жизни аэрозольных частиц, влияющее на эффективность аэрозольного цикла деструкции озона, значительно увеличивается с высотой между тропопаузой и верхней стратосферой. Оценки дают значения около одного месяца на уровне тропопаузы, от 1 до 2 лет на 20 км и от 4 до 20 лет на 50 км. Эти оценки основаны на наблюдениях за осколочными продуктами ядерных взрывов и естественной радиоактивностью атмосферы. Например, для осаждения частиц радиусом 0,3 мкм и плотностью около 2,5 г см⁻³ с высоты 20 км до 10 км требуется около двух лет [83].

§ 17. Ионный цикл

В озоносфере присутствуют заряженные частицы — ионы, которые постоянно создаются под действием галактических космических лучей, реже — при воздействии энергичных частиц солнечного происхождения, а также за счет распада радиоактивных ядер атмосферных примесей. Концентрация свободных электронов в рассматриваемой области высот ничтожна ввиду очень быстрой реакции прилипания [110]

$$e + O_2 + M \rightarrow O_2^- + M$$
,

поэтому самая нижняя часть ионосферы Земли (z<60 км) состоит из положительных и отрицательных ионов.

Б. М. Смирнов впервые предложил рассмотреть гипотетический цикл разрушения озона с участием отрицательных ионов на примере реакций [110].

$$O_2^- + O_3 \xrightarrow{k_1^t} O_2 + O_3^-,$$
 (17.1)

$$O_3^- + O_2 \xrightarrow{k_2^t} O_2 + 2O_2.$$
 (17.2)

Б. М. Смирнов попытался определить, при какой плотности ионов скорость разрушения озона в ионном цикле равна скорости его образования за счет обычного кислородного цикла с участием фотолиза молекулярного кислорода, полагая $\int I_2 N_2 dh = 10^{13} \text{ см}^{-2} \cdot \text{с.}$ Считая $k_1^i \approx k_2^i = 4 \cdot 10^{-10} \text{ см}^3 \cdot \text{с}^{-1}$, он вычислил среднюю концентрацию ионов, считая ее не зависящей от высоты:

$$\overline{N}_{i} = [O_{2}^{-}] + [O_{3}^{-}] = \frac{\int_{h_{1}}^{h_{2}} 2I_{2}N_{2}dh}{\int_{h_{1}}^{h_{2}} k_{1}^{2}[O_{3}]dh} \approx 2 \cdot 10^{3} \text{ cm}^{-3}.$$

Такие концентрации (и даже большие) наблюдаются в стратосфере. Однако Смирнов отмечает, что средняя плотность ионов в стратосфере значительно меньше этой величины и что ионный цикл не вносит заметного вклада в баланс озона. Тем не менее, по его мнению, этот цикл требует особого внимания.

Пока мы не обладаем достаточно полной информацией об ионномолекулярных процессах в стратосфере, о составе ионов и о константах скоростей наиболее важных реакций, можно говорить лишь о самых общих свойствах этих процессов. И. К. Ларин и В. Л. Тальрозе оценили возможный масштаб влияния заряженных частиц на гибель озона в стратосфере [85]. Они предложили рассматривать ионный цикл в обобщенном виде:

$$X^{-} + O_3 \xrightarrow{k_3^1} XO^{-} + O_2,$$
 (17.3)

$$XO^{-} + O_3 \xrightarrow{k_4'} X^{-} + 2O_2,$$
 (17.4)

$$\mathbf{XO}^- + \mathbf{O} \xrightarrow{k_5^*} \mathbf{X}^- + \mathbf{O}_2. \tag{17.5}$$

Мы имеем дело в сущности с двумя циклами, двумя цепными процессами — (17.3), (17.4) и (17.3), (17.5), лимитирующими стадиями которых являются реакции (17.4) и (17.5) соответственно, а обрыв цепи определяется рекомбинацией ионов (или каким-либо конкурирующим ионообменным процессом). Длина цепи v_{4 или 5} любого из этих процессов

$$v_{4 \text{ или } 5} = \frac{k_{4 \text{ или } 5}^{l} \left[O_{\mathbf{x}}(h)\right]}{\left[XO^{-}(h)\right] \alpha_{l}}$$

где XO⁻ (*h*), O_x (*h*) — высотные распределения концентраций XO⁻, O₃ (x = 3), O (x = 1); α_i — коэффициент рекомбинации XO⁻. В случае X = О имеет место рекомбинация типа

$$O_2^- + O_4^+ \rightarrow 3O_2$$
,

константа которой $\alpha_{\iota} = 4 \cdot 10^{-7}$ см³ · с⁻¹ при температурах стратосферы [110]. И. К. Ларин и В. Л. Тальрозе отметили, что в случае рекомбинации национного обрыва цепи с увеличением N_i скорость рекомбинации [XO⁻(h).] α_i растет, а длина цепи ν уменьшается и может стать $\nu < 1$, после чего действие ионов на озон прекратится. Предельная концентрация N_i определяется условием $\nu = 1$. Подобно Б. М. Смирнову, авторы вводят критерий эффективности цепных процессов (17.3), (17.4) и (17.3), (17.5) по отношению к скорости образования озона

$$\alpha_{3, 4 \text{ или 5}} = \frac{\int_{h_1}^{h} k_{4 \text{ или 5}} [XO^{-}(h)] [O_x(h)] dh}{\int_{h_1}^{h} 2I_2 N_2 dh} .$$
(17.6)

Критерии $\alpha_{3,4}$, $\alpha_{3,5}$, очевидно, являются интегральными характеристиками, относящимися к основному слою озона между высотами h_1 и h_2 (были взяты 15 и 50 км). Иногда удобнее пользоваться этими критериями в дифференциальной форме. В частности, можно оценить максимально возможный вклад в деструкцию озона на уровне его абсолютного максимума. Считая $\alpha_t = 4 \cdot 10^{-7}$ см³ · с⁻¹, $[O_3] = 5 \cdot 10^{12}$ см⁻³, получим по формуле для $v_{4 \text{ или 5}}$ предельную концентрацию [ионов $[O_2^-]_{11m} = 5 \cdot 10^9$ см⁻³. При этом предельная скорость гибели молекул озона составит

$$\frac{(k_4^i) [O_3]^2}{\alpha_i} = 10^{13} \text{ cm}^{-3} \cdot \text{c}^{-1},$$

что на 6—7 порядков больше скорости разрушения за счет основных циклов (NO_x HO_x) на этих высотах (20 . . . 30 км). Таким образом, буквально за считанные секунды весь озон в слое максимума может исчезнуть.

Расчет по формуле (17.6) для реакций (17.1) и (17.2) в предположении концентрации ионов $N_i = 2 \cdot 10^3 \text{ см}^{-3}$ дает все же достаточно большую величину $\alpha_{1,2} = 0,6$ И. К Ларин и В. Л. Тальрозе подвергли сомнению предположение о равенстве констант $k_1 = k_2$, сделанное Б. М. Смирновым Они оценили величину k_2 по данным о радиолитическом образовании озона [26] и нашли ее существенно меньшей ($k_2 = 3 \cdot 10^{-13} \text{ см}^3 \cdot \text{с}^{-1}$), а это резко снижает полученные выше оценки как максимальной ($10^{13} \text{ см}^{-3} \cdot \text{с}$), так и реальной ($\alpha_{1,2} = 0,6$) гибели озона. Максимальный вклад (при $[O_3^-] \approx 10^6 \text{ см}^{-3}$) ограничивается 10^{-0} , а реальный вклад (при $[O_3^-] \approx 10^4 \text{ см}^{-3}$) не превышает $0,2^{-0}$.

Авторы этой интересной работы [85] указали также на вероятность существования в атмосфере двух циклов, производящих озон:

$$O_2 + O \rightarrow O_3 + e,$$

$$e + 2O_2 \rightarrow O_2^- + O_2,$$

$$O_4^+ + O \rightarrow O_3 + O_2^+,$$
$$O_2^- + 2O_2 \rightarrow O_4^+ + O_2.$$

Однако, по их оценкам, вклад этих механизмов мал по сравнению с обычным образованием озона по реакции $O + O_2 + M \rightarrow O_3 + M$.

Отметим, что больший вклад ионный цикл разрушения озона должен вносить в нижней стратосфере (h < 20 км) и тропосфере высоких геомагнитных широт, где скорость ионообразования под действием космических лучей должна быть выше. По оценке М. Николе [331], в 4—5 раз по сравнению с теми же высотами над экватором. В зимнюю полярную ночь ионный и аэрозольный циклы, по-видимому, преобладают над обычными (химическими) механизмами разрушения озона. Действительно, при отсутствии солнечной радиации каталитическое разрушение озона соединениями O_x , HO_x , ClO_x , NO_x должно прекратиться. Исключение составляет NO_x -цикл, поскольку космические лучи производят атомы азота и имеется, таким образом, постоянный источник NO, равный примерно 10^7 см⁻²·с⁻¹ [331]. Поэтому необходимы подробные комплексные измерения электрических, аэрозольных и озоновых характеристик зимней полярной стратосферы.

§ 18. Моделирование процессов в озоносфере

В последние 10...15 лет были созданы модели различной сложности, которые описывают фотохимические и динамические явления с участием озона в атмосфере от уровня Земли до высот 100... 120 км [66, 140, 164, 273, 277, 305, 388].

Неотъемлемой составной частью всех моделей озоносферы является фундаментальная модель Чепмена. Оригинальное исследование роли и значения чепменовского цикла для озоносферы проделал в последние годы Г. Джонстон [273]. Задавшись стандартными модельными распределениями озона и температуры, он рассчитал мгновенные скорости образования и гибели озона в глобальном масштабе.¹ Такой метод очень полезен, поскольку нет необходимости детально учитывать перенос в тропосферу — по оценке Джонстона, он составляет 1 % от скорости образования озона. Правда, в скрытом виде этот фактор входит и в указанную модель, поскольку эмпирические распределения озона и температуры несут на себе печать крупномасштабных динамических процессов С раз-

¹ Элемент объема озоносфоры задавался определенным шагом по широте, долготе и высоте, так что всего было 43 000 ячейки В каждой ячейке рассчитывался поток солнечного излучения с шагом $\Delta \lambda = 1$ нм в области $\lambda > 190$ нм Усреднение скоростей реакций производилось по широтным зонам, а затем шло суммирование по высоте и долготе, что давало искомые глобальные значения мгновенных скоростей

витием спутниковых методов наблюдения температуры, озона и других важных примесей модель может быть использована для уточнения роли отдельных циклов в глобальном балансе озона.

Пример модели Джонстона не типичен в том смысле, что большинство других исследователей вводит в модели явления переноса циркуляции атмосферы. Конкретный физический смысл используемых параметров переноса зависит от пространственно-временных масштабов моделируемых явлений, а также от их сложности. Однако в основе динамической части любой модели всегда лежит деление движений на упорядоченные и турбулентные (диффузионные). Среди последних для нас наиболее важны макротурбулентные движения из-за больших рассматриваемых масштабов переносов. Макротурбулентность можно аппроксимировать совокупностью горизонтальных вихрей и вертикальных замкнутых ячеек.

Ввиду сложности вертикального профиля озона и его сильных широтных различий в первую очередь наибольший интерес представляет модель циркуляции атмосферы в виде замкнутой ячейки. Эта двумерная (2М — по современной классификации) модель исследует влияние вертикального и меридионального переносов на озон. Ряд исследований под руководством А. Х. Хргиана был направлен на разработку такой модели [3, 6, 9, 35].

Как известно, связь общего количества озона с вертикальными движениями воздуха рассматривалась еще в первые годы наблюдений за озоном. В дальнейшем представление о ней было выражено в виде так называемого принципа Добсона—Норманда (см. гл. VIII). Доказательство этого принципа дала, в частности, работа Д.Ф. Харчилавы [123], который получил отрицательные коэффициенты корреляции между вертикальной скоростью ω и изменением общего содержания озона ΔX . При этом ω вычислялось по адиабатической формуле с использованием данных карты AT_{200} .

В. М. Березин и Ю. А. Шафрин с помощью численного метода рассмотрели влияние вертикальной скорости и турбулентности на вертикальное распределение озона [9], используя уравнения непрерывности и фотохимического образования озона. Величины w у них были сравнительно большими, от 8 см·с⁻¹ на 15 км до 17 см·с⁻¹ на 35 км. При восходящем движении, по их модели, происходит быстрое смещение максимума плотности озона вверх. При этом уменьшение ΔX за сутки достигает 27 %; при нисходящем движении максимум должен смещаться вниз, а увеличение ΔX за сутки — составлять 14 %. Влияние турбулентности на X практически отсутствует (из-за больших w).

Одни только упорядоченные вертикальные движения, очевидно, не могут объяснить полностью изменения X, особенно сезонноширотные. Анализ данных по распределению водяного пара и озона заставил Брюера [166], а затем Добсона [202] сделать предположение о существовании атмосферных потоков, переносящих озон в меридиональном направлении. С другой стороны, Мергатройд и Синглетон, изучая источники и стоки тепла в стратосфере и мезосфере, уточнили гипотезы Брюера и Добсона и предложили в 1961 г. свою известную модель вертикально-меридиональной циркуляции [322]. По этой схеме, в стратосфере существует меридиональный перенос со скоростью порядка $10^2 \text{ см} \cdot \text{c}^{-1}$, а над тропиками потоки воздуха направлены вверх с $w = 10^{-1} \text{ см} \cdot \text{c}^{-1}$. Авторы отметили существование сезонных вариаций этой циркуляции и предсказали, что можно будет обнаружить и другие типы процессов переноса.

Следуя вышеуказанной модели, В. И. Бекорюков рассмотрел стационарное распределение озона при совместном влиянии такой циркуляции в виде большой меридиональной ячейки и фотохимии [6]. Решение уравнения переноса озона, учитывая фотохимические источники озона, но пренебрегая диффузией его при скоростях того же порядка, что и в схеме Мергатройда — Синглетона, качественно объяснило картину распределения озона для зимне-весеннего периода: обнаружилось большое X в высоких широтах и малое — в низких, низкорасположенный максимум плотности озона в высоких широтах и высокоподнятый — в низких, а также наличие двойного максимума вертикального распределения N_3 в средних широтах.

М. А. Гусев усложнил эту модель, введя в нее сезонную изменчивость характеристик ячейки циркуляции по синусоидальному закону [35]. Фотохимический коэффициент и равновесная плотность озона были заданы как функции времени. Рассчитанные пространственно-временные концентрации озона хорошо соответствовали наблюдаемым.

Более полно сформулировал и решил задачу А. В. Артемьев [3], который ввел в расчет параметры турбулентносги, зависящие от сезона, высоты и широты, а также фотохимический источник озона с учетом водородных составляющих. Максимальные вертикальные скорости в выбранной им схеме, обусловившие наилучшее соответствие данным наблюдений, составляли 0,45 см·с⁻¹, меридиональные — 1,15 м·с⁻¹ и в целом для полушария были близки к вычисленным Мергатройдом.

Недостатком одноячейковой схемы меридиональной циркуляции озона явилось большое расхождение с данными наблюдений в районе полюсов, экватора и в летне-осенний период.

Экспериментальная проверка схемы одноячейковой циркуляции затруднительна, потому что нет прямых методов измерения вертикальных скоростей, а меридиональные трудно вычислить из-за наложения на упорядоченные (средние) потоки турбулентных движений различных масштабов. Скорость их можно определить из решения уравнений динамики, используя эмпирические значения среднезональных потоков количества движения и энергии. Полученные таким образом в работе Винсента [417] схемы летней и зимней циркуляции отличаются от одноячейковой схемы: зимой две ячейки прямой тропической и обратной среднеширотной циркуляции проникают из тропосферы в стратосферу, образуя нисходящий поток в зоне 30... 50° с. ш.; летняя циркуляция представляет несколько слабых и мелких ячеек с преимущественным подъемом воздуха в стратосферу на 40 . . . 50° с. ш.

Рассмотренные примеры важны, поскольку они намечают путь моделирования более сложных явлений озона, в которых замкнутая ячейковая циркуляция входит как необходимый элемент.

Объектом исследования в современных моделях является не только озон, но и многочисленные озоноактивные примеси при возможно более широком учете динамических факторов. Разработка таких моделей возможна только с помощью мощных ЭВМ.

Одна из характеристик сложности модели—ее размерность. Различают одномерные (1М), двумерные (2М) и трехмерные (3М)модели.

Простейшим вариантом (своего рода ОМ-моделью) является модель резервуаров («ящиков»), удобная для приближенных оценок, а также при малом числе экспериментальных данных. Примером приложения такой модели к исследованию поведения фреона-11 (CFCl₃) является работа [286], в которой используются два параметра λ_1 , λ_2 переноса примеси из одного резервуара — тропосферы в другой — стратосферу (λ_1), и — наоборот (λ_2). Система уравнений модели:

$$\frac{dN_1}{dt} = P - \lambda_1 N_1 + \lambda_2 N_2, \qquad (18.1)$$

$$\frac{dN_2}{dt} = \lambda_1 N_1 - (\lambda_2 + \lambda_3) N_2, \qquad (18.2)$$

где N_1 , N_2 , P — количество фреона в тропосфере, стратосфере и скорость его промышленного производства соответственно; λ_3 — параметр, описывающий продолжительность существования молекулы фреона в стратосфере до ее фотолиза. Параметры λ_1 и λ_2 были определены независимо методом радиоактивных трассеров [285]. Используя результаты прямого экспериментального определения фреона-11 в стратосфере, тропосфере и на уровне Земли, с помощью этой модели удается оценить скорость фотолиза и полупериод существования молекулы CFCl₃ в атмосфере, очень длинного и равного 15... 30 годам ($\lambda_3 \approx 2...4$ года).

Одномерные модели поведения озона и малых примесей максимально сложны и репрезентативны фотохимически. Они используются для: а) выяснения роли отдельных химических реакций и их изменчивости в еертикальном направлении, а также роли отдельных составляющих, информация о которых скудна или вообще отсутствует; б) определения суточных вариаций примесей; в) определения основного параметра переноса в 1М-модели — коэффициента турбулентной диффузии. Результаты расчетов с помощью 1М-модели могут быть использованы как параметры и граничные условия в более сложных моделях. Система уравнений 1М-модели с *и* компонентами имеет следующий вид [189].

$$\frac{\partial (Nr_{i})}{\partial t} - \frac{\partial}{\partial z} \left(NK_{z} \frac{\partial r_{i}}{\partial z} \right) = P_{i} - L_{i}, \qquad (18.3)$$

где r_i (z, t) — относительная концентрация (отношение смеси) *i*-й компоненты как функция высоты z и времени t; N — числовая илотность воздуха; P_i и L_i — скорости образования и разрушения компоненты, вычисляются по формулам § 8. При этом должны быть заданы модельные распределения температуры и плотности по высоте и концентрации или потоки малых примесей на границах рассматриваемой области. Примеры стационарных и нестационарных 1М-моделей можно найти в работах Ханта [264, 265], Джонстона [272], Столярски и Цицероне [400], Вовси и Мак-Элроя [430], Шимазаки и Огава [388], И. Л. Кароля и Е. Н. Коменской [68].

Диффузионный (вихревой, турбулентный) поток $\varphi = K_z \frac{\partial N r_t}{\partial z}$

в (18.3) записан по аналогии с уравнением Фика для обычной диффузии, причем K_z — формальный аналог коэффициента молекулярной диффузии. Вертикальные профили K_z , определяемые независимо из анализа распределения в атмосфере какого-либо трассера (тепло, O₃, N₂O, CH₄, изотопы), существенно различаются у разных авторов [144, 183], (см. в [163]) как по виду профиля K_z (*z*), так и по абсолютному значению до двух порядков. Наиболее надежными можно считать данные о K_z , полученные из наблюдений радиоактивного изотопа углерода C₁₄ [277].

Макротурбулентная диффузия примеси в реальной атмосфере носит в основном анизотропный характер, создаваемый ею перенос направлен преимущественно горизонтально. В общем виде макротурбулентный поток $\varphi_{x_i}^t$ для примеси r_i в направлении x_i может быть представлен

$$\varphi_{x_{\iota}} = K_{\iota I} \nabla r,$$

где K_{ij} — тензор второго ранга.

Вообще говоря, компоненты тензора должны существенно зависеть от временного (и, следовательно, пространственного) масштаба явлений. Для 2М-модели, в которой координатами являются широта и высота, поведение компонент тензора K_{ij} иллюстрируется кривыми на рис. 24, построенными по данным ряда работ. В частности, эти зависимости K_{ij} от координат были подтверждены результатами известного французского эксперимента с шарами постоянного давления «Эол», дрейфовавшими в нижней стратосфере [184]. Из рис. 24 видно, что для $t \leq 10$ с турбулентность изотропна $(K_{zz}=K_{yy})$, при t > 100 с она существенно анизотропна и при больших $t K_{ij} \rightarrow$ const. Приведенные на рис. 24 данные относятся к z = 16 км; очевидно, для других высот и в различное время года численные значения K_{ij} могут сильно отличаться.

И. Л. Кароль приводит примеры вертикальных профилей среднесезонных коэффициентов макротурбулентной диффузии K_{ij} , которые были рассчитаны им для разных широт по данным аэрологического и ракетного зондирования ветра и по наблюдениям радиоактивных трассеров [66, 67]. Надо сказать, что использование радиоактивных трассеров (как естественных, так и искусственных) для изучения динамики атмосферы получило в последние десятилетия чрезвычайно широкое распространение. Рассчитанные таким образом параметризованные характеристики переноса с успехом используются в проблеме озона.

Однако модели, использующие тензор K_{ij} , имеют и очевидный недостаток: совпадение расчетного и измеренного распределения

Рис 24 Зависимости коэффициентов турбулентной диффузии K_{zz} , K_{yy} , K_{yz} (составляющих тензора турбулентнон диффузии) от масштабов времени и пространства

какой-либо примеси еще не дает уверенности в правильном выборе всех параметров задачи, особенно при их большом числе. Разные комбинации их значений могут дать близкие расчетные распределения. Кроме того, наблюдаемый перенос может отличаться в отлельные годы и в разных районах от климатических средних и приводить временами к появлению тех или иных особенностей переноса примеси. И. Л. Кароль приводит в качестве иллюстрации следующие примеры. Радиоактивные продукты серии испытаний, проведенвысоких широтах ных в в октябре 1958 г., выпали почти полностью за один год в пределах лишь северного полушария. Это при-

вело к неправильному выводу о том, что продукты ядерных испытаний в высоких широтах всегда выпадают быстро и только в одном полушарии, в отличие от продуктов испытаний в тропиках, которые распространяются в оба полушария. Второй пример был связан с анализом измерений на высоте 17...20 км средней плотности ионов SO₄ в стратосферных аэрозолях, которая увеличилась более чем на порядок в 1969 г. по сравнению с 1960...1962 гг., а к началу 1971 г. снова уменьшилась в 3—4 раза. Максимум SO₄ в 1969 г. следовало объяснить повышенным его переносом через тропопаузу в этом году по сравнению с другими годами [67].

Фотохимические 2М-модели, в которых учтен и упорядоченный и макротурбулентный перенос, описаны в работах Хестведа [256], Рао-Вуппутури [362, 363, 419], Принна и др. [351] и Брассера и Бертен [164, 184]. Остановимся на модели [164], в которой исследовалось влияние окислов азота на озоносферу:

$$\frac{\partial N}{\partial t} + \nabla \varphi (N_i) = P(N_i) - L(N_i),$$

 $N_1 = [O_x]; N_2 = [N_2O]; N_3 = [NO_y] = [NO] + [NO_2] + [HNO_3].$ (18.4)

В геоцентрической сферической системе координат при условии распределения компонент зонально однородными член переноса упрощается:

$$\nabla \varphi = \frac{\partial \varphi_y}{\partial y} + \frac{\varphi_y}{a} \operatorname{tg} \lambda + \frac{\partial \varphi_z}{\partial z} \,. \tag{18.5}$$

Здесь а — радиус Земли, λ — широта; φ_y , φ_z — меридиональная и вертикальная компоненты переноса, которые при адвекции выражаются через компоненты скорости v, \overline{w} :

$$\varphi_y^{\mathrm{adv}} = \overline{N}_t \overline{v}, \quad \varphi_z^{\mathrm{adv}} = \overline{N}_t \overline{w}.$$

Значения v и w были взяты из модели циркуляции атмосферы Куннольда и др. [142]. Эта модель, называемая иногда метеорологической, чтобы подчеркнуть неучет в ней химических реакций, основана на решении уравнений сохранения количества движения, энергии и массы воздуха с учетом гидростатического равновесия и соответствующих граничных условий. На «фон» полученных упорядоченных движений накладывается «шум» в виде составляющих турбулентных потоков:

$$\varphi_{\boldsymbol{y}}^{t} = -\left[K_{\boldsymbol{y}\boldsymbol{y}} \frac{\partial \overline{N}}{\partial \boldsymbol{y}} + K_{\boldsymbol{y}\boldsymbol{z}} \frac{\partial \overline{N}}{\partial \boldsymbol{z}}\right], \qquad (18\ 6)$$

$$\varphi_{z}^{t} = -\left[K_{zy}\frac{\partial \overline{N}}{\partial y} + K_{zz}\frac{\partial \overline{N}}{\partial z}\right].$$
(18.7)

С учетом уравнения неразрывности в стационарном случае

$$\left(\frac{\partial}{\partial y} + \frac{\operatorname{tg}\lambda}{a}\right) V^* + \frac{\partial W^*}{\partial z} = 0$$

и после ряда преобразований и упрощений, положив $L(N_i) = \beta r_i$ (линеаризация), $K_{yz} = K_{zy}$, уравнение (18.4) приобретает вид

$$N \frac{\partial r_{\iota}}{\partial t} - K_{yy} \frac{\partial^2 r_{\iota}}{\partial y^2} + 2K_{yz}^* \frac{\partial^2 r_{\iota}}{\partial y \partial z} - K_{zz}^* \frac{\partial^2 r_{\iota}}{\partial z^2} + V^{**} \frac{\partial r_{\iota}}{\partial y} + W^{**} \frac{\partial r_{\iota}}{\partial z} + \beta^* L_{\iota} = P_{\iota}, \qquad (18.8)$$

где «эффективные» меридиональная и вертикальная скорости равны:

$$V^{**} = V^{*} \left[\left(\frac{\partial}{\partial y} + \frac{\mathrm{tg}\lambda}{a} \right) K^{*}_{yy} + \frac{\partial K^{*}_{yz}}{\partial z} \right], \qquad (18.9)$$

$$W^{**} = W^* \left[\left(\frac{\partial}{\partial y} + \frac{\lg \lambda}{a} \right) K_{yz}^* + \frac{\partial K_{zz}^*}{\partial z} \right], \qquad (18.10)$$

а индекс * означает умножение соответствующей величины на N, например $K_{ii}^* = K_{ii}N$.

Граничные условия задачи ставились для верхней границы — стратопаузы и были взяты из решения 1М-модели ($r_{\rm N,O} = r_{\rm NO} = -10^{-9}$, для О₃ предполагалось наличие фотохимического равновесия), а на поверхности Земли были заимствованы из наблюдений ($[O_3] = 5 \cdot 10^{11}$, $r_{\rm N_2O} = 2,5 \cdot 10^{-7}$, $r_{\rm NO} = 3 \cdot 10^{-9}$). Весьма примечательным явился выбор K_{ij} так, чтобы наилуч-

Весьма примечательным явился выбор K_{ij} так, чтобы наилучшим образом удовлетворить наблюдаемым распределениям озона в северном полушарии. Зависимость K_{ij} от широты и высоты была разделена.

$$K_{ij}(\lambda, z) = K_{ij}(\lambda, 20) \gamma_{ij}(z).$$
 (18.11)

На рис. 25 представлены для примера широтные профили K_{ij} (λ , 20) на высоте 20 км и высотные профили γ_{ij} (z) для времени летнего и зимнего солнцестояния. Считалось также, что K_{ij} между этими моментами менялось по закону синуса. Нестационарная двумерная модель Брассера и Бертен может служить поэтому для описания изменчивости O_3 и NO_x в течение года.

Авторы отмечают, что машинное время, нужное для таких модельных расчетов, было велико, не позволяя использовать этот вариант модели (модель А) для исследований с меняющимися параметрами. Такие исследования можно сделать с помощью упрощенного варианта (модель В), в котором не учтена адвекция и рассматривается стационарный случай. Компоненты тензора K_{ij} , описывающего совместно упорядоченный и турбулентный перенос, выбраны для модели В следующим образом. $K_{yy} = 10^6 \text{ м}^2 \cdot \text{c}^{-1}$, $K_{zz} = 1 \text{ м}^2 \cdot \text{c}^{-1}$ на всех широтах как для лета, так и для зимы, $K_{yz} = 10^3 \text{ м}^2 \cdot \text{c}^{-1}$ (для зимы) и $K_{yz} \approx 8 \cdot 10^2 \text{ м}^2 \cdot \text{c}^{-1}$ (для лета) для широт $10 \dots 80^\circ$, в остальных зонах шириной $10^\circ K_{yz}$ меняется по линейному закону, убывая до $K_{yz} = 0$ на полюсе и экваторе Модель В позволяет анализировать влияние различных физических и химических параметров стратосферы, что не удается сделать в модели А из-за ее громоздкости.

С помощью этих численных моделей Брассер и Бертен построили пространственные разрезы O₃, NO₂, NO, HNO₃ для различных месяцев, выяснили годовой ход этих компонент на различных высотах, установили основные направления переноса озона, оценили влияние отдельных фотохимических циклов на суммарное содержание озона по широтам и т. д. Сделанная ими оценка влияния стратосферных полетов самолетов типа «Конкорд» показала, что уменьшение составит 0,25 % на 100 эксплуатируемых самолетов, что удовлетворительно согласуется с оценками других авторов.

Трехмерные модели, создававшиеся для изучения общей циркуляции атмосферы и моделирования климата Земли, были использованы также и для анализа распределения озона [305]. Однако их главная ценность состоит в численном описании меридиональной и вертикальной циркуляции атмосферы и систем течений воздуха синоптического масштаба. Разработанная в Массачусетском тех-

нологическом институте сложная математическая модель [142] поз-Куннольда и др. волила, например, описать систему ячеек циркуляции в тропосфере (ячеек Гадлея, Ферреля и полярную) н стратосфере. Возможно. что в ближайшем будущем ЗМ-модели будут применяться для проверки и уточнения способов параметризации переноса, используемых в более простых моделях. Кроме того, детальная численная ЗМ-мюдель общей циркуляции, учитываюшая фотохимические реакции, позволит оценить и обратное влияние изменений содержания озона, вызванных какимлибо возмущением, на динамику атмосферы.

Рис 25 Зависимости коэффициентов K_{ij} (λ , 20) (м² с⁻¹) и γ_{ij} (безразмерны) от широты и высоты для модети А Брассера и Бертен

Совещание экспертов по моделированию озоносферы и процессов обмена между тропосферой и стратосферой, состоявшееся в конце апреля 1977 г. в Женеве [376], отметило, что пока еще нельзя рекомендовать какой-либо единый способ параметризации турбулентной диффузии. Наблюдения стратосферных ветров и распределений отдельных примесей в глобальном масштабе все eme скудны для вычисления средних скоростей (в том числе вертикальных движений), необходимого для построения 2М-моделей. Главные трудности в построении моделей здесь определяются: а) большим различием исходных данных, например, о средних ветрах и коэффициентах турбулентности, заимствованных из различных комплексов наблюдений, б) несовместимостью распределения некоторых малых примесей с общей слемой параметризации переноса и, наконец, в) отсутствием общих критернев оценки моделей - нередко для них необходимым считается только правильное представление сезонных изменений озона. На совещании была выработана таблица констант более ста фотохимических реакций, дана оценка точности этих констант (от 10 % до двух порядков) и установлен приоритет тех примесей, информация о которых необходима в качестве начальных условий в моделях: сюда входят «долгоживущие» примеси — N₂O, H₂O, CH₄, CO₂, фреоны, CCl₄ и «короткоживущие» — NO, NO₂, HCl, ClO и пр. В докладе экспертов была высказана весьма примечательная рекомендация об объединении численного и натурного экспериментов, говорящая о том, что программы экспериментов могут и должны широко использовать модели, чтобы установить необходимую точность приборов, их размещение и частоту наблюдений по ним, с целью охвата всевозможных изменений наблюдаемых примесей. Для такой цели — помочь организации эксперимента — более всего подходят 2М-модели.

Глава IV

ПРИБОРЫ И МЕТОДЫ ДЛЯ НАБЛЮДЕНИЙ АТМОСФЕРНОГО Озона

При экспериментальном изучении атмосферы, в том числе озона и малых составляющих, используются две различные группы методов: контактные (в иностранной литературе употребителен термин in situ) и дистанционные. В первом случае прибор непосредственно анализирует окружающий его воздух, во втором — измерение происходит «на расстоянии» от прибора, причем в качестве носителя информации об удаленном объеме атмосферы используется обычно электромагнитное или (гораздо реже) акустическое излучение. Классификацию методов можно связать также с расположением измерительного устройства. Наряду с наземными — стационарными и передвижными — наблюдательными средствами в последнее время, в частности в озонометрии, интенсивно развивались спутниковые, ракетные, аэростатные (шарозондовые) и самолетные методы наблюдений.

В этой главе мы рассмотрим основные методы измерений озона, более подробно останавливаясь на тех, которые получили сейчас наиболее широкое распространение. Во всех методах используются данные о фундаментальных свойствах молекулы озона, которые были исследованы первоначально в лаборатории. Поэтому целесообразно вначале остановиться на лабораторных методах абсолютного определения озона.

§ 19. Лабораторные и наземные методы измерения озона

По всей вероятности, наиболее корректным абсолютным методом лабораторных измерений озона является оптический, точнее спектроскопический, метод, в котором в качестве основы используется коэффициент поглощения. Коэффициенты поглощения озона неоднократно измерялись в УФ области (см. § 7). Очень тщательные измерения поглощения озона для отдельных ртутных эмиссионных линий были проделаны Херном [250]. Опубликованные им значения считаются наиболее точными и используются при калибровках приборов по озону. В своих экспериментах Херн работал со значительными концентрациями озона в поглощающей кювете, причем для измерения количества молекул озона был использован физический метод — наблюдение их полного разложения при температуре около 200 °С. При этом после восстановления первоначальной температуры измерялось повышение давления в соответствии с превращением двух молекул озона в три молекулы кислорода: 2 $O_3 \rightarrow 3 O_2$.

Точность измерения коэффициента поглощения, определявшаяся в работе Херна точностью измерения разности давлений (около 2 %), в настоящее время может быть существенно увеличена, если использовать появившиеся в последние годы прецизионные измерители давления — баротроны.

Многочисленные варианты применяющихся химических и электрохимических образцовых методов озонометрии основаны на реакции озона с иодистым калием [318]:

$$O_3 + 2KI + H_2O \rightarrow 2KOH + O_2 + I_2.$$
 (19.1)

Химический метод анализа весьма чувствителен, так как на 1 мкг реагирующего озона выделяется 5,3 мкг иода. Раствор приобретает желтый цвет, а его проводимость возрастает по мере возрастания концентрации КОН. Оба эффекта могут использоваться для определения содержания озона. Этот метод детально изучался с точки зрения стехиометрии O₃ : I₂, которая в нейтральной среде оказалась близкой к единице, согласно уравнению

$$O_3 + 2I^- + 2H^+ \neq I_2 + H_2O + O_2.$$
 (19.2)

В щелочной среде стехиометрический коэффициент может меняться в результате образования ионов иодата IO₃⁻⁻ при двух возможных реакциях:

$$3O_3 + I^- \rightleftharpoons 3O_2 + IO_3^-,$$
 (19.3)

$$5O_3 + I_2 + H_2O \rightarrow 5O_2 + 2IO_3^- + 2H^+.$$
 (19.4)

Поэтому определение иода (а следовательно, и озона) приводит к заниженным (иногда до 60 %) значениям. Ошибки можно избежать, если перед измерением иода окислить раствор. Тогда вновь образуется иод

$$IO_3^- + 5I^- + 6H^+ \gtrsim 3I_2 + 3H_2O$$
 (19.5)

и общий стехиометрический коэффициент реакций (19.2) — (19.5) становится равным единице.

При проведении иодометрических лабораторных калибровок следует внимательно следить за составом озоногазовой смеси, так как некоторые вещества — оксиданты (примером которых может служить NO₂) — вступают в реакцию подобно озону, другие — восстановители (H₂S, SO₂, NH₃) — вызывают обратную реакцию. В этой неспецифичности состоит один из главных недостатков метода при его использовании для наблюдений в тропосфере и особенно вблизи поверхности Земли и около крупных индустриальных центров.

Более существенный его недостаток, имеющий принципиальное значение для эталонирования, был, по-видимому, обнаружен в последних исследованиях ряда авторов при сравнении метода иодометрии с физическими спектральными методиками. Согласно полученным ими результатам, стехиометрия O₃ : I₂ превышает единицу и, таким образом, может приводить к ошибкам от 10 до 25 % в зависимости от относительной влажности воздуха [161, 197, 306]. Тем не менее иодометрические методы как ручные, так и воплощенные в автоматические приборы, много лет широко использовались при наблюдениях на озонометрических станциях и самолетах и дали много полезной информации. Наибольший вклад здесь внесли А. Эмерт, В. Регенер, А. Васси и Ж. Карбенэ — за рубежом, в СССР — П. Ф. Свистов, А. С. Бритаев. Обзоры модификаций метода и конкретных приборов содержатся в монографии А. Х. Хргиана [127], в работе А. Васси [29] и других источниках [102, 260, 298, 318, 352, 405]. Отметим, что ҚІ — не единственный реагент для химической озонометрии. С. Д. Разумовский и Г. Е. Заиков рекомендуют вместо КІ использовать раствор метилолеата (или некоторых других непредельных соединений) в уксусной кислоте, либо раствор метилолеата в четырехлористом углероде [102].

Важную роль в атмосферных исследованиях озона играют электрохимические анализаторы. Они основаны на той же реакции (19.2), но не являются абсолютными приборами. Количество галогена (иногда используют КВг) измеряется по электрическому току, возникающему в результате катодного восстановления в электрохимической ячейке:

$$\mathbf{I_2} + 2e^- \rightarrow 2\mathbf{I}^-. \tag{19.6}$$

Реакция окисления на аноде может проходить согласно двум процессам, соответствующим либо принципу электролитической ячейки, либо принципу гальванического или топливного элемента. В первом варианте два электрода в растворе иодида находятся под слабым (десятые доли вольта) напряжением поляризации, которая приводит к образованию на катоде слоя водорода и реакциям:

$$2H^+ + 2e^- \rightarrow H_2, \qquad (19.7)$$

$$H_2 + I_2 \rightarrow 2H^+ + 2I^-. \tag{19.8}$$

На аноде образуется эквивалентное количество иода:

$$2I^- \to I_2 + 2e^-. \tag{19.9}$$

Если каким-либо способом воспрепятствовать попаданию на катод образовавшегося на аноде иода, то сила электрического тока в цепи ячейки будет пропорциональна количеству озона, вступающего в реакцию с иодидом. В идеальном случае один моль озона соответствует двум числам Фарадея. Этот метод часто называют ампероили кулонометрическим. К сожалению, он не является абсолютным, так как реальная электролитическая ячейка имеет, как правило. коэффициент полезного действия 50...75 %, меняющийся от прибора к прибору. Кулонометрический датчик подвержен тем же самым вредным влияниям атмосферных оксидантов и восстановителей, что и иодометрический метод.

На рис. 26 представлена схема работающего на этом принципе коммерческого прибора, разработанного фирмой Маст [312]. Ана-

Рис 26 Электрохимический кулонометрический анализатор озона

1 — анод, 2 — катод, 3 — резервуар с раствором КІ, 4 — вход газа, 5 — выход газа (к насосу), 6 — регистратор, 7 — корпус

логичное устройство было применено Брюером И Мильфордом лля 030HOзонда [168]. В этих устройствах внешний воздух захватывается с помошью насоса и течет через кольцевой зазор, окружающий стержень ИЗ стекла. на котором находится обмотка из платиновой проволоки (катод). Анодом является платиновое кольцо, нахоляшееся внизу стержня Раствор иодида вводится в верхнюю часть стержня и под действием силы тяжести тонким слоем стекает по стержню, поглощая молекулы озона из потока Выделяемый при воздуха реакции иод восстанавливается на катоде, а образующийся на аноде иол выводится из ячейки потоком раствора, стекающего со стержня вниз Этот очень чувствительный метод имеет порог регистрации озона примерно 2·10-4 млн-1.

В гальваническом или топливном элементе, представляющем второй тип

электрохимического анализатора, используется электролит, coстоящий из нейтрального раствора бромистого калия и следов иодида. Другой особенностью является использование **VГОЛЬ**ного анода, на котором происходит хемосорбция кислорода [255]. такого детектора является Преимуществом простота схемы и статичное состояние электролита. Для улучшения стабильности и избирательности был использован дифференциальный гальванический элемент, состоящий из двух платиновых катодов, соединенных с одним анодом. К одному из катодов воздух подается через серебряный или алюминиевый фильтр, который устраняет только озон. В зависимости от того, насколько эффективен фильтр, детектор является стабильным и имеет хорошую избирательность.

В. З. Альперин разработал вариант непроточной ячейки для кулонометрического определения микроконцентраций озона [1]. Действие ячейки основано на стехиометрической реакции озона с галоидным раствором (2 % NaBr; 0,001 % NaI; 0,1 % Na₂PO₄; 0,1 % NaH₂PO₄), приводящей к высвобождению галогена с последующим его восстановлением на платиновом электроде гальванической ячейки. Снимаемый с электродов ячейки потенциал пропорционален количеству озона, реагирующего с бромидом в широком диапазоне значений концентраций озона. А. С. Бритаев использовал эту ячейку для измерения вертикального профиля озона в атмосфере от Земли до 30 км [24]. Было отмечено, что время переходного процесса в ячейке составляет 30 . . 45 с, средняя относительная ошибка измерений 6 %. Лабораторные испытания прибора свидетельствовали о высокой точности и надежности его работы.

В настоящее время на основе устройства В. З. Альперина разработан серийный электрохимический газоанализатор «Атмосфера II» — автоматический промышленный переносный показывающий прибор периодического действия, предназначенный для определения содержания озона и хлора в атмосфере. Он имеет два диапазона измерения озона 0...0,1 и 0...0,5 мг·м⁻³, класс точности 20, время начала реагирования не более 1 мин, а время переходного процесса в ячейке 7 мин [69].

Электрохимические анализаторы, с успехом использовавшиеся в практике лабораторных и натурных исследований в 60-х гг, уступают свое место новым серийным приборам - автоматическим хемилюминесцентным анализаторам. Этому способствовали не только имеющиеся исследования газофазной хемилюминесценции озона в смеси с этиленом, но и разработка высокостабильных. фотохимических генераторов озона, которые стало возможным встраивать в каждый прибор с целью его периодической калибровки в процессе эксплуатации [261, 316]. Калибровочная смесь приготавливается из атмосферного воздуха, очищаемого фильтром с активированным углем После этого воздух направляется в кварцевую трубку, освещаемую ртутной лампой, производящей фотолиз кислорода и образование озона Постоянство равновесной концентрации озона зависит от стабильности разряда лампы, ее спектра, температуры и расхода воздуха С этой целью блок фотореактора помещают в термостатический кожух, питание лампы стабилизируют, а забор воздуха осуществляют с помощью стабильного в работе мембранного компрессора

Хемилюминесцентные озонометры обладают хорошей избирательностью, линейностью в диапазоне их показаний 0,003... 30 млн⁻¹, стабильностью и используются как вторичные эталоны при измерениях атмосферного озона. Основными элементами приборов, освоенных в производстве многими фирмами США, Японии и других стран, являются реакционная камера, в которую подаются постоянные количества воздуха и этилена, и блок фотометра с подходящим ФЭУ. Другие функциональные узлы изображены на рис. 27.

В работе [230] подробно исследовались характеристики хемилюминесцентных анализаторов трех фирм США: РЕМ, модель 612;

Рис 27 Схема хемилюминесцентного анализатора озона

1 — блок стабилизации температуры, 2 — электропитание ФЭУ, 3 — воздушный фильтр, 4 — блок калибровки ⇒ — забор пробы, 6 — трехходовой кран, 7 — блок реакционной камеры 8 — ФЭУ 9 — термостат, 10 — регулятор расхода, 11 — расходомеры 12 емкость с этиленом

Вепdix, серия 8000 и МЕС, модель 1100. Все приборы выпуска 1972... 1973 гг. Экспериментально были изучены следующие параметры: зависимости выходных сигналов от изменения потоков анализируемого газа и этилена; время запаздывания после начала всасывания воздуха; постоянная времени; влияние материалов фильтров на гибель озона, а также частотные характеристики шумов (и причины появления последних). Шумы определяют величину минимально обнаруживаемой концентрации около 0,005... 0,02 млн⁻¹, что иногда отличалось от паспортных данных прибора более чем на порядок Приборы были подвергнуты сравнению в течение месяца непрерывной работы: отмечался дрейф нуля, изменение скоростей потоков и др. Тем не менее максимальные раз-
личия показаний не превышали 10 %, корреляция между каждой парой приборов лучше 0,97.

В США отсутствует государственная служба стандартов, существующая в СССР и других странах. Поэтому представляют интерес результаты сравнения хемилюминесцентных приборов четырех фирм (названия которых в статье закодированы) из 10 различных лабораторий с целью оценки точности озонометрических измерений в загрязненной городской атмосфере [315]. Статистическая обработка данных позволила получить соотношения для стандартных отклонений как в пределах одной лаборатории (повторяемость), так и между лабораториями (воспроизводимость). Для диапазона концентраций 0...0,5 млн⁻¹ повторяемость изменялась линейно в зависимости от концентрации в диапазоне 0,01 ... 0,04 млн⁻¹, а воспроизводимость — нелинейно в диапазоне 0,01 до 0,09 млн⁻¹. Некоторые трудности возникли при определении пороговой чувствительности приборов. Значение этого параметра было оценено в 0,006 . . . 0,009 млн⁻¹, что значительно хуже значения 5.10-4 млн⁻¹, приведенного в рекламных проспектах.

Хемилюминесцентные анализаторы, в которых происходит реакция озона с родамином С, адсорбированным на специальной подложке, начали выпускаться недавно [409], и они еще не прошли систематической проверки. Более подробно мы остановимся на этом методе в § 25. Отметим, что анализаторы с родамином более удобны в обращении и портативны, так как для них не нужен, в отличие от предыдущих, громоздкий и взрывоопасный баллон с этиленом. Оба типа приборов практически не чувствуют наличия других веществ (NO_x, H₂O₂, Cl₂, C₃H₈, SO₂, H₂S), которые обычно ухудшают надежность других химических методов измерений озона [318].

Мы рассмотрели выше только наиболее часто используемые методы. Однако было предложено и много других методов, описание которых можно найти в работах [29, 102]. Упомянем наиболее интересные.

1. Метод индикаторных трубок в одном из вариантов основан на гашении озоном флуоресценции люминола. После пропускания через трубку заданного количества газовой смеси ее освещают ртутной лампой и по длине погашенного участка трубки определяют концентрацию озона. В других случаях используют изменение окраски фуксина из красной в фиолетовую. Для цветных (колориметрических) реакций с озоном рекомендованы также фенолфталеин ($C_{20}H_{16}O_4$), N-фенил-2-нафтиламин, индигокармин, диацетилдигидролутидин и др. Длинные цепочки таких молекул разрушаются при взаимодействии с озоном. Эти методы просты и наиболее удобны при экспресс-анализе.

2. В методе радиоактивной сетки, осушенный воздух с озоном продувается через радиоактивный слой из клатратных соединений хинольных групп и радиоактивных атомов Kr^{85} . Реакция $[C_6H_4 (OH)_2]_3Kr^{85} + O_3 \rightarrow 3C_6H_4O_2 + 3H_3O + Kr^{85}$ приводит

к освобождению атомов криптона, которые регистрирует счетчик. Это один из самых чувствительных методов, обнаруживающий 10⁻⁴ млн⁻¹, однако возможно параллельное влияние других окислителей.

3. Тепловой каталитический метод применяется не только для обнаружения атомов кислорода, водорода и других газов в лабораторных струевых системах, но и для измерения как больших (1...7%), так и малых (0,01...1 млн⁻¹) концентраций озона. В чувствительном дифференциальном методе один из термисторов покрывают катализатором — гопкалитом (смесью металлических окислов), другой, без покрытия, служит как опорное сопротивление в мостовой схеме. Недостатком прибора является постепенное падение активности катализатора и возможное влияние перекисей. Заманчива идея использовать этот сравнительно простой метод в аэрологических приборах.

4. Метод разрушения резины использует свойство озона оказывать сильное действие на сырую или вулканизированную естественную резину, полоска которой после экспозиции испытывается на разрыв [152, 162, 185, 210, 383]. Мерой количества озона после соответствующей калибровки может служить также время экспозиции, после которого начинается разрушение резины. Некоторые авторы достигли таким методом хорошей точности, примерно 10 % [375].

Подведем некоторые итоги. Химические и электрохимические методы, обладающие хорошей чувствительностью и относительной конструктивной простотой, не являются в достаточной степени избирательными. Они могут использоваться скорее для измерения суммы окислителей, нежели одного озона. Следует отметить вместе с тем, что электрохимический метод внедрен рядом стран в практику сетевых аэрологических наблюдений озона на баллонах (см. § 24). Хемилюминесцентные и оптические анализаторы, имеющие хорошую избирательность, чувствительность, стабильность, инерционность, точность, будут, очевидно, все шире использоваться в мониторинге атмосферного озона и в различных исследовательских программах.

В связи с возрастающими требованиями повышения точности и стандартизации таких измерений возникла острая необходимость создания озонного эталона, точнее говоря, замены иодометрической методики определения озона, долгое время считавшейся абсолютной, на более совершенную. По-видимому, в ближайшем будущем для этих целей будет использована УФ спектроскопия смесей озона с другими газами.

§ 20. Измерение общего содержания озона оптическими наземными методами. Метод обращения

Этому вопросу, история которого насчитывает почти 70 лет, посвящена обширная литература. Очерк истории дан в монографии [127], где можно также найти основную ее библиографию. Здесь мы остановимся лишь на основных методах оптической озонометрии и кратко осветим последние работы по ней.

Измерение общего содержания озона X в вертикальном столбе атмосферы базируется на законе Беера—Бугера—Ламберта для монохроматической (λ) радиации, дающем соотношение

$$\lg I_{\lambda} = \lg I_{0\lambda} - \alpha_{\lambda} \mu X - \beta_{\lambda} m - \delta_{\lambda} m_{k}^{'}, \qquad (20.1)$$

где I_{λ} и $I_{0\lambda}$ — энергетические освещенности или интенсивности радиации на уровне наблюдения и за пределами атмосферы соответственно; α_{λ} — десятичный коэффициент поглощения озона, зависящий от λ ; β_{λ} и δ_{λ} — коэффициенты молекулярного и аэрозольного рассеяния; μ , m и m' — относительные длины путей, по которым луч от какого-либо источника (Солнце, Луна, звезда, спутник) распространяется через слой озона, воздушную массу атмосферы и аэрозольный слой соответственно.

Практически нам выгоднее определять X из измерений интенсивностей для двух длин волн (λ_1 и λ_2):

$$X = \frac{L_0 - L_1}{(\alpha_1 - \alpha_2) \,\mu} - \frac{(\beta_1 - \beta_2) \,m}{(\alpha_1 - \alpha_2) \,m} - \frac{(\delta_1 - \delta_2) \,m}{(\alpha_1 - \alpha_2) \,\mu} \,, \qquad (20.2)$$

где L₀ и L₁ — десятичные логарифмы отношения интенсивностей радиации двух длин волн за пределами атмосферы и на уровне наблюдателя. Коэффициент поглощения озона в полосах Хюггинса (300...340 нм) быстро уменьшается с увеличением λ, поэтому λ_1 и λ_2 можно выбрать так, чтобы разность $\alpha_1 - \alpha_2$ была достаточно большой, повышая тем самым точность наблюдений, β (λ) — хорошо известная функция. Массы озона μ и атмосферы m также могут быть рассчитаны в зависимости от зенитного расстояния Солнца. Величина Lo, строго говоря, не является константой и ее необходимо постоянно контролировать, лучше всего по наблюдениям со спутников. В их отсутствие практически она определяется из наблюдений L при разных µ и дальнейшей линейной экстраполяцией до $\mu = 0$. Найденное таким способом L_0 включает инструментальную поправку данного прибора и, по-видимому, может создавать источники некоторой систематической ошибки при изменениях активности Солнца.

Однако главным препятствием, ограничивающим точность измерений с помощью (20.2), является аэрозольная поправка — последний член в (20.2). Она связана с чрезвычайно изменчивыми в пространстве и времени характеристиками (количество, состав) атмосферного аэрозоля. Классическим способом уменьшить влияние аэрозольного эффекта является измерение интенсивности двух пар длин волн (*AD* или *CD*). Оно было предложено Добсоном [203], допустившим, что дифференциальное аэрозольное ослабление для одной пары (*A* или *C*) очень близко к ослаблению для другой пары (*D*). Из-за возможных быстрых вариаций аэрозоля необходимо стремиться к одновременности измерений обеих пар. По такому принципу работает, в частности, спектрограф, описанный A. Брюером [167].

Важный методический вопрос наблюдений X связан с размером спектрального интервала, в котором определяется «монохроматическая» радиация. Дело в том, что любой спектральный прибор (точнее говоря, его фотоприемник) регистрирует радиацию, прошедшую через атмосферный и приборный «фильтр» в определенном, хотя и малом, но конечном диапазоне длин волн. Оптические характеристики прибора не должны меняться со временем, их можно контролировать. Атмосферная же часть фильтра, естественно, изменчива, и это вносит существенную неточность в формулу (20.1). Эффект спектральной ширины фильтра, часто называемый по имени английского исследователя Форбса, легко понять из следующего рассуждения.

При наблюдениях за опускающимся к горизонту Солнцем, радиация, сильнее поглощаемая в слое озона, ослабевает быстрее, чем радиация с меньшим коэффициентом поглощения. Последняя преобладает все больше, и эффективный коэффициент поглощения фильтра уменьшается, т. е. происходит кажущееся увеличение прозрачности атмосферы и уменьшение X. Кажущееся уменьшение X возникает из-за того, что мы считаем коэффициент α_{λ} постоянным. Этот эффект, однако, можно учесть. Если к тому же ввести в рассмотрение спектральную чувствительность фотоприемника S_{λ} и функцию пропускания фильтра τ_{λ} , то (20.1) сохраняет вид [149]:

$$\lg R = \lg R_0 - \overline{\alpha} \mu X - \overline{\beta} m - \overline{\delta} m', \qquad (20.3)$$

где

$$R = \int_{\lambda_1}^{\lambda_2} Q(\lambda) \, d\lambda \quad \text{H} \quad Q(\lambda) = I(\lambda) \, S(\lambda) \, \tau(\lambda)$$

— интегральный и «монохроматичный» отсчеты прибора. Однако «эквивалентные» коэффициенты $\overline{\alpha}$, $\overline{\beta}$, $\overline{\delta}$ здесь уже являются функциями X, μ , m, m' и поэтому при вычислении X надо использовать метод последовательных приближений.

Учет спектральной чувствительности озонометрического прибора был разработан Г. П. Гущиным [146]. В работах Л. Г. Большаковой, А. Л. Ошеровича, И. В. Пейсахсона [19], Р. Д. Божкова [158] было, например, показано, что при использовании фильтров с полушириной полосы пропускания от 10 до 40 нм так может возникать ошибка до 40 % в определении Х. Даже для эталонного прибора — спектрофотометра Добсона — этим эффектом пренебрегать не следует (ошибка его может доходить примерно до 1 %) [149]. Как показывают сравнения различных озонометрических приборов, применяя более широкополосные фильтры, гораздо труднее ввести и аэрозольную поправку. Поэтому ряд исследователей предпочитали работать с аппаратурой высокого спектрального разрешения. Укажем на работы Э. и А. Васси, Р. С. Стебловой, В. А. Филимонихина [115, 122, 411]. При наблюдениях по Солнцу спектр «привязывается» к реперным фраунгоферовым линиям, причем можно использовать в расчетах большое число длин волн λ , легче учесть величины L_0 и δ . Все это позволило А. Васси считать наблюдения с помощью спектрографа высокого разрешения абсолютным методом озонометрии.

В настоящее время все измерения Х во всем мире привязаны к шкале спектрофотометра Добсона, лучшие экземпляры которого при высококвалифицированном обрашении с ними считаются эталонами, имеющими точность ± (1...1,5) %, если наблюдать солнечный свет [180, 205], и ±3,5 %, если наблюдать свет, рассеянный в зените [205].¹ Прибор Добсона — двойной кварцевый монохроматор, спроектированный так, чтобы максимально ослабить рассеянный внутри прибора свет [207] (рис. 28). Это особенно важно при наблюдениях Солнца низко под горизонтом, когда интенсивность выделяемого спектрального интервала может быть на шесть порядков меньше общей интенсивности. Квазипараллельный пучок световых лучей вводится внутрь прибора с помощью гелиостата и, пройдя через окно 7 и призму полного внутреннего отражения 10, направляется на щель 8 шириной 0,4 мм. За щелью находится плоскопараллельная кварцевая пластинка 9, пово, отом которой можно смещать луч и тем самым направлять на основную щель 11 свет определенной длины волны. Луч разлагается в спектр, дважды проходя призму 17, за которой расположено зеркало 18. Радиация, соответствующая выбранным длинам волн λ_1 и λ_2 ($\lambda_1 < \lambda_2$), падает соответственно на щели 11 и 12 шириной 0,4 и 1,2 мм со спектральными интервалами 0,9 и 3 нм. На пути луча с λ, расположен оптический нейтральный фильтр-клин 14, ослабление которого меняется путем его перемещения. Конструкция прибора допускает выделение еще нескольких длин волн, в частности, в синей части спектра для контроля прозрачности атмосферы и аэрозольного ослабления. В этом случае ахроматизирующая линза 1 фокусирует луч на щели 13. Лучи после прохождения щелей снова собираются призмой 2 и, пройдя вторую компенсирующую пластину 3, падают через щель 4 и собирающую линзу 5 на фотоумножитель 6, высокое напряжение которого можно регулировать. Обтюратор 15 с секторными прорезами, вращаемый мотором, позволяет прерывать попеременно лучи с различными λ с частотой

¹ Как отмечено в [180], такая точность является труднодостижнмой Для сетевых спектрофотометров Добсона реально можно ставить задачу практического достижения точности $\pm (2 \dots 3)$ % измерения X при наблюдении Солнца и $\pm 5\%$ при наблюдении рассеянного света небом в зените [180].

I — ахромалические линзы ⁹ -- призма 3 компенсирующая пластинка 4 – выходная щель 5 – собирающая линза 6 – ФЭУ, 7 – входное окио 5 лиеть 9 – плоскопартилельная пластинка 10 – призма 11 13 – щели 14 оптический фильтр-клин, 15 – обтюрттор 15 заслонка 17 призма 18 – зеркало

примерно 22 Гц (в последних моделях 80 Гц), а заслонка 16 позволяет выбрать соответствующую пару длин волн. Переменный ток ФЭУ, возникающий при различных интенсивностях радиации двух выбранных длин волн, подается на усилитель, выпрямляется далее механическим коммутатором, насаженным на одну ось с обтюратором 15, и измеряется микроамперметром. Если с помощью оптического клина уравновесить сигналы для двух длин волн, микроамперметр зарегистрирует нуль. Отсчет по шкале, связанной с клином, позволяет определить логарифм отношения радиации для двух выбранных длин волн. Производя измерение для другой пары длин волн, по специальным таблицам рассчитывают X.

Международные сравнения национальных эталонов, регулярно проводимые в последние годы [41, 44, 220, 244] позволяют унифицировать наблюдения всей сети спектрофотометров Добсона и других озонометрических приборов. В частности, сравнения в Бельске (ПНР, 24 июня. 6 июля 1974 г.), в которых участвовали Англия, Венгрия, ГДР, Египет, Индия, Канада, Польша, СССР, США и Швейцария, показали, что одновременные единичные измерения X могут отличаться для разных приборов до 15%. Ряд приборов регистрировал даже ложный дневной ход X, что, по мнению Г. П Гущина, можно объяснить ошибками в определении внеатмосферных констант L_0 [244].

В последние годы в некоторых приборах Добсона (особенно старого выпуска) были заменены или усовершенствованы электронные блоки и электромеханические узлы. Программа модификации и стандартизации 6 приборов Добсона на сети станций Индии была проведена, например, в 1974... 1976 гг. [181]. На симпозиуме в Арозе (август 1972 г.) Ребер описал схему, позволяющую полностью автоматизировать такие наблюдения озона [353]. На симпозиуме в Дрездене (август 1976 г.) он уже доложил о результатах двухлетних автоматических наблюдений в Арозе [354].

Принципиально новая оптико-электронная схема спектрометра была предложена А. Брюером [167]. Прибор его построен по схеме (рпс. 29) спектрографа Эберта с одной дифракционной решеткой (30 мм шириной, 1200 линий на 1 мм), работающего в спектре третьего порядка. Четыре щели, расположенные в фокальной плоскости, соответствуют четырем выбранным длинам волн. Рассеяннын свет в приборе ослабляется применением комбинированного светофильтра из кобальтового стекла (4 мм) и кристалла N1SO₄ (2 мм). Щели открываются при быстром движении миниатюрных затворов на строго определенное время, в течение которого фотоумножитель, работающий в режиме счета фотонов, подключается к одному из четырех счетчиков. Цикл измерений занимает около $1/_8$ с и повторяется 512 раз в течение примерно 64 с, после чего один раз определяется X по отношению накопленных сигналов (при этом фон ФЭУ вычитается).

Детальное исследование инструмента и сравнение со стандартным прибором Добсона выявили ряд его недостатков, в частности температурную зависимость прозрачности фильтра из NiSO₄ [279]. При дальнейшем совершенствовании прибора, как полагают, может быть достигнута точность лучше 1 %. Следует еще раз подчеркнуть, что в описанном приборе используется практически одновременная регистрация интенсивностей четырех длин волн

Рис 29 Оптическая схема оз энометја Брюер і 1 — корректирующая л. иза 2 глодная щель, 3 — дифракционная решетка 4 — ФЭУ, 5 — линза Фабри, 6 — рылодные щели, 7 — зеркало

(из которых можно комбинировать различные пары), что особенно важно при наблюдениях в оптически неустойчивой атмосфере.

Отечественные оптические монохроматоры, выпускавшиеся сериями, ДМР-1 и затем ДМР-4 были использованы в качестве основы для целей озонометрии В. А. Иозенасом и А. П. Кузнецовым [58], А. С. Бритаевым [23], Г. И. Кузнецовым [296]. ДМР-4 кварцевый монохроматор первого типа со сложением дисперсий, обладает высоким разрешением в ультрафиолетовой области (3,3 нм·мм⁻¹), компактен и удобен в обращении. Прибор можно расположить на специальной конструкции, позволяющей легко его поворачивать на 360° по азимуту и на 90° по углу места. Благодаря этим качествам он может быть использован также в экспедиционных условиях, на корабле, самолете и т. д.

На базе ДМР-4 А. С. Бритаев создал полукомпенсационный озонометр, в котором используется метод ослабления с помощью специальных нейтральных фильтров — черненых латунных сеток или пластинок с напыленной платиной, которые можно сменять перед входной щелью монохроматора. Для калибровки его применяется стабильный источник излучения — люминофор, светящийся под действием радиоактивного трития [23].

Г. И. Кузнецов применил аналогичный прибор для автоматической регистрации спектра прямой и рассеянной радиации в диапазоне 300 . . . 800 нм. Прием сигналов, изменяющихся в пределах солнечного спектра и спектра рассеянного света на восемь порядков, осуществляется посредством использования логарифмических усилителей и «солнечно-слепых» ФЭУ, чувствительность которых резко убывает с ростом длины волны. Положение выбранных длин волн легко контролируется по известным фраунгоферовым линиям. Расчет по многоволновой (было использовано 9 волн в [296]) методике позволяет более точно учесть аэрозольную поправку и повысить точность измерений до 2%. С помощью разработанного Кузнецовым комплекса аппаратуры решается большой класс задач по определению суммарного содержания в атмосфере озона, двуокиси азота и, конечно, аэрозоля [78, 79]. Важные в методическом и научном отношении результаты были получены Кузнецовым с этим прибором в исключительных условиях чистой атмосферы высокогорья на Кавказе и Памире.

С помощью аппаратуры хорошего спектрального разрешения, такой, какая описана выше, возможно получить также информацию о вертикальном распределении озона методом обращения, впервые предложенным Гетцем. Суть метода в следующем. Если прибор ориентировать в зенит безоблачного неба при относительно низком Солнце, то он будет регистрировать солнечный свет, рассеянный атмосферой на всех высотах. Поскольку основная масса озона находится в средней стратосфере, то свет, рассеиваемый более низкими слоями, порожден лучами Солнца, прошедшими предварительно большую часть толщи озона по длинному наклонному пути почти вдоль его слоя и, следовательно, в значительной степени ослабленными. Свет, рассеиваемый атмосферой выше основного слоя озона, проходит через этот слой вертикально вниз по относительно короткому пути. По мере опускания Солнца поглощение озоном УФ радиации, проходящей по наклонному пути вдоль слоя озона, становится все больше и больше, так что доля УФ радиации, рассеянной над основным слоем озона и мало ослабленной последним, становится все более и более преобладающей. Следовательно, потоки коротковолновой радиации, для которой эти эффекты наиболее сильны, при достаточно низком Солнце начинают относительно

преобладать над потоками длинноволновой радиации. Наблюдая это явление с помощью измерений потоков радиации двух длин волн, можно рассчитать вертикальное распределение озона. Метод, конечно, не дает детального распределения, а лишь сглаженное, однако позволяет надежно вычислить такие его параметры, как высота центра тяжести озона, полуширина слоя, наклон кривой (шкалу высот) выше максимума.

П. Ф. Бойченко усовершенствовал конструкцию прибора А. С. Бритаева [23] применительно к условиям сетевых наблюдений, разработал совместно с Ю. Н. Рыбиным оптимальную мето-дику и вычислительную схему [16, 108], провел большой ряд наблюдений вертикального распределения (ВР) озона и получил статистические связи ВР с другими параметрами атмосферы и солнечной активностью [15]. В частности, предложенный Ю. Н. Рыбиным и П. Ф. Бойченко способ аппроксимации вертикального распределения озона по данным об обращении позволяет исключить недостатки способа обработки кривых обращения, принятого на мировой озонометрической сети, тем самым повысив достоверность данных. Результаты их пересчета кривых обращения, наблюденных в Аспендейле (Австралия) одновременно с прямыми озонными зондированиями, показали, что точность предложенной схемы обработки кривых обращения сравнима с точностью электрохимических озонозонлов.

Г. В. Розенберг и Г. Г. Микиртумова разработали методику сумеречных измерений высотного распределения озона в мезосфере [93]. Методика основана на концепции сумеречного слоя и заключается в измерении относительных изменений рассеянной радиации сумерезным слоем в области полос поглощения Шаппюи при наблюдении в плоскости, перпендикулярной плоскости солнечного вертикала. Методика сумеречных наблюдений может служить удачным и необходимым дополнением к методу обращения.

Осветим также некоторые новейшие достижения в области фильтровых озонометров, создание которых являлось всегда заманчивым из-за удобства работ с ними и малых размеров самих приборов. Продолжая большой цикл работ, начатых под руководством С. Ф. Родионова в Ленинградском государственном университете еще в 1940-х гг., А. Л. Ошерович, Л. Г. Большакова, Н. С. Шпаков, В. Т. Зарубайло используют в новом озонометре диэлектрические интерференционные фильтры с шириной полосы пропускания около 2 нм и пропусканием вне этой полосы на четыре-шесть порядков меньше, чем в максимуме. Влияние рассеянного света исключается малым, менее 2°, углом зрения прибора. Приемником радиации служит фотоусилитель, который может работать в режиме фотоэлемента, что позволяет расширить динамический диапазон прибора до девяти порядков и проводить наблюдения как по Солнцу, так и по Луне и зениту неба. Методика определения Х по формуле (20.2) при этом учитывает, как мы уже отмечали, зависимость коэффициента поглощения озона от ширины фильтра.

Ошибка измерений X составляет 5... 10 % в зависимости от степени влияния аэрозоля [269].

Разработка аналогичного прибора проводилась в последние годы в Новой Зеландии В. А. Метьюзом, Р. Е. Бешером и Г. Фрезером [314], а на симпозиуме в Дрездене в 1976 г. участникам был продемонстрирован уже его серийный образец. Использование узкополосных интерференционных фильтров в серийных приборах выдвигает перед создателями последних ряд проблем: на параметры фильтров влияют температура и влажность, оптическая ориентация, их старение, техноло-

ция, их старение, технология напыления и т. д. Нужна также специальная калибровка приборов [150]. Озонометры с узкополосными фильтрами пока еще уступают в точности приборам с призмами или дифракционной решеткой, но разница в точности не столь уж велика и, по-видимому, будет сокращаться.

Большая часть работающих приборов мировой озонометрической сети это озонометры М-83 конструкции Г.П. Гущина [39, 42, 244]. Особенностью прибора является использование набора широкополосных стеклянных фильтров, а особенностью методики—интегральный метод расчета X по отношению

Рис 30 Относительная спектральная чувствительность модернизированного озонометра М-83 с парой фильтров 1 и 2 (сплошная линия)

Для сравнения дана также характеристика с парой фильтров / и 2 (пунктир), использованных в первом варианте прибора

двух сигналов I_1 и I_2 фотометра:

$$\frac{I_1}{I_2} = \frac{\int\limits_{\lambda_1}^{\lambda} S(\lambda) \tau(\lambda) I_0(\lambda) 10^{-(\mu X \alpha + m\beta + m'\delta)} d\lambda}{\int\limits_{\lambda_2}^{\lambda} S(\lambda) \tau(\lambda) I_0(\lambda) 10^{-(\mu X \alpha + m\beta + m'\delta)} d\lambda}, \qquad (20.4)$$

где λ_1 , λ_2 и λ_3 , λ_4 — спектральные интервалы фильтров. По мнению автора, если они достаточно близки или частично перекрываются, как это сделано в модернизированном варианте прибора (рис. 30), можно предположить $\delta_{\lambda} \approx$ const и таким образом исключить соответствующие зависящие от аэрозоля члены с $m'\delta$ из (20.4). Упрощенная таким образом формула (20.4) использована для расчета озонной номограммы, представленной на рис. 31. Информация о распределении энергии в солнечном спектре I_0 (λ) берется из эмпирической модели и может уточняться по мере появления новых данных о нем. Возможность такого уточнения считается важным преимуществом интегрального метода по сравнению с наблюдением двух выделенных длин волн. Калибровка индивидуального прибора M-83 включает всего три операции [244]: измерение его относительной спектральной чувствительности в рабочих областях фильтров, определение температурных поправок (K_i) и

Рис. 31. Номограмма для расчета общего содержания озона по показаниям прибора М-83 (ось у) при различных высотах Солнца (ось х)

определение градуировочных коэффициентов для вычисления X из наблюдений по зениту неба [131].

Регулярные сетевые измерения X с подобным прибором в СССР начались в 1957 г. В настоящее время функционируют 45 таких станций, из которых 17 расположены в европейской, 27 — в азиатской части СССР и одна станция — в Антарктиде. В дополнение к ним проводятся систематические наблюдения на научно-исследовательских судах и самолетах. Обширную сеть станций удалось создать в сравнительно короткий срок благодаря простоте эксплуатации, портативности и сравнительно малой стоимости озонометра M-83. Многолетние измерения интегральным методом позволили получить ценные сведения о больших различиях и сильном сезонном ходе озона над территорией СССР и над акваториями океанов [36], а также обнаружить некоторые важные связи озона с аэросиноптическими условиями.

Опыт длительной эксплуатации озонометров М-83 выявил их некоторые недостатки, которые при определении Х были источником как случайных, так и систематических ошибок, в отдельных случаях довольно значительных и доходивших до 50 %. В Главной геофизической обсерватории, методическом центре озонометрической сети СССР, после многолетних испытаний различных комбинаций цветных стекол в 1971 г. была выбрана для дальнейшего использования в озонометре М-83 пара фильтров, от которой можно было ожидать существенного увеличения точности измерений Х. К 1974 г. модернизированные озонометры были установлены на всех советских озонометрических станциях. В процессе модернизации прибора М-83, кроме нового набора светофильтров, было изготовлено новое контрольное устройство с коррегирующим светофильтром, отсекающим длинноволновую часть спектра излучения контрольной лампы, заменены отсчетные приборы, поставлен патрон с осушающим силикагелем и т. д., что позволило улучшить эксплуатационные характеристики и надежность озонометра М-83 (см. гл. VII).

Согласно плану, каждый прибор М-83 проходит раз в два года сравнение со спектрофотометрами Добсона — национальным эталоном (прибор № 108, находящийся на базе ГГО в Воейково, под Ленинградом) и прибором № 9 в Феодосии (Крым). На этих же базах наблюдатели регулярно проходят обучение и стажировку. В промежутках между сравнениями приборы М-83 проверяются на месте по специальной методике.

Изложим основные выводы о точности измерений модернизированного озонометра М-83, следуя детальному анализу, проведенному Г. П. Гущиным, К. И. Ромашкиной, А. М. Шаламянским [45]. Суммарная погрешность среднего за день значения X по озонометру М-83 относительно эталона складывается из случайной погрешности (± 2 Д. Е.), систематической погрешности, определяемой условиями наблюдений данного дня (± 12 Д. Е.), систематической погрешности изменением спектральной чувствительности озонометра (± 10 Д. Е.), и составляет в сумме ± 24 Д. Е., или $\pm (5 \dots 8)$ %, в зависимости от значения X. Основную роль, по-видимому, здесь играет погрешность, обусловленная селективностью аэрозольного ослабления.

С новыми фильтрами можно проводить надежные наблюдения по зениту неба при любых условиях погоды, если только нет осадков и высота Солнца не менее 10° [36]. Это особенно важно для исследований в средних и высоких широтах, где облачная погода часта, и таким образом можно собрать большее число наблюдений и расширить их период.

Опыт использования наземных методов измерения X, рассмотренных выше, оказался чрезвычайно полезным при разработке методики измерений и оценок фоновых концентраций других газовых примесей в атмосфере. Выше уже отмечалось, что Г. И. Кузнецов использовал разработанный им прибор для параллельного наблю-

дения O₃, NO₂, H₂O и аэрозоля. Еще несколько раньше Кулкарни применил спектрофотометр Добсона для измерений суммарного количества NO, [294]. В настоящее время методы оценки фоновых концентраций газовых примесей в толще атмосферы по спектрам ослабленного солнечного (или лунного) света на уровне Земли интенсивно входят в практику исследований таких компонент, как CO, CH₄, NO₂, N₂O, H₂O, OH, HNO₃, CF₂Cl₂ и др. [109, 297, 348, 416]. Чтобы успешно применять этот метод, необходимо наличие изолированных спектральных линий или полос поглощения изучаемых примесей, знание их спектроскопических параметров (интенсивности, полуширины и контура), а также характера вертикального распределения температуры и концентрации газа. К сожалению, лишь в редких случаях такую спектральную линию или полосу можно считать изолированной от других Обычно необходимо учитывать поглощение в крыльях соседних и даже дальних линий и полос. В обзорной работе И. Я. Скляренко [109] описан, в частности, метод, позволяющий при наблюдении некоторой линии поглощения определенного газа рассчитать численно вклад дополнительного поглощения, не связанного с этим газом Этот метод требует учета реального профиля температуры, давления, влажности

Логическим продолжением и развитием наземных оптических методов наблюдения озона и малых примесей является спутниковый метод наблюдения какого-либо светила после восхода или до захода его через переменную толщу земной атмосферы. Изменение оптической толщи происходит также при подъеме регистрирующего прибора на аэростате или ракете. Эти методы дают нам сведения о вертикальном распределении той или иной примеси.

§ 21. Радиометоды наблюдения озона. Лазеры

Кроме наблюдений в УФ части спектра, неоднократно делались попытки использовать инфракрасные полосы поглощения озона, особенно полосы с $\lambda = 9,6$ мкм. Определенный вклад в разработку этого вопроса внесли работы Стронга, Гуди, Уолшоу, Эпштейна, Вигру и др. [222, 241, 402, 415], но непосредственно такой метод не получил распространения. Однако идеи и результаты перечисленных авторов, касающиеся наблюдений озона в ИК лучах, были потом с успехом использованы уже для диапазона миллиметровых радиоволн [317, 387, 398].

Следует сказать, что микроволновая спектроскопия уже давно и прочно завоевала себе место в лабораторном эксперименте как метод исследования молекулярных структур. С ее помощью спектры многих молекул были измерены и изучены в лаборатории при тщательно контролируемых условиях с большой точностью. Однако использование наземных радиометодов для измерения озона и других газов атмосферы встречало долгое время большие технические и методические трудности [343, 382]. Благодаря прогрессу радиоастрономических наблюдений молекулярных спектров далеких галактических объектов в начале 1970-х гг. удалось реализовать также радиоизмерения озона, водяного пара и других составляющих в верхних слоях атмосферы, вплоть до 80 км. Для наблюдения озона была использована сильная вращательная линия с частотой 110,836 04 ГГц, соответствующая колебательному переходу К_, K₊ = $6_{0, 6} \rightarrow 6_{1, 5}$. Измерение общего содержания озона и его параметризованного ВР в интервале высот 0...50 км было

проведено таким способом в январе 1973 г. на 11-метровом радиотелескопе Национальной радиоастрономической обсерватории в Китт-Пик (США, шт. Аризона) при наблюдении поглошения радиоизлучения Солнца Полученная довольно [317]. низкая величина $X = 137 \ \square$. Е. свидетельствует о том, что ряд трудностей метода еще предстоит преодолеть (об этом говорят сами авторы).

Интересные результаты как в методическом, так и в геофиполузическом аспекте были чены Пенфилдом с соавторами, применившими наблюледля ния мезосферного озона 5-метровый телескоп обсерватории Макдональда Форт-Дэвисе в (США, шт. Техас), на высоте 2083 м [317]. Информация о профиле и интенсивности линии 110.8 ГГп излучения озона, характеризующая как общее со-

Рис 32 Ночной (1), дневной (2) и разностный (3) (ночь—день) эмиссионные спектры озона на частоте 110,8 ГГц

держание, так и вертикальное распределение молекул в мезосфере, была получена с помощью радиоспектрометра высокого (0,25 МГц) разрешения (рис. 32 и 33). Наблюдение лоренцовского уширения линии позволяет отделить излучение озона мезосферы от излучения основной массы стратосферного озона. Оценка содержания озона в верхней части мезосферы производится главным образом по доплеровскому уширению линии, которое выше 70 км преобладает над лоренцовским. Резкое уменьшение содержания озона в мезосфере было обнаружено таким способом в первые 50 мин после восхода Солнца (см. рис. 33). По оценке авторов [317], на высоте 60 км N_3 уменьшилось с $8 \cdot 10^9$ до $5 \cdot 10^9$ см⁻³, на 70 км — с $1,7 \cdot 10^9$ до $8 \cdot 10^8$ см⁻³, на 80 км — с $5 \cdot 10^8$ до $1,4 \cdot 10^8$ см⁻³, т. е. в 2—3 раза Это находится в хорошем согласии с результатами прямых ракетных измерений (см. гл. V). С помощью того же радиотелескопа в тот же день были сделаны наблюдения озона методом поглощения, которые подтвердили, за небольшим исключением, данные эмиссионного метода [317].

Для наблюдений озона в миллиметровом диапазоне спектра благоприятны высокогорные обсерватории из-за необходимости исключить радиоизлучение нижних слоев атмосферы, в частности их водяного пара. По этой же причине удобнее вести наблюдение при низкой относительной влажности воздуха.

Рис 33. Интенсивность в центре линии 110,8 ГГц как функция времени в период восхода Солнца, угол возвышения которого указан на верхней шкале без поправок на рефракцию

Ошибка измерения (вследствие шумов) показана вертикальной чертой в каждон точке Сплошная линия — аппроксимация по методу наименьших квадратов для модели экспоненциального разрушения озона. Стрелка — момент восхода Солнца на 60 км.

Пассивное микроволновое зондирование атмосферы развивается сейчас дальше: увеличивается число наблюдаемых компонент, делаются опыты установки микроволновой аппаратуры на спутники [235, 343], идет разработка «радиоастрономической» методики определения химического состава, степени и характера загрязнения мезосферы [90]. В частности, наблюдения, выполненные с помощью 36-метрового телескопа Хайстекской обсерватории в Уэстрофорде, обнаружили случай повышенного содержания водяного пара в мезосфере (15 млн⁻¹).

К перспективным наземным (также самолетным, а в будущем, возможно, и космическим) методам мониторинга атмосферы следует отнести лазерную локацию, различные аспекты которой подробно изложены в монографии В. М. Захарова и О. К. Костко [53]. В лазерном методе используются весьма информативные эффекты взаимодействия электромагнитной волны с атмосферой, позволяющие судить о свойствах последней: рассеяние на молекулах и аэрозолях, спонтанное комбинационное рассеяние, резонансное рассеяние и поглощение, деполяризация, доплеровское ущирение и сдвиг частоты излучения, флуктуации амплитуды и фазы световой волны. Для озонометрии особенно удобен метод сравнительного поглощения. В работе Н. В. Ванина, А. В. Мигулина и С. Ю. Рыбакова [27] рассматривалась возможность лазерного зондирования этим методом, когда ширина линии зондирующего излучения превышает ширину линии поглощения исследуемого газа.

О. К. Костко, Н. Д. Смирнов, В. В. Фадеев предложили использовать метод сравнительного поглощения для дистанционных измерений концентрации стратосферного озона. Рассчитав интенсивность рассеянного назад излучения, они выбрали спектральный диапазон (300... 320 нм), в котором такие измерения возможны с точностью, лишь немного уступающей спектрофотометру Добсона, и пространственным разрешением на высоте максимума озона около 1 км [75]. А. Гибсон и Л. Томас, используя метод удвоения частоты регулируемого лазера на красителе с энергией в импульсе 0,2 Дж, определяли вертикальное распределение озона до высоты 20 км, используя две длины волны : 303,5 и 308,0 нм. По данным этих измерений, средняя концентрация озона в слое 5... 15 км равнялась 4 · 10¹¹ см⁻³ [239]. В 1977 г. опубликованы первые результаты измерения лазерным методом вертикальных профилей озона до 26 км [412].

§ 22. Методы измерения озона с помощью бортовой оптической аппаратуры

Методика наблюдения оптического поглощения с помощью подъемных средств довольно стара и поэтому подробно изучена. Она была впервые применена в 1934 г. при подъемах спектрографа на аэростатах [370]. Ракеты дали возможность доставлять аппаратуру на весьма большие высоты. Так удалось сделать измерение озона в 1946 г. до 50 км [271], а в дальнейшем и до 90 км, используя в качестве источника света как Солнце и Луну, так и яркие звезды [174, 377]. В самые последние годы метод был распространен на высоты термосферы вплоть до 115 км при наблюдении захода («затмения») звезды за горизонт [399].

При оптических наблюдениях в верхних слоях атмосферы почти исчезает основное ограничение наземного метода — аэрозольное поглощение, а использование в полосе Хартли спектральных интервалов с очень сильным поглощением увеличивает диапазон высот и точность измерений. Подробный разбор методики и области применения ракетных оптических наблюдений дал Фромен [233] Использование светофильтров при них также требует тщательного учета эффекта Форбса. При расчете вертикального профиля озона из данных интегрального ослабления необходимо применять метод последовательных приближений. Очень важно, что ракетный метод позволяет определять внеатмосферную константу I_0 , т. е. максимальный уровень сигнала при достаточно малой оптической толщине.

До появления химических озонозондов основные данные о широтных различиях вертикального распределения озона были получены с помощью оптических приборов, поднимаемых на стандартных шарах-баллонах. В середине 1950-х гг. появились во многом похожие зонды В. Кульке и Х. Петцольда [338], А. Васси [410], Кобаяши и др. [280].

В 1963... 1965 гг. А. С. Бритаев и В. А. Иозенас в СССР разработали и испытали модель оптического радиозонда, в котором вращающаяся четырехпозиционная револьверная обойма позволяла периодически менять светофильтры. Фотоусилительный тракт периодически калибровался в полете путем измерения темнового тока ФЭУ и светового потока постоянной интенсивности от люминофора [25]. Характерными чертами рассмотренных полетных приборов являлись. наличие рассеивающего свет элемента, назначение которого уменьшить влияние угла падения прямых солнечных лучей при раскачке, выделение с помощью фильтров двух спектральных интервалов — рабочего и контрольного; сравнительно небольшой вес и совмещение со стандартными измерениями метеопараметров. Один из недостатков этих зондов заключался в суммарной регистрации как прямого, так и рассеянного света, усложнявшего и загрублявшего методику расчета озона.

На симпозиуме в Дрездене (1976 г.) Х. К. Петцольд доложил о новом комбинированном оптическом зонде для измерения озона, водяного пара и замутненности атмосферы параллельно со стандартными наблюдениями температуры и давления. Это миниатюрная обсерватория весом 7 кг, в ней использованы дешевые стеклянные и интерференционные фильтры (см. табл. 15). Две пары фильтров

№ п п	Номинальная длина волны нм	Полуширина, нм	Марка ф (льтра	Толщина, мм
1	350	15	CC 19	1,6
2	365	15	WG 1	1
3	1210	50	Интерференцион- ный фильтр	Не указана
4	1380	50	(Шотт) То же	» »

Таблица 15. Характеристики светофильтров оптического зонда Петцольда

служат для измерения озона и водяного пара, комбинация из второго и третьего фильтров — для измерения аэрозоля.

Оригинальное устройство для ввода световых лучей позволяет сократить до минимума влияние рассеянной радиации. На рис. 34 схематически показан вращающийся барабан А с щелью С, модулирующий с частотой 20 оборотов в секунду поток солнечной радиа-

цин. Свет, прошедший через щель С, отражается диффузным экраном B на зеркало D и далее через четыре световодные трубки E_{1-4} попадает на фотодатчики F_{1-4} селеновые фотоэлементы для УФ и германиевые диоды для ИК радиации. Фотометры калибруются в лаборатории, как это принято, с помощью ксеноновой и галоидной ламп.

Методика расчета количества ε (z) поглотителя (приведенного к нормальным условиям) на 1 см пути основана на соотношении

$$\varepsilon(z) = \frac{\lg \frac{I_1(z_2)}{I_2(z_2)} - \lg \frac{I_1(z_1)}{I_2(z_1)}}{(z_2 - z_1) \sec Z \cdot \alpha_{ef}} + K,$$
(22.1)

где $I_t(z)$ — интенсивность радиации в спектральном интервале ι на высоте z; Z — зенитный угол Солнца; α_{ef} — эффективный коэффициент поглощения; K — малая поправка за счет рэлеевского и аэрозольного ослабления.

Полученные таким способом профили концентрации озона на высотах 5...30 км имеют изрезанный характер, со вторичными

максимумами, подтверждающими высокую точность и большое достигаемое разрешение по высоте. Петцольд полагает, что одновременные измерения O₃ и H₂O помогут лучше разделять процессы вертикального и горизонтального переноса, а параллельное наблюдение O₃ и замутненности поможет изучить вторичные эффекты, мешающие при спутниковых измерениях озона.

Формула (22.1) является, очевидно, обобщением формулы, применяемой при наземных измерениях X. В верхней стратосфере и мезосфере, где аэрозольное и рэлеевское рассеяние весьма малы, могут быть использованы и наблюдения с одним фильтром. Второй

Рис 34 Схема оптического зонда Петцольда и Пискалара

A — вращающийся барабан, B — рассенватель света, C — щель, D — зеркало, E_{1-4} — световоды F_{1-4} — фотодетекторы

(а иногда и третий фильтр) используется тогда для расширения высотного диапазона измерений озона [288, 323]. В этом случае необходимо введение эффективного коэффициента поглощения α_{el} , зависящего от высоты *z*. При малых возвышениях источника света оптическая толщина *F* зависит от угла *Z* и от кривизны атмосферных слоев, так что

$$\varepsilon(z) = \frac{\lg \frac{I_1(z_2)}{I_1(z_1)}}{(z_1 - z_2) \, \alpha_{ef} F}; \qquad (22.2)$$

 α_{ef} зависит от спектральной чувствительности фотометра α (λ), определяемой в лаборатории, и от спектрального распределения радиации *I* (λ , *z*) на данной высоте *z*:

$$\alpha_{ef}(z) = \frac{\int_{\lambda}^{\lambda} \alpha(\lambda) S_{\lambda} I(\lambda z) d\lambda}{\int_{\lambda}^{\lambda} S_{\lambda} I(\lambda, z) d\lambda}.$$
 (22.3)

Для фильтра с $\lambda = 260$ нм и полушириной $\Delta \lambda = 10$ нм α_{ef} может возрастать на 5 % на высотах от 45 до 80 км. Поскольку $I(\lambda, z)$ зависит от суммарного содержания $\int_{z}^{\infty} \varepsilon(z) dz$, для расчета $\varepsilon(z)$ и $\alpha_{ef}(z)$ используется ряд последовательных приближений [392]. Для расчета α_{ef} необходимо также знание $I_0(\lambda, \infty)$. Задача несколько осложняется в лунном варианте. Напомним, что когда Карвер с сотрудниками впервые исследовал ночное распределение озона в диапазоне 30...75 км, ему пришлось прокалибровать три ракетных фотометра в абсолютных единицах, чтобы получить $I_0(\lambda, \infty)$ для лунного света. Оказалось, что альбедо Луны резко уменьшается в ультрафиолетовой области, составляя в области 260...230 нм только 10...20 % от значения альбедо для видимой области [173, 174].

Различные варианты оптической ракетной аппаратуры, применявшиеся исследователями США, СССР, Франции, Японии, Австралии, Индии, ГДР начиная с 1946 г., можно условно разделить на два типа. Первый тип близок к оптическим озонозондам как по методике измерений, так и по размерам и весу. Измерения проводятся при сравнительно высоком Солнце при снижении ракетного зонда на парашюте в диапазоне высот 20... 60 км. Для подъема таких приборов используются малые метеорологические ракеты типа «Аркас». Для второго типа аппаратуры нужны более мощные носители и телеметрические системы с высокой частотой опроса. Измерения осуществляются при малой высоте Солнца или Луны при быстром подъеме ракеты, как правило, в области высот 40... 90 км.

Первый тип аппаратуры создавался преимущественно для оперативных синоптических наблюдений, второй — используется в специальных геофизических и аэрономических исследованиях, в частности при исследованиях суточного хода озона, его вариаций в мезосфере и при наблюдениях в период солнечного затмения. Озонозонд А. Крюгера, описанный им еще в 1964 г., применяется в качестве сетевого прибора с 1976 г. в США [287, 288, 290, 291]. В нем имеются 4 оптических канала для длин волн $\lambda_1 = 265$ нм, $\lambda_2 = 287,5$ нм, $\lambda_3 = 300$ нм, $\lambda_4 = 320$ нм, снабженные интерференционными фильтрами с $\Delta \lambda = 4$ нм. Первые три канала активные и служат для регистрации ослабленного озоном света, четвертый пассивный, используется для сравнения. Как утверждает автор, влияние раскачки парашюта почти полностью устраняется благодаря практически синхронным измерениям в разных каналах при быстром (1 с) переклюяении фильтров. С помощью этого прибора уже получен богатый и, что важно, однородный материал, на основанни которого разработана средняя модель вертикального распределения озона (см. рис. 14).

История ракетных исследований озона до 1970 г. в СССР уже освещалась [127]. В последние годы опубликованы описания аппаратуры и результаты, полученные с помощью советских метеорологических ракет МР-12 и М-100 в Инсгитуте прикладной геофизики (ИПГ) и Центральной аэрологической обсерватории (ЦАО) [10—14, 82, 380]. Чувствительный спектральный прибор, разработанный Н. П. Бобковым и А Е. Микировым [12], использовался на ракете МР-12, в частности, для исследования суточного хода озона на высотах 40...72 км [13]. Полученные результаты имеют уникальный характер для описания вариаций озона мезосферы.

Группа сотрудников ЦАО под руководством Г. И. Кузнецова (МГУ) и А. Ф. Чижова с 1970 г. проводит ракетные исследования оптических характеристик атмосферы, в том числе озона, на ракетах МР-12 и М-100. Так определяются спектральные коэффициенты рассеяния, его поляризационные характеристики и вертикальный профиль озона [82, 380]. На некоторых ракетах М-100 устан вливались также фотометры для измерения озона, разработанные специалистами Германской Демократической Республики [198]

Наблюдение озона по методу оптического поглощения стало с 1962 г. использоваться и на спутниках [57]. Ныне в литературе утвердилось его название как «метода затмения». При заходе светила, наблюдаемом благодаря быстрому движению спутника, фотометр регистрирует вначале его более сильное излучение, постепенно уменьшающееся почти до нуля за счет поглощения увеличивающейся толщей озона. Зная общее содержание озона, можно рассчитать также плотность озона как функцию высоты. На симпозиуме в Дрездене в 1976 г. Г. Риглер доложил коллективную работу о методе и результатах измерения ночного озона над экватором между 42 и 114 км методом затмения звезды β Центавра [399]. Описанный им спектрометр-телескоп Принстонского университета был установлен на спутнике NASA «ОАО-3 Коперникус» для наблюдений в УФ области. С целью повышения точности отсчетов использовалось наблюдение наклонного движения звезды близ лимба Земли, без захода за горизонт. Представленные результаты хорошо согласовались с ракетными данными Хилсенрата (см. в [333]) и указали на сравнительно большое содержание озона в мезосфере и нижней термосфере (рис. 35).

Если в роли источника взять Солнце, имеющее угловой диаметр около 0,5°, то поглощение лучей, приходящих к фотометру с верхнего его края, существенно отличается от поглощения лучей от

Рис 35 Сравнение профилей концентрации озона, вычисленных по наблюдениям 26 июля 1975 г (сплошная линия) и 13—14 июня 1976 г (точки) со спутника «ОАО-3 Коперникус» над экватором, с данными спутниковых изчерений (А) тем же методом Хейса и Робла [249] (8,5° с ш, 1973г) и ракетными данными (В) Хилсенрата (5° с. ш, 1974г.) Заштрихованная область — результат теоретических расчетов при различных значениях констант скоростей химических реакций [399]

нижнего края. При этом разрешение по высоте метода затмения будет уменьшаться с увеличением высоты орбиты Методика расчета профиля озона в этом случае должна учитывать конечный размер солнечного диска, а также небольшую поправку на его потемнение от центра к краю [2, 57, 393]. Этот метод был использован учеными ГДР при наблюдениях на спутнике «Интеркосмос-11» [232]. При измерениях в широтной зоне от экватора до 20° ю. ш. были замечены сильные нерегулярные вариации концентрации озона вблизи мезопаузы. Выше 60 км озона оказалось меньше в 5...10 раз, чем в экспериментах Риглера. Максимальная высота измерений была 85 км. Использование метода поглощения на баллонах, ракетах и спутниках иллюстрирует его возможности как абсолютного метода атмосферной озонометрии, особенно в стратосфере и мезосфере. Недостатком является его интегральность, сглаживание реально существующей тонкой структуры.

§ 23. Наблюдения озона со спутников методами ОУФР и ИК

Дистанционный метод спутниковой метеорологии позволяет охватить наблюдениями всю атмосферу Земли в различных участках спектра, а также судить о термодинамических свойствах и газовом составе атмосферы. Здесь мы остановимся на двух основных, уже апробированных и применяемых в практике методах измерения озона наблюдении обратного ультрафиолетового рассеяния Солнца и наблюдении собственного излучения озона в полосе 9,6 мкм (ОУФР и ИК методы).

Как и в методе обращения, со спутника можно наблюдать рассеянный в различных участках спектра и соответственно в различных слоях озоносферы свет. Очевидно, задача определения плотности озона упрощается в верхних слоях озоносферы, где молекулярное и аэрозольное рассеяние ослабевает, а поглощение возрастает по мере смещения наблюдаемых длин волн к середине полосы Хартли. Экспериментальные трудности, правда, увеличиваются, поскольку необходимо измерять с высокой точностью рассеянную радиацию в интервале 250... 340 нм, где ее интенсивность меняется на четыре порядка, а линейная поляризация может изменяться от 0 до 100 % [252].

Впёрвые идея использовать рассеянную радиацию для определения профиля озона со спутника была высказана в работе [390], а практически апробирована 15 февраля 1961 г. в ракетном эксперименте А. А. Львовой, А. Е. Микирова и С. М. Полоскова при исследовании эффекта солнечного затмения на озон в стратосфере и мезосфере. Ракетный фотометр для наблюдения рассеянной радиации в интервале 220 . . . 320 нм сканировал по кругу полосу небесного свода с целью регистрации распределения по высоте яркости рассеянного света над горизонтом. Эта информация использовалась для вычисления профилей озона от 40 до 90 км [86].

Первые успешные измерения на спутниках серии «Космос» были осуществлены В. А. Иозенасом, В. А. Краснопольским, А. П. Кузнецовым и А. И. Лебединским в 1965 . . . 1966 гг. [60, 61]. Наблюдения в надир при сканировании спектра 225 . . . 325 нм за 50 с производились спектрофотометром с дифракционной решеткой, а чувствительность прибора контролировалась путем периодической регистрации прямой солнечной радиации, рассеянной матовой кварцевой пластинкой. Этот экспериментальный прием, использованный впоследствии на спутниках «Нимбус», позволяет также определить альбедные характеристики атмосферы для различных длин волн. На рис. 36 приведены данные по альбедо, имеющие резкий спад при $\lambda = 300 \dots 310$ нм [252]. Из качественных физических соображений ясно, что более коротковолновая радиация быстрее и раньше поглощается и рассеивается по мере проникновения пря-

Рис. 36 Сравнение альбедных характеристик атмосферы в УФ области над экватором по данным, полученным на спутниках «Космос» (1965 ... 1966 гг.) и «Нимбус-4» (1970 г.). Ось ординат — I/F_0 в ср⁻¹ I - «Космос», 2 - «Нимбус-4»

мых лучей Солнца в атмосферу, чем длинноволновая. поглошаемая озоном слабее. При этом эффект большего рэлеевского рассеяния для коротковолновой радиации не может компенсировать эффекта ее большего поглощения. С целью анализа различных сторон этого физического и его использования явления для определения общего содержания и вертикального распределения озона В. А. Краснопольский использовал упрощенную двухслойную модель атмосферы [76]. Расчет отраженного в космос солнечного излучения показал, что спектр атмосферы в интервале 310 . . . 330 нм определяется главным образом тропосферными процессами рассеяния и отражения от облаков и зависит от общего содержания озона. Особенно велика изменчивость амплитуды сигнала из-за влияния облачности, в 2-2.5 раза. При λ<300 нм все излучение определяется рассеянием и поглощением озоном в стратосфере.

Общее содержание молекул озона N_oмежду прибором и некоторой высотой при наблюдении в надир определяется по формуле

$$N_0 = \int_{z}^{\infty} N_3 dz \approx \frac{1}{(K_{\lambda_1} - K_{\lambda_2}) \sec Z} \ln \frac{A_{\lambda_1}}{A_{\lambda_2}}, \qquad (23.1)$$

где Z — зенитный угол Солнца; K_{λ_1} , K_{λ_2} — коэффициенты поглощения озона при различных λ ; A — некоторая функция, определяемая отношением прямой и рассеянной радиации, которое зависит от Z, λ , p и N₀; p — часть поля зрения прибора, занятая облаками или снежным покровом, альбедо которых считается максимальным. Как и в случае спектрофотометра Добсона, для уменьшения влияния рассеяния на определение N_0 выбираются пары длин волн в полосе Хюггинса, одна из которых поглощается гораздо сильнее, чем другая (312,5 и 331,2, 317,5 и 339,8 нм для «Нимбус-4»).

Решение задачи о восстановлении вертикального профиля озона в стратосфере опирается на интегральное соотношение

$$I(\lambda, Z) = F_0(\lambda) \frac{3\beta_{\lambda}}{16\pi} (1 + \cos^2 Z) \int_0^1 e^{-(1 + \sec Z) (\alpha_{\lambda} X_p + \beta_{\lambda} p)} dp, \quad (23.2)$$

где $F_0(\lambda)$ — солнечная радиация за пределами атмосферы в Вт·м⁻²·мкм⁻¹; $I(\lambda, Z)$ —атмосферная радиация в Вт·м⁻²·мкм⁻¹·ср⁻¹; X_p — количество озона в атмосфере в атм-см выше уровня с давлением p в паскалях. Коэффициенты рассеяния β_{λ} и поглощения α_{λ} измеряются соответственно в атм⁻¹ и атм⁻¹·см⁻¹; использована модель с однократным рассеянием.

В основе метода определения профиля озона в стратосфере лежит возможность зондирования различных толщ атмосферы лучом той или иной длины волны, так что каждому эффективному рассеивающему слою соответствует своя длина волны, зависящая от содержания озона и угла Солнца. На рис. 37 дан пример расчета таких слоев при угле $Z = 60^{\circ}$ и X = 336 Д. Е. с учетом всех порядков рассеяния [252].

Задача получения профиля озона по УФ спектру атмосферы предъявляет довольно высокие требования к измерительной аппаратуре. Как показал В. А. Краснопольский, чтобы получить ошибку в вычислении вертикального распределения озона около 10 %, необходимо измерять УФ спектр с точностью до 1 %. Отсюда следуют такие требования к прибору: во-первых, его поле зрения не должно быть слишком велико, иначе будет сказываться зависимость от угла зрения [76] ($\Delta \phi = 0.5$ ср ведет к ошибке в 0.5 %); во-вторых, спектральное разрешение должно быть не хуже 2.5 нм (это соответствует ошибке в 0.5 %); в-третьих, отношение сигналшум должно быть достаточно высоким. В настоящее время все эти проблемы решены и сложность заключается в долговременном сохранении и периодическом качественном контроле приборных параметров с целью получения многолетних (11-летних) однородных данных.

Неожиданным и интересным было обсуждение вопроса об аэрозольном эффекте при измерении озона методом ОУФР в верхней стратосфере на симпозиуме в Арозе в 1972 г. [191]. Было отмечено несколько случаев аномального рассеяния света в районе 50 км, в частности, при сканировании горизонта фотометром, установленным на самолете X-15, поднимавшимся до 80 км, и с помощью лидара. Наличие аэрозоля, очевидно, должно приводить к некоторому уменьшению озона, сглаженному математической обработкой по (23.2). Появление аэрозольных слоев на высоте около 50 км, по-видимому, относительно редкое явление (ниже и выше, около 80 км, их наблюдают чаще). Для исключения возможных ошибок необходимо совмещать измерения озона методом ОУФР и аэрозольного рассеяния в видимом свете при наблюдении лимба.

Глобальные измерения методом ОУФР на спутниках «Космос-65», «Космос-121», «ОГО-4», «Нимбус-4», «Эксплорер-Е» дали богатую информацию о пространственно-временных характеристиках озоносферы [60, 61, 289, 335] и были использованы для сопо-

Рис 37 Эффективные рассеивающие слои для солнечной радиации, рассеянной от направления надира при зенитном угле Солнца 60° и X = 336 Д Е

ставления данных по температуре, измерявшейся синхронно [238].Важные с методической точки зрения результаты были получены при сравнении различных спутниковых методов с ракетными и наземными методами Например, стандартное расхождение по Х между методом ОУФР на «Нимбус-4» и добсоновскими приборами составляло 20 Д. Е., удовлетворительное согласие в профилях озона «Нимнаблюдалось по тому же бусу-4» и оптическому ракетозонду Крюгера; расхождение до 50 % в Х наблюдалось по двум приборам, **установленным** на «Нимбусе-4»: ОУФР и спектрометру-интерферометру в полосе 9,6 мкм. о котором будет речь ниже.

Коротковолновые весовые функприведенные рис. ции. на 37. можно «поднять» выше, в мезосферу. если использовать наблюдения в надир при больших зенитных углах Солнца. Такие наблюдения мезосферного проводиозона «Atmospheric лись на спутнике

Ехріогег Е», запущенном в декабре 1975 г. на орбиту с малым (20°) наклонением к экватору. Высотные профили озона между 50 и 62 км и содержание его в столбе выше 56 км получаются путем комбинирования данных по интенсивности ОУФР на длинах волн 255,5, 273,5 и 283,0 нм с расчетами на основе уравнений переноса с использованием параметризованного профиля озона. Первые результаты, опубликованные в [335], оказались труднообъяснимыми на основе существующих фотохимических моделей и эмпирической модели [292], хорошее согласие с которой наблюдалось выше 50 км только в вечернее время при $Z > 80^\circ$. Содержание озона выше 56 км днем, при $Z < 75^\circ$, оказалось больше модельного в 2—3 раза. Утром после восхода происходило возрастание озона, которое авторы объясняют фотодиссоциацией O_2 ($^{1}\Delta_g$).

Говоря о научных результатах первых опытов использования метода ОУФР, нельзя не отметить одно важное обстоятельство. Данные по УФ альбедо, приведенные на рис. 36, расходятся при $\lambda < 300$ нм. Это можно объяснить зависимостью содержания озона в верхней стратосфере от солнечной активности, которая была в 1970 г существенно выше, чем в 1965... 1966 гг. Первые два года функционирования «Нимбус-4» (запущен в апреле 1970 г.) также подтвердили эту тенденцию: ОУФР на $\lambda \approx 290$ нм (30... 40 км) не изменилось за этот период, в то время как радиация с $\lambda < 290$ нм за тот же период возрастала [252]. Эти результаты качественно согласуются с выводами § 14.

Метод ОУФР имеет, как мы видели, ряд недостатков, связанных с влиянием аэрозоля и необходимостью введения поправок на альбедо тропосферы и подстилающей поверхности. Одно из принципиальных ограничений метода - невозможность получения информации с участков атмосферы, не освещенных Солнцем. Этого недостатка лишен метод наблюдения собственного излучения озона в полосе 9,6 мкм. Технически метод более прост и позволяет производить дистанционные измерения в дневном и ночном полушариях, в любом географическом районе. Интерпретация результатов является более простой в том смысле, что в рассматриваемой области спектра можно пренебречь процессами рассеяния и влиянием прямой радиации Солнца. По идеологии этот метод относится к классическим методам обратных задач спутниковой метеорологии в ИК диапазоне. Основой для решения таких задач служит уравнение переноса излучения, ранее использовавшееся в астрофизике [112]. Постановка и общая характеристика задач метеорологического зондирования и математические аспекты решения содержатся в фундаментальной монографии К. Я. Кондратьева и Ю. М. Тимофеева [70].

Возможны два варианта наблюдений со спутника: в надир и по лимбу. Для первого случая приемник воспринимает излучение $I_{\Delta v}$ в спектральном интервале Δv от системы атмосфера — Земля:

$$I_{\Delta v} = B_{v} [T(p_{0})] \tau_{\Delta v} (p_{0}) + \int_{p_{0}}^{0} B_{v} [T(p)] d\tau_{\Delta v} (p), \qquad (23.3)$$

где $\tau_{\Delta v}(p)$ — функция пропускания слоя атмосферы от уровня с давлением p до верхней условной границы; p_0 — приземное давление; $B_v[T(p)]$ — функция Планка излучения абсолютно черного тела. Для лимбовых наблюдений

$$I_{\Delta \mathbf{v}}(h) = \int_{X_{2}(h)}^{X_{1}(h)} B_{\mathbf{v}}[T(X)] d\tau_{\Delta \mathbf{v}}(X), \qquad (23.4)$$

т. е. интегрирование производится вдоль направления X с граничными точками X_2 и X_1 линии визирования, соответствующими тангенциальной высоте h. В уравнениях (23.3) и (23.4) заложено предположение о локальном термодинамическом равновесии.

С формальной точки зрения решение уравнения вида (23.3) (интегральное уравнение Фредгольма первого рода) является неустойчивым: бесконечно малым изменениям $I_{\Delta\nu}$ могут соответствовать бесконечно большие вариации т. При обработке измерений это означает, что небольшие погрешности в измерении $I_{\Delta\nu}$ могут приводить к недопустимо большой ошибке в определении искомой величины. Поэтому были разработаны методы регуляризации решения, регуляризующие алгоритмы. Общее понятие такого алгоритма для неустойчивых задач сформулировал академик А. Н. Тихонов [120].

В литературе существует длительная дискуссия о степени репрезентативности ИК измерений озона. Отмечено, что несмотря на относительно малое влияние других примесей, ИК излучение обладает сравнительно малой информативностью о распределении озона, позволяющей получить не более двух независимых параметров этого распределения [119].

Как было показано Ю. М. Тимофеевым, А. Д. Кузнецовым, Д. Шпенкухом, точность восстановления профиля озона зависит от: точности измерения $I_{\Delta v}$, точности задания характеристик поглощения реальной атмосферы, точности определения термической структуры атмосферы, облачной и термической неоднородности атмосферы в поле зрения прибора, оптимальности условий измерений и методики интерпретации имеющейся информации [118].

По-видимому, общепринятая точка зрения заключается в необходимости использования априорных данных, на основе взаимнокорреляционных связей между различными метеорологическими параметрами. Такой физико-статистический подход позволяет повысить точность восстановления профиля озона.

Как показывает численный анализ, наиболее существенны ошибки в задании вертикального профиля температуры: как правило, они составляют 2... 4° С и приводят к понижению точности определения профиля озона на 50 . . . 100 %. Точность ухудшается на 20... 40 % при лимбовых измерениях за счет ошибки ± 1 км в привязке данных измерений к значениям высоты линии визирования. Менее существенными являются погрешности задания содержания водяного пара, приземных давления и температуры, так как они приводят к понижению точности восстановления всего на 5...10 %. Точность измерения теплового излучения озона в начале 1970-х гг. составляла 0,5...1 % и в настоящее время еще более повышена путем криогенного охлаждения детекторов спутниковых радиометров; эта погрешность не дает вклада более нескольких процентов. Гораздо сложнее обстоит дело с модельным описанием поглощения озоном в полосе 9,6 мкм и его зависимостью от температуры и давления. Это связано с трудностями проведения высокоточных лабораторных измерений в этой полосе и относительной малочисленностью теоретических работ. Имеющиеся данные по пропусканию отличаются иногда на 20 % и плохо согласуются с экспериментальными результатами.

Как отмечал Уолшоу, аномальное поведение функций пропускания озона обусловлено тем, что основная масса газа находится при малом атмосферном давлении, что ограничивает применение классического метода учета оптической неоднородности атмосферы [421].

Наблюдения поглощения и излучения атмосферным озоном в полосе 9,6 мкм проводились, начиная с 1941 г., когда Стронг доказал, что поглощение сильно зависит от давления воздуха [402]. Важное значение имели последующие работы Гуди, Уолшоу, Вигру и др. [196, 222, 241, 414, 415].

В последние годы цикл натурных наблюдений и исследований функции пропускания озона в 9,6 мкм проводится в Институте физики атмосферы АН СССР. Было показано, что в экстремальных участках полосы при v = 1038 и 1054 см⁻¹ (минимум поглощения) и $v = 1044 \text{ см}^{-1}$ (максимум) наблюдается аномальное соотношение $\tau_{\Delta v}^{_{
m SKCI}} > \tau_{\Delta v}^{_{
m pacu}}$ ($\Delta v = 2 \dots 4$ см⁻¹) [32]. Проведя детальный анализ наблюдений и данных Гуди и Уолшоу с учетом метеорологических факторов, М. С. Малкевич, Л. М. Шукурова, А. И. Чавро предложили гипотезу, объясняющую аномалию функции пропускания за счет расходования озона при химических реакциях образования аэрозольных частиц, поглощающих в области 9,6 мкм (H₂SO₄, (NH₄)₂SO₄), а также за счет селективного поглощения в этой области частицами силикатов и глиноземов [88]. Таким образом, и в ИК методе аэрозоль оказывается замешанным в интерпретации результатов и в силу своей изменчивости в средней и нижней стратосфере может вносить там максимальную ошибку.

Рассматривая вертикальную структуру погрешностей восстановления профилей по спутниковым измерениям, Е. П. Борисенков, А. Е. Кайгородцев, О. М. Покровский установили, что наибольшие расхождения истинного профиля и приближенного решения как для надирных, так и для лимбовых измерений наблюдаются в слое 20... 30 км, содержащем уровень максимальной концентрации озона. На основе данных численных экспериментов с различными моделями они показали, что наибольшей эффективностью обладает методика восстановления, объединяющая оба вида одновременных независимых ИК измерений — по лимбу и в надир [20]. Отметим определенную аналогию с методом ОУФР: при измерениях в надир в более прозрачных спектральных интервалах получаемая информация об озоне относится к слоям атмосферы, расположенным ниже его максимума; данные же измерений в участках спектра с сильным поглощением содержат информацию о средней и верхней стратосфере. Лимбовые измерения углового изменения уходящего излучения, содержащие в основном сведения о профиле озона в средней и верхней стратосфере, позволяют несколько увеличить (как и в методе ОУФР) максимальную высоту зондирования. При этом структура спектральной информации оказывается аналогичной в различных интервалах рассматриваемой полосы поглощения [20].

Измерения общего содержания озона проводились на спутниках «Нимбус-3» и «Нимбус-4», запущенных на приполярные орбиты (между 80° с. ш. и 80° ю. ш.), с периодом обращения 107 мин [349]. Инфракрасный спектрометр-интерферометр (IRIS) на борту измерял уходящее излучение в области 7... 25 мкм, включающей полосы поглощения углекислого газа около 15 мкм, по которым восстанавливается температурный профиль, необходимый для расчета Xпо полосе 9,6 мкм. Стандартное отклонение измеренных X от показаний наземных приборов Добсона составило 6 % [349]. Показания IRIS в общем удовлетворительно согласовались с данными УФ спектрометра, установленного на том же «Нимбусе-4», за исключением ряда случаев, когда наблюдалось расхождение до 40 % [252].

Инфракрасный радиометр светимости лимба (Limb Radiance Inversion Radiometer — LRIR) на «Нимбусе-6», выведенном на солнечно-синхронную полярную орбиту вокруг Земли в июне 1975 г., имел время жизни 6 мес за счет использования криогенного охлаждения и измерял излучение с вертикальным разрешением 3-4 км до высоты 55 км в полосах озона 9.6 мкм. СО, 15 мкм и H₂O (вращательный спектр). Несмотря на то что оптимальные схемы расчета параметров атмосферы находятся еще в стадии испытаний, первые месяцы наблюдений дали ценные сведения. По картам, относящимся к южному (зимнему) полушарию, были отмечены стратосферные потепления. В частности, были отмечены характерные возмущения с волновым числом 2 на уровне 1 мбар и ниже как для озона, так и для температуры. Этот эффект был менее заметен на уровне 0,4 мбар (55 км). «Круглосуточные» наблюдения озона позволили также установить его малую суточную изменчивость на высотах 55 км, что, конечно, не было неожиданным.

Сообщение о приборе «Нимбуса-6» LRIR было сделано на дрезденском симпозиуме Гилли, Бейли и Андерсоном [240]. Авторы отметили тогда, что существуют лишь единичные случаи одновременных измерений спутниковым и ракетным методами. В качестве примера были представлены результаты сравнения данных LRIR с результатами ракетных методов Крюгера (оптический) и Хилсенрата (хемилюминесцентный), являющихся в настоящее время наиболее точными. Запуски ракет с полигона о. Уоллопс были приурочены к моменту прохождения «Нимбуса-6». Как видно из рис. 38, максимальное расхождение между данными LRIR и хемилюминесцентного метода (более точного на границе применимости оптического метода) достигает между 20 и 25 км величины в 50%, что лишний раз подтверждает выводы Е. П. Борисенкова и др. [20] о максимальной ошибке метода на этих высотах. Следует обратить внимание на хорошее согласие данных метода восстановления с ракетными данными в районе максимума относительной концентрации (30 . . . 35 км). Это подтверждает преимущества лимбовой ИК методики, дающей более подробную картину изменения озона с высотой, чем прибор ОУФР. На высотах, близких к центру тяжести озона, ошибки возрастают, и, следовательно, измерения общего содержания озона этим методом менее надежны и менее точны.

Таким образом, использование комбинированной методики с помощью приборов ОУФР и ИК радиации в планируемой программе спутникового мониторинга озоносферы должно дать измерение как общего содержания, так и профиля озона в верхней стратосфере с большой точностью, обеспечивающей раннюю диагностику любого уменьшения озона, например за счет фотодиссоциации фреонов между 30 и 40 км, особенно в тропиках.

Рис 38 Результаты сравнения данных восстановления профиля озона с «Нимбус-4» (сплошная линия) и прямых ракетных методов — хемилюминесцентного (1), оптического (2)

Кроме озона и метеорологических параметров предполагается вести наблюдение за аэрозолями, H_2O , NO_2 , HNO_3 , NO, CO, CH_4 и др. Комплекс таких измерений позволит получить не только геофизическую информацию, ценность которой возрастает при синхронных измерениях многих параметров, но и оперативно отрабатывать методику измерений отдельных параметров (например, озона), на которые влияют другие характеристики атмосферы.

Обработка, анализ и распространение получаемой информации будут невозможны без создания специальных центров с мощными ЭВМ. Представление о работе такого центра дает доклад Дж. Ловилла на дрезденском симпозиуме по атмосферному озону [385]. новой серии соо**б**щил, что на спутников Ohсистемы (DMSP) Block 5D устанавливается новый сканирующий 16-фильтровый радиометр. Схема получения и обработки информации такова, что за один оборот спутника аппаратура производит 190 поперечных сканирований в полосе ± 100 км. Сканирование состоит из 25 отдельных измерений, пространственное разрешение которых составляет: в надире — круг диаметром 39,3 км (что в 2,4 раза меньше, чем у «Нимбуса-4»), на удалении ± 1000 км — эллипс 119,3 \times 64,5 км. Таким образом, полное число измерений O₃, H₂O и температуры за сутки составит 68 400, что в 30 раз больше, чем у ранее использовавшихся спутников. Контроль качества данных предусматривает сравнение с другими спутниковыми системами и с наземной сетью спектрофотометров Добсона. Выходной информацией являются еженедельные глобальные карты общего содержания озона с сеткой $1 \times 2^{\circ}$ для оперативных целей и ежемесячные карты.

§ 24. Химические озонозонды

Химические озонозонды предназначены для массовых, сетевых измерений вертикального распределения озона вплоть до высот 30...35 км. Они применяются очень широко — запускаются на баллонах, наполняемых водородом или гелием, в пунктах аэрологического зондирования или с научных судов в океане. Как правило, в них легкий анализатор озона объединен с обычным сетевым радиозондом. Это облегчает сопоставление данных об озоне со стандартными метеорологическими параметрами.

Регулярные зондирования озона начались в начале 1960-х гг в Боулдере (США) и Пуне (Индия) с 1964 г, Тальвиле (Швейцария) с 1966 г. и в настоящее время проводятся во многих странах Европы, Азии, Америки и в Австралии.

В электрохимическом озонозонде используется жидкостная кулонометрическая ячейка, в которой барботирование воздушной пробы осуществляется с помощью поршневого насоса. В растворе иодистого калия происходит реакция его с озоном и выделяется свободный иод, который у катода образует отрицательные ионы Под действием поля, создаваемого небольшой разностью потенциалов между электродами (примерно 0,4 В) ионы I⁻ движутся к аноду, где восстанавливаются, а нейтральные молекулы I₂ реагируют с серебром и больше в раствор не возвращаются. Как мы видели (см. § 19), при стехиометрии КІ-методики, равной единице, должен выполняться закон Фарадея и текущий по цепи ток будет пропорционален количеству озона, реагирующему с раствором в 1 с.

Этот датчик, называемый иногда просто баблером (англ. bubble — пузырек воздуха, пузыриться), был запатентован A. Брюером, а в дальнейшем в сочетании с радиозондом был разработан для массового выпуска в США фирмой Маст (Mast Development Company). Можно напомнить, что Брюер вначале предложил использовать в зонде другую конструкцию кулонометрического детектора, т. е. «трансмогрейфер» [168], использованный позднее в лабораторном варианте (см. рис. 26). Однако опыты по использованию его в полетном варианте не удовлетворили разработчиков, и они обратились к другому изобретению Брюера — баблеру. Этот тип ячейки оказался более подходящим для специфических условий низких температур, давлений и механических помех (раскачка, болтанка) при подъеме радиозонда. Кроме США и Канады, где прибор с баблером впервые был внедрен в практику сетевых наблюдений, и другие страны, например Индия [310], ГДР [381] взяли за основу такой тип ячейки при разработке конструкции своих химических озонозондов

Описываемая ячейка — небольшая, выполненная из полистирола камера, содержащая всего около 2 см³ раствора. В ней имеется цилиндрическая платиновая сетка (катод) и серебряная проволока длиной 3 см (анод). Раствор барботера приготавливают в два этапа Вначале 2,50 г KI, 6,30 г Na₂HPO₄·12H₂O, 5,75 г NaH₂PO₄·H₂O растворяют в 250 мл дистиллированной воды, в результате чего получается 1%-ный раствор KI, содержащий буферные фосфаты. При запуске озонозонда используется этот раствор, разбавленный до 0,1%. Он должен быть использован не позднее суток после этой операции.

Определенную трудность представляло создание оптимальных условий в барботере, внутреннее давление в котором практически равно давлению окружающей атмосферы. В баблере раствор, имеющий почти такие же точки кипения и замерзания, как у воды, должен быть предохранен как от закипания, так и от замерзания. Для защиты от низких температур прибор заключен в оболочку из пенопласта, которая рассчитана так, чтобы обеспечить постепенное падение температуры не ниже $+2 \ldots + 7^{\circ}$ С при подъеме зонда до максимальной высоты. Давление 6,1 мбар является нижним пределом, при котором точки кипения и замерзания раствора совпадают, и поскольку в баблере давление почти равно давлению окружающей атмосферы, измерения выше уровня 6,1 мбар ненадежны

Баблер генерирует электрический ток от 0 до 11 мкА (в зонде ГДР до 7 мкА) в зависимости от количества озона в пробе воздуха. Блок преобразования создает при этом высокочастотные прямоугольные импульсы, идущие в передатчик, частота следования контролируется электротоком баблера, зависящим, как сказано, от содержания озона. В озонозонде ГДР, описанном К. Ренебеком и Д. Зонтагом [381], используется диапазон частот от 50 до 200 Гц с шириной импульса 350 мкс и амплитудой 25 В. Эти сигналы модулируют излучение передатчика советского радиозонда РКЗ-5.

За сравнительно долгое время применения электрохимического зонда было разработано несколько его моделей [311, 387], главным образом отличающихся электронными схемами и коммутатором. Последние модели Маст (730-7 и -8) предназначены для использования с радиозондами, работающими на частотах 400 и 1680 МГц, их насос снабжен электромоторчиком нового типа, не создающим помех в работе электронной схемы. В одном из вариантов переключатель американского радиозонда поочередно коммутирует сигналы, зависящие от электротока ячейки, метеопараметров, нулевого тока, калибровочного тока, температуры воздушного насоса. Система переключения представляет печатную схему на родиевой пластинке, по которой двигается коммутаторная щетка в виде трех отдельных платиново-родиевых проволок, что обеспечивает высокую надежность в работе. Коммутатор связан через редуктор с двигателем насоса и таким образом по радиоканалу передается необходимая для расчета озона информация о количестве воздуха, прокачиваемого насосом через баблер. В последнем варианте, (730-8) для переключения каналов с частотой 3,5 ±0,5 с использована интегральная схема.

Вес собственно озонозонда сейчас составляет около 450 г [311]. С целью обеспечения его надежной работы при возможном смещении времени запуска по условиям погоды озонозонд вместе с батареями питания рассчитан на функционирование в течение 4 ч.

Рассмотрим некоторые методические трудности электрохимических измерений на зондах. Основное соотношение для определения парциального давления озона p_3 в нанобарах имеет вид

$$p_3 = 1,171t \, \frac{T_p}{T_0} \, if, \tag{24.1}$$

где t — время прокачки насосом 100 см³ воздуха; T_p — температура насоса; $T_0 = 273$ К; i — электроток в микроамперах и f — поправка Брюера на гибель озона во всасывающем устройстве (f = 1,04).

Дютш обратил внимание на то, что эффективность работы насоса может зависеть от давления воздуха. Такой вывод получился при сравнении первых данных озонозондов в Боулдере и данных метода обращения, применявшегося в Арозе [212]. Эффективность насоса, предположил Дютш, может несколько уменьшаться на больших высотах вследствие разности давлений в атмосфере и в цилиндре насоса. Лабораторные эксперименты Комхира показали, что такой эффект становится заметным при p = 150 мбар и быстро возрастает ниже 20 мбар, достигая 17 % при 10 мбар. Комхир отметил разброс значений производительности (90 % ± 5 %) для разных экземпляров насосов.

В методике, применяемой в ГДР, в показания озонозонда вводится суммарная поправка, обусловленная изменением номинальной (устанавливаемой заводскими испытаниями) скорости прокачки насоса в зависимости от давления и изменения температуры ячейки. Эта поправка составляет 1 % при p = 100 мбар, 6,5 % при 30 мбар, 17 % при 10 мбар, достигая 26 % при 6 мбар [381]. В некоторых моделях озонозондов, например модели 730-7Т, для регистрации температуры насоса служит термистор. В индийском озонозонде температура насоса также измеряется в полете, однако поправки на производительность насоса при низких давлениях не вводятся. Методика измерений этим зондом разработана Сридхараном, который установил, что такая поправка при давлениях ниже 20 мбар лежит в пределах общей точности измерений ± 5 %.¹

Для уменьшения гибели озона в подводящих коммуникациях предполетная подготовка озонозонда включает прокачку больших (0,01 %) концентраций озона в течение длительного времени, от одного [337] до нескольких часов [396]. Однако полностью устранить явление гибели, по-видимому, не удается, даже при тщательной подготовке. Дютш рассчитал величину f по 350 полетам зондов, сравнив общие количества озона X, измеренные озонозондом и параллельно спектрофотометром Добсона, и нашел $f = 1,11 \pm 0,14$. Правильность такой коррекции подтвердилась также статистической обработкой данных об озоне на высоких уровнях 10..., 20 мбар, на которых изменчивость озона стала существенно меньше после введения поправки [212].

Точность измеренных относительных изменений озона составляет 15 %, в то время как абсолютные величины измеряются с гораздо меньшей точностью — 35 % [212].

Важное методическое значение имеет сопоставление данных на подъеме и спуске, которые можно сравнивать при благоприятных ветровых условиях, если снабдить озонозонд парашютом. После разрыва оболочки зонд парашютирует со скоростью от 10 до 20 м·с⁻¹, что в 2—4 раза больше скорости подъема. Абсолютное и относительное сравнения двух профилей озона, получаемых так в одном эксперименте, позволяют при этом оценить постоянную времени прибора в реальных условиях. По лабораторным экспериментам, она составляет приблизительно 25 с, ограничивая, таким образом, вертикальное разрешение при подъеме масштабом высоты порядка 100 м. Наблюдаемые большие расхождения между подъемом и спуском в тропосфере, где содержание озона относительно мало и соответственно ошибки возрастают до 100 %, свидетельствует о преимуществе измерений на спуске, когда во всасывающем устройстве разрушение озона меньше.

Много ценной в методическом отношении информации было получено при сравнительных одновременных пусках химических и хемилюминесцентных озонозондов. Они в первую очередь отметили сильный сглаживающий эффект химического прибора, не позволяющий регистрировать тонкую структуру распределения озона, доступную хемилюминесцентному зонду. Сравнение хемилюминесцентных и химических озонозондов (данные приведены в обзорной работе Л. Г. Большаковой [17]) показало также, что в тропосфере

¹ Индийский электрохимический озонозонд был разработан в Лабораториях по исследованию озона в Пуне, принадлежащих Индийскому департаменту по метеорологии, и изготавливается серийно мастерскими Департамента там же. С 1964 г. озонозонды регулярно выпускаются в Пуне (18° с. ш.), а с 1971 г. — раз в две недели в Тривандруме (8° с. ш.) и Нью-Дели (28° с. ш.). Осуществление этой программы дает ценную информацию о поведении тропического озона и его связях с движениями воздушных масс из более северных районов.

первые из них показывают меньшие концентрации. Одной из причин этого может быть присутствие других оксидантов, кроме озона, которые влияют на электрохимические измерения и не влияют на хемилюминесцентные.

§ 25. Хемилюминесцентный метод измерения озона

Несмотря на многочисленные трудности методического, экспериментального и технологического характера, хемилюминесцентный метод измерения атмосферного озона давно завоевал себе славу в силу своей простоты и изящества. Он применяется в самых разнообразных условиях: в лаборатории, на борту самолета, аэростата, ракеты, при исследовании приземного озона. Там, где требуется высокая точность, быстрота, оперативность измерений, этот метод оказывается вне конкуренции.

Хемилюминесценция — выделение света при химических экзотермических реакциях — является одной из разновидностей более общего явления люминесценции - свечения, вызываемого поглощением веществом какого-либо вида энергии. Процесс можно разделить на две стадии: возбуждение и люминесценцию. Стадия возбуждения включает образование в результате химической реакции частиц в возбужденном состоянии, из которого возможен переход с излучением — люминесценция. Эта вторая стадия приводит к излучению фотона, и возбужденная молекула переходит в нормальное состояние. Запрещенные квантовомеханическими правилами отбора переходы приводят к так называемой фосфоресценции, разрешенные — к флюоресценции. Хемилюминесценция — неравновесный процесс. В энергию возбуждения может перейти энергия, численно равная сумме теплового эффекта и энергии активации. Поэтому свечение должно наблюдаться в той спектральной области, которой соответствует энергия, выделяющаяся в одном элементарном акте возбуждения, или же в более длинноволновой области. Одновременно в области химической реакции интенсивно идет дезактивация богатых избыточной энергией продуктов реакции. Общая скорость реакции хемилюминесценции, очевидно, пропорциональна скорости образования продукта, квантовому выходу возбуждения и квантовому выходу люминесценции. Произведение двух последних коэффициентов представляет общий выход хемилюминесценции — КПД преобразования химической энергии в излучение. Для разных реакций он различается очень сильно — иногда на тринадцать порядков. Максимальный выход — несколько процентов — наблюдается лишь для небольшого числа реакций.

Хемилюминесцентные реакции могут протекать в жидкой, твердой и газовой фазах. Газофазные реакции, которые были исследованы ранее других и более подробно, отличаются сравнительными простотой химического механизма и высокой интенсивностью свечения, а также простотой структуры излучающих продуктов —
атомов и легких молекул. Кроме реакции с этиленом, одной из важных газофазных хемилюминесцентных реакций, которая может быть использована для озонометрии, является

$$NO + O_3 \rightarrow NO_2 + O_2 + 196,9$$
 кДж. (25.1)

Если предположить следующий механизм реакции:

$$NO + O_{3} \xrightarrow{k_{1}} NO_{2}^{*} + O_{2},$$

$$NO_{2}^{*} \xrightarrow{k} NO_{2} + hv,$$

$$NO_{2}^{*} + M \xrightarrow{k_{3}} NO_{2} + M,$$
(25.2)

то интенсивность свечения можно записать в виде

$$I = \frac{k_1 k_2 [\text{NO}] [\text{O}_3]}{k_2 + k_3 [\text{M}]} , \qquad (25.3)$$

где k_1 , k_2 , k_3 — константы соответствующих реакций; М — гасящая молекула; звездочкой отмечено возбужденное состояние. Спектр свечения занимает широкую полосу в ближней ИК области с максимумом около 1,2 мкм и представляет мощный континуум с наложенной серией диффузных полос. Поскольку озон почти всегда находится в смеси с молекулярным и атомарным кислородом, то необходимо принять во внимание возможное наложение спектров при следующих реакциях:

$$O_2 + 2NO \rightarrow 2NO_2 + 114,9$$
кДж, (25.4)

$$O + NO \rightarrow NO_2 + 306,7$$
кДж. (25.5)

Однако эффективность первой реакции мала, а эффект второй реакции может быть отделен фильтром, поскольку максимум ее свечения лежит в видимой области. При измерениях на ракете можно использовать один и тот же реактор с окисью азота для наблюдения вертикальных распределений атомарного кислорода (днем выше 60 км) и озона (ниже 60 км). Реакция озона с окисью азота происходит в атмосфере в естественных условиях и может явиться источником систематических ошибок при измерении O_3 , когда наблюдается вертикальное распределение свечения возбужденных молекул кислорода O_2 ($1\Delta_g$) с $\lambda = 1,27$ мкм. В частности, в некоторых работах по этому методу обнаруживается слишком высокое содержание озона ниже 40 км, т. е. на тех высотах, где абслютные концентрации озона и окиси азота велики, а давление воздуха еще недостаточно велико для эффективной дезактивации возбужденного комплекса NO_2^* .

Большинство работ по более сложной и менее изученной хемилюминесценции в растворах выполнено с несколькими реакциями,

дающими яркое свечение: окисление люминола, люцигенина, акридина, реактивов Гриньяра и родственных им соединений [28]. Механизм возбуждения этих реакций исследован недостаточно, не выделены даже с достоверностью их стадии, на которых происходит возбуждение. Объясняется это как большой сложностью химического механизма реакций, идущих через многие промежуточные стадии, так и неясностью строения промежуточных соединений и их свойств. Тем не менее практически важно использовать многие такие реакции в озонометрии. Первый удачный опыт хемилюминесцентного измерения атмосферного озона относится, по-видимому, к 1935 г, когда М. А. Константинова-Шлезингер наблюдала в условиях высокогорной экспедиции на Эльбрусе [73] флюоресценцию акридина, образующегося при окислении раствора дигидроакридина озоном. В лабораторных условиях используется реакция озона со щелочным раствором люминола. А. Г. Степанова и Е. А. Божевольнов предложили для этого ячейку из пористого стекла и разработали метод для непрерывного определения озона в газовом потоке [116]. Еще раньше М. Г. Дмитриев и Н. А. Китросский применили бумагу, пропитанную смесью люминола с гематином в слабом растворе соды [49].

Важным этапом в развитии хемилюминесцентного метода явилась работа Берсиса и Вассилиу, исследовавшими свойства раствора галловой кислоты с родамином-В в этаноле [154]. Дело в том, что при использовании одного родамина, как, например, в методе В. Регенера [365—367], происходят довольно быстрое прямое окисление высвечивающего реагента и другие побочные эффекты. Галловая кислота используется в качестве акцептора озона, а родамин-В остается химически неизменным в ходе измерений, выступая как акцептор химической энергии и источник фотонов. Галловая кислота была выбрана по следующим причинам. 1) она содержит три гидроксильные группы и поэтому имеет хороший квантовый выход (при реакциях озона с полифенолами наблюдали быстрое возрастание суммарного света с возрастанием числа гидроксильных групп); 2) из-за наличия карбоксильных групп она не создает задержки, т. е. излучение света начинается одновременно с реакцией; 3) галловая кислота защищает родамин-В от непосредственного окисления; 4) продукты окисления галловой кислоты не окрашены и поэтому не оказывают экранирующего действия; 5) раствор галловой кислоты в этаноле не взаимодействует с кислородом; 6) для нее не характерно самосвечение; 7) возбужденные молекулы --продукты реакции озона с галловой кислотой — оказываются на таких энергетических уровнях, что передача энергии родамину-В, ответственному в конечном счете за испускание фотонов, становится возможной с удовлетворительным по значению квантовым выходом.

Родамин-В является хорошим акцептором энергии при реакции галловой кислоты с озоном, не самоизлучает, стабилен по отношению к кислороду, в присутствии галловой кислоты не окисляется непосредственно озоном. Присутствие небольшого количества влаги не влияет на свойства родамина-В Берсис и Вассилиу считают доказанным, что протекающие реакции можно записать в виде

галловая кислота
$$+O_3 \rightarrow A^* + O_2$$
,
родамин-B $+ A^* \rightarrow$ родамин-B* $+ B$,
родамин-B* \rightarrow родамин-B $+ hv$, (25.6)

где А* — возбужденный промежуточный продукт, результат реакции галловой кислоты с озоном, В — конечный продукт окисления. Используя реакционную ячейку объемом 10 мл с отношением в растворе галловая кислота-родамин 50:1, авторы достигли постоянства чувствительности к озону в течение 20 ч непрерывной газа 64 мл мин⁻¹ и концентрации работы при потоке озона 100 млн⁻¹. Предельная чувствительность метода, правда, была невысока и составляла всего 3 млн⁻¹. Отметим еще довольно интересное (и важное для ракетной методики) обстоятельство. Взаимодействие галловой кислоты с озоном, передача энергии возбуждения родамину-В и последующее излучение идет в целом с гораздо меньшей временной задержкой, чем в случае реакции одного родамина-В с озоном.

Поэтому вполне естественной была попытка использовать эту комбинацию веществ в качестве чувствительной к озону поверхности твердого тела. В. Регенер применял уже с 1961 г. плексиглассовые диски, покрытые специально приготовленной пастой на основе родамина-В, в анализаторах атмосферного озона, с помощью которых был проведен цикл пионерских исследований в свободной атмосфере (на зондах) и у поверхности земли [368]. Рандхава разработал малогабаритный ракетный прибор, в котором использовались аналогичные диски [358]. Е. Хилсенрат вместе с сотрудниками фирмы Панаметрикс создал уникальный комплекс ракетной аппаратуры, в котором был применен состав, использованный в [259], нанесенный на диск из пористого стекла.

И, наконец, надо упомянуть специально разработку промышленного анализатора с чувствительным хемилюминофором из родамина-В и галловой кислоты, который наносится на диск из спеченного стекла. Доклад об этом приборе был сделан представителями фирмы Филипс (Нидерланды) в 1977 г. на 3-м Конгрессе Международного института по озону в Париже [409]. Поскольку при измерениях в наземных и лабораторных условиях чувствительный элемент может быть подвержен влиянию влаги и других химически активных субстанций, для исключения этих вредных эффектов конструкторы применили автоматическую схему с периодической калибровкой элемента от встроенного генератора озона, аналогичного применяемому в приборах с этиленом (см. § 19). Сигнал калибровки используется для автоматической коррекции электронного усиления (нужной из-за возможного изменения чувствительности дисков) после каждого 80-секундного цикла, состоящего из 40-секундной экспозиции диска в газе без озона, 20 с измерения и 20 с калибровки. Максимальный коэффициент коррекции автоматической калибровки 8, т. е. чувствительность диска может уменьшиться в 8 раз без изменения выходной чувствительности прибора.

Основные характеристики анализатора: время работы диска без замены на новый 3 месяца; номинальные пределы 0,17 и 0,50 млн⁻¹; шумы (максимальные отклонения) при концентрациях озона 0 и 500 млрд⁻¹ соответственно 0,15 и 3 млрд⁻¹, объемная скорость 0,6 л.мин⁻¹; температурный коэффициент менее 0,3% на 1° С; климатические условия: температура 0...35° С, влажность 10...95 %, давление 533...1066 мбар. Благодаря высокой чувствительности твердотельных элементов к озону (в 100 раз большей по сравнению с реакцией между этиленом и озоном), меньшим габаритам и отсутствию громоздкого баллона с реагентом, описанный прибор может вытеснить существующие газофазные хемилюминесцентные анализаторы и стать основой для атмосферной озонометрии.

Первые в нашей стране исследования хемилюминесценции озона с родамином-С были проведены Л. Г. Большаковой и В. А. Васильевой. Ими были получены данные о спектре хемилюминесценции этой реакции, основная энергия которой оказалась сосредоточенной в интервале 550...650 нм [17, 18].

В Центральной аэрологической обсерватории в течение ряда лет проводится разработка хемилюминесцентного метода измерения озона на ракете [59, 74, 284]. В качестве подложки для реагентов (родамин-С и галловая кислота) используются диски из высококремнеземного пористого стекла (ВКПС). Такой тип подложки позволил обойтись без сложной процедуры приготовления пасты [367] и сделать диски нужных размеров с достаточной механической прочностью для использования в ракетных приборах. Образцы ВКПС получаются путем термической и химической обработки определенной смеси исходных стекол, принадлежащих системе с $Na_2O - B_2O_3$ —SiO₂. В процессе термообработки они разделяются на две компоненты, одна из которых легко растворяется в кислотах. Получающаяся структура с эффективным радиусом пор порядка 10 нм обладает высокой удельной поверхностью (примерно 70 м²·г⁻¹), почти приближаясь по этому параметру к силикагелям.

Исследование полученных озоночувствительных образцов на реакцию с озоном проводится на вакуумной установке, упрощенная схема которой представлена на рис. 39. Первый вариант установки был описан ранее в [74].

Озоновоздушная смесь создается в баллоне 2 путем последовательных напусков кислорода высокой чистоты через включенный разрядник 6, а затем азота особой чистоты. При этом предусмотрен контроль влагосодержания этих газов. Для измерения содержания озона в смеси служит кювета 1, имеющая в торцах кварцевые пластины. Методика определения озона заключается в регистрации двух интенсивностей УФ излучения, при отсутствии и присутствии поглотителя в кювете. Узкий пучок света от кварцевой лампы 10 формируется диафрагмами и, проходя через кювету, попадает на щель двойного монохроматора ДМР-4 12, который выделяет необходимый спектральный интервал вблизи $\lambda = 253,7$ нм. В качестве регистратора выходного сигнала, создаваемого ФЭУ-18А, расположенным за выходной щелью монохроматора, использовался усилитель постоянного тока ИМТ-05 с самописцем КСП-4.

Требуемые давления, концентрации озона и скорости воздушного потока в лабораторной и полетной реакционных камерах 3 и 4, которые содержат озоночувствительные диски, создавались при напуске озонированного воздуха из 2 через стеклянные капилляры

Рис 39 Вакуумная озонометрическая установка

1 — кювета, 2 — баллон для хранения озона 3 — лабораторная реакционная камера, 4 — полетная реакционная камера 5 — капилляры 6 — разрядник 7 — кулонометри ческий измеритель влажности, 8 — баллон с азотом особой чистоты 9 — баллон с кислородом высокой чистоты 10 — газоразрядная кварцевая лампа 11 — манометры 12 — монохроматор ДМР 4, 13 — вакуумные краны

5, проводимость которых была одинаковой. Для уменьшения гибели озона на стенках пришлось подвергать вакуумные коммуникации длительным экспозициям больших концентраций озона, добиваясь при последующих экспериментах строго стационарного режима и четкой повторяемости результатов. Для уменьшения влияния металлических поверхностей реакционных камер на озон были использованы вкладыши из тефлона.

Концентрация озона в камерах рассчитывалась по отношению давлений в баллоне и камере с учетом измеренной в кювете концентрации озона. При этом предполагалось, что гибелью молекул озона на стенках капилляра и трубках вакуумной системы можно пренебрегать. Это предположение следует, однако, тщательно проверить на опыте при низких давлениях.

Для экспериментального изучения влияния параметров озоновоздушной смеси на светимость озоночувствительных дисков было использовано три метода: · — метод непрерывной стационарной откачки при постоянном расходе через капилляр; в этом случае давление в реакционной камере постоянно и определяется скоростью откачки и расходом газа через капилляр, а объемная скорость зависит от установившегося давления и расхода газа;

— метод натекания в предварительно откачанный до определенного, малого, давления объем при постоянном расходе через капилляр; использование двух сильно отличающихся объемов позволяет исследовать динамические (инерционные) характеристики используемой системы и самих озоночувствительных дисков;

— метод натекания в те же объемы при переменном расходе через капилляр в относительно короткий промежуток времени (порционный напуск).

Использование этих методов вместе с техническими возможностями оборудования и аппаратуры позволило проводить эксперименты при следующих условиях: давление $10^3 \dots 10^5$ Па, относительная концентрация озона $1 \dots 1000$ млн⁻¹ (числовые плотности $10^8 \dots 10^{16}$ мол см⁻³), объемные скорости потока озоновоздушной смеси: $0 \dots 10^3$ см³ с⁻¹ (в стационарном режиме). Изменение последнего параметра в первом методе, к сожалению, пока ограничено малой производительностью используемого вакуумного насоса, что не позволяет установить точную границу диапазона, в котором сигнал образца не зависит от скорости потока. Тем не менее проведенные эксперименты с озоночувствительным диском в лабораторной реакционной камере (см. рис. 39) позволили сделать следующий важный для практики вывод:

При достаточно больших ($V > 10^3 \text{ см}^3 \cdot \text{с}^{-1}$) объемных скоростях потока озоновоздушной смеси над чувствительным элементом и при постоянной относительной концентрации озона интенсивность свечения элемента, регистрируемая фотоумножителем как функция давления, может быть представлена линейной зависимостью. Это важное обстоятельство следует учитывать при конструировании бортовых (ракетных, зондовых и самолетных) хемилюминесцентных озонометров и при создании и отработке методики обработки данных.

Сложнее обстоит дело с влиянием относительной концентрации озона *r*_{3m} на светимость чувствительного элемента. В общем виде можно записать

$$I = K p^n r_{3m}^m$$

Здесь I — сигнал ФЭУ в микроамперах; p — давление; r_{3m} — в млн⁻¹; K — константа градуировки; $0,5 \le n \le m \le 1$; при $V \to \infty$ $n \to 1$. По результатам экспериментов при ограниченных параметрах (p < 6,7 мбар, $r_{3m} < 20$) $n = m \approx 1$ и обработка данных полетных экспериментов производится по упрощенной формуле

$$I = K pr_{3m}.$$
 (25.8)

Достигнутая предельная чувствительность к озону разработанных хемилюминесцентных дисков составляет величину порядка 10⁸ см⁻³ и ограничена главным образом величиной темнового тока использованных экземпляров ФЭУ-35.

Ракетный озонометр (рис. 40) состоит из следующих основных частей. реакционной камеры, фотоумножителя, усилителя постоян-

Рис 40 Общий вид головной части метеоракеты М-100Б с аппаратурой хе милюминесцентного озонометра

Слева — блок реакционной камеры состыкованный с блоком электроники Верху головной части показаны разведенные за щитные створки сбрасываемые после прохождения ракетой плотных слоев атмосферы и вскрывающие с помощью тросиков входной и выходные патрубки реакционной камеры Для масштаба сфотографирована метровая линенка

ного тока с блоком контроля, преобразователя напряжения, высокого электропитания и телеметрической системы. Реакционная камера это трубка полного давления Пито, открытая с двух концов. Поток воздуха через камеру проходит за счет разности давлений, возникающих на входе и выходе трубы. Проводимость реакционной камеры для воздушного потока является достаточно высо-

кой, так что постоянная времени системы менее 0,5 с. На входе и выходе реакционной камеры имеются две световые ловушки. Передняя часть трубки Пито имеет специальную конфигурацию (типа входного диффузора), чтобы уменьшить влияние угла атаки головной части ракеты при спуске на парашюте. Световая эмиссия диска регистрируется ФЭУ-35 и логарифмическим усилигелем постоянного тока. Выходной сигнал фотометра передается на Землю 6 раз в секунду посредством стандартной телеметрической системы ракеты М-100, причем система эта калибруется в полете. Некоторые параметры системы, нужные для расчета (высокое напряжение, калибровка усилителя, температура в различных частях озонозонда), также телеметрируются.

Реакционные камеры ракетных озонозондов были исследованы на установке (см. рис. 39). Абсолютная калибровка озонометров в первых экспериментах не производилась, поскольку основной задачей было испытание разработанной аппаратуры и опробование метода в условиях, близких к атмосферным.

В применявшихся ранее приборах интенсивность свечения хемилюминесцентного вещества была пропорциональна произведению концентрации озона и скорости потока [259, 357] Таким образом, необходимо было точно знать скорость потока в камере. В рассматриваемом приборе использовался другой метод, поскольку в нем скорость потока на 2—3 порядка больше, чем в ранее описанных ракетных озонозондах [259, 357]. При этом интенсивность света пропорциональна концентрации озона и не зависит от скорости потока даже при больших изменениях последнего. Это было показано в лабораторных экспериментах [134] в диапазоне давлений 4... 67 мбар.

Физическое объяснение этому явлению заключается в том, что скорость конвективной диффузии при большой скорости потока над поверхностью диска намного превосходит скорость диффузии газа в поры диска, так что равновесная концентрация и молекул озона вблизи поверхности становится равной концентрации озона на входе в камеру (диффузионный пограничный слой исчезает). Этот факт очень важен для полетных экспериментов, так как изменение угла атаки зонда во время парашютирования не влияет на интенсивность света и можно использовать формулу (25 8).

При обработке показаний полетных озонометров, чтобы получить абсолютные концентрации озона в атмосфере, были использованы данные измерений общего содержания озона Расчет параметров газа внутри прибора по параметрам свободной атмосферы проводился с помощью известных газодинамических соотношений для континуального режима.

С помощью ракет М-100Б в декабре 1975 г. на станции Волгоград были проведены два ночных измерения озона в атмосфере. Аппаратура озонометров работала удовлетворительно. Предварительные результаты этих наблюдений были доложены на Международном симпозиуме по атмосферному озону [284] Рисунок 41 показывает два профиля плотности озона, определенные 19 и 24 декабря 1975 г. На рис. 42 представлены результаты обработки телеметрических сигналов ракетного озонометра при его спуске на парашюте в тропосфере. В правой части рисунка приведены все экспериментальные точки, соединенные прямыми, для нижнего километрового слоя. Высотное разрешение полученной информации об озоне составляет в тропосфере величину порядка 1 м. Аналогичная тонкая структура сигналов озонометра наблюдается и в стратосфере. Анализ полученных данных показывает существование неоднородностей порядка десятков метров и больше в стратосфере и более мелких неоднородностей в тропосфере.

Тонкую структуру в распределении озона и температуры и их взаимную корреляцию наблюдали также с помощью хемилюминес-

Рис. 41 Результаты измерений ночных профилен концентрации озона хемилюминесцентным методом на ракетах М 100Б 19 декабря (1) и 24 декабря (2) 1975 г

центного метода Регенер и Алдаз в 15-метровом слое над поверхностью Земли, причем амплитуда неоднородностей содержания озона с характерным размером 1—2 м достигала 50 % [368].

В стратосфере были зарегистрированы неоднородности размером 5...10 м с помощью хемилюминесцентного (газофазного работающего на этилене) озонометра, поднимаемого на аэростате. Более крупные (50...100 м и более) сходные неоднородности в профиле озона были отмечены как на подъеме, так и на спуске. Этот сложный

Рис 42 Запись телеметрических сигналов хемилюминесцентного ракетного зонда при спуске на парашюте в зависимости от высоты в нижнем километровом слое (справа) и результаты выборочной обработки телеметрических сигналов 10 КM в слое О (слева) Телеметрический сиг-

Телеметрический сигнал — 12 мВ соответствует примерно 10¹² мол·см⁻³, а изменение от — 10 до — 15 мВ соответствует изменению концентрации озона около 30% прибор (вес около 25 кг, размер до 2 м) разработан Эмдье и Бара [133].

Хемилюминесцентные датчики озона широко и с успехом использовались в зондовых и ракетных приборах в суровых условиях Арктики и Антарктики. Так было получено много новых результатов, в частности, о структуре верхней атмосферы и нижней мезосферы в период полярной ночи. Хилсенрат установил, что изменчивость озона в мезосфере в это время достигает фактора 10, причем во время зимних перестроек циркуляции (потеплений) содержание озона там возрастает [258]. Аналогичные данные получили Рандхава и Мегил, проводившие запуски малых ракет в период авроральной активности. Однако зарегистрированное увеличение концентрации озона выше 60 км в 5 раз по сравнению со спокойными условиями авторы не связывают непосредственно с прямым воздействием авроральных явлений, например потоков энергичных электронов, а видят основную причину в динамических процессах [359].

Хемилюминесцентный зонд был, разумеется, использован и для наблюдения суточного хода озона. При этом, вероятно, наиболее надежны данные Хилсенрата, обнаружившего выше 60 км увеличение ночной концентрации в 2 раза по сравнению с дневной [258].

Заключая рассмотрение основных аспектов хемилюминесцентного метода, подчеркнем, что этот метод измерения озона применительно к метеорологической ракете имеет ряд существенных преимуществ по сравнению с оптическими и химическими методами:

— метод не требует внешнего источника УФ излучения (Солнца или Луны), поэтому он может быть использован в любое время суток (а в нижних слоях атмосферы при любой облачности);

— в отличие от оптического, интегрального метода, хемилюминесцентный метод позволяет проводить практически непрерывную регистрацию озона в функции высоты;

— использование метода не зависит от давления атмосферного воздуха, как у электрохимических методов;

— метод обладает высокой чувствительностью и малой инерцией; это позволяет использовать его на ракете на высотах от Земли до 100 км, что невозможно никаким другим методом;

— техническая реализация метода в прибор по своим весовым и габаритным характеристикам позволяет сделать его сетевым, пригодным для массового использования на метерологической ракете (например, типа М-100) в комплексе с другими видами измерений (температуры, давления, плотности, атомарного кислорода, водяного пара и др.).

Глава V

ВЕРТИКАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ОЗОНА

Поскольку озон — один из наиболее стратифицированных газов атмосферы и его стратификация весьма изменчива, ее описание содержит большую информацию о влияющих на озон процессах, Вертикальное распределение (ВР) озона носит на себе сильный отпечаток как фотохимических, так и динамических процессов озоносферы — формы движения стратосферы и тропосферы.

Вместе с тем знание ВР важно для прогноза условий полета сверхзвуковой авиации. Действительно, нагнетаемый в салон самолета и содержащий много озона внешний воздух стратосферы может быть опасен для здоровья пассажиров и команды.

Главные черты ВР — это малое количество озона в тропосфере, резкое нарастание парциального давления озона p_3 , начиная с некоторого переломного уровня, так называемой озонопаузы H_{on} , до максимального его значения p_{3M} на уровне озонного максимума H_M и затем постепенное убывание p_3 на больших высотах. Можно характеризовать ВР с помощью озонограммы — с помощью кривой $p_3(z)$. Черты ВР зависят от фотохимических явлений и процессов переноса озона, а следовательно, от широты, сезона, географических условий, синоптических процессов и пр.

Специального внимания заслуживает мезосферный озон и изменения его при так называемых стратосферных потеплениях. Наблюдение озона в мезосфере необходимо для апробации фотохимических теорий, поскольку фотохимические процессы там интенсивны, а динамические существенно подавлены.

§ 26. Типы вертикального распределения озона

Существуют ли в атмосфере некоторые дискретные физические процессы, создающие характерные для них типы ВР озона? Так, в большом обзоре фотохимической проблемы озона [214], X. У. Дютша нет формальной типизации ВР.

Фотохимическая теория, действительно, не дала Дютшу основания выделить какие-либо специальные формы озонного слоя. Однако в дальнейшем он говорит о «типичном летнем распределении озона в субтропическом воздухе», об «озоне полярного воздуха» и об его экваториальном распределении, вводя в изучение озона понятие о дискретных синоптических воздушных массах. В том что, существует по крайней мере два главных типа ВР озона — тропический и полярный, убеждает нас ряд независимы доводов. Известно, прежде всего, что примерно под 30° широты в каждом полушарии проходит довольно четкая граница тропической области со сравнительно малым и очень постоянным общим содержанием озона X и полярной области, где X велико и притом очень изменчиво. Высокая и низкая тропопаузы, свойственные этим областям, близко совпадают в них с озонопаузой. Наконец, весьма четкое различие X и ВР по обе стороны струйного течения и резкие, хотя обычно небольшие, изменения озона у фронтов определенно указывают, что озон меняется с воздушными массами.

Поэтому мы сохраним здесь основы нашей классификации типов ВР 1973 г., но не будем связывать с ней озон верхних слоев стратосферы. Изучая ВР, мы рассмотрим главным образом распределение парциального давления озона $p_3(z)$, помня, что распределение плотности $\rho_3(z)$ мало отличается от него. В то же время распределение отношения смеси озона $r_3 = 1,67 \ p_3/p$ совершенно иное. Из-за быстрого убывания давления воздуха p с высотой, например, максимум r_3 расположен значительно выше $H_{\rm M}$, иногда на высоте 35...38 км.

Наблюдения, сделанные в различных широтах, показывают, что существуют три типа ВР (рис. 43).

Тропический тип (тип А). Слой озона находится в целом на сравнительно большой высоте и максимальное парциальное давление озона p_{3M} 130... 160 нбар отмечается на высоте $H_{M} = 24...27$ км [310]. Слой этот довольно постоянен, однороден и почти не имеет тонкой структуры. Он содержит лишь небольшое общее количество озона, около 260...270 Д. Е., которое мало меняется с сезоном. Тип этот характерен для зоны, занимающей половину поверхности Земли — до 30° широты, и всегда наблюдается при высокой тропопаузе. Он преобладает, например, над Бальбоа (Панама, 9° с. ш.), о. Кантон (3° ю. ш.), Тривандрамом (Индия, 8° с. ш.) и Ла-Пасом (Боливия, 16° ю. ш.) [283].

Умеренный тип (тип В). Слой озона находится на меньшей высоте ($H_{\rm M} = 19 \ldots 21$ км) и имеет большее, чем при типа А, $p_{3\rm M}$ — до 190 нбар, изредка и более. Слой этот изменчивее, нередко имеет тонкую стратификацию и даже вторичный максимум p_3 непосредственно над тропопаузой. Величина X в слое значительно больше, чем при типе А, примерно 340 Д. Е. Она еще увеличивается к весне и убывает осенью.

Тип В преобладает в умеренном поясе — к северу и югу от 35° широты — и очень четко отличается от типа А. Он всегда связан с низкорасположенной полярной тропопаузой. Вертикальное распределение озона в нем хорошо изучено по данным наиболее известных обсерваторий в Арозе и Тальвилле (Швейцария), Боулдере (США), Бельске (ПНР) и т. д. Иногда не вполне правильно считают что их данные описывают «среднее ВР озона». Полярный тип (тип С). Слой озона расположен низко ($H_{\rm M} = 13...18$ км), очень мощный и часто состоит из нескольких более тонких слоев, дающих резкие изломы кривой $p_3(z)$. Среднее $p_{3\,\rm M}$ в нем до 200 нбар. Его структура связана обычно с тонкой стра-

Рис 43 Характерное вертикальное распределение озона при различных его типах Тип А о Кантон, 3°ю ш, 26 октября 1965 г, тип В Стерлинг (США), 39° с ш, 4 февраля 1965 г, тип С Бэрд (Антарктика), 80° ю. ш, 3 ноября 1964 г.

тификацией температуры (см. ниже), в частности с наличием вторичного максимума p_3 сразу над тропопаузой, в полярном воздухе довольно низко расположенной. Значение X при типе С велико, обычно X >400 Д. Е. и может иногда превышать даже 600 Д. Е.

Тип С преобладает в полярных зонах и описывается, например, данными зондирований озона над Фербенксом (Аляска, США) и обсерваториями Бэрд и Амундсен-Скотт в Антарктике. При нем слой озона может опускаться, как и тропопауза, очень низко, до 5-6 км, создавая при этом повышение p_3 в тропосфере.

Между типами В и С существуют различные переходные формы. При типах В и С, очевидно, гораздо больше роль динамических процессов, при которых распределение озона сильнее зависит от различий вертикальных и горизонтальных переносов.

Факт, что тропический тип отличается малыми p_3 и X и большим $H_{\rm M}$, а умеренный и полярный, наоборот, большими p_3 и X и малым $H_{\rm M}$, не означает, к сожалению, что существуют тесная (отрицательная) связь и высокие коэффициенты корреляции $r(X, H_{\rm M})$ и $r(X, p_{3\rm M})$, которые можно было бы использовать при прогнозе изменений озона. Малые ежедневные колебания p_3 , X и $H_{\rm M}$, наблюдаемые в данном пункте, затемняют те изменения, которые происходят там, например, при смене тропической и полярной воздушной массы.

Вертикальное распределение озона в тропосфере, содержащей в тропическом поясе 4... 8% (по данным А. Мани, даже до 10%), а в умеренном поясе более 10 % всего X, составит предмет особой главы этой книги.

§ 27. Среднее вертикальное распределение озона

Среднее ВР озона мы рассмотрим вначале по данным двух обсерваторий умеренного пояса — Хоэнпейссенберг (ФРГ, 48° с. ш.) и Стерлинг (США, 39° с. ш.). Над обеими обсерваториями преобладает тип распределения В, хотя порой тропические и арктические вторжения там заметно нарушают последнее.

На рис. 43 приведено среднее распределение озона над Стерлингом при наибольшем p_3 . В табл. 16 также указаны значения p_3 над Хоэнпейссенбергом в функции высоты z [147]. Тут и там во все месяцы года среднее p_3 в тропосфере немного повышается от уровня Земли вверх до высоты 2—3 км (до так называемой «пеплопаузы», см. [146]), т. е. существует довольно большой градиент $\partial p_3/\partial z$. Очевидно, в этом слое течет вниз поток озона, разрушающегося затем у поверхности Земли. Выше пеплопаузы p_3 в тропосфере несколько убывает с высотой, но отношение смеси $r_3 = 1,67 p_3/p$ все-таки растет и, следовательно, средний турбулентный поток озона направлен вниз.

Минимум p_3 достигается на высоте 7 . . . 10 км (около уровня 250 мбар). Выше происходит перелом градиента $\partial p_3/\partial z$ и начинается быстрый рост p_3 с высотой — непосредственно над тропопаузой, в нижней стратосфере.

Как мы уже упоминали, иногда на высоте 12-13 км появляется местный, вторичный, максимум озона. В данных табл. 16 он заметен даже в средних значениях p_3 в период между мартом и июнем.

На рис. 43 и в табл. 16 мы видим, что в феврале слой озона опускается ниже всего и высота $H_{\rm M}$ максимального $p_{\rm 3M}$ уменьшается

Таблица 16. Среднее годовое вертикальное	распределение парциального
давления озона р ₃ над Хоэнпейссенбергом	(ФРГ), 1967—1972 гг.
(338 подъемов озонозондов)	

z KM	I	II	111	IV	v	VI	VII	VIII	IX	х	λΙ	XII	Год
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\2\\4\\2\\5\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	$\begin{array}{c} 15\\ 20\\ 20\\ 20\\ 18\\ 17\\ 15\\ 15\\ 20\\ 27\\ 43\\ 55\\ 69\\ 86\\ 80\\ 98\\ 118\\ 140\\ 157\\ 177\\ 186\\ 179\\ 168\\ 144\\ 124\\ 106\\ 91\\ 58\\ 144\\ 124\\ 106\\ 91\\ 56\\ 48\\ 42\\ 25\\ \end{array}$	$\begin{array}{c} 14\\ 23\\ 23\\ 21\\ 19\\ 18\\ 16\\ 15\\ 19\\ 28\\ 51\\ 81\\ 92\\ 107\\ 119\\ 120\\ 133\\ 157\\ 167\\ 187\\ 192\\ 188\\ 177\\ 163\\ 148\\ 129\\ 112\\ 94\\ 82\\ 70\\ 61\\ 51\\ 45\\ 38\\ 39\end{array}$	$\begin{array}{c} 21\\ 27\\ 25\\ 25\\ 23\\ 21\\ 18\\ 17\\ 20\\ 31\\ 18\\ 17\\ 20\\ 31\\ 18\\ 103\\ 101\\ 104\\ 107\\ 122\\ 152\\ 170\\ 186\\ 189\\ 182\\ 170\\ 158\\ 141\\ 122\\ 106\\ 384\\ 79\\ 69\\ 60\\ 50\\ 426\\ 36\end{array}$	$\begin{array}{c} 18\\ 30\\ 30\\ 27\\ 25\\ 22\\ 19\\ 22\\ 31\\ 44\\ 68\\ 81\\ 90\\ 95\\ 103\\ 101\\ 125\\ 139\\ 170\\ 181\\ 180\\ 172\\ 163\\ 153\\ 140\\ 127\\ 114\\ 102\\ 93\\ 83\\ 74\\ 65\\ 57\\ 49\\ 39\\ 39\\ \end{array}$	$\begin{array}{c} 20\\ 32\\ 31\\ 308\\ 27\\ 25\\ 24\\ 23\\ 34\\ 54\\ 77\\ 91\\ 87\\ 83\\ 84\\ 110\\ 114\\ 122\\ 144\\ 157\\ 153\\ 134\\ 121\\ 114\\ 106\\ 97\\ 88\\ 80\\ 70\\ 62\\ 52\\ 43\\ \end{array}$	$\begin{array}{c} 21\\ 32\\ 31\\ 29\\ 28\\ 25\\ 24\\ 24\\ 26\\ 32\\ 53\\ 67\\ 79\\ 70\\ 80\\ 84\\ 7\\ 101\\ 105\\ 127\\ 145\\ 127\\ 145\\ 149\\ 144\\ 138\\ 131\\ 123\\ 116\\ 105\\ 94\\ 83\\ 74\\ 65\\ 53\\ 46\end{array}$	$\begin{array}{c} 17\\ 31\\ 30\\ 28\\ 27\\ 26\\ 22\\ 20\\ 23\\ 29\\ 40\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$	$\begin{array}{c} 23\\ 34\\ 32\\ 31\\ 29\\ 25\\ 25\\ 23\\ 24\\ 25\\ 32\\ 34\\ 37\\ 48\\ 51\\ 164\\ 87\\ 101\\ 116\\ 128\\ 133\\ 129\\ 139\\ 138\\ 133\\ 124\\ 115\\ 107\\ 96\\ 865\\ 61\\ 64\\ \end{array}$	$\begin{array}{c} 18\\ 27\\ 27\\ 26\\ 24\\ 22\\ 20\\ 18\\ 17\\ 18\\ 24\\ 29\\ 30\\ 37\\ 48\\ 61\\ 78\\ 91\\ 109\\ 120\\ 127\\ 128\\ 133\\ 130\\ 123\\ 115\\ 106\\ 98\\ 88\\ 77\\ 70\\ 63\\ 56\\ 50\\ \end{array}$	$\begin{array}{c} 17\\ 28\\ 27\\ 23\\ 19\\ 17\\ 16\\ 15\\ 13\\ 15\\ 20\\ 26\\ 34\\ 39\\ 54\\ 78\\ 97\\ 116\\ 123\\ 128\\ 132\\ 123\\ 131\\ 125\\ 120\\ 108\\ 95\\ 85\\ 77\\ 66\\ 566\\ 49\\ 43\\ 37\\ \end{array}$	$\begin{array}{c} 12\\ 20\\ 20\\ 18\\ 17\\ 15\\ 13\\ 12\\ 14\\ 19\\ 24\\ 27\\ 37\\ 43\\ 48\\ 69\\ 86\\ 101\\ 115\\ 127\\ 130\\ 138\\ 135\\ 134\\ 125\\ 115\\ 99\\ 84\\ 74\\ 64\\ 54\\ 41\\ 38\\ 25\\ 28\\ \end{array}$	$\begin{array}{c} 11\\ 18\\ 21\\ 20\\ 18\\ 16\\ 15\\ 14\\ 17\\ 22\\ 33\\ 42\\ 52\\ 66\\ 73\\ 90\\ 102\\ 115\\ 134\\ 143\\ 147\\ 151\\ 149\\ 144\\ 133\\ 117\\ 104\\ 87\\ 79\\ 67\\ 58\\ 50\\ 42\\ 39\\ 36\\ \end{array}$	$\begin{array}{c} 17\\ 26\\ 26\\ 25\\ 23\\ 21\\ 19\\ 18\\ 20\\ 26\\ 39\\ 52\\ 61\\ 67\\ 72\\ 81\\ 150\\ 145\\ 153\\ 155\\ 136\\ 124\\ 113\\ 100\\ 90\\ 80\\ 73\\ 60\\ 51\\ 43\\ 38\\ \end{array}$

над Хоэнпейссенбергом до 20,8 км, а над Стерлингом до 22,0 км. На этих высотах среднее $p_{3\,M}$ в обоих случаях 189 нбар. Заметим, что зимой и весной $p_{3\,M}$ в отдельных случаях может быть довольно высоким, как, например, над Флоридой 18 января 1965 г., где было $p_{3\,M} = 277$ нбар на высоте 21 км, и над Бедфордом в США на следующий день, 19 января 1965 г. ($p_3 = 298$ нбар на высоте 13 км).

Начиная с мая среднее значение $H_{\rm M}$ в северном полушарии заметно возрастает, а $p_{\rm 8M}$ убывает. К осени слой озона в умеренных широтах как бы приподнимается до 24 км и давление озона на уровне $H_{\rm M}$ уменьшается до 137 нбар в Хоэнпейссенберге. Возможно, что этот годовой ход свойств слоя озона зависит от появления при общем господстве типа В временами типа С зимой и типа А летом.

Средние кривые ВР над Бальбоа (Панама, 9° с. ш.) соответствуют приближенно характерным кривым для типа А (см. рис. 43). В тропической зоне и среднем всегда $H_{\rm M}$ около 26 км и $p_{3\,\rm M} = 136$ 139 нбар. Здесь круглый год, очевидно, и высота тропопаузы, и циркуляция атмосферы одинаковы, а соответственно постоянен и озон. Иногда $H_{\rm M}$ увеличивается до 28,2 км, как это наблюдалось, например, над Тривандрамом в Индии [310]. Лишь изредка тут случаются резкие разрастания слоя озона. Так, например, над Бальбоа 27 февраля 1963 г. ρ_3 увеличилось до 581 мкг·м⁻³ на высоте 24,9 км [283].

Наиболее велики различия озонного слоя летом и зимой в Арктике. Над Туле (76° с. ш.) зимой $H_{\rm M}$ уменьшается до 16 км и среднее $p_{3\rm M}$ возрастает до 207 нбар, а в отдельных случаях, как, например, 28 ноября 1964 г., до 262 нбар. Парциальная плотность озона ρ_3 над Туле достигала 27 февраля 1963 г. на высоте 15 км 795 мкг·м⁻³, а над Гус-Бей 8 декабря 1964 г. на высоте 17,7 км — рекордного значения 826 мкг·м⁻³ (при $p_3 = 313$ нбар).

Летом p_{3M} над Туле убывает в среднем до 173 нбар. Выше 25— 26 км (Дютш указывает в [214], что эта «высота обращения» довольно постоянна) сезонные различия p_3 меняют знак. Летом там p_3 больше в тропической зоне, чем в арктической. Это различие связано с так называемым эффектом Дютша (см. гл. VIII) — с переносом озона в верхней стратосфере из низких широт в высокие.

§ 28. Вертикальные разрезы p₃ и r₃

На рис. 44 представлен средний вертикальный разрез p_3 озона. отдельно для марта—апреля (сезон максимума озона в северном полушарии) и октября—ноября (сезон северного минимума) примерно до высоты 35 км. Разрез построен по данным всех наблюдений с помощью озонозондов и по эффекту обращения до 1970 г. [214].

В тропической зоне выделяется очень бедная озоном и вместе с тем высокая тропическая тропосфера, в которой везде $p_3 < 10$ нбар Над ней главный слой озона высоко приподнят (до уровня 21— 20 мбар). Значительно ниже (на уровне около 70 мбар в северном полушарии и около 80 мбар в южном) расположена ось главного слоя озона весной в умеренных широтах с $p_3 > 220$ нбар и $p_3 > 200$ нбар. В умеренных широтах тропосфера также богаче озоном ($p_3 > 20$ нбар), чем тропическая — под 40 . . . 50° широты существуют, как мы увидим ниже, как бы частичные прорывы верхнего озона в нижнюю атмосферу (см. гл. VI).

Ниже оси главного слоя горизонтальный градиент p_3 направлен к экватору (кроме околополярных районов с более сложным распределением p_3), а выше оси — к полюсу. Он указывает направление горизонтального переноса озона большими вихрями атмосферы, длинными волнами и т. д

Следует напомнить, что наблюдения эффекта обращения (без учета данных озонозондов) [146] дали гораздо меньшие значения

Рис 44 Вертикальный меридиональный разрез парциального давления p_3 озона в нанобарах [214] а) март-апрель, б) октябрь-ноябрь

*р*_{3 м} (например, всего 140 нбар весной в северной полярной области вместо 220 нбар на нашем разрезе). Это показывает, как существенно сглаживает ВР метод обращения.

Существенно иначе выглядит вертикальный разрез r_3 — отношения смеси озона, например, для северного полушария (рис. 45) [213]. Поскольку $r_3 = 1,67 \ p_3/p$, уменьшающееся с высотой давление воздуха p сильно сглаживает распределение r_3 . Максимум $r_3 > 8 \cdot 10^{-6}$ находится весь год на средней высоте около 32—33 км. Значения $r_3 > 5 \cdot 10^{-6}$ (такая концентрация озона уже весьма опасна для живых организмов) охватывают обширный слой атмосферы на высотах между 25 и 40 км от тропиков почти до самого полюса как осенью, так и весной. Лишь в нижней стратосфере граница области с $r_3 > 10^{-6}$ опускается в полярных широтах до p = 180мбар весной и всего до p = 120 мбар осенью. Вероятно, форму этой границы повторяют также изолинии меньших r_3 внизу в тропосфере, где r_3 постепенно убывает с приближением к поверхности Земли.

Рис 45 Вертикальный меридиональный разрез r₃ озона в млн-1 в северном полушарии [213]

Ниже оси области максимальных r_3 вертикальное перемешивание воздуха создает в среднем поток озона вниз, а выше нее — поток озона вверх. Вертикальный градиент $\partial r_3/\partial z$, направленный вниз, особенно велик на высоте около 25 км в низких широтах — в области сильной инверсии, где, вероятно, перемешивание слабое

В целом во всей атмосфере среднее $r_3 = 0.62 \cdot 10^{-6}$. Слой с высокими $r_3 > 6 \cdot 10^{-6}$ содержит не более 2 % всей массы атмосферы.

По разрезу p_3 можно оценить и среднюю температуру слоя озона. На уровне максимума p_3 в северном полушарии зимой в субарктической зоне температура эта около 213 К, летом — около 225 К, а в тропическом поясе — около 226 К. В умеренной зоне, например над Боулдером (США, 40° с. ш.), соответствующие температуры зимы 218 К и лета 223 К. Эти данные важны, в частности, для расчета фотохимических констант.

Нагревание (см. подробнее гл. IX), создаваемое в верхней стратосфере озоном, поглощающим ультрафиолетовую радиацию Солнца, достигает максимума на высоте около 47 км, где средняя температура доходит летом до 290 К. На этой высоте $p_3 \approx 1$ нбар и $r_3 < 3 \cdot 10^{-6}$.

Таким образом в стратосфере один над другим расположены максимум ρ_3 (22 . . . 27 км), максимум r_3 (32 . . . 33 км) и максимум нагревания атмосферы — 47 км. Поток ультрафиолетовой радиации, нагревающей озон и вместе с ним атмосферу, следовательно, между 32 и 47 км увеличивается с высотой очень существенно.

§ 29. Озонопауза и тропопауза

Еще в 1965 г. мы ввели понятие озонопаузы — уровня H_{on} , на котором резко меняется, возрастая как бы скачком, вертикальный градиент $\partial p_3/\partial z$. Тогда же мы обнаружили по данным около 450 подъемов озонозондов в Северной и Южной Америке, в Антарктике и на Тихом океане очень четкую и тесную зависимость между высотой озонопаузы H_{on} и высотой тропопаузы H_{TP} .

Мы нашли, что в умеренных и полярных широтах, включая обсерваторию Амундсен-Скотт на Южном полюсе, озонопауза находится обычно ниже тропопаузы и разность $\Delta H = H_{on} - H_{tp} < 0$. В среднем там летом $\Delta H = -0,29$ км. Наоборот, в тропическом поясе (обсерватории в Бальбоа и на о. Кантон) обычно $\Delta H > 0$ и летом в среднем $\Delta H = +0,58$ км. В частности, при зондировании в Бальбоа 27 февраля 1963 г. было $\Delta H = +1,02$ км [283].

Несколько позднее, в 1969 г., Шимизу показал, что над обсерваторией Сёва в Антарктике весь год $\Delta H < 0$ и в среднем $\Delta H = -1,25$ км.

Эти выводы уточнила Г. Ф. Иванова в 1972 г., использовав [55] материал 1220 зондирований над Северной Америкой от Бальбоа до Туле (9...76° с.ш.). Большая часть ее данных, однако, относилась к умеренной зоне. В результате было обнаружено преобладание отрицательных ΔH (56,5% случаев). Средние ΔH не вычислялись.

Положительные ΔH — озонопауза, приподнятая над тропопаузой, — оказались, как и по нашим расчетам, преобладающими в тропическом поясе до 35° широты (рис. 46) (над Бальбоа одинаково во все сезоны). Наоборот, в высоких широтах во все времена года озонопауза была опущена ниже тропопаузы. Особенно интересны на рис. 46, конечно, промежуточные области наслоения двух тропопауз (явления, известного давно) и двух соответствующих озонопауз (явления, описанного впервые).

Таким образом, в тропических широтах слой озона как бы приподнят (над тропопаузой) восходящим движением воздуха, а в высоких широтах опущен нисходящими течениями. Вероятно, при медленных вертикальных движениях воздуха озон более консервативен, чем распределение температуры. Лучистое равновесие поддерживает тропопаузу на сравнительно постоянной высоте, так что и воздух, и озон могут как бы течь сквозь нее. Г. Ф. Иванова обнаружила и довольно тесную корреляцию изменений H_{on} и $H_{\tau p}$ над одной и той же обсерваторией, при $\varphi > 40^{\circ}$, с коэффициентами корреляции 0,57 . . . 0,93 зимой и весной и 0,69 . . . 0,97 летом и осенью.

В [55] построены также кривые сезонного хода величин H_{on} и $H_{\tau p}$ для отдельных обсерваторий США. Упомянутые выше раз-

Рис 46 Широтное распределение высот озонопаузы H_{on} (1) и тропопаузы H_{T} (11) над Северной Америкой По [55]

a -зима, 6 -весна, e -лето, e -осень 1 -Бальбоа, 2 -Гранд Терк, 3 -Таллахасси, 4 -Нью Мексико, 5 -Форт Коллинс, 6 -Бедфорд, 7 -Грин Бей, 8 -Сиэтл, 9 -Гус Бей, 10 -Черчилл, 11 -Фербенкс, 12 -Туле

личия ΔH в тропической зоне и высоких широтах велики зимой и весной и малы летом. Летом, вероятно, предполагаемая вертикальная циркуляция озона существенно ослабевает.

По данным обсерватории Хоэнпейссенберг (ФРГ) за 1967... 1971 гг., в 132 случаях было $\Delta H < 0$, в 130 случаях $\Delta H = 0$ и в 32 случаях $\Delta H > 0$, как в тропическом воздухе. В среднем для первых двух групп наблюдений $\Delta H = -0,43$ км [248].

Над Антарктидой, как показала Г. У. Каримова [64], обычно $\Delta H < 0$ и в среднем над обсерваторией Амундсен-Скотт $\Delta H =$

= -0,35 км, над обсерваторией Бэрд $\Delta H = -0,25$ км и над базой Сёва $\Delta H = -0,88$ км. Случаются и гораздо большие ΔH Например, 2 сентября 1964 г. над ст. Амундсен-Скотт было $H_{\rm rp} = 11,2$ км, а $H_{\rm on} = 8,0$ км, 16 сентября 1970 г. над ст. Сева соответственно 12,2 и 8,1 км.

Г. У. Каримова, правда, сомневается в том, что высокая концентрация озона в тропосфере в темный период года может быть связана с опусканием воздуха из стратосферы Вместе с тем она приводит расчет скоростей нисходящих движений, которые достигли над базой Сёва значений 0,83...1,50 см·с⁻¹ 7 сентября 1968 г, когда там озонопауза «размылась» [63].

Заметим тут, что существование резкой озонопаузы говорит, вероятно, о большом коэффициенте турбулентности K_z (либо больших вертикальных скоростях) в тропосфере по сравнению со стратосферой. Действительно, поток озона $Q = -K_z \frac{\partial \rho_3}{\partial z}$ должен быть приблизительно одинаков и тут и там, т. е. $K_z \operatorname{crp} \ll K_z \operatorname{тр}$

§ 30. Вторичный максимум в вертикальном распределении озона

Неоднократно обращал на себя внимание вторичный максимум в вертикальном распределении озона, расположенный ниже главного максимума, обычно на высоте 12—13 км. Он довольно типичен для умеренных широт, в особенности зимой и весной (см. рис. 43, тип В), и сильнее выражен в циклонических условиях. Реже он отмечается в субтропических широтах и антициклонических ситуациях В арктическом воздухе с его низким слоем озона оба максимума нередко как бы сливаются.

Вторичный максимум весьма изменчив. Так как он не может быть вызван фотохимическими причинами, было сделано много попыток найти ему динамическую причину. По Дютшу, «седло», разделяющее главный и вторичный максимумы,— след распространяющейся в сторону полюса тропической тропопаузы. Это значит, что две вершины кривой p_3 (z) определяются наслоением тропической и полярной воздушных масс. Хартманнсгрубер [247] описал 28 случаев, когда вторичный максимум появлялся над ФРГ. Он нашел, что большей частью за этим наступало длительное потепление в тропосфере — относительные топографии слоев атмосферы OT_{500}^{700} , OT_{1000}^{700} к 4-му дню (после появления максимума) увеличивались на 14%.

Кальво-Каналес [173] сопоставил профили ВР, наблюдавшиеся над Валь-Жуайе во Франции в течение 15 месяцев в 1963—1964 гг., с синоптическими положениями. Он предположил, что наличие двух максимумов p_3 — главного на 22... 25 км и вторичного нижнего, примерно в 3 раза более слабого, — связано с антициклоном с центром над Восточной Европой. Такая ситуация приводит к вторжению во Францию 3—4 дня спустя юго-западного потока воздуха, распространяющегося вместе с атлантической депрессией.

Низкий и мощный вторичный максимум озона, по Кальво-Каналесу, появляется, когда над Центральной Европой находится мощный (*p*>1030 мбар) антициклон и т. д. Вероятно, если антициклон — область упорядоченных нисходящих движений — захватывает и стратосферу, то нисходящее движение в слое над тропопаузой может объяснить значительное накопление озона.

Возможно, однако, прав Хартманнсгрубер, считающий, что еще не пришло время прогнозов погоды по данным отдельных зондирований озона.

§ 31. Тонкая структура слоя озона

Зондирования с хемилюминесцентными и электрохимическими озонозондами обнаруживают почти всегда тонкую структуру слоя озона — более или менее тонкие слои, в которых p_3 резко уменьшается и увеличивается и кривая ВР имеет зубцы. Современные безынерционные хемилюминесцентные датчики для озонозондов и ракет могут, как полагают, давать вертикальное разрешение таких неоднородностей в 5...10 м и даже менее.

Тонкая структура гораздо чаще наблюдается в нижней части слоя озона, чем в верхней, и чаще в умеренных и полярных широтах (рис. 47), чем в тропических, где зубцы на кривой ρ_3 (z) появляются весьма редко.

Сравнивая кривые ВР озона и температуры, мы почти всегда можем обнаружить в них своего рода соответствие, хотя в стратосфере изломы на кривой температуры малы. Обычно под инверсиями температуры, даже слабыми и тонкими, ρ_3 сильно убывает.

Характерный пример связи тонкой структуры стратификации озона и температуры приведен на рис. 47. Вершины малых стратосферных инверсий расположены на уровнях 73, 109, 138, 231 мбар, а в тропосфере — на уровне 580 мбар. Под каждой из них имеется слой с резко пониженным p_3 , в особенности под инверсиями 109 и 138 мбар в нижней стратосфере.

Этот вывод можно несколько обобщить. В слое между тропопаузой и главным максимумом озона каждый слой, в котором p_3 уменьшается с высотой на 20 нбар и более, обычно бывает связан с небольшой инверсией над ним. Возможно, что эта последняя ослабляет перемешивание в атмосфере и задерживает распространение озона сверху вниз (его конвекцию), уменьшая p_3 под инверсией.

Или же можно считать, что p_3 повышается и слабая инверсия образуется при наклонно-нисходящем притоке воздуха вдоль изэнтропической поверхности издалека, из слоя, более богатого озоном, при адвекции озона.

Так, например, Х. У. Дютш [214], рассматривая зондирования озона 30 января 1963 г. над Форт-Коллинсом (США) и затем над

Черчиллом (Канада), к которому была направлена линия тока от Форт-Коллинса, нашел, что нисходящее наклонное движение при этом опустило частный максимум на кривых p_3 с 132 мбар над Форт-Коллинсом до 230 мбар над Черчиллом и другой такой максимум — с 251 до 383 мбар, одновременно заметно обострив эти экстремумы.

Г. У. Каримова [64] связала максимумы на кривых p_3 , наблюдавшиеся 18 и 19 мая 1965 г. над обсерваторией Амундсен-Скотт

Рис. 47. Распределение озона и температуры над Стерлингом (США). 17 января 1964 г.

на уровне 400... 350 мбар (в тропосфере) и над обсерваторией Бэрд (отстоящей от первой на 1100 км) на уровне 450... 350 мбар, с притоком воздуха с севера. С помощью синоптической карты обнаружилось, что такой приток теплого морского воздуха произошел в области гребня. В последующем озон из этого слоя распространился в тропосфере вниз, создав повышенное его количество у поверхности Земли — до 56 нбар на ст. Амундсен-Скотт и до 42 нбар на ст. Бэрд. Г. У. Каримова полагает, однако, что прямой конвективной связи озона стратосферы и тропосферы, возникающей при провале или исчезновении тропопаузы, не бывает.

Несомненно, тонкую стратификацию озона, образование местных слоев повышенного или пониженного p_3 нельзя объяснить ни фотохимическими факторами, ни аэрозолем. По Л. С. Ивлеву, гетерогенный распад озона на малых частицах может привести к убыванию p_3 всего на 0,1—2,0 %.

Если в слое атмосферы толщиной ΔH , расположенном, например, под устойчивой инверсией, достигнуто полное перемешивание, то отношение смеси озона r_3 должно выровняться во всем слое, и на озонограмме этот участок кривой пойдет параллельно кривой $r_3 = \text{const}$, косо поднимающейся влево. Налицо будет соответствующее убывание p_3 вверх ($\partial p_3/\partial z < 0$) в этом слое. Если над ним, в инверсии, p_3 не изменится, то непосредственно под инверсией возникнет «провал» p_3 .

В слое между озонопаузой и уровнем главного максимума p_3 , где в общем $(\partial p_3/\partial z) > 0$, неодинаковые величины K_z и различная длительность перемешивания t могут дать различные формы таких провалов, кривые $p_3(z)$ будут заметно меняться со временем. В верхней части слоя озона в верхней стратосфере, где обычно $(\partial p_3/\partial z) < 0$, эффект перемешивания должен быть слаб.

Как известно из теории слоистообразных облаков, возникающих при перемешивании влажного воздушного слоя ограниченной толщины, время t выравнивания отношения смеси в таком слое толщиной ΔH равно

$$t \approx 3 \left(\Delta H \right)^2 / K_z \pi^2. \tag{31.1}$$

При $K_z = 2 \text{ м}^2 \cdot \text{c}^{-1}$ — значении, типичном для стратосферы, при $\Delta H = 100 \text{ м}$ время *t* около получаса. Сходные особенности в слое озона, например слои с $(\partial p_3/\partial z) < 0$, могут, следовательно, возникать очень быстро.

Однако наблюдающиеся иногда слои с таким быстрым убыванием p_3 вверх, что в них и r_3 убывает, не могут быть объяснены конвекционным перемешиванием. Следует помнить также, что когда слой толщиной ΔH , вклинивается адвекцией между слоями с существенно иными значениями p_3 , то за время t, определенное в (31.1), перемешивание разрушит (размешает) этот слой. Так, например, при $K = 2 \text{ м}^2 \cdot \text{с}^{-1}$ слой толщиной 400 м должен разрушиться за 6 ч, если процесс адвекции не будет его поддерживать. Только сравнительно толстые слои с $\Delta H > 0,5$ км могут жить несколько суток и растекаться горизонтальными движениями воздуха на сотни километров.

§ 32. Сезонные изменения вертикального распределения озона

Результаты регулярных озонных зондирований в Боулдере (США), Тальвилле (Швейцария) и Хоэнпейссенберге (ФРГ) детально характеризуют годовой ход вертикального распределения озона в умеренных широтах. По нему можно судить отчасти о процессах, управляющих изменениями озона в различных его слоях [218, 219, 248]. В тропосфере (рис. 48) [219] от уровня Земли до высоты 7—8 км (около 400 мбар) p_3 озона наибольшее летом, так же как и p_3 приземного озона (см. гл. VI). Иногда полагают, что и обмен воздухом между тропосферой и стратосферой в это время самый сильный.

Минимум p_3 в тропосфере приходится на ноябрь или декабрь, тоже аналогично приземному озону. Если обозначить через p'_3

Рис. 48 Годовой ход парциального давления озона p_3 на уровнях от 300 мбар ($z \approx 9$ км) до 10 мбар ($z \approx 31$ км) над Цюрихом (Швейцария) По [219]

ону. Если обозначить через p'_3 давление озона в месяц его максимума н через p''_3 — в месяц минимума (на данной высоте), то отношение $A = 2 (p'_3 - p_3)/(p_3 +$ $+ p_3)$ — относительная величина годовых различий p_3 — велико, больше 100 % в самой нижней тропосфере и существенно ослабевает в более высоких слоях, где $A \approx 50 \dots 60$ %.

С высоты KM 9 (уровень 300 мбар, см. рис. 48) максисразу смещается MYM p_3 на апрель, а еще несколько выше (до 25 км) — на март и февраль, минимум — на сентябрь или окт**я**брь. Такой годовой ход определяет ход общего содержания озона (см. гл. VII) максимумом поздней зимой или ранней весной. Он объясняется притоком озона в верхней стратосфере из низких шипостепенным оседанием рот И опускающимся его вместе С воздухом в более высоких широтах в течение всей зимы. Кривые годового хода p_3 в слоях ниже p = 50 мбар (см. рис. 48) ясно обнаруживают этот общий зимний максимум. Его резкость наибольшая (140 %) приблизительно на уровне 200 мбар ---

существенно ниже уровня наибольшего p_3 . Отсюда вверх резкость непрерывно убывает, т. е. годовой ход p_3 ослабевает и выравнивается.

Начиная с высоты 26 км (в Боулдере с уровня 24 мбар, т. е. с 25,3 км, над Тальвиллем — с 19 мбар, т. е. с 26,8 км)¹ максимум

¹ Здесь и везде ниже для перевода давления воздуха *р* в высоту *2* использована стандартная (и справочная) атмосфера.

 p_3 переходит на июль, как того требовала бы по простой фотохимической теории зависимость p_3 и N_3 от нарастающей летом суммы радиации I_2 . Здесь налицо либо преобладание фотохимических процессов над динамическими, либо существенное уменьшение фотохимического времени релаксации т. Последнее, очевидно, становится тут заметно меньше времени динамических изменений поля озона, измеряемых 2—3 месяцами «Динамический» весенний максимум заметен как вторичный и на больших высотах, по крайней мере до 30 км (10 мбар).

Минимум озона в слоях выше 25 км приходится на ноябрь, он опережает по невыясненной еще причине минимум радиации

Поскольку система фотохимических реакций на высотах более 25 км зависит еще и от температуры, это объяснение годового хода озона верхней стратосферы фотохимическими эффектами весьма предварительное.

§ 33. Изменчивость вертикального распределения озона

Изменчивость величины p_3 ото дня ко дню весьма различна на различных уровнях, и знание ее важно прежде всего для прогноза озона.

На рис 49 представлено вертикальное распределение среднего квадратического отклонения $\sigma(p_3)$ в различные «озонные» сезоны по данным 182 зондирований над Потсдамом (ГДР) в 1967... 1971 гг, обработанным Д Шпенкухом и В. Делером [395]. Величина $\sigma(p_3)$ невелика в тропосфере и быстро возрастает в стратосфере до максимума на высоте 12...15 км, заметно ниже главного максимума p_3 . В январе—марте при западной стратосферной

Рис 49 Среднее квадратическое отклонение σ (p_3) давления озона и относительная изменчивость $\sigma p_3/p_3$ над Берлином 1967.. 1971 гг По [395]

циркуляции с ее многими возмущениями величина $\sigma(p_3)$ наибольшая, а летом, в мае—сентябре (в период восточной стратосферной циркуляции) — наименьшая, когда озон везде устойчивее, чем зимой и весной. Максимум относительной изменчивости $\sigma(p_3)/p_3$ располагается еще несколько ниже максимума $\sigma(p_3)$.

И абсолютная и относительная изменчивость p_3 выше уровня 15—16 км быстро убывают вверх. На уровне главного максимума p_3 умеренной широтной зоны (около 21 км) σ (p_3) в 2—3 раза меньше, чем в нижней стратосфере. Стабилизация озона происходит в средней стратосфере в начале лета с установлением восточной циркуляции и постепенно оттуда распространяется вниз. Аналогично усиленная изменчивость озона возникает в октябре в слоях выше 100 мбар (примерно 16 км) и в следующие месяцы также как бы волной распространяется вниз [214]. С установлением зимнего типа западной циркуляции, развитием длинных волн, циклонов и т. д. быстрые колебания давления озона p_3 в средней стратосфере редки [213] и, как полагает Дютш, связаны лишь с такими крупномасштабными явлениями, как стратосферные потепления или значительные горизонтальные перемещения масс воздуха.

§ 34. Мезосферный озон

Поскольку в мезосфере процессы образования озона заметно отличаются от стратосферных и в то же время наблюдения его ведутся иными методами и результаты их довольно разрозненны, мезосферный озон следует рассматривать особо.

В стратосфере озон очень мало различается днем и ночью: количество N_1 атомов О в 1 см³ незначительно по сравнению с концентрацией N_3 молекул озона О₃. После захода Солнца вскоре О там почти весь переходит в озон, процессы разрушения и образования последнего таким образом «замораживаются» и ВР озона не меняется. Здесь, согласно гл. III,

$$N_3 \sim (N_2)^{3/2}$$
. (34.1)

Наоборот, в мезосфере выше 55 км N_1 уже превышает N_3 . Атомарный кислород О в течение ночи там постепенно исчезает, на высотах до 73 км быстро, выше — медленнее, образуя значительное количество озона. Убывание N_1 происходит тут также и благодаря реакции тройного столкновения $O + O + M \rightarrow O_2 + M$, которая несущественна для теории озона нижней стратосферы, поскольку в последней N_1 малó. В простейшем случае — для сухой атмосферы — фотохимические уравнения записываются в виде:

$$\frac{dN_1}{dt} = 2I_2N_2 + I_3N_3 - k_2N_1N_2^2 - k_3N_1N_3 - 2k_1N_1^2N_2,$$
$$\frac{dN_3}{dt} = -I_3N_3 - k_3N_1N_3 + k_2N_1N_2^2, \qquad (34.2)$$

где в константах тройных столкновений k_1 и k_2 учтено наличие в качестве третьих частиц М вместе с кислородом O_2 также и четверного количества азота [214].

При учете всех членов, зависящих от N_1 , выше 70 км дневные концентрации О и О₃ по (34.2) оказываются заметно меньше, чем они были бы в равновесном состоянии. Ночные изменения в ходе этих реакций создают в течение всех суток существенную неравновесность как атомарного кислорода, так и озона.

Рис 50 Рассчитанное по классической кислородной теории вертикальное распределение концентрации озона и атомарного кислорода для широты 45° выше 48 км. По [214]

Распределения для лета обозначены индексом «л» для зимы — индексом «з» Сплошные линии — равновесное распределение в полдень штриховые — то же при учете неравновесности реакций пунктирные линии — распределение в конце ночи

Согласно (34.2), после захода Солнца N_3 резко возрастает, как уже сказано, за счет убывающего атомарного кислорода. На высоте 80 км, например, это возрастание должно достигать полутора порядков. Как видно из рис. 50, на высоте около 75 км теоретически так должен возникать вторичный максимум озона с концентрацией N_3 около 10^{11} см⁻³ зимой и $3 \cdot 10^{11}$ см⁻³ летом.

Из второго уравнения (34.2) также видно, что ночью, когда $I_3 = 0$ (фотодиссоциация озона прекращается) растущее N_3 $(dN_3/dt>0)$ не может стать больше, чем $k_2N_1N_2^2/k_3N_1$, т. е.

$$N_3 \leqslant \frac{k_2}{k_3} N_2^2, \tag{34.3}$$

и поэтому выше слоя максимума N₃ должно быстро убывать с высотой, приблизительно как квадрат плотности воздуха (см. рис. 50). Более совершенной и современной является, конечно, «влажная» теория мезосферного озона, учитывающая его реакция с молекулами HO, H₂O и HO₂. Опыт такой теории для влажной мезосферы дали в 1972 г. Джордж с сотрудниками [237].

Рассчитанное так ВР озона для широты 30° (в равноденствие, в полночь либо в момент восхода Солнца) имело во всех случаях вторичный максимум озона на высоте $H_{\rm M2} = 80 \dots 85$ км, где плотность озона $N_{\rm M2}$ была $(2 \dots 8) \cdot 10^8$ см⁻³. Значения $H_{\rm M2}$ и $N_{\rm M2}$ при этом несколько увеличивались с повышением турбопаузы, т. е. зависели от явления перемешивания в мезосфере. Для широты 58,7° (зима) эта модель предсказала лишь замедленное падение N_3 (малое dN_3/dz) выше 70 км.

К сожалению, мы очень мало знаем об истинной влажности воздуха мезосферы — величине, на которой основаны такие модели. Теоретически анализ данных зондирований озона мезосферы надо вести раздельно:

а) до высоты 55 км, где, согласно (34.1), $N_3 \sim N_2^{3/2}$;

б) выше 55 км, где N_3 меняется от дня к ночи и вместе с тем быстро убывает с высотой.

Мы уже приводили в [127] наблюдения А. Крюгера на Гавайских островах (22° с. ш.), сделанные с оптическим озонозондом и доложенные на симпозиуме в Монако в 1968 г. Для интервала высот 38...52 км, соответствующего условию «а», Крюгер вывел эмпирическую формулу для ВР плотности озона в мкг·м⁻³, которую можно записать в виде

$$\rho_3(z) = 51,4\exp\left(-\frac{(z-40)}{4,2}\right).$$
(34.4)

Согласно (34.4), на уровне 40 км ρ_3 (40) = 51,4 мкг·м⁻³ и шкала высот H_3 для этой части слоя мезосферного озона равна 4,2 км. При распределении (34.4) содержание озона выше 40 км около 0,010 см, т. е. около 3 % от X. Это значит, что мезосферный озон составляет лишь малую долю всего озона атмосферы.

В докладе Андерсона с сотрудниками [137] по параллельным наблюдениям озона ракетным озонозондом и со спутника были определены $p_3(40) = 64$ мкг·м⁻³ и $H_3 \approx 3,7$ км. Позднее наблюдения обоими этими методами 18 июня 1978 г. дали $\rho_3(40) =$ = 61 мкг·м⁻³ и $H_3 = 4,8$ км. В 1972 г. А. Крюгер смог уже доложить результаты 21 ракетного зондирования озона [288] в районе от 58° ю. ш. до 64° с. ш. за 1965... 1971 гг. В среднем они дали $\rho_3(40) = 54$ мкг·м⁻³ и $H_3 = 4,25$ км в интервале высот 40... 52 км во всех широтах.

Приведенные в докладе В. И. Конькова и С. П. Перова [284] на симпозиуме в Дрездене в 1976 г. данные хемилюминисцентных озонозондов, выпускавшихся в 1975 над Волгоградом, на высотах 40... 57 км обнаружили $H_3 = 4,53$ км при ρ_3 (40) = 130 мкг·м⁻³.

Таким образом, в интервале высот 40...55 км эти различные по методу наблюдения дали близкие значения плотности озона

 ρ_3 на исходной высоте 40 км и близкие значения H_3 , несколько меньшие теоретической, которая согласно (34.1) должна быть приблизительно 5,1 км. Что касается высот более 55 км, где теория предсказывает возможное появление вторичного максимума озона, то данные наблюдений тут весьма малочисленны.

В. Рид в 1968 г. наблюдал значительный вторичный максимум озона, с N₃ – 4.10¹⁰ на небольшой сравнительно высоте (около 60 км), который, по-видимому, нельзя связать с упомянутыми выше предсказаниями теории. Наблюдения Дж. Карвера [176], сделанные в 1967 ... 1972 гг. по ультрафиолетовой радиации Луны, Хилсенрата [258] и Тайсона [406], использовавшие радиацию Солнца в области λ == 215 нм, охватили лишь слой до 68 . . . 70 км. Более интересны для этого данные У. Эванса и Э. Ллевеллина, наблюдавших [223] полосу излучения озона $\lambda = 1,27$ мкм в утренние и вечерние сумерки и обнаруживших в слое 80 . . . 95 км увеличение N , до 2.108. С ними согласуются и результаты наблюдений Робла и Хейса за оккультацией звезд, полученные с помощью прибора на Орбитальной астрономической обсерватории (ОАО-2). Из 11 таких наблюдений Робл и Хейс [379] нашли, что существует «пик» озона с $N_3 = (1 \dots 3) \cdot 10^8$ на высоте около 83 км и минимум N 3 на высоте 75 км. Изменения озона в этой области высот не обнаружили какой-либо зависимости от сезона или времени суток.

Более слабый ночной максимум озона с $N_3 = 1,8 \cdot 10^8$ на высоте 96 км по наблюдениям оккультации звезд с ОАО-3 в две ночи 1975—1976 гг. обнаружил Риглер [399]. Данные дневных наблюдений Мартини [198] с ракеты М-100 и Липперта с помощью спутника «Интеркосмос-11» не обнаружили до высот 85 км каких-либо характерных особенностей ВР мезосферного озона.

Недавно (в феврале 1975 г.) Х. Пенфильд [317] по наблюдениям вращательной линии излучения озона с $\lambda = 2,71$ мм (f = 110,8 ГГц) смог изучить профили ВР озона днем и ночью в слое 50 . . . 80 км. Выяснилось, что выше 50 км содержание озона в течение 50 мин после восхода Солнца уменьшается вдвое, достигая в конце этого интервала времени 10¹⁶ молекул см⁻². Это значит, что выше 50 км меется всего 0,37 Д. Е. озона—в 2,5 раза меньше, чем предсказывает формула (34.4). Это экспериментальное доказательство — хотя и единичное — дневного убывания озона в мезосфере очень важно Оно показывает, что время релаксации озона там очень невелико, и что озон в мезосфере должен находиться в состоянии фотохимического равновесия.

§ 35. О прогнозе вертикального распределения озона

Поскольку для авиации ближайшего будущего понадобится прогноз плотности ρ_{3i} (или парциального давления p_{3i}) озона на высоте z_i полета (эшелона), возникли многие попытки прогнозировать или давать диагноз p_{3i} по косвенным данным.

В 1968 г. Р. Божков [157] для этой цели рассмотрел около 8500 наблюдений ВР озона по методу обращения вместе с его X за 1956 . . . 1966 гг. Он показал, что, например, при сравнительно высоком X в умеренных и полярных широтах (см. табл. 17) коэффициент корреляции между X и p_3 достигает в III слое (125 . . . 62,5 мбар) значений 0,90 . . . 0,96, а в более низких широтах коэффициент корреляции $r(X, p_3)$ в IV слое (62,5 . . . 31,2 мбар) составляет 0,74 . . . 0,89 Это значит, что диагноз $p_3(z)$ в III слое; а также в ближайших более низких слоях по известному X возможен. На больших высотах, однако, $r(X, p_3)$ убывает и бесполезно для диагноза. Корреляция между различными слоями зимой лучше, чем летом.

Таблица 17. Коэффициент корреляции между X и p₃ (г) в различных частях слоя озона. Январь — август. По Р. Божкову [157]

Слой	Павление воздуха.		¢ == 36	¢ — 70	φ==24°	
	мбар	I1I	11-111	VH-VIII	Год	Год
H III IV V	250125 12562,5 62,531,2 31,215,6 ХД F	$0,89 \\ 0,87 \\ 0,77 \\ 0,40 \\ 335$	$0,87 \\ 0,84 \\ 0,69 \\ 0,29 \\ 350$	$0,48 \\ 0,47 \\ 0,61 \\ 0,73 \\ 270$	$0,94 \\ 0,97 \\ 0,88 \\ 0,50 \\ 344$	$0,19 \\ 0,45 \\ 0,74 \\ 0,54 \\ 245$

В новейшее время с этой точки зрения Шпенкух и Делер [395] изучили корреляцию p_{3i} и температуры T_i по данным 182 зондирований над Берлином в 1967 . . . 1971 гг. Использовались отсчеты p_3 на 46 уровнях z_i и T_i на 50 уровнях в слое 1000 и 6 мбар. Обнаружилась (см. также § 33) хорошая отрицательная корреляция между p_3 в слое примерно 350 . . . 30 мбар (8 . . . 23 км) и температурой тропосферы.

Идея составлять прогноз $p_3(z)$ по большему числу предикторов (например, по температуре на многих уровнях), однако, мало перспективна, поскольку предикторы тесно связаны друг с другом. Кроме того, очевидно, что такой прогноз p_3 годен лишь для ситуаций, «перебранных» при расчете r (например, в использованных в [395] 182 подъемах), а полон ли такой перебор, решить трудно.

Иную оценку можно дать использованию хорошей положительной корреляции (до +0,76 над Берлином) между озоном и температурой, начиная с уровня 14 мбар ($z \approx 28,5$ км), в январе—апреле—с уровня 17 мбар ($z \approx 27,5$ км). Ее же подтверждают озонные зондирования в Хоэнпейссенберге (ФРГ) в 1967...1972 гг., где коэффициент корреляции средних месячных p_3 и T достигает +0,63, а единичных их значений—до +0,80. Эта корреляция описывает нагревание верхней части слоя озона поглощаемой им ультрафиолетовой радиацией Солнца. Ее можно использовать и для оценки имеющейся на высотах более 28 км концентрации озона.

тропосферный озон. Общие замечания

Озон тропосферы — в особенности озон приземного слоя воздуха — один из важных элементов окружающей среды, в которой живет человек и растут возделываемые им культуры. Содержание озона в воздухе тропосферы в общем незначительно. Порой, однако, вследствие деятельности человека оно нарастает и становится опасным для живой природы.

С другой стороны, теория нам говорит, что вблизи поверхности Земли (и океана) озон активно разрушается — здесь находится главный сток озона. Таким образом, просачивание озона из его источника — стратосферы — и накопление его в приземном слое, зависящее от скорости разрушения, оказываются звеньями общего цикла озона.

Вероятно, фотодинамическая теория приземного слоя озона должна быть гораздо сложнее, чем для стратосферы, в особенности теория явлений загрязненного воздуха.

§ 36. Общее вертикальное распределение озона в тропосфере

Чтобы связать основные представления о тропосферном и стратосферном озоне, мы рассмотрим сначала самые общие черты его вертикального распределения (ВР) в тропосфере в целом. Лишь после этого мы перейдем к свойствам озона в тех слоях, которые непосредственно прилегают к поверхности суши либо океана.

В табл. 18 приведено среднее ВР давления озона p_3 и его отношения смеси $r_3 = 1,657 \ p_3/p$ на уровнях $p = 900 \dots 300$ мбар над тремя обсерваториями в умеренном климатическом поясе.

Таблица составлена по данным подъемов электрохимических озонозондов: 726 подъемов в Пайерне, 294 — в Тальвилле и 495 — в Боулдере [216, 219].¹

Таблица 10 показывает, что в нижней стратосфере — точнее, в пограничном слое — величина p_3 несколько возрастает с высотой (в особенности в зимние месяцы) и затем это возрастание сменяется

¹ Величины p₃ в этих таблицах для уровней 900 и 800 мбар нельзя непосредственно сравнивать с приведенными ниже данными для приземного слоя, поскольку эти уровни существенно выше поверхности Земли в указанных пунктах.

таолица	10			годовой	ход вертикал	shoro pacipe		
Уровень. мбар	I	II	III	IV	N	VI		
Пайерн (Швейцария 47 с ш, 490 р ₃ нб								
900 800 700 600 500 400 300	17,00 22,20 21,51 19,33 16,16 13,82 14,57	24,18 25,11 23,66 21 40 18,95 15,55 19,02	28,25 28,80 26,58 24,26 21,64 17,64 23,48	35,34 35,96 32,22 28,99 25,22 2 ¹ ,24 25,16	37,82 35,91 32,97 30,36 25,76 22,61 22,09	37 73 34,92 33,23 30,84 28,71 25,32 25,87		
900 800 700 600 500 400 300	31,30 45,98 50,91 53,39 53,55 57,24 80,47	44,51 52,00 56,00 59,11 62,80 64,41 105,05	52,01 59,64 62,91 67,01 71,71 73,06 129,68	65,06 74,47 76,26 80,07 72,91 87,98 138,96	69,63 74,37 78,04 84,41 85,33 93,65 122,00	r ₃ , 10 69,46 72,32 78,65 85,18 95,14 104,88 142,88		
				Тальвилл	њ (Швейцари	ия, 47° с ш,		
900 800 700 600 500 400 300	$13,04 \\ 19,57 \\ 19,30 \\ 17,52 \\ 14,87 \\ 13,65 \\ 13,96$	$17,38 \\ 20,00 \\ 20,67 \\ 18,67 \\ 16,24 \\ 13,67 \\ 12,29$	$\begin{array}{c} 22,58\\ 26,42\\ 23,50\\ 21,38\\ 18,65\\ 15,04\\ 21,38\end{array}$	27,26 33,22 30,65 28,70 24,61 22,48 28,52	32,00 33,28 30,28 29,60 23,40 19,92 17,80	$\begin{array}{c c} & \mu_3 & \mu_{04} \\ & 37,79 \\ & 35,17 \\ & 33,33 \\ & 30,92 \\ & 27,54 \\ & 27,00 \\ & 29,21 \end{array}$		
						r ₃ , 10-4		
900 800 700 600 500 400 300	24,01 40,53 45,68 48,39 49,27 56,55 77,11	32,00 41,42 48,92 51,57 53,82 56,63 67,89	41,57 54,72 55,62 58,83 61,81 62,31 118,10	50,18 68,80 72,55 79,27 81,50 93,13 157,54	58,91 68,92 71,67 81,86 77,55 82,53 98,33	67,55 72,84 78,89 85,40 91,27 111,86 161,36		
				Боулдер	(США, 40°	сш, 1650 м		
800 700 60) 500 400- 300	21,94 26,11 24,17 20,66 17,48 20,82	23,65 25,94 23,98 22,15 20,01 28,54	29,32 30,62 27,59 24,74 20,37 27,36	30,94 32,42 30,02 26,87 22,59 29,02	32,16 33,56 30,86 27,94 23,90 25,41	29,35 20,73 29,35 25,91 20,73 19,74		
000	45.05	40.00	60.79	C4 00		r _s , 10−9		
800 700 600 500 400 300	45,35 61,80 66,76 68,30 72,42 115,00	48,98 61,40 66,23 73,40 82,90 157,65	60,72 72,48 76,20 81,99 84,39 151,14	64,08 76,74 82,92 89,05 93,59 160,31	60,60 79,44 85,23 92,59 99,02 140,36	63,62 77,47 81,06 85,86 85,88 109,04		

целения	тропосо	рерного	030на
---------	---------	---------	-------

VII		IΧ	х	λI	XII					
 над vp м). 1966 1972 гг. [216]										
$\begin{array}{c} 40,53\\ 38,19\\ 33,85\\ 32,13\\ 28,43\\ 25,37\\ 23,54\end{array}$	39,02 36,35 32,59 30,00 27,54 23,59 20,13	34,05 32,77 30,07 26,86 23,64 21,09 16,82	28,92 28,14 25,52 23,70 19,18 14,92 11,78	17,46 23,09 22,01 20,52 17,51 14,45 15,01	$11,68 \\ 21,40 \\ 21,08 \\ 19,60 \\ 16,48 \\ 14,56 \\ 16,65 \\$					
74,61 79,09 80,12 88,74 94,21 105,08 130,01	71,84 75,28 77,14 82,86 91,27 97,71 111,18	62,69 67,87 71,18 74,19 78,34 87,35 92,90	53,24 58,28 60,40 65,46 63,56 61,80 65,06	32,14 47,82 52,10 56,68 58,03 59,85 82,90	$\begin{array}{c} 21,50\\ 44,32\\ 49,90\\ 54,14\\ 54,61\\ 60,31\\ 91,96\end{array}$					
515 м над vp	м), 1966.	. 1968 гг	[219]							
$\begin{array}{c c} 36,00\\ 37,50\\ 34,23\\ 33,05\\ 28,27\\ 26,36\\ 23,32\\ \end{array}$	32,83 35,58 31,33 28,92 27,25 22,33 20,17	$\begin{array}{c} 25,83\\ 27,67\\ 25,17\\ 22,92\\ 20,75\\ 19,08\\ 15,92 \end{array}$	27,08 27,17 24,25 22,08 18,50 14,92 11,83	12,90 20,67 19,43 17,95 15,76 12,00 13,19	12,0519,7319,3218,0915,5514,5017,91					
$\begin{array}{c} 66,23\\ 77,76\\ 81,02\\ 91,28\\ 93,69\\ 109,21\\ 128,82\\ \end{array}$	60,44 73,70 74,16 79,88 90,31 92,51 111,42	47,55 57,30 59,58 63,30 68,76 79,05 87,94	$\begin{array}{c} 49,85\\ 56,27\\ 57,40\\ 60,98\\ 81,31\\ 61,81\\ 65,35\end{array}$	23,75 42,82 45,99 49,58 52,23 49,71 72,86	$22,18 \\ 40,87 \\ 45,73 \\ 49,96 \\ 51,53 \\ 60,07 \\ 98,93$					
надур м)	1963 19	65 rr. [219]								
$\begin{array}{c} 35,32\\ 34,54\\ 32,10\\ 28,72\\ 25,61\\ 18,52 \end{array}$	33,04 33,04 29,33 26,18 23,07 20,77	22,36 23,99 22,87 20,11 16,96 14,31	23,13 24,18 21,91 19,07 14,63 12,35	21,30 23,76 22,38 19,33 16,96 16,34	17,41 23,47 22,56 19,86 16,69 16,15					
73,15 81,76 88,66 95,18 106,10 102,30	68,42 78,20 81,01 86,76 95,58 114,73	46,31 56,78 63,17 66,64 70,26 79,05	47,90 57,23 60,52 63,20 60,61 68,22	44,11 56,24 61,81 64,06 70,26 90,26	36,06 55,55 62,31 65,86 69,15 89,21					

убыванием вплоть до уровня 400 мбар ($z \approx 7$ км), близкого уже к тропопаузе. В летние месяцы слой возрастания p_3 с высотой не обнаруживается — тогда, вероятно, уровень максимума p_3 расположен ниже 900 мбар (в Боулдере ниже 800 мбар). Летом убывание p_3 распространяется от 900 (800) до 300 мбар ($z \approx 9$ км), так как тропопауза летом расположена несколько выше, чем зимой Такон же тип ВР p_3 обнаруживают зондирования зимой и летом над Потсдамом (ГДР, 52° с. ш) в 1966... 1971 гг. [395].

Очень важно иметь в виду, что над всеми четырьмя упомянутыми обсерваториями умеренной широтной зоны на всех высотах от 900 до 300 мбар (и, несомненно, выше) и во все сезоны отношение смеси озона r_3 — концентрация озона по отношению к воздуху возрастает с высотой, т. е. $\partial r_3/\partial z > 0$. Этот общий вывод имеет глубокий смысл. Он означает, что при процессе вертикального переноса или перемешивания воздуха средний поток F озона направлен вниз. Поток F выражается произведением

$$F = K_{3} \rho \frac{\partial r_{3}}{\partial z} \approx K_{3} \frac{\partial \rho_{3}}{\partial z}, \qquad (36.1)$$

где K_3 — коэффициент турбулентности для озона, ρ_3 — плотность озона и ρ — плотность воздуха.

Если далее предположить, что в средней и верхней тропосфере, например между уровнями 800 и 400 мбар, нет своих источников и стоков озона и, следовательно, F не меняется с высотой, средний коэффициент турбулентности K_3 должен меняться обратно пропорционально $\partial \rho_3/\partial z$.

Весьма характерно несколько иное вертикальное распределение p_3 в околоэкваториальной зоне. На рис. 51 среднее ВР p_3 представлено для ст. Бальбоа (Панама, 9° с. ш.). Примерно на ее широте располагается северная ветвь внутритропической зоны конвергенции воздушных потоков (ВТЗК) в нижней тропосфере.

Пограничный слой, в котором p_3 возрастает с подъемом над уровнем моря, здесь довольно мощный — более 2 км. Из него, очевидно, идет интенсивный сток озона к поверхности Земли (моря). Сток этот был особенно интенсивен в день зондирования, 27 марта 1963 г., когда $\partial p_3/\partial z$ было очень велико.

В тропиках над пограничным слоем часто наблюдается инверсия (так называемая пассатная инверсия). В слое инверсии p_3 убывает вверх и вместе с ним несколько убывает и r_3 . Это значит, что из тропического пограничного слоя озон может уходить благодаря диффузии (молекулярной либо турбулентной) как вниз, так и в некоторой степени вверх. Выше 750 мбар ($z \approx 2580$ м) атмосфера тропиков хорошо перемешана.

При наличии пассатной инверсии, следовательно, пограничный слой есть слой общего «вертикального» расхода озона. Этот расход может пополняться лишь горизонтальным притоком озона — при горизонтальной сходимости воздушных течений. Последняя, со-
гласно М А. Петросянцу с сотрудниками [100], в этих широтах как раз очень сильна в слое от уровня моря до 2—3 км высоты.

Годовой ход p_3 и r_3 в тропосфере средних широт довольно простой. Максимум p_3 и r_3 приходится на летние месяцы (июнь—июль) и наступает в нижней тропосфере несколько позднее, чем в верхней. Минимум p_3 и r_3 в верхней тропосфере отмечается в октябре—но-

Рис 51. Вертикальное распределение *p*₃ в нанобарах и *r*₃ озона в нижней тропосфере иад Бальбоа. Штриховкой отмечен слой пассатной инверсии, согласно «Справочной атмосфере» для тропической атмосферы [391]

ябре, лишь немного позднее минимума общего запаса озона в стратосфере. В нижней тропосфере, так же как и в приземном слое, минимум запаздывает до декабря—января.

Если предположить, что инжекция F_S озона сверху (мы назвали ее выше «просачиванием») из стратосферы в тропосферу меняется в течение года как [225]

$$F_S = a_1 + a_2 \sin \omega t \tag{36.2}$$

179

(она должна зависеть прежде всего от содержания озона в стратосфере) и время релаксации озона в тропосфере равно τ_{τ} (т. е. за время τ_{τ} из всех попавших в тропосферу молекул O_3 остается только 1/е часть), то N — общее число молекул O_3 в столбе тропосферы — опишется уравнением

$$\frac{dN}{dt} = a_1 + a_2 \sin \omega t - \frac{V}{\tau_T} \,. \tag{36.3}$$

1 — данные «Проекта ТРОЗ», 2 — данные других авторов 3 — осреднение го зонам в 10° широты с исгользованием интерполяции за пределами 70° с ш и 80° ю ш

Решение его имеет вид

$$N = a_1 \tau_r + a_2 \beta \sin(\omega t - \delta), \qquad (36.4)$$

где $\delta = \arctan \omega \tau_{\tau}$ и $\beta = \tau_{\tau}/(1 + \omega^2 \tau_{\tau}^2) \cos \delta$. Запаздывание годового хода тропосферного озона в целом по сравнению с ходом F_S поэтому тем больше, чем медленнее озон разрушается в тропосфере.

В полярных широтах северного полушария τ_r наименьшее — около 40 дней — и увеличивается на юг, особенно быстро в зоне $30 \dots 0^\circ$ с. ш. и затем медленнее до зоны $30 \dots 60^\circ$ ю. ш., где τ_r

в среднем около 90 дней. Зная из наблюдений годовой ход N, можно оценить и величину инжекции. Значение F_S достигает максимума (рис. 52) около $9 \cdot 10^{10}$ молекул·см⁻² с в поясе широт 40... 50° с. ш. и убывает до $2,5 \cdot 10^{10}$ — в поясе $60 \dots 70^{\circ}$ ю. ш Очевидно, инжектируемый озон должен существенно перераспределяться горизонтальными течениями в тропосфере (см. выше). Амплитуда годового хода p_3 — например, отношение максимального из средних месячных p_3 к минимальному — велика в самом нижнем слое атмосферы, убывает к уровню около 700 мбар и затем медленно возрастает вверх. Она больше рассчитанной аналогично амплитуды годового хода X. Это значит, что инжекция озона в течение года должна меняться не только из-за колебаний X в стратосферном резервуаре, но и из-за меняющегося — усиливающегося летом обмена воздухом между стратосферой и тропосферой.

Этот обмен и его механизмы мы рассмотрим подробнее ниже.

Еще в работе 1973 г. [127] мы рассмотрели распространение инжектируемого озона сверху вниз в тропосфере в течение года. Мы показали там, что запаздывание хода r_3 близ поверхности Земли должно быть тем больше, чем меньше коэффициент турбулентности K_2 и чем меньше скорость разрушения озона у земли q (см. § 42).

Приведенные выше данные наблюдений хорошо подтверждают эту схему запаздывающей сверху вниз «волны» озона. Поскольку наибольший вклад в запаздывание, видимо, дает самый верхний слой тропосферы, вероятно, оно управляется очень небольшим коэффициентом турбулентности в слое близ тропопаузы и большим K_z в остальной части тропосферы, которую волна пробегает очень быстро вниз.

§ 37. Изменчивость тропосферного озона

Исследователь, знающий, какова точность используемых им данных, не сделает выводов или открытий, от которых впоследствии ему придется отказываться. Изменчивость давления p_3 озона, например величину σ (p_3) среднего квадратического его отклонения, важно знать для оценки надежности тех или иных заключений, сделанных исследователем, для опытов прогноза и пр. По данным зондирований над Потсдамом (ГДР, 52° с. ш.), полученным в 1967... 1971 гг. и обработанным Д. Шпенкухом и В. Делером [395], величина σ , наименьшая на уровне 500... 400 мбар, заметно возрастает в нижней тропосфере (см. табл. 19 и рис. 49). В нижнем слое последней заметно возрастает и относительная изменчивость σ (p_3)/ p_3 . Выше 400 мбар изменчивость тропосферного озона резко возрастает.

Заметим тут, что Питток [347] по данным зондирований над Аспендейлом (Австралия, 38° с. ш.) в 1965... 1973 гг. обнаружил общий тренд — вековое убывание тропосферного озона. Оно составило около 22% за десятилетие на уровне 500 мбар

Таблица 19. Среднее квадратическое отклонение σ (ρ_3) озона в Д. Е. на различных уровнях. Потсдам, 1967...1971 гг. N — число зондирований

	N	5 ровень, мбар							
Месяцы		800	700	600	500	400	30.)		
Январь — апрель Май — сентябрь Октябрь — декабрь	60 86 36	15,4 11,5 13,5	11,5 9,4 9,9	9,0 7,7 8,2	7,6 6,5 6,5	8,1 7,2 5,4	23,6 22,9 7,0		

и 5...9% — на уровнях 900... 800 мбар. Не исключено, что оно связано с влиянием находящегося на расстоянии всего 23 км большого города Мельбурна.

§ 38. Слоистая структура

Еще со времен классической работы А. С. Бритаева [21] известно, что в тропосфере обнаруживаются иногда, в особенности ночью, резко выраженные слои, богатые и бедные озоном. В них ρ_3 может сильно меняться в небольшом интервале высот. Так, при зондировании озона в районе Москвы 25 ноября 1960 г. над ночной приземной инверсией имелся на высоте 1100... 1300 м слой, содержавший всего 10... 11 мкг·м⁻³ озона, а над ним на высоте 2000... 2200 м слой, очень богатый (до 30 мкг·м⁻³) озоном (см. рис. 53). А. С. Бритаев наблюдал и некоторое увеличение озона в инверсиях над облаками и предположил, что особенности стратификации ρ_3 создаются меняющимся по высоте переносом (потоком *F*) озона.

При этом очень важно замечание Бритаева о том, что иногда слои высокой ρ_3 , не связанные с инверсиями и пр., заставляют предположить в тропосфере существование источников и областей стока озона локального характера.

К сожалению, самолетные подробные вертикальные зондирования озона в последующем были немногочисленны, поскольку исследователи отдают предпочтение горизонтальным зондированиям. Упомянем лишь, что Ван-Доп и Гишери в докладе на дрезденском симпозиуме 1976 г. сообщили данные об озоне, полученные при трех полетах над Голландией до высоты не более 3,5 км. При них на борту самолета не было метеорографа и стратификацию температуры, весьма сглаженную, авторы определяли лишь по данным радиозонда. При полете 19 июля 1975 г. им удалось наблюдать сильное убывание озона под слоем инверсии, существовавшее, однако, в течение всего 1—2 ч. В области большого антициклона в период длительной жаркой погоды днем 7 августа 1975 г. они наблюдали на высоте 500 м кратковременный очень высокий максимум ρ₃ (до 440 мкг⋅м⁻³) и уменьшение ρ₃ на больших высотах. Реальность максимума подтвердили наблюдения на мачте вблизи трассы полета на высоте 214 м, давшие ρ₃ = 200 мкг⋅м⁻³ [209].

Для географического изучения озона тропосферы очень важен был так называемый «Проект ТРОЗ», организованный в 1969 г. в ФРГ Германским обществом содействия исследованиям [225] Целью его было изучить меридиональное распределение озона тро-

посферы примерно между 10° з. д. и 40° в. д. над Западной Европой и Африкой. Для нас здесь наибольший интерес представляют данные горизонтальных зондирований озона в верхней тропосфере с рейсовых самолетов между 34° ю. ш. и 69° с. ш. На самолетах Beлись наблюдения с помощью электрохимической ячейки. такой же, как и применяемая в озонозонде Брюера-Маста. В тропической зоне между 15° ю. ш. и 15° с. ш. устойчиво наблюдалась низкая плотность озона — около 30 мкг ⋅ м⁻³. Оттуда она увеличивалась на юг и еще заметнее на север. Высокие «пики» р₃ чаще всего появлялись под 30° с. ш, между 40 и 45° с. ш. и под 65⁻ с. ш., (рис. 54). П. Фабиан и П. Прухневич [225] определенно считают, что это главные области вторжения (инжекции) озона из стратосферы (см. § 36). Они полагают, что под 30 и 65° с. ш. образуются «складки тропопаузы» (см. § 39 и 55), а около 45° с. ш. проходят

Рис 53. Вертикальное распределени е плотности озона ρ_3 (по цъем и спуск) температуры (t) и отн ссительной влажности (u) при самолетном зондировании 25 ноября 1960 г в районе Москвы По [21]

оси полярных струйных течений (СТ) — и те, и другие помогают озону просачиваться в тропосферу. В южном полушарии такие пики наблюдались редко и ρ_3 было в общем мало.

Зондирование в течение трех последовательных ночей 3...7 октября 1972 г. показало, что между 30 и 50° с. ш. инжекция озона была довольно изменчива, а в остальной части разреза весьма постоянна.

Авторы [225] решительно отвергли гипотезу о тропосферных источниках озона. По П. Фабиану, на основании глобальных наблюдений озона классическое представление о перемешивании описывает главнейший процесс, от которого зависит тропосферный озон, его распределение и его вариации. Фабиан отверг и гипотезу Чамейдеса и Уокера (см. § 42), доказывавших в 1973 г. и затем в 1976 г., что озон тропосферы находится в локальном фотохимическом, а не в динамическом равновесии.

Рис. 54 Меридиональное распределение тропосферного озона. По [225] Вертикальными черточками указано стандартное отклонение

Ряд горизонтальных зондирований озона также с рейсовых самолетов в верхней тропосфере и нижней стратосфере над СССР сделали С. В. Солонин и В. В. Осечкин [113], обнаружившие интересное явление — распределение озона как бы «пятнами».

§ 39. Обмен воздухом и озоном между стратосферой и тропосферой

Проблема обмена озоном между стратосферой и тропосферой очень существенного элемента баланса озона — весьма трудна. Изучить, как происходит этот обмен, можно, лишь правильно понимая, что такое тропопауза. Следует ли ее считать материальной поверхностью, связанной с некоторой совокупностью частиц воздуха, или же называть тропопаузой лишь условную границу, разделяющую области неодинакового лучистого баланса или неодинаковой устойчивости и перемешивания?

Наблюдение показывает, что, например, на распределении ветра или CO₂ тропопауза почти не сказывается. Закись азота N₂O — газ, попадающий из почвы в атмосферу, и метан CH₄, также тропосферного происхождения, лишь постепенно убывают над тропопаузой, вероятно, из-за сравнительно большого периода их жизни. В распределении озона тропопауза создает существенный разрыв, а для водяного пара она представляет как бы непроницаемую границу — над ней, вероятно, время жизни молекул H₂O по той или иной причине очень мало.

Таким образом, обмен различными газами сквозь тропопаузу происходит неодинаково.

Еще в 1963 г. Р. Ньюэлл [327] рассмотрел распределение в тропосфере и стратосфере водяного пара и радона с его дочерними продуктами (источники их находятся на поверхности Земли), стронция-90, попадающего в стратосферу, при ядерных взрывах, бериллия-7, образующегося там под действием космических лучей, и озона. Ньюэлл заключил, что большая часть обмена массой (между стратосферой и тропосферой) происходит при почти горизонтальном переносе вблизи бароклинных зон, струйных течений и разрывов тропопаузы. Как мы видим, эти выводы были сделаны по данным о примесях, имеющих весьма различные свойства и время жизни.

Позднее авторы, изучавшие обмен, либо представляли себе движения, приводящие к вертикальному переносу массы, как адиабатические, следующие вдоль наклонных изэнтропических поверхностей Θ = const (Θ — потенциальная температура), либо как неадиабатические движения воздуха, в котором происходит радиационный теплообмен. Следует помнить, что как упомянутые выше наблюдения X. Тифенау, П. Фабиана и П. Г. Прухневича [405], так и обработка данных озонозондов США (1963...1965 гг.) для пограничного слоя, выполненная Э. Рейтером [372], указали на широты 30, 40...45 и, вероятно, 60° с. ш. как на зоны наиболее интенсивного вторжения стратосферного воздуха в тропосферу. Зону 30° широты иногда связывают с классическим представлением об области упорядоченного нисходящего движения в субтропических антициклонах, допуская, что это движение может увлекать воздух стратосферы. Зону 40... 45° авторы [225] связывают с осью субтропического струйного течения (СТ). Действительно, близ этой оси, как хорошо знают синоптики, тропопауза разрывается, облегчая обмен воздухом между полярной стратосферой и тропической тропосферой. Нужное для такого обмена агеострофическое отклонение ветра, несомненно, существует в СТ с его большими ускорениями, сжатием (при скоростях воздуха, сравнимых с звуковой) и интенсивной вертикальной циркуляцией. Влияние последней близ СТ обнаруживают и данные об озоне (см. § 58).

Трудно, однако, думать, что в области разрыва такой обмен идет вдоль изэнтропических поверхностей, хотя бы и претерпевающих тут «деформацию» [225]. Совсем нельзя допустить, что движение вдоль поверхностей Θ = const, опускающихся, как известно, в тропической тропосфере *вниз*, переносит вниз сквозь разрыв и озон. Известно, что последняя сравнительно бедна озоном, несомненно, из-за преобладания в низких широтах *восходящих* движений.

Изэнтропическая гипотеза была использована и в предположении о переносе озона в складках тропопаузы Это представление развил Даниельсен еще в 1968 г., когда он счел образование таких складок даже «интегральной слагающей циклогенеза», о чем говорилось в работах [193, 194], и мы на нем остановимся детальнее.

Подробно гипотезу складок тропопаузы Даниельсен и Монен обсудили и, как они полагают, нашли ей решающие подтверждения в 1976 г. [194]. Они привели три вертикальных аэрологических разреза атмосферы поперек складок (построенные по данным радиозондирований над США 19, 27 и 28 апреля 1975 г.), а также данные наблюдений озона, температуры и (в одном случае) точки росы с самолета «Электра» на уровне полета около 6,4 км (440 мбар).

При этом авторы назвали (вполне произвольно) «складками тропопаузы» обычные простирающиеся до земли фронтальные зоны с характерной для них бароклинностью (кстати говоря, вовсе не типичной для воздуха стратосферы, который, как предполагается, опускается в «складках»), возникновением струйного течения над фронтом и резким уменьшением озона с теплой стороны СТ по сравнению с холодной.

Если бы движение вдоль изэнтропических поверхностей происходило от стратосферы до поверхности Земли, то оно повысило бы там температуру до +40 °C и уменьшило бы влажность почти до 0%. Наблюденное же в складке повышение температуры по сравнению со смежным воздухом составило всего 13 °C, а в другие дни и того меньше. При изэнтропическом движении оно соответствовало бы опусканию воздуха не более чем на 1,3 км. Несомненно, что говорить об изэнтропическом движении в области фронта поперек его линии совершенно бессмысленно. О малом нисходящем движении говорит и небольшое понижение точки росы т внутри складки — с — 34 до — 48 °C. Истинный же стратосферный воздух, как известно, имеет $\tau = -80^\circ$ С и ниже. Над холодными участками фронтов (катафронтов), как хорошо знают синоптики, небольшие нисходящие движения в тропосфере обычны и создают известные кратковременные прояснения погоды сразу за линией фронта, но понижения т до — 80 °C не бывает.

Смешение понятий фронта и тропопаузы — пример пренебрежения к повседневному опыту синоптика.

Представление о складках, опускающихся до Земли, авторам [194] понадобилось и для того, чтобы объяснить наблюдаемые иногда резкие повышения плотности озона вблизи поверхности Земли (см. § 40). Однако такие повышения очень редки и кратковременны, в то время как фронты — повседневное явление. Они регулярно сопровождаются небольшими изменениями озона, свойства которых хорошо изучены (см. гл. V III).

Современные взгляды на обмен воздухом между тропосферой и стратосферой изложил в своем докладе на дрезденском симпозиуме 1976 г. Э. Рейтер [372]. Он отметил, что приблизительно только половина слоя озона принимает участие в таком обмене, вторая, верхняя, половина «зафиксирована» фотохимическим равновесием. Рейтер полагает, что когда вблизи СТ умеренных широт возникает циклон, то один такой циклогенетический процесс вовлекает около $6 \cdot 10^{11}$ т стратосферного воздуха в тропосферу, в целом около $8 \cdot 10^{13}$ т на земном шаре в год (из $4 \cdot 10^{14}$ т воздуха, имеющегося в стратосфере).

Рейтер сделал вывод (который он считает основным и вместе с тем «удивительным»), что средняя меридиональная циркуляция сквозь тропопаузу и в нижней стратосфере играет господствующую роль в обмене между тропосферой и стратосферой и что эта средняя меридиональная циркуляция не может быть отделена от крупномасштабного вихревого механизма, т. е. от движений синоптического масштаба. Она, кроме того, внутренне связана с развитием длинных планетарных волн (с волновыми числами 1, 2, 3). Рейтер при этом ссылался на Дютша, в докладе на симпозиуме указавшего также на значение длинных волн для глобального распределения озона.

Очевидно, тропопауза — не непроницаемая стенка, а лишь особенность в поле излучения, температуры и мелкомасштабной турбулентности. При медленном наклонном опускании воздушной массы ее начальная равновесная стратификация температуры AA'A'' (см. рис. 55, где A' — уровень тропопаузы в начальный момент) меняется. При чисто адиабатическом опускании вся масса нагрелась бы и ее слои AA' и A'A'' стали бы более устойчивыми (стратификация BB'B''). Однако радиационный процесс (неадиабатический) будет стремиться восстановить прежнее лучистое равновесие, такое, какое было в AA'A'', путем радиационного охлаждения слоев атмосферы.

Более быстрое радиационное охлаждение воздуха тропосферы создает охлаждение также и стратосферного воздуха непосредственно над В. В результате будет формироваться новая кривая стратификации СС'С'' с характерным временем радиационной релаксации t_r (порядка нескольких дней в тропосфере ниже A'B') и над В будет формироваться новая тропопауза T. Под ней снизу будет «вгрызаться» турбулентность, еще охлаждающая верхнюю часть перемешиваемого слоя под T, т е. обостряющая новую тропопаузу. Характерное время для этого турбулентного процесса $t_i = H^2/4K_z$ при коэффициенте турбулентности $K_z = 50 \text{ м}^2 \cdot \text{с}^{-1}$ и толщине слоя H = 1 км примерно равно 1,5 ч

Рис 55 Трансформация тропопаузы при нисходящем движении воздуха и образование новой тропопаузы Штриховые линии — сухие адиабаты

Так при медленном, длящемся несколько дней, опускании воздуха в нем постепенно формируется и затем быстро заостряется новая тропопауза. Стратосферный воздух между уровнем B' и уровнем T вовлекается вскоре за этим в процесс перемешивания.

Обратный процесс происходит при подъеме массы.

Очевидно, рассматривать изэнтропические движения в таких радиационно трансформирующихся массах лишено смысла. Синоптики давно знают, что адиабатические приближения годны лишь для прогноза на 1... 1,5 сут.

Вертикальные смещения тропопаузы в циклоне — вниз над холодным фронтом и вверх над теплым — играют именно такую роль. И замечание Э. Рейтера о дискретных процессах циклогенеза, и замечание Тифенау и П. Фабиана о перемешивающем действии старых циклонов [405] и роли разрывов тропопаузы — разные варианты этой же идеи.

§ 40. Приземный озон

Поскольку вблизи поверхности Земли (или моря) несомненно происходит очень активное разрушение озона, наблюдения его плотности ρ_3 в приземном слое очень важны для изучения всей проблемы озона Всякий метеоролог хорошо знает о сильной зависимости всех явлений атмосферы от теплооборота, испарения и т д у подстилающей поверхности Поэтому ему ясно, что всегда нужно учитывать, на какой высоте делаются наблюдения температуры, влажности и т д К сожалению, идея о правильном выборе стандартной высоты для наблюдений приземного озона еще не нашла признания

Рис 56 Среднии суточный ход плотности приземного озона в Дрездене—Вансдорфе на высоте забора проб воздуха (а) и 7 м (б) По [423] 1 — май—сентябрь 2 — октябрь—апрель

в озонометрии, и нередко авторы исследований забывают указать в своих работах, на какой высоте сделаны их наблюдения. Работа [423] хорошо иллюстрирует это наше замечание. В Вансдорфе, близ Дрездена, в 1956... 1959 гг., когда забор проб воздуха производился на высоте 1,2 м над почвой, $\bar{\rho}_3$ составляло 7,2 мкг·м⁻³, а когда в 1960 1961 гг высота была увеличена до 7 м, $\bar{\rho}_3$ стало 12,5 мкг м⁻³ Озон приземного слоя меняется с сезоном, временем дня, географическим положением и высотой над уровнем моря Вероятно, все эти факторы могут влиять на интенсивность притока озона из верхней тропосферы (рис. 56).

Вместе с тем не исключено образование озона и в самом приземном слое воздуха, например, при грозах, при некоторых видах загрязнения, в выхлопных газах автомашин и пр., о чем мы скажем в § 42 и 43.

Таблица 18 дает представление о географических и сезонных различиях ρ_3 Она составлена как по данным озонного зондирования, так и по данным приземных наблюдений, к сожалению, не везде стандартизированных.

В пограничном слое (ср. наблюдения в Пайерне, Боулдере, Хоэнпейссенберге [146] и Арозе), по крайней мере в умеренных широтах, ρ_3 и давление p_3 убывают с приближением к поверхности Земли, причем летом сильнее, чем зимой. В приземном слое между высотами 25 и 5 м согласно [404] величина ρ_3 почти линейно убывает с приближением к подстилающей поверхности. Градиент $\partial \rho_3 / \partial z$ резко возрастает, а ρ_3 на малых высотах (1...3 м) сильно убывает ночью (см. рис. 56), когда устойчивость атмосферы увеличивается. На возвышенностях значения ρ_3 приземного озона заметно больше, чем над низинами (табл. 20). Это видно, если сравнивать наблюдения [423] на Фихтельберге и на Брокене (в среднем $\rho_3 = 35-36$ мкг·м⁻³) с данными равнинных станций ГДР (21 мкг·м⁻³). Особо велики значения ρ_3 в Хоэнпейссенберге (ФРГ, 975 м над ур. м.) — 65 мкг·м⁻³. Сравнительно низкие значения ρ_3 на вершине Цугшпице в Австрии (3100 м над ур. м.) уже не относятся к пограничному слою.

Таблица 20. Плотность ρ_3 приземного озона в обсерваториях ГДР [423]

Обсерватория	Высота над уровнем моря, м	Высота забора проб, м	^р 3 мкг м-3	р, мкг м ^{—3}	$\frac{\rho_1-\rho}{\overline{\rho_3}}$
Дрезден — Вансдорф	246	$1,27,0 \\ 1,2 \\ 5 \\ 6 \\ 3,2 \\ 9 \\ 18$	7,212,5	101	223
Линденберг	98		21,2	98	150
Аркона	42		31,8	96	100
Больтенхаген	5		27,5	95	129
Кальтеннордхейм	487		21,6	99	135
Фихтельберг	1213		35,1	113	95
Брокен	1142		35,9	121	109

Примечание. ρ_1 — средний суточный максимум, ρ_2 — средний суточный минимум, $\overline{\rho_3}$ — среднее годовое ρ_3 за 1960...1961 гг.

Еще в 1956... 1961 гг. наблюдения в Арконе, на севере о. Рюген в Балтийском море (см. [423]), отметили в среднем за год сравнительно высокие значения $\rho_3=32\,$ мкг·м⁻³, заметно большие, чем в континентальной части Западной Европы. В. Вармбт обнаружил в Северной Атлантике летом 1963 г. под 60... 63° с. ш. малое ρ_3 — около 19 мкг·м⁻³ на высоте 5,5 м над водой. Над более теплым Баффиновым заливом ρ_3 достигло 23... 28 мкг·м⁻³, близ Шетландских островов, под 60° с. ш. в области теплого Гольфстрима, 48 мкг·м⁻³ и в проливе Бельт — 67 мкг·м⁻³ [422].

Наблюдения К. Р. Сридхарана с сотрудниками [397], сделанные в 1974 г. с исследовательского судна Индии «Даршак», обнаружили над открытым Индийским океаном более высокие (до 44 мкг·м⁻³) значения ρ₃, чем близ его побережий (35—36 мкг·м⁻³). Те и другие, заметим, очень мало менялись в течение суток.

Годовой ход приземного озона весьма своеобразен, как это показывают, в частности, наблюдения в Валь-Жуайе близ Парижа. Обычно среднее оз выше всего в июне и ниже в декабре (рис. 57). При этом 54,7% всех наблюдений за 1967 и 1971...1977 гг. в теплую половину года (март—август) и 69,0% в холодную (сентябрь—февраль) дают значения $\rho_3 = 0 \dots 19,9$ мкг·м⁻³ и соответственно 27,3 и 20,2 % — значения $\rho_3 = 20 \dots 39,9$ мкг·м⁻³ (рис. 58).

На фоне такого нормального хода сравнительно невысоких значений наблюдаются нередко выбросы ρ_3 до 180... 190 мкг·м⁻³. Число наблюдений $\rho_3 > 100$ мкг·м⁻³ составило 1,32 % в теплую н 1,57% — в холодную половину года. Значения $\rho_3 > 150$ мкг·м⁻³ наблюдались 7 раз в сентябре—ноябре и всего 2 раза летом. Ход их не связан поэтому ни с ходом общего количества озона (макси-

Рис 57 Годовой ход плотности приземного озона в Валь-Жуаие (Франция) по данным 1967, 1971 1977 гг По [410] 1 — средние декадные данные 2 — сглаженные данные 3 — интерполяция

мум которого наблюдается весной), ни с ходом среднего ρ_3 «Выбросы», вероятно, отражают независимый процесс — резкие усиления вертикального обмена.

Годовой ход ρ_3 , аналогичный среднему ходу в Валь-Жуайе с максимумом летом, типичен для умеренного пояса (см. табл. 18).

Вероятно, этот максимум — след распространяющейся сверху из стратосферы «волны» озона. Сильное запаздывание ее, как видно из табл. 18, происходит уже в самой верхней тропосфере, откуда волна сравнительно быстро распространяется вниз. По А. Мани [310], тропосфера служит как бы хорошо перемешиваемым вторичным резервуаром озона, в особенности летом. Зимой же при устойчивой стратификации воздуха, например над Северной Индией, концентрация озона у земли становится малой, т. е. волна сильно затухает.

Запаздывание хода ρ_3 в высоких северных широтах несколько меньше, чем в умеренных, вероятно, потому, что главный, стратосферный резервуар озона там сильно опустевает к лету. В южном полушарии (ср. табл. 21 и 24) оно отсутствует — приземный озон меняется почти параллельно озону стратосферы. Высокие максимумы — выбросы ρ₃ наблюдаются везде в умеренных и полярных широтах. В обсерватории Хоэнпейссенберг замечательным было наблюдение, сделанное 26 февраля 1971 г., когда над ней прошли последовательно три холодных фронта [145]. Первый из них, прошедший около 6 ч среднего европейского времени, с сильным ветром (до 20 м·с⁻¹) и снегопадом, давшим 2,3 мм осадков, вызвал первое, кратковременное повышение ρ₃ до 150 мкг·м⁻³. За ним главный фронт, с еще более сильным ветром

Рис 58 Повторяемость значений плотности ρ_3 приземного озона в Валь-Жуайе, в марте—августе (а) и сентябре—феврале (б) Построено по [410]

и ливневым снегом, на 10 мин повысил ρ_3 до 830 мкг·м⁻³, а третий фронт, более слабый, дал ненадолго $\rho_3 \approx 500$ мкг·м⁻³. Ни грозы, ни молнии при этом не было, и градиент потенциала электрического поля, несмотря на метель, не превышал 3 кВ·м⁻¹.

В тропосфере в этот день, как показало зондирование, ВР озона не отличалось от нормального, но на уровне 200 мбар был тонкий слой с ρ_3 около 625 мкг·м⁻³.

Процессы такого быстрого кратковременного вторжения воздуха из верхней тропосферы в нижнюю, однако, пока еще не удавалось обнаружить по признакам температуры или влажности.

Минимум ρ_3 в северном полушарии наблюдается обычно в декабре или январе, также запаздывая по отношению к ходу X. Амплитуда годового хода (величина c_1 , если представить средний годовой ход в виде $\rho_3 = c_0 + c_1 \cos \omega t$) — довольно изменчивая от места к месту величина. Согласно табл. 21, c_1 меняется от 6 до 34, а отношение c_1/c_0 — от 0,15 до 0,59, не обнаруживая какой-либо географической зависимости. В среднем $c_1/c_0 = 0,35$.

М. Рахбар, анализируя длительный ряд наблюдений в Валь-Жуайе (1954...1970 гг.) и на о. Кергелен [355], обнаружил, что значения ρ₃ там заметно выше в четные годы, чем в нечетные, в особенности на о. Кергелен. Возможно, тут мы встретились снова с квазидвухлетней периодичностью озона, наблюденной также в стратосфере. Но там она гораздо слабее и имеет разный знак в обоих полушариях. Физическая причина ее пока столь же непонятна, как и эффект нечетных и четных годов в приземном слое.

§ 41. Суточный ход приземного озона

Еще в 1965 г. В. Вармбт [423] опубликовал довольно подробное описание суточного хода приземного озона, наблюденного на нескольких равнинных и горных обсерваториях ГДР. Вармбт заметил, что особенности суточного хода связаны с вертикальным распределением озона в приземном слое, давая таким образом возможность судить о процессах переноса и разрушения приземного озона. Он полагал, что суточные изменения приземного озона — в основном следствие обмена масс воздуха. Лишь при ослабленном зимой вертикальном обмене вступает в силу второй фактор — загрязнение воздуха дымом и пр, разрушающее озон.

Из [423] следовало, что и абсолютная и относительная амплитуда суточных изменений ρ_3 озона сильно увеличивается летом (до ± 20 % и более от среднего ρ_3) и уменьшается зимой, что она невелика в приморском климате и особенно на таких возвышенностях, как Фихтельберг (1213 м над ур. м.) и Брокен (1142 м над ур. м.) зимой. По-видимому, на равнинных обсерваториях максимум ρ_3 зимой наступает вскоре после полудня, летом запаздывает примерно до 16—17 ч, а минимум ρ_3 везде наблюдается утром в час восхода Солнца.

Более подробные ежечасные наблюдения в Вансдорфе, близ Дрездена, где вначале пробы воздуха брались на высоте 1,2 м, а позднее — на высоте 7 м, дали очень важный результат: на малой высоте суточный ход очень сильно сглажен и запаздывает почти на 4 ч по сравнению с большей высотой, а на последней он гораздо сильнее, в особенности летом, и опережает ход ρ_3 у Земли. Несомненно, что реакции разрушения близ поверхности Земли выравнивают и тормозят суточные изменения озона (см. рис. 56).

Очевидно, днем усиливающееся перемешивание пограничного слоя приносит в его нижнюю часть много озона, притекающего из стратосферы. Ночью же приток ослабевает и озон разрушается постепенно, начиная от поверхности Земли. Зимой часты инверсии и задержка обмена масс тормозит приток озона сверху. Поэтому

10

 $\stackrel{-}{\Rightarrow}$ Таблица 21. Плотность озона в приземном слое (мкг м⁻³) и ее годовой ход $\stackrel{+}{\Rightarrow}$ (р₃ = $c_0 + c_1 \cos (\omega t - \phi)$) [225]

Обсерватория	Широта	Годы наблюдений	Среднее $\rho_2 = c_0$	Амплитуда с1	Дата максимума ф	Отношение $c_{1^{1}}c_{0}$
Тромсѐ	69,5° c.	1970 1976	40,4	6,2	7 Λ	0,15
Бредкелен	63	1968 1970	45,7	13,8	20 IV	0,30
Кизе	60	1970 1972	44,8	12,5	15 V	0,28
Вестерланд	55	1971 1976	47,1	10,3	1 VII	0, 22
Нордерней	53,5	1969 1976	41,9	15,7	3 VII	0,35
Линдау	52	1969 1976	34,4	11.7	6 VI	0,34
Хоэнпейссенберг	48	1969 1972	64,8	34,4	22 VI	0,53
Цугшпице	47,5	1969 1976	45,1	15,2	23 VI	0,34
Кальяри	38	1970 1976	41,0	8,0	25 VI	0,20
Кайруан	36	1970 1974	56,1	14,3	11 VII	0,25
Форт-Лами	12	1970 1975	33,4	6,9	15 VI	0,21
Луанда	9 ⁷ ю	1970 1975	28,8	12,6	14 VII	0,44
Са да Бандейра	15	1970 1975	34,1	20,3	2 IX	0,59
Виндхук	23	1970 1976	50,6	11.7	20 X	0, 23
Александер-Бей	28	1970 1974	36,7	13,6	15 I X	0, 37
Херманус	34	1970 1976	44,3	14,6	3 IX	0,33
Примечание. Вероя: 8 53 дня.	г гная ошибка в	сличины с ₀ 316	и МКІ • М ^{—3} , Ве		510 MKF N ⁻	з, величины ф

ночное понижение ρ_3 тогда захватывает и всю первую половину дня.

Вармбт заметил также довольно точный и интересный параллелизм хода ρ_3 , хода радиоактивности приземного воздуха (создаваемой эксхаляцией почвенного воздуха, содержащего радон, торон и пр.) и хода электропроводности λ (меняющейся, как известно, обратно запылению воздуха). Эти зависимости, если они не формальные, вводят в исследование приземного озона совсем новые факторы — изменчивость приземного слоя, меняющееся загрязнение и даже обмен воздуха между почвой и атмосферой.

Рис 59. Средний суточныи ход давления озона р₃ на разных высотах в Холдербанке (Швейцагия) Июнь— июль 1976 г По [217]

Особую роль могут играть местные ветры. Так, по наблюдениям на обсерватории Мауна-Лоа (Гавайские острова, 3389 м над ур. м.) и на арктическом побережье в Литтл-Америке, ρ_3 достигает максимума ранним утром, когда местный ветер, текущий вниз по склону, наиболее силен. Очень детальные наблюдения суточного хода ρ_3 сделал в долине в Холдербанке (Швейцария, 350 м над ур. м.) на высотах 30, 70 и 115 м и опубликовал в 1976 г. [217] Х. У. Дютш. Заимствованный у него график (рис. 59) показывает, как отчетлива стратификация озона на этих высотах летней ночью и как сравнительно долго она сохраняется в утренние часы. Лишь вторжение долинного ветра около 9 ч утра перемешивает приземный слой, после чего весь день вплоть до захода Солнца вертикальные различия озона почти не заметны. Днем, очевидно, весь слой 30... 115 м включен в хорошо перемешанную толщу атмосферы — приземный слой как бы утончается или пропадает в это время.

§ 42. Разрушение озона у земной поверхности

Скорость процесса разрушения озона вблизи земной поверхности — заключительного этапа циркуляции рождающегося в стратосфере озона — определяет и его количество в атмосфере в целом, и локальные различия приземного озона. Эту скорость оценивали как по непосредственным опытам с камерами, поставленными на тот или иной вид подстилающей поверхности (в том числе на поверхность моря [135]), так и путем расчета направленного вниз в нижней тропосфере потока озона *F*. Последний зависит от «озонного» коэффициента турбулентности K_3 и выражается в кг·м⁻²·c⁻¹, как

$$F = K_{3} \rho_{\rm B} \frac{\partial r_{3}}{\partial z} = K_{3} \frac{\partial \rho_{3}}{\partial z} , \qquad (42.1)$$

где $\rho_{\rm B}$ — плотность воздуха. Градиент отношения смеси озона $\partial r_3/\partial z$ обычно считают пропорциональным плотности озона ρ_3 при z = 0 (точнее говоря, вне ламинарного приземного подслоя), полагая, следовательно

$$F = q\rho_3, \qquad (42.2)$$

где q — константа реакции или скорость разрушения в м·с⁻¹.

В прежней упрощенной глобальной модели процесса такого разрушения Л. Алдас [135] принял, что $q = 0,60 \text{ см} \cdot \text{c}^{-1}$ над континентом, 0,04 см · c⁻¹ над океаном и 0,02 см · c⁻¹ над снегом. Общая скорость разрушения составила при этом в северном полушарии 3,9 · 10²⁹ молекул · c⁻¹, в южном — 1,5 · 10²⁹ молекул · c⁻¹ и всего около 1,9 · 10⁹ т озона в год — более половины всего количества озона в стратосфере. Алдас заметил, что если для области тропического леса *q* повысить в 5 раз (так называемый вариант *B* расчета), то скорость разрушения повысится до 2,1 · 10⁹ т в год. Несомненно, что роль континентов в разрушении озона велика по сравнению с океаном.

Свойства величины *q* можно подробнее изучить, сопоставляя вертикальные профили озона *r*₃ и средней скорости ветра *u*, которые можно описать выражениями [404]:

$$\frac{\partial \bar{u}}{\partial z} = m_u \frac{\bar{u}}{z} , \qquad (42.3)$$

$$\frac{\partial r_3}{\partial z} = m_3 \frac{\Delta r_3}{z} , \qquad (42.4)$$

используя так называемый показательный закон скорости ветра: в (42.3) и (42.4) m_u и m_3 постоянные (т. е. не зависящие от высоты) величины; Δr_3 — разность r между поверхностью и уровнем z. Для нейтральной стратификации воздуха, как известно, касательное напряжение в потоке ветра т равно

$$\tau = \rho_{\rm B} \varkappa^2 z^2 \left(\frac{\partial \bar{u}}{\partial z}\right)^2 = \rho_{\rm B} u^{*2} \tag{42.5}$$

где и — постоянная Кармана и и⁴ — скорость трения.

В то же время т выражается как поток количества движения (момента) через К, — коэффициент турбулентности для момента:

$$\tau = \rho_{\rm B} K_{\rm M} \frac{\partial \bar{u}}{\partial z} \,. \tag{42.6}$$

Из (42.3) и (42.5) имеем

$$u^* = \varkappa \, m_u \overline{u}, \quad K_{\scriptscriptstyle M} = \varkappa \, z u = \varkappa^2 z m_u \overline{u}. \tag{42.7}$$

В итоге мы получаем для данной высоты г

$$F = \rho_{\rm B} K_3 m_3 \frac{\Delta q}{z} = \rho_{\rm B} \varkappa^2 m_u m_3 \left(\frac{K_3}{K_{\rm M}}\right) \overline{u} \frac{\Delta r_3}{z} \,. \tag{42.8}$$

Обозначая через са коэффициент переноса

$$c_3 = \varkappa^2 m_u m_3 \frac{K_3}{K_{\rm M}}$$

можно записать

$$F = \rho_{\rm B} c_3 \bar{u} r_3 \tag{42.9}$$

— уравнение, пригодное в принципе лишь для нейтральной стратификации атмосферы. Для устойчивой либо неустойчивой атмосферы c_3 может быть отличным (поскольку тогда $u^* = \varkappa z \frac{\partial u}{\partial z} f(\zeta)$, где f (ζ) — параметр неустойчивости).

Наблюдения профилей ho_3 были выполнены Х. Тифенау и П. Фабианом на плавучем маяке в открытом Северном море в 1972 г. на высоте от 1 до 20 м над поверхностью воды с помощью озонозонда высоте от 1 до 20 м над поверхностью воды с помощью озонозонда Брюера. По этим наблюдениям для нейтральной стратификации было $c_3 = 0,0013 \pm 0,000$ 18, для неустойчивой стратификации (при числе Ричардсона Ri = -0,15) $c_3 = 0,002$ и при устойчи-вой атмосфере (Ri = $\pm 0,03$) $c_3 = 0,000$ 65. Соответственно (42.9), скорость разрушения оказывается рав-

ной

$$q = 1, 7 \cdot 10^{-5} \overline{u}_{10},$$

где \overline{u}_{10} — скорость ветра на уровне 10 м. При скоростях \overline{u}_{10} от 5 до 10 м·с⁻¹ это дает $q = 0,008 \dots 0,017$ см·с⁻¹. В последующем Регенер [369], пересмотрев данные этих наблюдений, отметил, что зависимость F от скорости ветра не должна быть столь значительна и что F должно быть около 0,08 . . . 0,15 см \cdot с⁻¹. Это в 2 . . . 4 раза больше значения, принимавшегося ранее Алдасом [135].

Очевидно, в тех случаях, когда скорость разрушения озона мала (например, над океаном), градиенты озона $\partial r_3/\partial z$ должны быть также малы — вертикальное распределение r_3 должно быть весьма однородно, в особенности в тех слоях, где K_3 и $K_{\rm M}$ велики. Действительно, кривые ВР, наблюденные с помощью озонозондов авторами [404] в тех же условиях погоды, как и их наблюдения на маяке, в слое 25... 1000 м обнаружили там градиенты $\partial r_3/\partial z \approx 0$. Авторы, однако, отметили, что ошибки озонозондов (порядка 8 ° 0) могли исказить результаты вычисления $\partial r_3/\partial z$.

Очень малые, по их выражению, «замечательно малые», величины $\partial r_3/\partial z$ наблюдали Рангараджан, Дас и Мани в Индии [360] как над тропической зоной (Тривандрам, 8° с. ш.), так и над субтропической зоной (Дели, 28,5° с. ш.). Вместе с тем поток *F* там невелик, и, по оценке в [360], он равен всего 10¹¹ молекул см⁻², что соответствует q = 0,13 см с⁻¹.

Наблюдения ρ_3 , сделанные Ван-Допом и Гишери на мачте высотой 214 м в Кабау, над лугами Голландии в 50 км от моря, дали днем 31 мая 1975 г. при холодном ($t \leq 11^\circ$ C) и сильном ветре с моря и при значительной неустойчивости q = 0,13 см с⁻¹. Ночные наблюдения в июле того же года дали там q = 0,70 см с⁻¹. Корреляция между ρ_3 на высотах 5 и 214 м была очень тесной днем и уменьшалась ночью — поток тогда, очевидно, менялся с высотой [209].

И в Индии и в Голландии материк, покрытый растительностью (как в варианте «В»), создает таким образом сравнительно малые q, хотя и заметны превосходящие q над морем.

Наблюдения за вертикальным профилем озона и расчеты потока F сделал П. Вильбрандт [427] летом 1972 г. в Юго-западной Африке вблизи Цумеба (19° ю. ш., 1250 м над ур. м.) на мачте высотой 105 м в дневные часы. Место наблюдений окружала степь, местами поросшая кустарником и редкими деревьями. Для времени от 9 до 21 ч было получено среднее значение $q = 1,07 \pm 0.54$ см с $^{-1}$, что соответствовало разрушению $F = 2 \cdot 10^{11}$ молекул с $^{-2}$ с $^{-1}$.

Вильбранд сделал то же замечание, как Ван-Доп и Гишери: содержание озона в слоях 2,5...10 м и 97,5...105 м при неустойчивой стратификации (т. е. при хорошем перемешивании) меняется одинаково, с коэффициентом корреляции между ними + 0,95, а при устойчивой стратификации может сильно различаться. В этом последнем случае, очевидно, и формула (42.1) теряет смысл.

Еще несколько ранее И. Гальбалли [236] опубликовал выбоды из аналогичных наблюдений в Хэй (Астралия, 34° ю. ш.) в ноябре, т. е. летом, в степи с сухой почвой и пучками сухой травы и мертвой растительности. Гальбалли нашел при этом среднее значение $q = 1,18 \text{ см} \cdot \text{с}^{-1}$ и обнаружил, по-видимому, некоторое увеличение q с температурой.

Наблюдения Вильбрандта и Гальбалли дали таким образом q, существенно большие, чем упомянутые оценки q, сделанные для континента Алдасом. Это, вероятно, заставит поднять и оценки общего разрушения озона, поскольку области степей на континентах Земли весьма обширны.

К сожалению, в нашем распоряжении нет новых хорсших определений *q* для снежной поверхности. Поскольку значительные пространства континентов и замерзшего океана зимой покрыты снегом, его малое *q* должно существенно регулировать разрушение озона в нижней атмосфере.

Не раз возникала идея о том, что в тонком приземном слое идут также «объемные» процессы разрушения и образования озона, например за счет влияния повышенной температуры, фотохимических реакций, взаимодействия с газами и частицами аэрозоля.

Если бы соприкосновение с поверхностью Земли было бы единственной формой стока озона, то, по замечанию Риппертона и Вуковича [378, 418], следовало бы заключить, что неодинаковая реактивность подстилающей поверхности должна создавать огромные различия в концентрации О₃ в приземном и приводном слоях. Таких различий, однако, нет.

Упомянутые авторы сделали в сельской местности шт. Северная Каролина (США) в 1969...1971 гг. наблюдения с помощью озонозондов Брюера—Маста и хемилюминесцентного зонда, измерив N_3 на высотах 1, 5, 10, 20 и 40 м над поверхностью почвы. Их целью было определить значения обоих членов правой части уравнения

$$\frac{\partial N_3}{dt} = -\alpha N_3 + \frac{\partial}{\partial z} K_3 \frac{\partial N_3}{\partial z} . \qquad (42.10)$$

Первый из них описывает скорость газофазного разрушения озона в воздухе, второй — дивергенцию озона. Среднее значение скорости разрушения из восьми опытов равно 3,6·10⁻⁶ с⁻¹, а дивергенции — 1,6·10⁻⁷ с⁻¹, что в 25 раз меньше первого члена.

Далее, однако, Риппертон и Вукович сделали осторожное заключение, что разрушающие озон агенты, по-видимому, происходят с земной поверхности и что этот факт затемняет различие между разрушением O₃ у поверхности Земли и разрушением его газами, выделяемыми земной поверхностью.

В последние годы детально обсуждался вопрос об образовании с участием озона мелкодисперсного аэрозоля, создающего характерную голубоватую дымку в естественной атмосфере.

Еще в 1966 г. Уэнт [426] наблюдал в камере, в которую он поместил измельченные сосновые иглы и ввел немного озона, образование голубой дымки. Он отождествил частицы этой дымки с ядрами конденсации Айткена и сделал так далеко идущие выводы об образовании таким путем ископаемой нефти.

Дымку сосновых лесов, с частицами радиусом $r \approx 0.2$ мкм, подробнее изучили Ю. С. Любовцева и В. Н. Капустин [62, 87] на о. Сааремаа, в Литве и окрестностях Абастумани. Дымка сбразуется независимо от влажности воздуха из паров терпенов,¹ выделяемых хвойными растениями и образующих при окислении частицы твердого аэрозоля. Легко найти, что при r = 0,2 мкм сечение рассеяния такой частицы (считая ее диэлектрической) меняется от $0,52 \cdot 10^{-9}$ см² для красных лучей до $2,4 \cdot 10^{-9}$ см² для фиолетовых, т. е. дымка должна иметь почти такой же голубой цвет, как небо. Ю. С. Любовцева наблюдала во время процесса синтеза подобной природной дымки уменьшение содержания (расход) озона в приземном слое воздуха. Процесс этот пока мало изучен, но пути образования озона при окислении некоторых простейших органических соединений стали недавно известны.

В 1973 г. П. Крутцен [188] указал, что в стратосфере ряд фотохимических реакций может вести к образованию озона как с участием атомов О (по классической реакции О + O₂ + M), так и в цепи реакций окисления атмосферного метана. Метан CH₄ (как и упоминаемая ниже окись азота NO) — продукт почвенных процессов — газ, выделяемый земной поверхностью, по выражению Риппертона. Окисление метана идет через радикал CH₃O₂, далее в радикал CH₂O и окончательно в окись углерода CO.

Первый шаг происходит в присутствии радикалов гидроксила ОН, концентрация которого в тропосфере и нижней стратосфере примерно (1,5...2,5) · 10⁶ см⁻³.

$$CH_4 + OH \rightarrow CH_3 + H_2O,$$

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M,$$

$$A: CH_4 + O_2 + OH \rightarrow CH_3O_2 + H_2O$$

Второй шаг выполняется более сложным образом, уже при участии радиации и окиси азота, и с возможным образованием озона:

$$CH_{3}O_{2} + NO \rightarrow CH_{3}O + NO_{2},$$
$$NO_{2} + h\nu + O_{2} \rightarrow NO + O_{3},$$
$$CH_{3}O + O_{2} \rightarrow CH_{2}O + HO_{2}$$

(так называемый пергидроксил, концентрация которого в тропосфере около 5,6·10⁸ см⁻³),

$$HO_2 + NO \rightarrow OH + NO_2,$$

$$NO_2 + h\nu + O_2 \rightarrow NO + O_3,$$

B1:
$$CH_3O_2 + 3O_2 \rightarrow CH_2O + OH + 2O_3.$$

¹ Терпены — группа органических веществ с общей формулой $(C_5H_8)_n$, где n = 2, 3... Они весьма распространены в растительном мире, в особенности в хвойных растениях всех видов. Наиболее распространен из них пинен $C_{10}H_{16}$. Он имеет точку кипения 156° С и плотность 0,86. Он весьма реакционноспособен, легко взаимодействует с кислородом воздуха, водяным паром, галогенами, соединениями серы, активной глиной и т. д.

По данным некоторых исследователей, первая из реакций ряда В1 маловероятна, и вместо нее следует ввести две другие:

$$CH_{3}O_{2} + NO_{x} \rightarrow CH_{3}O_{2} \cdot NO_{x},$$
$$CH_{3}O + NO_{x} \rightarrow CH_{3}O \cdot NO_{x}$$

или же реакции:

$$CH_{3}O_{2} + NO_{x} \rightarrow CH_{2}O + HNO_{x+1}$$

$$HNO_{x+1} + h\nu \rightarrow OH + NO_{x},$$

$$B2: CH_{3}O_{2} \rightarrow CH_{2}O + OH,$$

причем происходит поглощение кванта энергии. От CH₂O к CO ведет цепь реакций:

C1:
$$CH_{2}O + hv \rightarrow CO + H_{2},$$

$$CH_{2}O + hv \rightarrow CHO + H,$$

$$CHO + O_{2} \rightarrow CO + HO_{2},$$

$$H + O_{2} + M \rightarrow HO_{2} + M,$$

$$HO_{2} + NO \rightarrow OH + NO_{2},$$

$$NO_{2} + hv + O_{2} \rightarrow NO + O_{3},$$

$$C2: CH_{2}O + 4O_{2} \rightarrow 2OH + CO + 2O_{3},$$

$$CH_{2}O + OH \rightarrow CHO + H_{2}O,$$

$$CHO + O_{2} \rightarrow CO + HO_{2},$$

$$HO_{2} + NO \rightarrow OH + NO_{2},$$

$$HO_{2} + NO \rightarrow OH + NO_{2},$$

$$HO_{2} + hv + O_{2} \rightarrow NO + O_{3},$$

$$C3: NO_{2} + hv + O_{2} \rightarrow H_{2}O + CO + O_{3},$$

$$C3: CH_{2}O + 2O_{2} \rightarrow H_{2}O + CO + O_{3},$$

Таким образом, сочетание реакций (A + B1 + Cl) дает при окислении одной молекулы CH₄ две молекулы O₃, то же с C2 — 4O₃ и C3 — 3O₃. Сочетание (A + B2 + C2 или C3) дает соответственно $2O_3$ или O₃. Крутцен построил эту интересную и важную (поскольку в стратосфере всегда присутствуют и CH₄ и NO) фотохимическую схему для стратосферы. В 1973 г. Чамейдес и Уокер перенесли ее же в фотохимию нижней тропосферы [177, 178]. Авторы пришли к утверждению, что характерные для тропосферы фотохимические процессы в целом определяют обилие озона в тропосфере, т. е. там приток озона из стратосферы играет второстепенную роль. Особо подчеркивается важность реакции

$$HO_2 + NO \rightarrow OH + NO_2$$
,

имеющей константу около $k = 5 \cdot 10^{-13}$ см³ · с⁻¹, поскольку NO₂ с постоянной времени около $3 \cdot 10^{-3}$ с разлагается солнечной радиацией и дает снова NO и атом кислорода О. Последний затем приводит в действие «классическую реакцию» образования озона.

По оценкам и модельным расчетам Чамейдеса и Уокера, концентрация частиц HO₂ в нижней тропосфере около 10^9 см⁻³, концентрация NO — 10^{10} см⁻³, и образование озона происходит со скоростью около $5 \cdot 10^6$ молекул см⁻³ · с⁻¹, При средней концентрации его $N_3 = 5 \cdot 10^{11}$ см⁻³ время жизни молекулы озона в нижней тропосфере τ (если следовать этому рассуждению) около 0,2 . . . 1 сут. Это дало им право предположить, что такой процесс образования озона гораздо важнее, чем его приток из стратосферы со временем релаксации 20 . . . 40 сут.

Такие же аргументы авторы развили в своей более поздней работе [178], где они, однако, допустили, что описанный механизм образования озона может быть неэффективен в верхней тропосфере и в областях, где концентрация NO_x мала.

Модель Чамейдеса и Уокера, очевидно, может хорошо объяснить суточный ход концентрации озона N_3 в приземном слое, поскольку образование атомов О при разложении NO₂ прямо зависит от прихода солнечной радиации. В этом, конечно, состоит сильная сторона гипотезы. Но в то же время при $\tau = 0, 2 \dots 1, 0$ сут нельзя с ее помощью объяснить, почему довольно высокая концентрация N_3 сохраняется и ночью, и во время полярной зимы, почему N_3 повышено над морем и вблизи холодных фронтов и т. д.

Если бы образование озона шло более интенсивно в приземном слое, где концентрации молекул CH₄ и NO в 1 см³ наибольшие, то озон оттуда распространялся бы вверх и градиенты $\partial \rho_3 / \partial z$ и $\partial r_3 / \partial z$ были бы отрицательны. Мы видели, однако, в § 36, что, наоборот, в среднем $\partial r_3 / \partial z > 0$. При приземных инверсиях, когда перенос заторможен, образование озона в приземном слое сильно повышало бы там его концентрацию, на самом деле она убывает. Таким образом, число вопросов, которые ставит гипотеза Чамейдеса— Уокера, значительно больше числа тех, которые она решает. Для ее проверки надо спектроскопически измерить концентрации HO₂, CH₃O₂ и т. д. в приземном слое воздуха.

В 1976 г. баланс озона в приземном слое изучил Х. У. Дютш по данным уже упомянутой непрерывной регистрации p_3 озона на уровнях 30, 70 и 115 м над почвой ([217], см. рис. 59). Он обнаружил, в частности, там перераспределение приземного озона при смене горных и долинных ветров: происходит как убывание озона на верхнем уровне (115 м) от восхода Солнца до 9 ч утра, так и его последующее резкое возрастание. Ровный, одинаковый на всех высотах его ход от 12 ч до самого захода, а также быстрое разрушение озона ночью на высоте 30 м по сравнению с высотой 115 м, по Дютшу, указывают на доминирующую роль стока озона у поверхности Земли в сочетании с явлениями переноса. Применяя, кроме того, привязные аэростаты для подъема озонозондов БрюераМаста на высоту 500... 1000 м, Дютш обнаружил, что ночью озон убывает в свободной атмосфере лишь до высоты около 500 м и что в более высоких слоях ночью N_3 даже несколько растет. Это доказывает, что в условиях Швейцарии вклад фотохимических процессов в бюджет тропосферного озона довольно незначителен.

§ 43. Озон и электрические процессы в тропосфере

Специальный интерес имеет процесс образования озона в тропосфере под действием электрических разрядов — тихих (коронных) и грозовых (молний). Такой процесс известен уже давно, но его интенсивность, охватываемые им области атмосферы, длительность и т. д. до сих пор изучены недостаточно.

Регистрация приземного озона, организованная в обсерватории Валь-Жуайе с 1954 г., и параллельная регистрация грозовых разрядов обнаружили интересный факт: в 71 % случаев разряды сопровождались быстрым ростом концентрации озона, особенно резким при летних грозах и менее быстрым при грозах других сезонов.

Вместе с тем А. Васси нашла, что нарастание приземного озона обычно опережало развитие грозы, зимой в среднем на 4 ч 45 мпн, летом на 3 ч.

Васси при этом отвергла идею, что увеличение обусловливается нисходящим потоком воздуха, поскольку она знала, что в тропосфере p_3 озона убывает с высотой. Но поскольку в тропосфере r_3 возрастает с высотой, то упорядоченный нисходящий ток воздуха должен всегда повышать r_3 и в то же время ρ_3 в приземном воздухе.

При приближении грозового облака и соответствующем увеличении электрического поля у поверхности Земли могут начаться тихие — коронные — разряды с острий — верхушек деревьев, мачт и даже с листьев травы. При таком разряде электроны уносят довольно значительную энергию. Разряд молнии, хотя бы и удаленной, создает широкий спектр электромагнитных излучений, в том числе ультрафиолетовых. Последнее при $\lambda \leq 250$ нм может создать возбужденные молекулы кислорода в состоянии $O_2 \begin{pmatrix} 3 \\ 2 \\ u \end{pmatrix}$, которые далее вступают в реакцию

$$O_2({}^{3}\Sigma_{u}^{+}) + O_2 \rightarrow O_3 + O + 41,9$$
кДж моль⁻¹, (43.1)

что создает возможность образования озона

$$O + O_2 + M \rightarrow O_3 + M. \tag{43.2}$$

В разряде, тихом или молниевом, электроны с энергией выше 5,09 эВ могут диссоциировать молекулы кислорода

$$\frac{1}{2}O_2 + e \rightarrow e + O, \qquad (43.3)$$

203

на что расходуется 209,5 кДж·моль⁻¹ энергии. После (43.2) классическая реакция образует озон. При меньшей энергии электрона (3...5 эВ) может происходить диссоциативное прилипание

$$e + O_2 \rightarrow O + O^- - 347,8 \ кДж \cdot моль^{-1},$$
 (43.4)

за чем может следовать либо реакция (43.2), либо реакция

$$O^- + O_2 \rightarrow O_3 + e - 41,9$$
 кДж моль⁻¹. (43.5)

Она может быть довольно быстрой при положительных температурах. Параллельно с ней может происходить и процесс

$$O^- + O_2 + O_2 \rightarrow O_3 + O_2 + 54,5$$
кДж·моль⁻¹. (43.6)

Озон может образовываться и при реакциях, в которых не участвует атом О, например

$$e + O_2 + O_2 \rightarrow O^- + O_3 - 251,4$$
 кДж моль⁻¹, (43.7)

для которой пороговая энергия равна 2,6 эВ. За (43.7) может произойти реакция (43.5) или (43.6). При этом расход энергии на образование озона уменьшается до 125 кДж·моль⁻¹.

И ионы О-, и электроны могут разрушать молекулу озона с помощью реакции:

Эти реакции протекают быстро, так как не требуют энергии активации.

Если, например, при грозовом разряде выделяется энергия в 10⁶ кДж, идущая на (43.7) с последующими (43.5) и (43.6), то ее достаточно, чтобы образовать 0,2...0,35 т озона. Однако значительная часть энергии разряда расходуется на тепло и т. д.

Недавно Шланта и Мур [389] снова обратили внимание на все три возможности образования озона, а именно на

1) точечный тихий разряд в сильном электрическом поле,

2) разряд молнии,

3) нисходящее движение из более высоких слоев атмосферы около грозового облака.

Они поставили в 1970 г. специальные опыты в полевых условиях в Магдалин-Маунтине (шт. Нью-Мексико, США), в частности над эффектом тихих разрядов с острия и платформы, на которой росла трава. Пробы воздуха, бравшиеся непосредственно вблизи острия, при приближении грозы обнаруживали лишь небольшие, случайным образом колеблющиеся повышения ρ_3 не более чем на 30 %. Во время грозы, когда градиент потенциала вблизи Земли менял знак и с острия истекал отрицательный заряд (как это было при грозе 23 июля 1970 г.) ρ_3 увеличивалось в 3 раза и более по сравнению с озоном при хорошей погоде. Большие временные повышения ρ_3 наблюдались под грозовым облаком также после разряда молнии.

Глава VII 1 ОБЩЕЕ СОДЕРЖАНИЕ ОЗОНА

§ 44. Материал наблюдений

Общее содержание озона в атмосфере — толщина его слоя, приведенного к нормальному давлению и температуре, — та характеристика озона, которая наблюдается проще и надежнее всего. Регулярные наблюдения за ней ведутся много лет по единообразным, разработанным весьма тщательно методам. Они дали основу почти для всех наших современных представлений об озоне. Новейшие опыты спутниковых наблюдений озона, покрывающих довольно равномерно весь земной шар, дают главным образом тоже информацию об общем содержании озона X. Знание X лежит в основе расчетов ультрафиолетовой радиации и пр.

Величина X, хотя и является на первый взгляд весьма суммарной и сглаженной характеристикой озона, обнаруживает тем не менее вполне определенные географические зависимости и связи с изменчивыми динамическими процессами атмосферы. В частности, ее вертикальные движения в связи с фотохимическими эффектами и горизоптальная адвекция находят свое отражение в различиях X. Можно полагать, что возможные антропогенные изменения озона удастся заметить прежде всего по наблюдениям X.

Общее содержание озона наблюдается сейчас регулярно на всех пяти континентах, а также в Арктике и Антарктике. Большие пробелы сети над океанами заполняются данными морских экспедиций [36, 80]. Так, в частности, Г. К. Гущин [36] использовал результаты своих более чем 1800 дней наблюдений общего содержания озона над океанами, в особенности над их тропической областью ранее малоизученной. Самолетные наблюдения общего содержания озона, начатые Г. П. Гущиным в 1958 г., ценны для горизонтальных зондирований озона, например, вблизи струйных течений или, наоборот, в однородных воздушных массах.

Сейчас освещены хорошо разработанными данными и полярные районы (например, в монографии Г. У. Каримовой [63]).

К сожалению, озон южного полушария все еще изучен хуже, чем озон северного полушария. Весьма интересен довольно длительный ряд наблюдений на Южном полюсе (обсерватория Амундсен-Скотт) в 1961... 1971 гг.

Данные глобальных стационарных наблюдений X публикуются систематически, начиная с 1960 г., при содействии Канадской метеорологической службы (ныне именующейся Службой окружающей среды) и Всемирной метеорологической организацией в виде издания «Ozone data for the world». Данные об общем содержании озона над СССР публикуются Главной геофизической обсерваторией. В сборниках [98, 99] приведены такие данные для 33 станций СССР за 1972...1975 гг. Все эти данные мы использовали для составления табл. 24. Число наблюдающих ОСО обсерваторий в 1969 г. достигло 138, но, однако, в 1975 г. в указанных изданиях были опубликованы сведения лишь с 80 обсерваторий.

Самые полные и подробно разработанные данные мы имеем сейчас о X в поясе широт 35... 60° с. ш. Разумеется, выводы из них, например о годовом или вековом ходе X, можно лишь с осторожностью переносить на иные широты и тем более на земной шар в целом. Следует всегда учитывать неодинаковый статистический вес заключений, полученных для разных широтных поясов. Так, в частности, для оценки долговременных изменений озона в 1957... 1975 гг. мы имеем данные всего лишь 18 обсерваторий. Большая часть их относится именно к умеренным широтам северного полушария. К последним относится и большинство обсерваторий, наблюдающих озон в СССР после 1962 г.

При разработке данных о X, как это специально отметили, Дж. Лондон, P. Божков, C. Ольтманс и Дж. Келли в большом «Атласе глобального общего озона» [143], следует помнить о наличии на мировой сети двух главных типов приборов — спектрофотометра Добсона и фильтрового озонометра М-83. Последний применяется в СССР — на обсерваториях и при судовых наблюдениях, а также в некоторых других странах. Начиная с 1972 г. модернизация прибора М-83 улучшила качество наблюдений с ним и устранила повышенный разброс его данных.

Мы сравнили данные о X, наблюденном по старой модели М-83 (A) между 1957... 1971 гг. и по модернизованному прибору (Б) на ряде обсерваторий — в Душанбе, Ашхабаде, Алма-Ате, Свердловске, Омске и Иркутске (табл. 22). На южной группе этих обсерваторий введение нового прибора повысило наблюдаемые X в среднем на 47 Д. Е. (т. е. 14%), в отдельные месяцы — на 90 Д. Е., а на северной группе — в среднем на 15 Д. Е. (т. е. 4%). Эти сравнения, однако, несколько затруднены тем, что введение нового прибора было не вполне одновременным на сети станций СССР.

Таблица 22. Разность наблюдений (Д. Е.) по озонометру по новой и старой модели

Обсер- ватория	I	II	111	IV	v	VI	VII	VIII	IX	x	Хſ	x 11
Сверд-	-9	-33	25	-22	9	+ 3 2	+32	+31	+22	6	+17	+55
Омск Иркутск Душанбе Ашхабад Алма-Ата	-7 +3 +5 +36 +56	-48 + 21 + 30 + 35 + 48	-37 + 34 + 40 + 44 + 44	-20 + 49 + 70 + 49 + 51	+6 + 43 + 66 + 76 + 71	$+31 \\ +60 \\ +35 \\ +85 \\ +68$	+49+75+39+91+64	$^{+35}_{+67}_{+26}_{+94}_{+78}$	+39+49+16+81+62	$^{+22}_{+41}_{+9}_{+60}_{+43}$	$^{+25}_{+40}_{+1}_{+53}_{+36}$	$^{+4}_{+53}$ $^{-2}_{+54}$ $^{+41}_{+41}$

§ 45. Проблема длительности периода наблюдений

Климатология озона, конечно, должна опираться на данные возможно однородных и длительных наблюдений, обеспечивающих наименьшую случайную ошибку и тем самым наилучшую сравнимость данных. Мы сравнили рассчитанные нами и широко использованные в этой книге средние значения X за период 1957... 1975 гг. (длинный период) с данными наших прежних сводок [81, 126, 127], составлявшихся по более коротким рядам наблюдений (табл. 23). Видно, что использование 2-летнего ряда наблю-

Таблица 23. Сравнение общего количества озона (Д. Е.) в широтных зонах 50...55 и 30...35° с. ш., вычисленного для периодов наблюдений 1958...1959 гг. (А) и 1957...1975 гг. (Б)

Период	I	II	111	IV	v	VI	VII	VIII	IХ	x	XI	хп
				Зона	50	. 55° (с. ш.					
А Б Б — А	$egin{array}{c} 365 \\ 369 \\ +4 \end{array}$	$395 \\ 401 \\ +6$	$395 \\ 411 \\ \pm 16$	$400 \\ 407 \\ +7$	$376 \\ 383 \\ +7$	$356 \\ 357 \\ +1$	338 334 —4	$ \begin{array}{c} 317 \\ 321 \\ +4 \end{array} $	$299 \\ 306 \\ +7$	$296 \\ 301 \\ +5$	310 308 10	$\begin{vmatrix} 330 \\ 322 \\ -8 \end{vmatrix}$
				Зона	30	. 35°	с. ш.					
А Б Б — А	276 295 19	288 309 21	308 324 16	306 324 18	307 326 19	310 317 7	291 301 10	283 294 11	272 287 15	265 280 15	260 276 16	274 283 9

дений МГГ 1958-59 г. могло приводить к немалым ошибкам — значения X в то время были заметно понижены. В то же время выяснилось, что выводы из 13- и 19-летнего рядов дают средние значения X, согласующиеся в пределах \pm 5—6 Д. Е. Такова в первом приближении точность современных многолетних данных об X.

§ 46. Среднее широтное распределение X

Среднее многолетнее распределение X по широтным поясам шириной в 5 или 10° представлено в табл. 24. Эти значения рассчитаны Н. А. Петренко по данным упомянутых сводок «Ozone data for the world» за 1957... 1975 гг.

Таблица 24 показывает, что X в общем велико в полярных и высоких широтах северного полушария и убывает к экватору. С марта по июнь в северном полушарии наивысшие значения X, более 400 Д. Е., наблюдаются в полярной области. В мае—сентябре вторичный относительный максимум имеется под 50...55° с. ш. Между августом и февралем (включая «темные» месяцы полярной

Пояс	I	11	111	1 V	>	1Λ	111	VIII	IX	x	IX	11 X	Год
$70-90^{\circ}$ с. ш. 60-70 55-60 50-55 45-50 40-45 35-40 30-35 20-30 $0-20^{\circ}$ ю. ш. 20-30 30-40 40-50 50-60 60-70 70-80 80-90	361 367 384 369 359 364 331 295 256 242 260 268 282 315 315 322 316 310	392 408 425 401 386 387 349 263 261 262 276 302 303 302 299 286	435 431 432 411 389 398 353 324 275 265 261 263 272 297 299 295 282 282	446 428 412 407 392 384 349 324 285 263 262 275 263 262 275 294 311 270 276 285	416 396 382 383 358 364 341 326 260 276 263 262 285 315 327 275 275 286	356 344 347 357 335 344 328 317 286 268 268 268 302 268 302 268 302 283 327 340 302 283 282	325 318 327 334 317 318 313 301 276 263 263 273 315 347 347 300 284 289	292 305 313 303 308 303 294 270 266 282 323 354 362 290 304 294	276 296 301 306 293 301 295 287 267 272 268 332 293 332 374 394 317 287 304	294 294 304 290 298 286 280 266 263 269 298 328 368 375 348 375 348 302 312	306 311 312 308 302 310 289 276 254 256 263 288 312 338 367 370 347 364	326 311 333 322 329 333 311 283 251 252 261 278 297 328 335 350 349 352	352 351 356 352 339 342 301 270 263 264 275 300 330 340 312 300 304

Таблица 24. Среднее общее количество озона по широтным поясам

области ноябрь—январь)¹ околополярная область отмечена местным минимумом озона.

На границе тропической широтной зоны имеется хорошо выраженный разрыв в поле X, подробно изученный автором и Нгуэн Тхи Киен в [130]. В мае этот разрыв расположен примерно под 28° с. ш., в октябре — под 25° с. ш. Севернее разрыва широтный градиент X велик — соответственно 4,4 и 2,2 Д. Е. на 1° широты, а к югу от разрыва распределение X весьма равномерно и величина X сравнительно мала (240... 275 Д. Е.).

Этот разрыв разграничивает область преобладания тропического типа вертикального распределения (ВР) озона и области ВР умеренных широт — областей высокорасположенного и тонкого слоя озона и низкорасположенного мощного его слоя (см. гл. VIII). Однако весной, например в мае, отдельные высокие максимумы X распространяются на юг до 20° с. ш. Вместе с тем низкие минимумы X, типичные для тропической зоны, распространяются на север лишь до 28—30° с. ш. и то сравнительно редко.

В околоэкваториальной области наблюдается тонкая структура поля X. Там имеется небольшой местный минимум X, примерно под 7° с. ш., зона которого ранее была названа «озонным экватором». Он связан, несомненно, с линией сходимости воздушных течений — с северной ветвью внутритропической зоны конвергенции (ВТЗК) [100]. Аналогичный более слабый местный минимум X

¹ Следует помнить, что в зимние месяцы, в особенности в декабре, наблюдения обычно весьма отрывочны и данный вывод приближенный.

появляется в южном полушарии примерно под 4° ю. ш., связанный со слабой южной ветвью ВТЗК. Между ними располагается зона небольшого увеличения X близ экватора, отмечавшаяся при наблюдении с судов Г. К. Гущиным [36], Г. И. Кузнецовым [80] и др.

В южном полушарии тропическая зона также отличается сравнительно низкими (260...270 Д. Е.) и равномерно распределенными значениями Х. Далее на юг Х возрастает до зоны максимума Х примерно под 50...60° ю. ш. Правда, о положении этого максимума можно судить лишь по наблюдениям немногих обсерваторий (Кергелен, Маккуори), но данные их довольно надежны.

Рис. 60. Среднее распределение общего содержания озона в средние месяцы сезонов. 1957...1967 гг. По [143]

Вместе с тем в отличие от северного полушария в южном полушарии полярная область отмечена глубоким провалом в распределении X. Он хорошо виден и на графике широтного хода X (рис. 60), заимствованном нами у Дж. Лондона [143]. Конечно статистическая обеспеченность этого вывода невелика, но данные обсерватории Амундсен-Скотт на Южном полюсе, несомненно, подтверждают, что такой провал существует.

Широтный ход \hat{X} более ярко выражен в весенние месяцы соответствующего полушария. Особенно четко виден тогда высокий максимум X в околополярных широтах на востоке Северной Америки и над Восточной Азией. В марте среднее значение X достигает 496 Д. Е. в Резольюте, 446 Д. Е. в Гус-Бее, 485 Д. Е. в Якутске, 495 Д. Е. в Нагаево и 472 Д. Е. в Иркутске. Величина \overline{X} на соответствующих широтах в это время над Западной Европой гораздо меньше и равна 419 Д. Е. в Тромсё, 407 Д. Е. в Леруике, 408 Д. Е. в Ленинграде и 405 Д. Е. в Оксфорде. В табл. 25 приведен ряд случаев, когда \overline{X} в отдельные месяцы в 1957... 1975 гг. превышало 480 Д. Е. Видно, что длительные большие повышения X наблюдаются вплоть до широты 41°. Хотя наблюдения по озонометру M-83 до 1972 г. делались менее точно, чем в последующие годы, новые наблюдения в общем не снизили отмечаемые максимальные значения \overline{X} .

		1	ļ — — — — — — — — — — — — — — — — — — —
Обсерватория	Год	Месяц	\overline{X}
Резольют	1973	111	556
Мурманск	1975	l îv	484
Якутск	1962	ÎÌ	576
_	1975		570
Ленинград	1966		480
Нагаево	1960	11	573
	1974	II	531
Черчилл	1974	Ш	513
Рнга	1970	II	565
Сверлловск	1966	II	512
Омск	1971	II	536
UDKVTCK	1974	III	531
Большая Елань	1968	ii ii	544
Doubling Fugue	1974	111	541
B ROBHROCTOK	1062	111	409
Савдавосток	1902		492
Cannopo	1970	111	497

Таблица 25. Значения $\overline{X} \ge$ 480 Д. Е. для северного полушария. 1957... 1975 гг.

На основании вычисленного в табл. 24 среднего распределения озона по широтным поясам с учетом их площади можно рассчитать, что среднее X в северном полушарии увеличивается в марте до 331 Д. Е. и убывает в октябре до 278 Д. Е. В южном, наоборот, оно минимальное в марте — 274,9 Д. Е. и наибольшее в октябре — 312,8 Д. Е. Соответственно в среднем за год X в северном полушарии равно 301,6 Д. Е. и в южном — 292,1 Д. Е. Эти величины несколько больше тех, которые нами были рассчитаны в [127] по данным 1957...1969 гг.

Годовой ход глобального X, таким образом, следует за ходом озона в умеренных и высоких широтах соответствующего полушария — за процессом накопления озона в данном полушарии в течение зимы.

Примерно 44 % количества озона в марте и 46 % в октябре приходится на тропическую зону между 30° с. ш. и 30° ю. ш. Таким образом, тропический слой озона, мало меняющийся с сезоном и ото дня ко дню (как это мы увидим ниже), составляет около 35 % всего озона атмосферы.

Общая масса озона в атмосфере, считая, что площадь его слоя на высоте 24 км составляет 513,8 · 10⁶ км², равна 3,267 · 10⁹ т озона.

Это соответствует приблизительно массе 3,2 км³ воды океана и составляет примерно 1/3800 общей массы водяного пара атмосферы. В стратосфере, где масса пара приближенно соответствует 2 км³ воды, озона несколько (на 60 %) больше, чем пара. Неудивительно что значение его для нагревания воздуха стратосферы также больше, чем значение H₂O.

§ 47. Экстремумы озона

Вопрос об экстремальных значениях количества озона — об отдельных его больших повышениях и понижениях — интересен по многим причинам. Они характеризуют его изменчивость, связанную с явлениями переноса озона. Далее, изменения озона в стратосфере, где летают современные самолеты, и в тропосфере, куда изредка проникают высокие концентрации озона, важны непосредственно для здоровья и благополучия человека. Случаи глубокого понижения X доставляют нам своего рода модель явлений при предполагаемом иногда будущем разрушении слоя озона антропогенными факторами.

Оценить, какие экстремальные значения X могут наблюдаться в данной области, нелегко. Данные таких наблюдений очень сильно (больше, чем данные о средних X) зависят от метода наблюдений по прямому или рассеянному свету, от прибора, частоты наблюдений и способа обработки. В частности, прежние наблюдения очень низких значений X, например, такие, как в Тромсё в 1942... 1944 гг. (где отмечались значения X = 68 Д. Е.), вряд ли надежны [128]. Очень низкие значения X, менее 200 Д. Е., на южных станциях СССР перестали наблюдаться с тех пор, как была введена улучшенная модель прибора M-83, например, в Ашхабаде и Душанбе.

Наивысшими для всего земного шара были значения $X_{\text{макс}} = 685 \dots 760$, наблюдавшиеся 19 \dots 20 октября 1967 г. на о. Кергелен. Однако о их точности высказывались сомнения, поскольку эти наблюдения были сделаны не по спектрофотометру Добсона. С тех пор значения $X_{\text{макс}}$ нигде в южном полушарии не поднимались выше 585 Д. Е. [63], а на о. Маккуори в сходных с о. Кергелен условиях наблюденное по спектрофотометру $X_{\text{макс}}$ было не выше 472.

В высоких широтах северного полушария наибольшие значения X наблюдались в 1960 г. ($X_{\text{макс}} = 675 \ \text{Д. E.}$) и в 1969 г., ($X_{\text{макс}} = 673 \ \text{Д. E.}$). Следует заметить, что введение в 1971 . . . 1972 гг. на сети СССР новых приборов М-83 в общем не снизило отмечаемые величины $X_{\text{макс}}$. Значения $X_{\text{макс}} \ge 600 \ \text{Д. E.}$ по-прежнему часто отмечаются в Восточной Сибири. Так, например, в Якутске 5 апреля 1975 г. наблюдалось $X = 660 \ \text{Д. E.}$, а в Нагаево 15 марта 1974 г. – даже $X = 662 \ \text{Д. E.}$. Это последнее значение было достигнуто в период повышения X в конце февраля и марте 1974 г., сказавшегося также в Иркутске и в Большой Елани на Сахалине. Максимумы X везде отмечаются в месяцы с наибольшими средними значениями X — в конце зимы либо весной.

Еще труднее вопрос о надежной оценке минимумов X, хотя он и очень важен с точки зрения возможных биологических влияний пониженной мощности слоя озона. Несомненно, самые низкие значения X должны наблюдаться в тропических либо в субтропических широтах. Действительно, по сводке, сделанной в [130], наименьшие $X_{\text{мин}}$ наблюдались близ экватора на о. Ган (191 Д. Е.), в Калькутте (196 Д. Е.), на Маунт-Эбу в Индии (201 Д. Е.), в Сринагаре в Кашмире (212 Д. Е.) и т. д. Бо́льшая часть таких данных о малых $X_{\text{мин}}$ приходится на Средний Восток и Индию и, вероятно, связана с очень резкими особенностями летней циркуляции стратосферы в этом районе.

Особый интерес представляют очень низкие значения $X_{\text{мин}}$, порой меньше 180 Д. Е., наблюдавшиеся, согласно сводке И. М. Долгина и Г. У. Каримовой, в Арктике и Антарктике [65], в особенности на обсерватории Дюмон-Дюрвиль, как по озонометру М-83, так и по другим приборам. Было бы очень важно решить, насколько такие глубокие понижения X зависят там от огромной изменчивости озона или от способа наблюдения.

Для того чтобы оценить биологические последствия антропогенного уменьшения озона, необходимо подробнее исследовать озон там, где систематически значения $X_{\rm мин}$ очень низки. Для этого нужно сопоставить параллельные наблюдения нескольких обсерваторий с данными с ВР озона, об ультрафиолетовой радиации (в области спектра «В») и пр. Наиболее интересны в этом отношении, вероятно, Средний Восток и Сахара.

§ 48. Годовой ход общего количества озона

Годовой ход общего количества озона изучался в прошлом весьма подробно, и новейшие наблюдения очень мало добавляют к его анализу. Подробнее в этом отношении, чем ранее, мы смогли изучить озон в тропической зоне.

Краткие сведения о годовом ходе X нам нужны для суждения о междуширотном переносе озона, его накоплении в околополярных областях и т. п.

В области от Северного полюса до 35° с. ш. годовой максимум X отчетлив (см. табл. 24 и рис. 61) и приходится на конец зимы или начало весны, в среднем на последнюю декаду марта, а в зоне $45...50^{\circ}$ с. ш.— на начало апреля. Лишь местами, в областях с более мягким морским климатом (например, в Оксфорде, Потсдаме и Мурманске) максимум этот смещается на середину апреля. Минимум в годовом ходе X, наоборот, полог и «размазан», может наступать в сентябре, октябре (чаще всего — в 48 % всех пунктов наблюдений) или даже в ноябре—декабре. Таким образом, годовой ход X не сходен с изменением сумм солнечной радиации или других метеорологических элементов. Амплитуды хода X в этой области велики на севере (до 215 Д. Е. в Арктике), уменьшаясь до 111 Д. Е. в зоне широт 50 . . . 60° с. ш.

В субтропической и тропической зонах амплитуда годового хода быстро убывает от 45...80 Д. Е. в поясе 25...40° с.ш. до 11...30 Д. Е. южнее его. Упомянутый разрыв в поле X под

 $25...28^{\circ}$ с. ш. сказывается и в годовом ходе — в существенном ослаблении этого последнего к югу от 25° с. ш. Большое постоянство X, таким образом, еще одна типичная черта тропического озона.

Южнее 34° с. ш. максимум Х существенно запаздывает по отношению зоне 34 ... 40° с. ш. и в области широт 10 . . . 34° с. ш. в среднем приходится на середину мая (17 мая). Вблизи экватора, в Кодайканале (10° с. ш.) и на о. Ган (0,5° ю. ш.), существует двойной годовой ход Х, с максимумами в мае и ноябре-декабре. Он отражает с некоторым запаздыванием, вероятно, двойной ход сумм солнечной

Рис. 61. Изоплеты годового хода общего содержания озона X в Д. Е. 1957... 1967 гг. По [143]

радиации. Возможно, что последний в тропической зоне (в отличие от высоких широт) существенно контролирует изменения озона.

В Тайбее, на о. Тайвань, под 25° с. ш. амплитуда годового хода сравнительно велика (50 Д. Е.) и максимум X наступает поздно, в середине июня. Вероятно, летний муссон Восточной Азии, возникающий в июне, создает над морем нисходящее движение воздуха и накопление озона в стратосфере.

В южном полушарии двойной ход озона в тропиках не наблюдался. И в Уанкайо (12° ю. ш.), и в Брисбене ($27,5^{\circ}$ ю. ш.) максимум X, как и в умеренных широтах этого полушария, наблюдается весной, в среднем в последней декаде сентября. Как и в северном полушарии, осенний минимум озона выражен тут слабо. Он может приходиться на февраль, март либо апрель.

В высоких широтах южного полушария, как это отметила Г. У. Каримова, годовой ход X отличается более крутым, чем в северном полушарии, подъемом к максимуму в ноябре и затем олее быстрым спадом. Амплитуды годового хода тут невелики (см. табл. 24) и равны всего 92... 100 Д. Е. в поясе 50... 70° ю. ш. и 75... 80 Д. Е. южнее 70° ю. ш. Они гораздо меньше амплитуд, типичных для Арктики.

В литературе отмечалось явление второго, осеннего, максимума озона в южном полушарии, наблюдаемого в марте, апреле или даже в мае. Он обычно слаб и наблюдается не каждый год. В табл. 24 он намечается слегка в ходе X в широтах 70...90° ю. ш. Г. У. Каримова [63] о нем не упоминает.

Опыт гармонического анализа годового хода X в субтропическом поясе, сделанный в [130], был пополнен нами также и для широт 55...60° с. ш. Разлагая ход X в ряд вида

$$X = X_0 + c_1 \cos \left(\omega t - \varphi_1\right) + c_2 \cos \left(2 \omega t - \varphi_2\right),$$

обнаружили, что если отсчитывать время t и фазы φ_1 , φ_2 от 15 декабря, то в поясе широт 34 . . . 40° с. ш. $c_1 = 32,5$ Д. Е. и $\varphi_1 = 10^\circ$, т. е. максимум первой гармоники приходится на 5 апреля. Вторая гармоника с амплитудой $c_2 = 5,2$ Д. Е. и $\varphi_2 = 72^\circ$ имеет максимумы 25 февраля и 26 августа. Сочетание их дает главный максимум X около 23 марта. Вместе с тем второй максимум второй гармоники ослабляет и «размазывает» осенний минимум X.

Для пояса 55... 60° с. ш. оказалось, что $c_1 = 64$ Д. Е., $\varphi_1 = 94^\circ$, т. е. амплитуда первой гармоники значительно больше, чем в поясе 34... 40° с. ш., а фаза ее приблизительно такая же. Вторая же гармоника с $c_2 = 16,6$ Д. Е. и $\varphi_2 = 5^\circ$ лишь частично ослабляет этот высокий максимум X околополярных широт.

Происхождение второй гармоники хода X легко пояснить. Фотохимические процессы, образующие озон в стратосфере низких широт, в общем мало меняются в течение года, в высоких широтах летом усиливаются очень существенно, а зимой значительно ослабевают и создают тогда резкий широтный градиент фотохимически равновесного озона $G = -\frac{\partial X}{\partial n}$:

$$G = G_0 + G_1 \cos (\omega t - \varphi_{\boldsymbol{e}}).$$

Запаздывание φ_g годового хода G тем меньше, чем больше скорость фотохимических процессов стратосферы.

Вместе с тем интенсивность переноса озона в высокие широты, описываемого коэффициентом макротурбулентности K, тоже меняется с сезоном немного, на малый угол φ_k , запаздывая по отношению к зимнему солнцестоянию:

$$K = K_0 + K_1 \cos{(\omega t - \varphi_h)}.$$

Поток озона в высокие широты Q пропорционален произведению

$$GK = A_0 + A_1 \cos(\omega t - \varphi_A) + \frac{G_1 K_1}{2} \cos(2\omega t - \varphi_g - \varphi_k),$$
где A_0 , A_1 и φ_A — функции от K_0 , G_0 , K_1 ... Величина Q, очевидно, имеет слагаемые с годовым и полугодовым периодами. Наблюдаемые амплитуды $G_1K_1/2$ полугодовой гармоники хода X, таким образом, дают косвенную оценку меняющегося междуширотного переноса озона. О значении этого переноса, называемого иногда «эффектом Дютша», мы подробнее скажем в гл. VIII.

§ 49. Озон и солнечная активность

Поскольку фотохимические процессы образования озона в атмосфере зависят от коротковолновой радиации Солнца, часто предполагают, что меняющаяся активность Солнца, сказывающаяся на интенсивности его коротковолнового спектра, может влиять и на озон. Вместе с тем идея, что активность эта влияет и на динамические явления атмосферы, также заставляла искать зависимость озона от активности. Этот вопрос многократно обсуждался.

Поскольку активность Солнца меняется с 11-летним периодом, то соответствующие изменения озона следовало бы изучать лишь по рядам наблюдений, охватывающих несколько таких периодов, скажем, за 35...45 лет. Сейчас лишь в Арозе (Швейцария) продолжается ряд наблюдений X, начатый в 1926 г. и охватывающий, таким образом, полстолетия. Он, однако, не вполне однороден методика наблюдений и вводимые поправки менялись со временем. Другие ряды наблюдений, например в Оксфорде (с 1951 г.), к сожалению, гораздо короче.

Нам уже приходилось обращать внимание на неоднозначные выводы ряда авторов о связи X и относительного числа солнечных пятен R_z [127]. Наши сравнения X на ряде станций умеренной зоны в годы с малой (1964... 1966 гг.) и большой (1957... 1959 гг.) активностью обнаружили понижение X на 3—4 % в первом из этих периодов по сравнению со вторым, в согласии со сходным выводом Г. П. Гущина. Оказалось, однако, что эта зависимость меняет знак в тропической области и не имеет таким образом общего характера.

В новейшее время связь годовых средних X и R_2 подробно рассмотрели Дж. Лондон и С. Ольтманс [303], используя наблюдения в Арозе в 1932...1950, 1951...1969 гг. и в Оксфорде в 1951... 1969 гг. Они рассмотрели связь X и R_2 с различным сдвигом τ , т. е. коэффициент корреляции r(X, R) значений X (t) со значениями $R_2(t+\tau)$. В Арозе коэффициент $r(X, R_2)$ оказался наибольшим — до + 0,42 при $\tau = -3$ года и до — 0,40 при $\tau = +3$ года. Он был близок к 0 при $\tau = 0$, т. е. для непосредственной (синхронной) связи X и R_2 . В Оксфорде значения $r(X, R_2)$ были заметно меньше и тоже близки к 0 при $\tau = 0$. Поскольку корреляция, например, при $\tau > 0$ означает, что изменения R_2 следуют за изменениями озона, она, конечно, лишена физического смысла.

В табл. 26 представлены значения r (X, R_z) из [130] для обсерваторий субтропического и тропического поясов между 40° с. ш. и 38° ю. ш. для 1957 . . . 1969 гг. Поскольку в этой зоне фотохимическое образование озона сильнее всего, можно было надеяться именно в ней обнаружить воздействие меняющейся активности Солнца.

О б серватория	I	III	v	VIII	x	XII
Мессина Татено Кагосима Нью-Дели Ахмадабад Брисбен Аспендейл	$ \begin{vmatrix} +0,51 \\ -0,14 \\ -0,23 \\ -0,36 \\ +0,19 \\ +0,54 \\ -0,15 \end{vmatrix} $	-0,29+0,47-0,12-0,11+0,20+0,61+0,53	-0,54-0,24-0,11-0,52+0,34+0,65+0,16	+0,19+0,12-0,24+0,40-0,28+0,21+0,06	$\begin{array}{c} +0,01\\ -0,11\\ -0,24\\ -0,63\\ +0,16\\ -0,20\\ -0,40\\ \end{array}$	$\begin{array}{r} +0,32\\ -0,22\\ -0,20\\ -0,70\\ -0,18\\ +0,47\\ +0,33\end{array}$

Таблица 26. Коэффициенты корреляции X и R_z в отдельные месяцы

Таблица 26, однако, не обнаруживает надежной зависимости X от R_z . Так, например, высокие положительные r(X, R) в Брисбене в первую половину года сменяются более низкими во вторую, и приписать им физическое значение нельзя из-за наличия переменной корреляции X и R_z в близлежащем Аспендейле.

Таким образом, нет связи между числом пятен и общим количеством озона, которой можно было бы придать общий физический смысл. Заметим, что современные исследования проявления активности в нижней атмосфере, например книга Ю. И. Витинского с сотрудниками [31], так же как и программы исследований Специального комитета по солнечно-земным связям (SCOSTEP), почти не упоминают об озоне.

Вместе с тем есть указания на то, что в верхней части слоя озона содержание его зависит от активности Солнца. Еще в 1969 г. Х. Петцольд по данным подъемов оптических озонозондов в четырех пунктах Западной Европы обнаружил, что в период высокой активности 1957... 1960 гг. (в 1957 г. величина R_z достигала абсолютного максимума за все 200 лет наблюдений) в слое между уровнями 50 и 20 мбар (около 20,6... 26,5 км) p_3 озона было значительно больше (до 180 нбар), чем в годы спокойного Солнца 1962... 1965 гг. (p_3 до 120 нбар). Петцольд даже вывел зависимость для $\rho_{3 макс}$:

$$p_{3\,\text{Make}} = 120 + 0.34 R_z. \tag{49.1}$$

Позднее, в 1972 г., он уточнил эту связь, использовав послойные данные озонных зондирований до 1972 г. Обозначая содержание озона в слое (в Д. Е.) через $X_v = a_v + b_v R_z$ и заимствуя значения a_v и b_v из [340], мы приводим их ниже:

Слой,	КМ										30	2 5 3 0	20 25	1520
а₀Д.	Ε.	•					•	•			120	69	92	49
b _v Д.	Ε.	•	•	•	•	·	•	•	•	•	0,06	+0,19	+0,08	-0,03

Таким образом, прямая зависимость X от R_z существует, как и по (49.1), в главной части слоя озона на высотах от 20 до 30 км, а на больших высотах X уменьшается с ростом R_z .

Полное X меняется в цикле солнечной активности не более чем на 3 %. Петцольд предположил, что обнаруженная связь может быть вызвана колебаниями ультрафиолетовой радиации в окне прозрачности атмосферы — в области спектра около 210 нм.

Вероятно, проблема космических влияний на озон требует подробного изучения изменчивости более высоких слоев озона и дальней ультрафиолетовой области спектра Солнца.

§ 50. Долговременные колебания озона

Долговременные колебания общего количества озона — их тренд — важны для изучения связей озона с изменениями климата и общей циркуляции.

Ранее мы уже изучили непериодические (их можно также назвать вековыми) колебания X [127], происходившие, например в 1936...1945 гг. и протекавшие сходным образом в Западной Европе и на Дальнем Востоке. Так, например, высокая волна X, давшая в Тромсё в январе 1940 г. повышение X на 77 Д. Е., совпала с глубокой отрицательной аномалией температуры. Мы заключили тогда, что такие аномалии связаны не столько с отдельными вторжениями арктического воздуха, сколько с общей постепенной перестройкой циркуляции в северном полушарии.

Проблема долговременных колебаний озона в последующем рассматривалась не раз. В 1971 г. У. Комхир, Э. Баррет и Х. Вейкман [282] обнаружили по наблюдениям восьми обсерваторий в восточной части США в 1960...1969 гг. увеличение X примерно на 7 %. Это изменение X они связали с устойчивым углублением зимней ложбины в верхней тропосфере над востоком США, которое вызвало большой вынос арктического богатого озоном воздуха на юг. Увеличение X над США на 4,5 % заметил в 1973 г. также Г. Джонстон [278] и на 11 %, по данным за 1962...1970 гг.,— Дж. Лондон и Дж. Келли [302].

Обзор в сборнике «Natural stratosphere» (а также [326]) обратил внимание читателя на трудность таких исследований из-за неравномерного распределения по земному шару обсерваторий, наблюдающих озон по спектрофотометрам Добсона, из-за неоднородности периодов их наблюдений и выборочности данных. Наблюдения X проводятся преимущественно при ясной погоде, т. е. при определенных типах циркуляции атмосферы (так называемый clear sky bias), и потому не описывают среднего состояния озоносферы.

Р. Ньюэлл составил детальный график вековых изменений X [326], сглаженный при помощи скользящих 12-месячных средних за 1956... 1969 гг. (рис. 62). Этот график обнаруживает максимум

X в середине 1963 г. и отчетливый глобальный минимум X в северном полушарии около 1967 г. Последний наблюдался от Леруика (60° с. ш.) до Татено (36° с. ш.). При этом ход изменений X в Леруике, Винья-ди-Валле, Татено и отчасти в Орхусе был во многом сходен. За этим минимумом последовал общий рост X. Таков же ход X и в южном полушарии от Претории (26° ю. ш.) до о. Маккуори

Рис. 62. Сглаженный ход общего содержания озона. 1956 ... 1969 гг. По [326]

(54,5° ю. ш.), где минимум наступил несколько ранее, в 1966 г. Максимум 1963 г. и минимум 1967 г. отчетливо были заметны в южном полушарии, например в Аспендейле (38° ю. ш.).

Наоборот. колебания X в низких широтах, например в Нью-Дели (29° с. ш.) и осо-Колайканале (10° бенно в были совсем с. ш.). не похожи на изменения озона более высоких широт.

В недавнее время Р. Кулькарни [295] подробнее изучил тренд озона в южном полушарии по данным шести обсерваторий — от Дарвина тропическом поясе ЛО в Маккуори в умеренном. ο. Он построил уравнения квадратичной регрессии X^{-} на время t в виде $X = A_0 +$ $+ A_1 t + A_2 t^2$. Такая регрессия обнаружила в Аспендейле — наиболее надежном пункте наблюдений — общее убывание X между 1957 и 1964 гг. примерно на (14 ± 5) Д. Е. Убывание происходило 1969 г., позднее быстро до замедлилось. Ha несколько о. Маккуори до 1969 г. наблюдался слабый рост X и затем его медленное убывание.

Одновременно шло понижение температуры стратосферы T_c на уровне 100 мбар над Австралией — на $\Delta T_c =$ = - 1,1 °C ±0,7 °C над Аспендейлом и на $\Delta T_c = -1,5^{\circ}$ С $\pm 20,7^{\circ}$ С над Брисбеном, т. е. ослабление циркуляции нижней стратосферы. Ни о каком усиленном фотохимическом разрушении озона, полагает Кулькарни, не может быть речи.

Мы составили (рис. 63) с помощью 12-месячных скользящих средних кривую вековых изменений Х в Арозе и Татено между 1961 и 1976 гг. Кривые эти имеют определенное сходство, несмотря на то что пункты наблюдений разделяют 130° долготы. На них хорошо видны упомянутый максимум 1963 г. и минимум 1967 г. Очень высокий максимум Х наблюдался в Арозе около ноября 1969 г., Татено — немного позднее, в в феврале-марте 1970 г. Оценку роли локальных факторов дают тут наблюдения в Орхусе, рас-10° севернее положенном на Арозы: изменения X тут и там в 1969 . . . 1972 гг. шли почти параллельно, хотя максимум 1970 г. в Орхусе запоздал и был значительно выше, чем в Арозе в 1969 г. После 1971 г. кривые Х на рис. 63 идут постепенно вниз.

Сходство и вместе с тем некоторые сдвиги в ходе X на близких и удаленных станциях (рис. 64), вероятно, следует приписать аналогии динамических процессов атмосферы самого большого масштаба усилению либо ослаблению мециркуляции. ридиональности Поскольку в тропическом поясе ход X отличался от хода в высоких широтах, то ясно, что вековые изменения Х не были вызваны глобальными нарушениями фотохимического равновесия.

Рис. 63. Сглаженный вековой ход X в Арозе (Ар), Татено (T) и Орхусе (Ор). 1961.... 1976 гг. Нет сомнения, что в будущем для исследования многолетних трендов озона, в том числе таких, какие могут быть вызваны деятельностью человека, нужно будет применить хорошие статистические методы, исключающие влияние годового хода X и, главное, влияние способов наблюдений при ясном и пасмурном, чистом и замутненном небе или роль неодинаковой частоты наблюдений на той или иной обсерватории.

Рис. 64. Сглаженный вековой ход X на двух близких обсерваториях. 1969... 1971 гг. 1 — Ароза, 2 — Хоэнпейссенберг

§ 51. Изменчивость озона

Изменчивость озона — ее статистические характеристики описывает, с одной стороны, устойчивость или надежность тех или иных норм (средних суточных, месячных либо многолетних), а с другой — характеризует интенсивность динамических процессов атмосферы, создающих колебания X.

Легко обнаружить, что статистическая функция распределения N(X) ежедневных значений X не только не нормальная, но, несомненно, бимодальная функция. Двухвершинность кривых распределения X обнаружил впервые Г. И. Кузнецов (в 1961 г.) по данным обсерватории Винья-ди-Валле.

На рис. 65 изображены кривые распределения N(X) значений X над Хоэнпейссенбергом в 1969 . . . 1976 гг. для января — апреля (574 наблюдения, $X = 247 \dots 571$ Д. Е.) и мая—августа (706 наблюдений, $X = 278 \dots 432$ Д. Е.). Весной изменчивость озона значительно больше, чем, например, летом.

Кривая N(X) для января—апреля имеет две вершины, при X = 345 Д. Е. и X = 385 Д. Е., как будто она слагается из двух кривых — одной, резко обрезанной со стороны малых X около 300 Д. Е. и с максимумом около 345 Д. Е., и другой, с X = 385 Д. Е.,

имеющей очень длинный «хвост» в сторону больших X. Повторяемость последних очень медленно убывает при X > 400 Д. Е. В 137 случаях (24 %) там наблюдалось X > 400 Д. Е.

Летом первая вершина, для меньших X, выражена еще более отчетливо и кривая распределения обрезана еще круче у X < 300 Д. Е. Но зато второй максимум тогда выражен лишь в виде замедленного падения N (X) между 375 и 395 Д. Е. Случаев с X > 400 Д. Е. летом было всего 14 (2%).

Колебания X, следовательно, таковы, как будто сменяются более или менее часто две массы воздуха — холодная и теплая —

Рис. 65. Нормированные кривые распределения величин X над Хоэнпейссенбергом в январе апреле (1) и мае—августе (2). 1969... 1973 гг.

с бо́льшим и меньшим количеством озона. В теплом воздухе X в общем невелико, мало изменчиво, почти не выходит за пределы 300-400 Д. Е. и его кривая распределения N(X) почти симметрична. В холодном воздухе X заметно больше и изменчивее и, главное, часто может очень сильно повышаться. Эти повышения, захватывающие несколько дней подряд (см. § 47), усиливают аналогию нашей схемы «масс», бедных и богатых озоном, с обычной синоптической классификацией.

В зимне-весенний период обе массы появляются в умеренных широтах примерно одинаково часто, в летний холодная — очень редкое явление.

В дальнейшем мы будем описывать изменчивость озона с помощью среднего квадратического отклонения $\sigma = \sqrt{\sum (X - \overline{X})^2/n}$, где \overline{X} — среднее значение за некоторый отрезок времени, X — отдельное значение, а n — число наблюдений. При нормальном распределении отклонений $X - \overline{X}$ в интервал $\overline{X} \pm 0,67$ σ должна была бы попадать половина всех значений X.

Следует помнить, что наблюдаемая междусуточная изменчивость Х зависит также от случайной ошибки прибора (кривых

lix	38 35 7,1 7,8 7,8
NI	27 6,6 8,5 6,3
×	22 20 3,9 6,5
IX	17 12 3,7 5,4 4,8
VIII	18 5.6 4,5
N1:	14 14 7,8 4,1 3,5
LV IV	$21 \\ 5,8 \\ 6,9 \\ 2,3 \\$
>	$\begin{array}{c} 28\\ 29\\ 6,4\\ 4,2\\ 4,2 \end{array}$
IV	2,2,2 2,2,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
111	42 43 3,45 3,9
=	41 45 10,1 6,3 4,1
	32 31 7,4 5,4 4,5
Период наблюдсний. годы	1966 1967 1957 1975 1973 1973 1973
Станция	Бельск Ароза Маунг-Абу Кодайканал Ган

тарировки, поправок и пр.). При этом σ отдельного наблюдения таково, что

$$\sigma^2 = \sigma_{\pi p}^2 + \sigma_{ec\tau}^2,$$

где σ_{пр} определяется случайной ошибприбора, а $\sigma_{\rm ect}$ — действительными кой изменениями Х. Очевидно, всегла

 $\sigma > \sigma_{un}$

В табл. 27 приведены такие значения о. Видно, что о мало в низких широтах (2...8 Д. Е., или 1... 3%). За пределами 25° с. ш. изменчивость сильно нарастает к умеренным широтам, где она может достигать 15...45 **Д. Е., что составляет** 10 . . . 12% от X.

В умеренных широтах изменчивость везле наибольшая зимой весной. И примерно с ноября по апрель, и резко уменьшается летом и осенью. Изменчивость, следовательно, наибольшая в период, когда широтные градиенты Х наибольшие, т. е. когда благоприятны условия для горизонтальной адвекции озона.

Отзвук зимних сильных процессов междуширотного обмена воздухом заметен даже в тропическом поясе, например в Кодайканале В марте И апреле. Примечательно, что на о. Ган, близ экватора, изменчивость заметно меньше, чем в Кодайканале, расположенном всего на 10° севернее.

Г. У. Каримова [63] вычислила для ряда обсерваторий в Арктике и Антарктике $\Delta \Omega$ — среднюю абсолютную разность Х в последовательные дни (табл. 28).

Если бы отклонения Х в последовательные дни были случайными и независимыми, то $\Delta\Omega$ было бы порядка σ. Поскольку значения ΔΩ в табл. 28 сравнительно невелики, ясно, что Х лень за днем изменяется постепенно. а не случайно, образуя статистически связанный ряд.

8 Таблица 27. Изменчивость озона (о) в Д.

ш

О б серватория	Период наблюде- ний, годы	II	١v	VII	٢x	x	XI
Леруик Резольют Тромсё Рейкьявик Фербенкс Халли-Бей Арджентайн-Айлендс Амундсен-Скотт Бэрд	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 14 8 9	25 22 30 34 15	16 12 17 25 12	19 14 22 22 15 11 25	12 24 17	11 22 13 16

Таблица 28. Значения ΔΩ в отдельные месяцы, по Г. У. Каримовой [63]

Г. У. Каримова отмечает, в частности, что $\Delta\Omega$ больше в цикло нических областях, как, например, в Рейкьявике и Тромсё. В Антарктике $\Delta\Omega$ больше на ст. Арджентайн-Айлендс у открытого берега океана, чем недалеко от нее на ст. Халли-Бей на побережье глубоко вдающегося в материк моря Уэдделла. Таким образом, изменчивость зависит также и от физико-географических условий.

Отклонения средних месячных значений X за отдельные годы от средней их многолетней X_0 можно описать с помощью среднего квадратического отклонения $\sigma_0 = \sqrt{\sum (\overline{X} - X_0)^2/n}$ (табл. 29). Величина σ_0 характеризует многолетнюю изменчивость озона.

Поскольку вероятная ошибка (с вероятностью 50 %) многолетнего среднего X_0 , вычисленного за *n* лет наблюдений, равна 0,67 $\sigma_0 \sqrt{n-1}$ из табл. 29, мы видим, что, например, 18-летний ряд наблюдений дает средние значения X_0 с точностью до 10 Д. Е. в зимние месяцы, до 1,5 Д. Е. в летние в умеренных широтах и с точностью до 1—2 Д. Е. в тропических широтах. Эти величины полезно знать для оценки, например, приводимых нами в табл. 24 многолетних средних X_0 для отдельных широтных зон.

Если возникнут глобальные антропогенные или космические изменения X_0 , их, вероятно, значительно легче будет обнаружить в тропической зоне.

Очевидно, что и малые значения σ не свидетельствуют с невозможности отдельных больших «выбросов» X, например при холодных вторжениях (см. гл. VIII). Такие выбросы, сколь они ни редки, составляют существенный элемент «озонной погоды».

Проблема изменчивости озона — временной, а также пространственной — близко связана с мониторингом озона. Так названа недавно глобальная система или организация регулярного слежения за изменениями озона и влияющих на него фотохимических и других факторов, в частности, многих малых примесей атмосферы. Исполнительный комитет Всемирной метеорологической организации в 1976 г. наметил как важные международные задачи:

ļ	×
	значений
	месячных
	средних
	Изменчивость
•	29.
	Таблица

6

• Характеристика		11	111	IV	2	1.7	IIA	1111A	IX	×	IX	XII
σ _о средних месячных σ средний за 18 лет	Pe 57,5 13,9	зольют 26,7 6,5	$\begin{array}{c} (1957 \\ 38,7 \\ 9,4 \\ 9,4 \end{array}$	$\begin{array}{c c} & 197 \\ 28,3 \\ 6,8 \end{array}$	5 rr.) 16,3 3,9	$^{14,6}_{3,5}$	9,04 2,2	$ \begin{array}{c} 10,0\\ 2,4 \end{array} $	17,1 4,1	18,0 4,4	48,0 11,6	56,8 13,8
0₀ средних месячных σ средней за 32 года	$\begin{vmatrix} 21,2\\3,9 \end{vmatrix}$	Apo3a (22,0 4,0	$\begin{bmatrix} 1926\\21,2\\3,8 \end{bmatrix}$	$\left[\begin{array}{c} 1959\\ 19,4\\ 3,5 \end{array} \right]$	rr.) 14,0 2,5	11,1 2,0	9,7	9,7 1,8	11.7 2,1	10,8	9,1 1,7	$^{14,8}_{2,7}$
σ _о средних месячных σ средней за 14 лет	Ma 9,9 2,8	уна-Ло 13,7 3,8	a (1957 10,0 2,8	10,4 2,9	75 rr.) [6,3] [1,8]	4,8	1,5	6,1 1,7	1,1	4,7	7,6 2,1	11,1 3,1

а) определение уменьшения озона, за которое могут быть ответственны антропогенные загрязнения, в особенности влияние фторхлорметанов и окислов азота,

б) определение возможного влияния изменений количества озона в стратосфере на климатические условия и солнечную ультрафиолетовую радиацию на поверхности Земли,

в) необходимость создания долговременной программы мониторинга озонной системы для определения ее трендов и будущей угрозы озонному щиту Земли.

Оценки о в табл. 29 характеризуют фон колебаний Х, на котором надо изучать антропогенные или другие прогрессивные изменения Значение о озонного щита. одного пункта, возможно, будет велико для их обнаружения, И, вероятно, для надежного мониторинга понадобится коллектив обсерваторий, работающих по единой программе.

Вопрос о таком коллективе рассмотрел А. Питток по данным группы обсерваторий Австралии. Если бы фоновые колебания Х были независимы на каждой из М обсерваторий, входящей группу, то точность коллективной оценки их тренда бы быть могла повышена раз. Однако Питток $\mathbf{B} \vee M$ колебания показал, что Х связаны в пространстве даже на далеком расстоянии (см. табл. 30). Очевидно, в пределах умеренного и поляр-

224

Таблица 30. Коэффициенты корреляции R между X в весенние (август — октябрь) месяцы по данным пар обсерваторий южного полушария на расстоянии L [347]

Обсерватория	L км	R	p %
(Гобарт + Веллингтон) : Аспендейл о. Маккуори : Аспендейл (Амундсен-Скотт + Бэрд) : Аспендейл Брисбен : Аспендейл Дарвин : Аспендейл Арджентайн-Айлендс : Аспендейл Дарвин : Брисбен	1050 6000 700 1570 8000 1400	$\begin{array}{c} 0,85\\ 0,81\\ 0,71\\ 0,73\\ 0,20\\ -0,33\\ 6,44 \end{array}$	∠ 1 ∠ 1 ∠ 1 Большая » »

Примечание. R^2 — доля изменчивости, определяемая корреляцией *р* — вероятность случайной корреляции.

Рис. 66. Пределы надежной оценки тренда озона в процентах за десятилетие, по данным наблюдений одной обсерватории (Аспендейл) и глобальной сети обсерваторий за N лет. По [347]

ного поясов корреляция X может существовать на больших расстояниях — глобальные связи озона охватывают огромные области. В тропическом же поясе эти связи нарушены, так же как и при больших различиях долгот (на ст. Аспендейл и Арджентайн-Айлендс).

На рис. 66 показаны, по оценке Питтока, границы возможного (с надежностью 95 и 99 %) определения тренда озона по данным одной станции (Аспендейл) и по данным мировой сети по наблюдениям за N лет. Речь идет здесь, очевидно, о некоторой идеальной сети, использующей совершенно однородные приборы и методы наблюдений.

Изучение трендов может быть еще несколько уточнено, если исключить каким-либо способом из данных обсерваторий годовой ход X, отчасти ответственный за возникновение дальних связей, подобных описанным в табл. 30.

Глава VIII

динамика озона

§ 52. Общие сведения. Принципы Дютша и Добсона

Поскольку фотохимическая теория и в ее простейшем варианте С. Чепмена, и в форме новейших ее сложных моделей не может объяснить многие изменчивые черты распределения озона в атмосфере, очевидно, озон принимает участие в географически обусловленных процессах циркуляции атмосферы. Несомненно, что в ближайшем будущем, по Х. У. Дютшу [215], изучение озона будет сводиться к исследованию зависимости между озоном и динамикой атмосферы — сложной системы с обратной связью.

Мы уже могли заметить [127], что изменения озона всех временных и пространственных масштабов — весьма чувствительный индикатор и природы и протяженности циркуляционных систем атмосферы. Подобным индикатором станут, наверное, в будущем и изменения других малых составляющих атмосферы — окислов азота, метана, радиоизотопов и пр. Однако озон по сравнению, например, с радиоизотопами не зависит от наличия облаков и осадков и в этом смысле более устойчив. Он гораздо консервативнее также и потенциальной температуры [213], данные о которой синоптики используют для анализа циркуляции атмосферы, в частности вертикальных движений.

На пути разработки динамики озона одни исследователи, авторы опытов усовершенствования фотохимической теории, с неохотой признают, что не все черты озона можно объяснить без учета динамических факторов. Другие исследователи пытаются объяснить все явления, выходящие за рамки фотохимической теории, макротурбулентным перемешиванием, т. е. с помощью некоторой условной и не претендующей на ясный физический смысл параметризации циркуляции атмосферы. Третьи же стремятся все явления детально истолковать, рассматривая адвекцию тех или иных масс воздуха.

Истина лежит, несомненно, где-то между указанными крайностями.

Фотохимическую теорию озона с представлением о крупном глобальном переносе озона объединяет гипотеза (или, лучше сказать, теория), разработанная в 1969 ... 1971 гг. Х. У. Дютшем [213] и Г. М. Добсоном [204]. Они нашли, что в средней стратосфере тропических широт постоянно образуется фотохимический избыток озона, который оттуда должен уноситься меридиональной составляющей (meridional overturning) общей циркуляции и одновременно нисходящим движением в нижнюю стратосферу высских широт. Там он надежно защищен от фотохимического разрушения и может накапливаться в количестве, значительно большем фотохимического порога. Этот процесс хорошо иллюстрирует рис. 67. При нем в тропическом «источнике» озона наблюдаемые концентрации его значительно меньше фотохимических, а в высоких широтах гораздо больше их.

Так происходит уже известное по гл. VII большое накопление озона в полярной стратосфере зимой.

Рис. 67. Схематическая модель крупномасштабных потоков озона и сезопного цикла озона. По [213]

Наблюдения рассеянной атмосферной ультрафиолетовой радиации со спутника «Нимбус-4» в апреле 1970 г. непосредственно обнаружили, что выше уровня 10 мбар (около 31 км) над низкими широтами (10...15° с.ш.) имеется до 62,5 Д. Е. озона, а над 80° с.ш.— всего 35 Д. Е. Накопление озона в высоких широтах, таким образом, отсутствует в верхней стратосфере и ограничивается лишь средней и нижней [252] стратосферой.

Из стратосферы, как мы уже видели в гл. VI, озон может проникать и в тропосферу, где он разрушается.

Дютш и Добсон полагали [213], что перенос озона к северу (в северном полушарии) происходит главным образом зимой, когда преобладает общая западная циркуляция в стратосфере, и ослабевает летом с установлением там восточной циркуляции. К началу осени этот ослабленный приток вместе с разрушением озона в тропосфере создает известный уже нам минимум в годовом хсде X. С восстановлением западной циркуляции в конце сентября накопление озона может начаться снова.

Таким образом, годовой ход X связан с самым крупномасштабным явлением циркуляции стратосферы — с ее сезонной сменой.

В южном полушарии, по [213], поток сзона на юг достигает лишь средних широт, где этот озон и «оседаєт». Холод антарктической стратосферы (по сравнению с арктической), есгоятно,

Рис. 68. Распределение отношения смеси озона в функции штроты и высоты. По [204] Пунктирные линии — изотермы Ө

тоже зависит от слабой адвекции более теплого воздуха, не переваливающего через южный полярный круг. Низкие температуры и минимум озона, таким образом, там имеют сходную причину.

Как заключил Г. М. Добсон по данным зондирований озона над Северной Америкой [204] и Х. У. Дютш по наблюдениям мировой сети [213], в стратосфере на уровнях выше 26 км отношение смеси r_3 во все сезоны довольно равномерно уменьшается к полюсам (см. рис. 45). Поэтому движения в сторону полюса должны туда переносить избыток озона. Добсон заметил, что такие движения должны происходить вдоль тех изэнтропических поверхностей $\Theta = \text{const}$, которые снижаются к полюсу сильнее, чем уровни $r_3 = \text{const}$. Последние, как это видно из рис. 68, на высотах более 26 км даже поднимаются в сторону полюса, обеспечивая возможность указанного переноса.

Ниже уровня 22—24 км, наоборот, поверхности $r_3 = \text{const}$ резко снижаются к полюсу. Там, как это показал У. Херинг [254], вдоль поверхностей $\Theta = \text{const}$ значения r_3 резко уменьшаются

от полюса к тропикам (в особенности в слое 13... 16 км), создавая возможность переноса озона в этом направлении.

Меридиональную скорость, необходимую для переноса озона в верхней стратосфере от экватора к высоким широтам, П. Фабиан [224] оценил в 0,4 м·с⁻¹, а скорость w нисходящего движения в этих широтах — в 0,1 см·с⁻¹. При таком переносе, по оценке Л. Алдаза (см. гл. VI), продолжительность жизни молекулы озона в стратосфере 1,5...2,3 года. Очевидно, так много времени нужно молекуле озона, родившейся в низких широтах, чтобы перейти из стратосферы в тропосферу, где ее ожидает сравнительно быстрое разрушение.

Здесь интересен расчет средних меридиональных и вертикальных скоростей, сделанный Р. Ньюэллом [328] для выбранного им примера — февраля 1964 г. над северным полушарием. Этот расчет был выполнен по синоптическим картам — по уравнению непрерывности, т. е. независимым от наблюдений озона методом. Рассчитанные вертикальные скорости достигали тогда на уровне 50 мбар (около 20,6 км) над циклонической областью востока Северной Америки + 2,2 см·с⁻¹, а в антициклонической области над Северной Европой — 0,45 см·с⁻¹. На уровне 10 мбар (около 31 км) под широтами 50...60° w было в среднем равно — 0,28 см·с⁻¹ (нисходящее движение), но ближе к полюсу оно заметно ослабевало. Эти скорости, получается, близки к предполагаемым гипотезой Дютша—Добсона.

В то время как по Дютшу и Добсону перенос идет путем медленной упорядоченной меридиональной циркуляции, другие исследователи, как, например, ученик Дютша Фаваргер, считают, что более важную роль играет неупорядоченный макротурбулентный перенос [227]. Дж. Хетчингс и Э. Фаркаш [266] в 1971 г., анализируя данные вертикальных зондирований озона над Крайстчерчем (Новая Зеландия, 43,5° ю. ш.), заключили, что перенос озона на юг происходит с подвижными атмосферными вихрями. Величина этого переноса в слое между 70 и 20 мбар (18,4 . . . 26,5 км), по их оценке, составляет 3,9·10⁻³ г·с⁻¹ через 1 см параллельного круга. По [266], горизонтальный перенос озона на юг должен быть еще пильнее в нижней стратосфере (на высотах 12-13 км), где скорость сетра в упомянутых вихрях наибольшая. Этот вывод, очевидно, вротиворечит идее Дютша и Добсона о переносе в сторону полюса на высотах более 26 км. Вероятно, оценки переноса следует делать не по данным одной станции, как в [266], а по совокупности наблюлений всех станций.

В 1972 г. Дж. Лондон и Дж. Парк [304] изучили перенос озона с помощью численной модели общей циркуляции атмосферы, разработанной в Национальном центре атмосферных исследований США А. Касахарой и У. Вашингтоном. Так, в северном полушарии в период 5... 20 февраля (рис. 69) средний турбулентный перенос озона должен был быть направлен к северу во всей зоне от 7° с. ш. до полюса. Он должен был под 45° с. ш. достигать максимума — около 6,6 · 10¹⁹ молекул · c^{-1} · см⁻¹ в слое от 0 до 36 км. В согласии с [204], перенос озона в южном полушарии к югу оказался, по [304], значительно слабее, чем в северном к северу.

Вместе с тем модель Лондона и Парка указала и на большую роль упорядоченного переноса озона в зоне от экватора до 30° с. ш., сильно преобладающего тут над турбулентным, и на малую роль его в более высоких широтах.

В частности, из графизависимости переноса KOB составленных высоты. OT Лондоном и Парком (не приведенных здесь из-за недостатка места), следует, что под 45° ю. ш. действительно турбулентный перенос озона к югу преоблалает на всех высотах от 6 до 36 км (в согласии с выводом Хетчингса и Фаркаш). Упорядоченная coставляющая переноса cyществует там на высотах 18 км. более что уже ближе согласуется со схемой Дютша.

Составители обстоятельного обзора «Естественная стратосфера» (1974 г.) [373] считают, что перенос озона (п его распространение в тропосферу) определяют длинные волны общей циркуляции атмосферы, более всего волны с волновым числом n = 3.

Рис. 69. Интегральный горизонтальный перенос озона в 10^{12} молекул \cdot см⁻² · с⁻¹ между высотами 0 и 36 км 5... 20 февраля. По [304]

а — средний перенос, б — турбулентный перенос

При сильно меандрированном течении атмосферы (т. е. при больших амплитудах волн) в распространяющихся далеко к северу гребнях волн должно возникать восходящее движение, а в долинах волн на юге — нисходящее. Эти черты циркуляции опять-таки нарушают схему Дютша и Добсона и вместе с тем обращают наше внимание на роль длинных волн в распределении озона.

В новейшем аэрологическом исследовании общей иркуляции Настром и др. [324] в 1975 г. показали, что направленная к северу составляющая ветра, могущая обеспечить перенос туда озона на высотах более 25 км, на меридиане 90° з. д. (Северная Америка) существует в октябре и январе до 45° с. ш., в апреле — до 60° с. ш. и лишь летом распространяется дальше к северу. В этой области, очевидно, накопление озона не всегда захватывает высокие широты. В то же время на меридиане 70° в. д. (меридиане Бомбея и Ташкента) перенос с юга охватывает околополярную область широты более 50° с. ш.— и, возможно, даже перехлестывает через полюс (рис. 70). Несомненно, перенос неодинаков под разными долготами.

В 1976 г. Прабхакара и Роджерс [403] заметили, что в полярных районах Северной Америки X нарастает особо сильно при интенсивной волновой деятельности в северном полушарии. Над Западной же Европой, как показал еще в 1961 г. Г. И. Кузнецов, нао-

Рис. 70. Средняя меридиональная скорость воздушных течений в м·с⁻¹ в функции широты и высоты. Полдень, январь, 70° в. д. По [324] Положительные скорости-южный ветер

борот, рост X над Исландией происходит, когда сильный зональный поток запирает истечение воздуха из полярной области.

Подводя итог, можно заключить, что в междуширотном переносе озона принимают участие и упорядоченная и турбулентная составляющие верхних воздушных течений. Они обе обеспечивают реальность схемы Дютша и Добсона (накопление стратосфере озона нижней В средних и высоких широт) и в то же время создают зависимость ее от долготы (и широты). О нисходящем движении, имеющемся в стратосфере высоких

широт, свидетельствуют и графики Настрома. Однако горизонтальный перенос озона в нижней стратосфере еще требует более подробного исследования.

Очень важен сделанный в [373] вывод, что на карте изолинии X сгущаются часто в областях сильной бароклинности атмосферы, т. е. в областях интенсивной вертикальной циркуляции и фронтов. На связь озона с последними мы обратим поэтому ниже большое внимание.

§ 53. Принцип Добсона и Норманда

Более детально и в то же время в меньших пространственных масштабах связь вертикального распределения озона и его количества с вертикальными движениями атмосферы устанавливает так называемый принцип Норманда—Добсона, высказанный еще в 1934 г. Он утверждает, что при наличии общего нисходящего потока, простирающегося на большую толщу атмосферы, озонированный воздух будет опускаться, а воздух, занимающий его место, вскоре тоже станет богат озоном и общее количество озона будет постепенно увеличиваться. Обратный вывод будет тоже, очевидно, справедлив.

Этот принцип основан на факте (см. гл. VI), что на больших высотах, например выше 30 км, время фотохимической релаксации озона т мало и там концентрация озона быстро устанавливается на уровне фотохимического равновесия. Озон, уносимый оттуда в нижнюю стратосферу, защищен в ней от фотохимического разрушення благодаря большому т и может накапливаться там в большом количестве.

Принцип Норманда—Добсона широко использовался в интерпретации данных наблюдений озона.

Легко видеть, что индивидуальное изменение плотности озона ρ_3 в движущейся частице воздуха, пренебрегая диффузией озона, выражается как

$$\frac{d \rho_3(x, y, z, t)}{dt} = \alpha \left[\rho_{30}(x, y, z) - \rho_3(x, y, z, t) \right], \quad (53.1)$$

где ρ_{30} — равновесная плотность, зависящая от высоты и широты (плотности воздуха, O_2 и потока радиации), а $\alpha = 1/\tau$ (см. гл. III). Очевидно, α растет с высотой — скорость реакций, стремящихся приблизить величину ρ_3 к равновесной, увеличивается в верхней атмосфере.

Разворачивая (53.1), имеем

$$\frac{\partial \rho_3}{\partial t} + \frac{\partial}{\partial x} \left(\rho_3 u \right) + \frac{\partial}{\partial y} \left(\rho_3 v \right) + \frac{\partial}{\partial z} \left(\rho_3 w \right) = \alpha \left[\rho_{30} - \rho_3 \right], \quad (53.2)$$

где u, v, w — составляющие скорости движения воздуха, с которым переносится озон. При u = v = 0 (при отсутствии адвекции озона) формула (53.2) дает численную формулировку принципа Норманда—Добсона.

Ниже мы приведем ряд примеров, когда принцип Норманда— Добсона хорошо объясняет как изменения X озона при разнообразных атмосферных динамических процессах, так и изменения ВР озона. Такое простое объяснение в то же время бывает весьма детальным и прилагается как к кратковременным, так и к длительным динамическим процессам. Нередко при этом наблюдаемые изменения озона подсказывают, каково может быть поле вертикальных скоростей w (x, y, z).

Принцип Норманда—Добсона проверяется при наблюдении слоев повышенной концентрации озона и повышенной температуры, вызванной адиабатическим нагреванием опускающегося воздуха (и наоборот). Пример такой связи дает вывод А. Крюгера, полученный при обработке наблюдений ВР озона со спутника «Нимбус-4» (1970 г.). Он заметил, что в более высоких широтах направленные вниз языки повышенного отношения смеси озона, по-видимому, связаны с местными более теплыми областями атмосферы, обнаруживаемыми инфракрасным спектрометром (IRIS). Такая связь, если ее подтвердит последующий анализ, ясно указывала на оседание [289].

§ 54. Некоторые квазистационарные черты распределения озона

Уже среднее географическое распределение X обнаруживает влияние общей циркуляции атмосферы и ее зависимости от времени. Во все сезоны (рис. 71) в северном полушарии существуют три об-

Рис. 71. Распределение общего содержания озона над северным полушарием в апреле. По [143]

ласти, или «гребня», повышенного количества озона. Они как бы направлены с севера на Центральную либо Восточную Европу (около 5° в. д.), на Восточную Азию (135° в. д.) и Северную Америку (около 82° з. д.). В среднем за год в азиатском и европейском гребнях X достигает 380 Д. Е., а в американском — даже 400 Д. Е., везде под широтами 55...56° с. ш.

Сравнивая рис. 71 с картой давления воздуха на уровне моря, можно обнаружить, что азиатский гребень Х сдвинут к юго-юго-

востоку от центра повышенного (приземного) давления в восточной части Якутии (вторичного центра большого сибирского антициклона) и что североамериканский центр смещен к юго-востоку от антициклона над северо-востоком Канады. Еще важнее связь X с высотным барическим полем. Оба озонных гребня расположены в глубоких ложбинах давления воздуха, хорошо видимых на картах абсолютной топографии AT_{500} и AT_{200} [52, 213, 307].

Ложбины эти связаны с областями очень сильной бароклинности (как бы заякорены ими) и мощных струйных течений, проходящих к востоку от них, над Японией и Курильскими островами и северозападной Атлантикой. На это указывал, в частности, Дж. Ловилл в докладе 1974 г., составленном по данным спутниковых наблюдений озона [307].

Третья, более слабая такая ложбина, расположенная над Европейской территорией СССР, вероятно, создает приток воздуха с северо-запада на Западную Европу, т. е. адвекцию богатого озоном воздуха высоких широт. Действительно, например, над Парижем в период ноябрь—май на уровне 200 мбар (около 12 км) среднее направление ветра 302°, почти точно северо-западное. Однако с приземным полем давления европейский гребень озона не связан.

В то время как гребень озона существует почти весь год, ¹ упомянутые выше приземные антициклоны и высотные ложбины существуют главным образом лишь в холодное полугодие. Поэтому пока еще нет простого объяснения, как возникают эти области высоких X в северном полушарии и почему накопление озона в высоких широтах неодинаково в различных географических областях. Лишь более частный факт — значения X, наибольшие под широтой около 55°, — имеет то объяснение, что перенос озона по схеме Дютша и Добсона не распространяется до полюсов и что пониженные над последними суммы радиации I_3 и особенно I_2 образуют там провал в поле озона (ср. гл. III и VII).

Хотя в южном полушарии изучить долготное распределение X гораздо труднее, там тоже намечаются три гребня озона. Главный из них, с $X \approx 400$ Д. Е., расположен в октябре (весной) к югу от Австралии, второй, с $X \approx 330$ Д. Е., восточнее оконечности Южной Америки, и третий, весьма слабый, — несколько восточнее Южной Африки. Как положение этих гребней по отношению к материкам, так и слабость их по сравнению с их северными аналогами подсказывают, что формирование гребней озона зависит от свойств подстилающей поверхности и нижней атмосферы, о том же говорит область более глубокого провала озона над Антарктидой (см. гл. VII), чем провал его в Арктике.

На мировых картах распределения Х за 1957...1967 гг., составленных Дж. Лондоном с сотрудниками [143], видна вытяну-

¹ Наблюдения, ведущиеся в СССР с 1972 г. с модернизированным озонометром М-83, действительно показали, в отличие от прежних данных, что дальневосточный максимум X также существует почти круглогодично.

вдоль экватора полоса очень низких значений Х (около тая 240 Д. Е.). Однако позднейшие исследования обнаружили не одну, а две такие зоны пониженных значений Х. Так, например, В. Ф. Белов с сотрудниками наблюдали [34] в ноябре 1965 г. над Атлантическим океаном наиболее низкие значения X под 18° с. ш. и 2° ю. ш. В. М. Ратьков в январе 1967 г. под долготами 165 . . . 180° в. д. наблюдал два широтных минимума X, под 7° с. ш. и 11° ю. ш. Спутниковые наблюдения, сделанные Дж. Ловиллом и рассмотренные в его докладе 1974 г. [307], обнаружили в период с 19 апреля по 21 июля 1969 г. вытянутую между 120 и 170° в. д. область очень низких X — до 220 Д. Е. — в тропической зоне северного полушария и от 120° в. д. до 170° з. д. в южном полушарии. Там она под 7° ю. ш. очень ясно ассоциируется с южной ветвью внутритропической зоны конвергенции (ВТЗК) — с областью большой облачности и высокого альбедо. Как теперь хорошо известно после детальных наблюдений Тропических экспериментов 1972 и 1974 гг., существуют действительно две — северная и южная — ветки ВТЗК.¹ С ними, вероятно, связаны минимумы Х, описанные в [34, 128, 307], как и ВТЗК, временами заметно смещающиеся по широте.

Г. К. Гущин в своих исследованиях озона над океанами [36] многократно наблюдал промежуточный между двумя ВТЗК, как он его назвал, «приэкваториальный» максимум озона летом 1968 и 1969 гг. и его изменения в течение года. Наблюдения Д. Хита со спутника «Нимбус-4», начатые в апреле 1970 г., также обнаружили этот максимум под 2° с. ш. между минимумами X под 7° с. ш. и 4° ю. ш. [252]. В последних X уменьшалось до 227 Д. Е. В 1972 г. Н. Ф. Еланский и В. М. Березин по данным спутниковых наблюдений 1966 г. описали приэкваториальный максимум (над Тихим океаном), в котором X достигало 320 Д. Е., в то время как в окаймлявших его областях минимумов X понижалось до 240 Д. Е. [8].

В физике атмосферы пока еще нет подробной динамической теории двух ветвей ВТЗК, но ясно, что циркуляция (а вместе с ней и изменения озона) в тропиках должна быть сравнительно сложна. Тут большая неустойчивость и мощная конвекция порождают сходимость потоков, как и на обычном фронте, при участии кориолисовой силы, т. е. при $\varphi \neq 0$. Как отметил и Дж. Ловилл, такая циркуляция должна, видимо, распространяться вверх, в стратосферу, создавая там сильные восходящие движения и затем интенсивный отток озона в более высокие широты.

При $\varphi = 0$ с обращением отклоняющей силы в 0 конвергенция течений в тропосфере ослабевает, а с ней и восходящие движения, что, вероятно, и создает локальный максимум озона. Известно, что многие острова близ экватора отличаются сухим климатом, т. е. ослабленной конвекцией.

¹ Им соответствуют два широтных минимума давления воздуха, разделенных зоной небольшого максимума давления и описанных, например, Р. Р. Белевичем и др. [7] в 1974 г.

Представление о воздушных массах и фронтах дает хорошую возможность изучить динамические свойства атмосферного озона на большом материале наблюдений.

Для проверки принципа Норманда—Добсона важны горизонтальные зондирования X с самолета. Такие наблюдения были сделаны в 1960...1970 гг. А.М. Шаламянским [132] и в 1976 г. Ю. Л. Трутце и Н. Ф. Еланским [7]. Они обнаружили, что в однородных воздушных массах озон распределен весьма равномерно. Там на отрезках протяжением 1000...2000 км X меняется обычно не более чем на 10 % как в арктических, так и в умеренных воздушных массах. Очевидно, в них и эффект вертикальных движений, и эффект Дютша очень однородны.

Вместе с тем близ фронта — границы двух воздушных масс (т. е. бароклинной зоны, см. § 52) — X резко меняется. Так, Р. Божков нашел, что за вторжением холодного фронта (в умеренных широтах) X повышается в среднем на $\Delta X = 28$ Д. Е. (иногда на 60 Д. Е.), а перед теплым фронтом понижается в среднем на 21 Д. Е. Аналогично, по новым данным Г. У. Каримовой [63], в 69 случаях фронтов над Арктикой значения ΔX при холодных и теплых фронтах составляют соответственно + 17 и — 18 Д. Е. Поскольку в [63] идет речь о вполне определенных синоптических процессах, можно считать, что 69 случаев — уже вполне достаточный объем статистической выборки для данной задачи.

Изменения озона при фронтах ставят перед нами дилемму: связаны ли эти изменения с оседанием воздуха и накоплением озона (или подъемом и расходом этого последнего) по принципу Норманда—Добсона или же они определяются горизонтальной адвекцией холодных и более богатых озоном масс воздуха (либо масс более теплых и бедных им).

О влиянии вертикальных движений говорят изменения высоты тропопаузы H_{τ} . Еще в 1958 г. Х. Иохансен показал, что в период между апрелем и сентябрем, по данным 590 наблюдений в Тромсё (69° с. ш.), коэффициент корреляции между X и H_{τ} r (X, H_{τ}) отрицателен — от — 0,58 до — 0,64. Это значит, что при низкой тропопаузе, типичной для арктического воздуха, X систематически повышено (и наоборот). Аналогично, по наблюдениям в Воейково в 1970 г., А. М. Шаламянский и Г. Ф. Иванова [132] нашли коэффициент корреляции между X и уровнем тропопаузы — давлением на ней p_{τ} , равный r (X, p_{τ}) = 0,49 ... 0,82.

Более сложен вопрос о природе влияния фронтов на озон.

Если принять, что увеличение X при холодном фронте вызвано нисходящими движениями воздуха, то нам придется предположить, что над фронтом такое движение захватывает значительную область и толщу стратосферы. Этот вывод расширяет для синоптика понятие «тропосферные фронты», основанное на анализе поля температур, облаков и т. д. лишь в нижней и средней тропосфере. Если мы примем вторую часть указанной выше дилеммы — предположим, что при фронте X увеличивается с адвекцией холодной массы, то нам придется также принять, что за фронтом вторгается поток, увлекающий значительную толщу воздуха стратосферы, богатого озоном.

Такой вывод, однако, подтверждают Л. А. Гаврилова и сотрудники [117], нашедшие, что в высоких широтах около 70% всех фронтов прослеживается как в тропосфере, так и в стратосфере обычно до высоты 15—16 км. По Л. А. Урановой [408], усиленный приток озона вверху порой даже обгоняет фронт в тропосфере, т. е. наблюдение X может быть полезно и для синоптического прогноза.

Иногда при холодном фронте концентрация озона резко увеличивается и в приземном слое воздуха. Так было, например, в упомянутом в гл. VI случае 26 февраля 1971 г. в обсерватории Хоэнпейссенберг (ФРГ, 975 м над ур. м.). Тогда, при холодном фронте, давшем сравнительно небольшое понижение температуры (всего на 4 °C), плотность озона в приземном слое воздуха временами повышалась до 840 мкг м⁻³ при среднем ее значении 30 мкг м⁻³.

Более общее исследование статистической связи озон—температура сделали в ГДР Д. Шпенкух и В. Делер [395] по данным n == 182 озонных зондирований над Потсдамом в 1967...1971 гг. Здесь связи устанавливались между температурой T_k на уровне p_k и парциальным давлением озона на уровне p_{3i} . Выяснилось, что, например, понижение температуры нижней атмосферы (на уровне 900 мбар) в период январь—апрель (для которого n = 60) связано с увеличением давления озона p_3 в слое от 250 до 30 мбар (примерно 10,4...23,8 км) с коэффициентом корреляции $r(T_k, p_{3i}) = -0,1$. Наиболее репрезентативна для озоноактивных вторжений воздушных масс температура на уровне 600 мбар. Она определяет изменения озона с обратным знаком в нижней стратосфере — между 300 и 65 мбар (9,1...18,9 км) с высокой корреляцией, с $r(T_k, p_{3i})$ до — 0,51.

Такого рода статистические связи можно использовать в дальнейшем для прогноза тех типов атмосферных процессов, которые «перебраны» в упомянутых 60 зондированиях. Оценить полноту этой выборки трудно. Иное дело, когда изучается характерный процесс, например фронт, отобранный по ряду других независимых хорошо изученных признаков. Тогда выборка с n = 69, подобная сделанной в [63], должна давать надежные результаты.

В отличие от холодных вторжений, синоптики, к сожалению, мало знают о вторжениях тропического воздуха (ТВ), которые должны приносить пониженное X. Вероятно, это понижение труднее обнаружить из-за более быстрой релаксации озона на больших высотах — в слое тропического озона.

Вторжения ТВ в умеренные широты более типичны для «бабьего лета» (в северном полушарии в сентябре или даже в октябре). Летом восточный поток в стратосфере очень устойчив и редко образует длинные волны, тропическому воздуху трудно проникнуть на север. Лишь осенью, когда стратосферная циркуляция перестраивается на менее устойчивую западную, вынос ТВ на север становится возможным.

Нам удалось по материалам Х. У. Дютша, В. Цюллига и Х. Линга [219] найти в осенние месяцы несколько случаев, когда над Тальвилем (Швейцария, 47° с. ш.) озонные зондирования обнаружили ВР озона и ход температуры, весьма сходные с тропиче-

Рис. 72. Вертикальное распределение озона (1) и температуры (2) над Таль. виллем (Швейцария) 16 октября 1967 г., соответствующее тропическому типу

Весьма низкое p_3 (8... 20 нбар) имеется во всей тропосфере и охватывает высоты до уровня p = 132 мбар (около 14,4 км). Лишь выше 110 мбар (z = 15,6 км) p_3 начинает резко возрастать. Максимум $p_3 = 141$ нбар (сравнительно невысокий, значительно меньше типичного для умеренных широт) расположен высоко — на уровне около 23,9 км. Двойная тропопауза расположена и уровне соответственно 13,5 км, где она проявляется в распределении озона, и на уровне 16,9 км, где видна характерная тропическая тропопауза и озон существенно возрастает. По [216]

скими — с озонопаузой выше 16 км (100 мбар) и высокорасположенным максимумом p_3 . Так, 16 октября 1967 г. (рис. 72) над Швейцарней располагалась теплая тропическая масса воздуха с температурой 20 °С у поверхности Земли. В массе этой, как обычно, трепопауза была высокой ($H_{\tau} = 13,5$ км) и холодной ($T_{\tau} = -72$ °С). Давление озона p_3 начало нарастать лишь с высоты 14 км, а общее количество озона было невелико — 290 Д. Е. К 20 октября озонопауза и тропопауза там еще поднялись, соответственно до 16,3 и 14,1 км.

Над Тальвилем летом и осенью иногда двойное наслоение озона — первая озонопауза — видно непосредственно над полярной тропопаузой около 11 км, а затем нарастание p_3 вверх еще усиливается выше 16—17 км, хотя следа тропической тропопаузы при этом пет. Вероятно, изучив такие наслоения, станет яснее, как действует схема Дютша летом, когда верхний приток озона в высокие широты ослабевает, а отток его в нижиюю стратосферу и тропосферу более силен.

Совсем иные процессы связаны с ТВ над Боулдером (США), под 40° с. ш. на сильно нагретом горном плато. Здесь ТВ летом формируется «на месте» как постоянный тип воздушной массы, в которой, как правило, наблюдается малое количество озона и озонопауза и тропопауза находятся на высоте около 16 км с низкой температурой — около — 69 °С.

Упомянем еще случай 10 ноября 1976 г. в Хоэнпейсенберге (ФРГ, 975 м над ур. м.), когда исключительно высокая тропопауза ($H_{\tau} = 23$ км) и высокая температура нижней тропосферы (6,8 °C; на уровне 800 мбар средняя температура в этом месяце — 2 °C) свидетельствовали о вторжении теплого ТВ. В этот день X там понизилось до 280 Д. Е.

В тропической зоне также случаются резкие колебания X. Так, Г. И. Кузнецов [77] наблюдал между 25 и 30 сентября 1963 г. над Атлантическим океаном под 16° ю. ш. две последовательные волны холодного воздуха, пришедшие с юга и принесшие рост X с 258 до 398 Д. Е. Похолодание при этом было менее выражено в нижней атмосфере (на 2 °C) и более заметно в средней тропосфере (на 4 °C). Есть сведения и о резких повышениях X на о. Ган (под 0,5° ю. ш.).

Известно, что иногда холодные фронты могут смещаться до экватора, не разрушаясь, в отличие от ВТЗК. Анализ изменений озона при этом представлял бы существенный интерес для изучения динамики фронтов.

§ 56. Озон и длинные волны

Как известно, в верхней тропосфере и в стратосфере, до уровня 10 мбар и выше циркуляция атмосферы средних и высоких широт происходит в форме так называемых длинных волн. В северном полушарии отклонения зонального потока к северу называют гребнем волны, к югу — ее ложбиной. Развитие волн зависит от степени устойчивости зонального потока. Теоретически волны развиваются сильнее всего в поясе, расположенном южнее зоны больших мериднональных градиентов температуры — зоны большой бароклинности.

Число *п* длин волн *L*, укладывающихся на данном круге широты, называют волновым числом: $n = 2 r \cos \varphi/L$. Волны могут быть стационарными и движущимися. Пример стационарных ложбин давления с повышенным *X* над Восточной Сибирью и Северной Америкой мы уже приводили выше. В 1958... 1960 гг. довольно короткий ряд наблюдений привел Аллингтона и Бовилла к выводу, что в подвижных длинных волнах параллельно изменяются величина *X* и ОТ²⁵₁₀₀ (т. е. средняя температура слоя между 25 и 100 мбар, или 16... 25 км) и обратно им — поле давления. Гребням озона соответствуют области сравнительно теплой средней стратосферы и вместе с тем ложбины пониженного давления на уровне 200 мбар. Коэффициент корреляции между озоном и давлением был от — 0,23 до — 0,55, между озоном и температурой — от + 0,25 до + 0,73. В СССР наблюдения *X* по отношению к длинным волнам сделали

Г. П. Гущин [39] в 1963 г. и в 1973 г. А. М. Шаламянский и Г. Ф. Иванова [132], использовавшие при этом уже результаты 98 горизонтальных зондирований озона на самолете. Они нашли также, что гребням волн соответствуют меньшие, ложбинам бо́льшие значения X. Наиболее репрезентативным для распределения озона оказалось положение волн на карте AT_{300} ($z \approx 9$ км).

Подробно исследовал ряд «волн озона» (опять-таки волн X его общего содержания) в 1974 г. Дж. Ловилл [307] по наблюдениям с искусственного спутника Земли «Нимбус-3» в апреле--июле 1969 г. Он строил карты X, например северного полушария по определениям X в 20... 30 тыс. точек, используя бо́льшую по объему информацию, чем дали все прежние наблюдения озона.

На приведенных в [307] картах (рис. 73) обнаружились в обоих полушариях яснее всего волны с n = 4. Они были хорошо выражены под широтами 60 и 40° ю. ш. (где тогда была зима), причем в первом случае X изменялось в пределах от 325 до 440 Д. Е., а во втором — всего от 325 до 360 Д. Е. В июне скорость движения волн под 60° ю. ш. была от 3,8 до 13,3° долготы в сутки (210...740 км × × сут⁻¹, в среднем 390 км·сут⁻¹), под 40° ю. ш. — 6,3° сут⁻¹ (около 540 км·сут⁻¹).

Гребням озонных волн с X > 380 Д. Е. при этом соответствовали более высокие радиационные температуры (определенные по излучению $\lambda = 15$ мкм) атмосферы выше 16 км, аналогично данным Аллингтона и Бовилла. Ложбинам волн соответствовали более низкие температуры. Очевидно, накопление озона идет при нисходящих движениях нагревающегося при этом воздуха, и наоборот.

Движение некоторых волн озона хотя и с изменяющейся амплитудой Ловиллу удалось проследить почти в течение пол-оборота вокруг земного шара в восточном стратосферном потоке летом. В этом кроется, очевидно, одна из причин малой изменчивости озона летом. Менее четко были видимы сравнительно слабые волны. Так, например, в [307] под 40° с. ш. в июне озон в волнах изменялся от 315 до 355 Д. Е. В низких широтах обоих полушарий картина волн была размытой, они имели вид отдельных пятен повышенных или пониженных (например, между 80 и 120° в. д.) значений X. Под 20° с. ш. в стратосфере замечалось движение областей более высоких и низких X к западу — наподобие восточных волн — со скоростью около 320 км сут⁻¹.

Рис. 73. Длинные волны озона, наблюдавшиеся Дж. Ловиллом в июне 1969 г. под 40°ю. ш. По [307] Сплошные наклонные линии 1...4 — волновая скорость, пунктирные линии — эффекты групповой скорости. Черные квадратики — хорошо выраженные максимумы озона

Напомним, что в 1971 г. Б. Ламжавын [129], изучая изменения парциального давления озона p_3 на уровнях 100, 50 и 20 мбар, нашел, что в тыловой части ложбины озонный слой становится более мощным и опускается вниз, а в гребнях слой этот как бы приподнят и p_3 на всех уровнях значительно меньше, чем в ложбине, в особенности на уровне 100 мбар. Так наметилась уже схема вертикальных смещений слоя озона в длинных волнах. Необходимо более подробное исследование, которое связало бы горизонтальные и вертикальные движения в волнах с эволюцией слоя озона. Влияют ли тропические ураганы на распределение озона вопрос важный потому, что в них энергия горизонтальных и вертикальных движений исключительно велика.

В тропическом урагане скорость ветра достигает 90 м с⁻¹ и более и сильнейшая сходимость потоков образует гигантские, иногда вырастающие до 20 км, стены грозовых облаков. Вместе с тем центральная часть урагана — «глаз бури» (диаметром обычно 15... 30 км) — область затишья и просвечивающих тонких облаков. Поскольку в глазу температура сравнительно высока, до 29 °С на уровне моря и до 16 °С на уровне 500 мбар (5,5 км), иногда полагали, что там происходит сильное нисходящее движение воздуха.

Ураганы развиваются только над морем. Над сушей они быстро разрушаются, и поэтому наблюдать в их области озон наземными средствами довольно трудно.

В 1964 г. в США удалось с помощью самолета, оборудованного хемилюминесцентным озонометром В. Регенера, прозондировать ураган Исбель 14 октября над Флоридой. Полет происходил близ тропопаузы, находившейся на высоте 16,4 км. Над ней атмосфера была безоблачна [342]. Под тропопаузой, в области глаза наблюдалось очень малое отношение смеси озона $r_3 = 0,05 \cdot 10^{-6}$ и давление озона $p_3 = 3$ нбар. Температура там была очень низка — до — 83 °С (рис. 74). Очевидно, на этом уровне нисходящих движений в области глаза не было. Непосредственно над тропопаузой содержание озона было заметно больше, чем под ней, r_3 достигло $0,26 \cdot 10^{-6}$ и $p_3 = 16$ нбар. С высотой r_3 быстро нарастало до $r_3 = 2,4 \cdot 10^{-6}$ на уровне 57 мбар приблизительно одинаково в северном и южном секторах урагана.

Во второй раз так удалось прозондировать озон в урагане Джинни 23 октября 1964 г. на Траверс-Джэксонвилле, под 31° с. ш. и 75° з. д. Диаметр глаза бури при этом был довольно велик — до 70 км, а облачные стены вокруг него достигали высоты лишь 12 км. В области глаза обнаружились сравнительно высокие температуры — до — 32 °С на высоте 9,1 км, где было $p_3 = 14 \dots 20$ нбар, и до — 61 °С, над верхним краем облачной стены. Вероятно, в интервале высот от 12 до 9 км нисходящее движение нагревало воздух примерно на 30 °С.

Выше 12 км (p < 200 мбар) температура была близка к наблюденной в тот же день в Джэксонвилле, в 500 км от центра урагана, а p_3 было немного выше, чем наблюдавшееся на следующий день при зондировании озона над Таллахасси, в 800 км от центра урагана.

Наблюдения озона и температуры так дают информацию о некоторых чертах динамики урагана.

В 1975 г. Нгуэн Тхи Киен [130] изучила изменения X в Татено и Кагосиме (Япония) и в Тайбее на о. Тайвань в дни, когда поблизости от этих пунктов проходили тайфуны. Ниже приведены опре-

Рис. 74. Поперечный разрез верхней области урагана Исбель по данным 'зондирования с самодета U-2. По [342] В числителе – отношение скеси да в 10-6 в знаменаскеси да в 10-6 в знаменастесне – температура. / – подеты, направателые полеты. Заштрихована область периделенные таким способом средние X в функции расстояния L от центра тайфуна в данный момент:

L км 101—200	201-400	401-600	601-800	801-1000
Число наблюдений 14	24	21	17	200
ХД.Е 280	283	294	288	302

Очевидно, в области тайфуна X заметно понижено, так, будто стратосфера здесь тоже принимает некоторое участие в восходящем движении.

§ 58. Струйные течения и озон

Струйное течение — узкий (300...400 км, иногда 40 км), быстрый (до 160 м·с⁻¹) поток воздуха небольшой толщины (2... 4 км, иногда до 6 км), прямолинейный или изгибающийся, включенный в более медленное окружающее течение в верхней тропосфере или нижней стратосфере. В тропосфере наиболее изучены субтропические струйные течения (СТ), развивающиеся преимущественно под 35...45° широты. Струйные течения возникают над областями атмосферных фронтов, где велика бароклинность, способствующая энергичной вертикальной циркуляции воздуха. Поскольку скорость СТ приближается к скорости звука, в СТ происходит дополнительное сжатие струи из-за динамического уменьшения давления в быстром потоке.

Еще в 1961 г. Г. П. Гущин [38] по данным 1957... 1958 гг. обнаружил, что в СТ, в зоне наибольших скоростей ветра, видимой, например, на карте барической топографии уровня 300 мбар, $(z \approx 9 \text{ км})$, горизонтальный градиент X всегда повышен и по левую сторону от оси СТ (в северном полушарии) величина X значительно больше, чем по правую. Это различие наибольшее весной и ослабевает летом и осенью. Г. П. Гущин высказал мнение, что СТ оказывает барьерное действие на озон, находящийся слева от струи, не пропуская его в заметных количествах через зону струи (см. [40]).

В 1966 г. В. Ф. Васин и В. И. Воробьев рассмотрели более 1100 наблюдений X над СССР и Канадой за 1961 . . . 1963 гг. в полосе шириной около 550 км по обе стороны от осей СТ, определенных также по карте AT_{300} . При обычных зональных СТ общее содержание озона к северу от их оси в холодном воздухе было на $\Delta X \approx 40$ Д. Е. больше, а к югу в теплом воздухе на $\Delta X \approx 30$ Д. Е. меньше нормы. В 1967 г. Д. Ф. Харчилава [124] по данным наблюдений над Западной Европой и над Тбилиси и Абастумани показали, что различие X между левой и правой сторонами струи достигает в среднем 37 Д. Е. и нарастает с увеличением скорости СТ.

Когда в 1977 г. Н. Н. Виноградова [30] изучила «искривленные» СТ, вовлеченные в систему длинных волн (см. выше), и использовала для этого 1900 наблюдений над Северной Америкой, то выяснилось, что в области ложбины волны, т. е. там, где СТ искривлено циклонически, повышение ΔX слева от оси СТ наибольшее, в области же гребня, при антициклонической кривизне СТ, ΔX в холодном воздухе незначительно. Наоборот, отрицательные ΔX справа от оси велики ($\Delta X \approx -30$ Д. Е.) лишь в области гребня и мало заметны в области ложбины — «барьер» действует в них совершенно по-разному.

Наиболее сильный эффект СТ наблюдал 20... 30 декабря 1966 г. В. М. Ратьков над Тихим океаном под 32° с. ш. и 165° з. д. Здесь, по обе стороны СТ со скоростью до 70 м \cdot с⁻¹, величины X различались на 120 Д. Е. и в то же время высота тропопаузы увеличивалась от 8 км в холодной массе воздуха до 17 км в теплой. Это субтропическое СТ действительно разделяло области тропического и полярного воздуха с их типичными X и вертикальным распределением температуры воздуха. В. М. Ратьков заключил, что СТ может быть не только «барьером» в указанном выше смысле, но и разделом областей нисходящих (к северу от оси СТ) и восходящих (к югу от оси) движений воздуха.

Таким образом, вопрос о связи X и СТ стал вопросом о динамической структуре СТ. Физика атмосферного озона и здесь непосредственно вторглась в область синоптической метеорологии.

Обрабатывая первые советские спутниковые наблюдения 1965... 1966 гг. за озоном, Н. Ф. Еланский [50] показал, что слева от оси СТ обычно вытягиваются узкие зоны повышенных значений X, так что далее к северу от них X снова убывает. Это обстоятельство было упущено прежними исследователями. Аналогично справа от оси видна бывает узкая полоса пониженного X, за которой X снова несколько возрастает. Автор заключил, что барьер — граница между холодной и теплой массами воздуха — не может создать таких узких областей больших и малых X, параллельных СТ, и что, следовательно, СТ создает систему вертикальных движений, нисходящих слева и восходящих справа от него, быстро ослабевающих с удалением от оси струи.

В 1972 г. М. Фигейра [229] изучил СТ над Португалией и вблизи нее между 6 и 11 марта 1968 г. Данные ежедневного зондирования озона над^{*}Лиссабоном показали, что не только X увеличено, но и слой максимального p_3 озона понижен вместе с тропопаузой слева от оси СТ, как это было хорошо видно 9 марта (рис. 75). И слой максимума p_3 и тропопауза резко поднялись, когда 10 марта ось СТ отодвинулась на 750 км от берегов Португалии.

Еще несколько ранее, в 1971 г., Э. Рейтер в большом обзоре процессов переноса в атмосфере [371] показал, что вертикальные движения, вызванные СТ, захватывают стратосферу и увлекают ее озон и что динамика СТ чрезвычайно эффективна в перераспределении общего содержания озона в атмосфере. По данным ИСЗ «Нимбус-3» в 1969 г. о распределении X в масштабе земного шара Рейтер и Ловилл нашли, что области резких горизонтальных градиентов X отлично коррелируют со струйными течениями и более того величина градиента $\partial X/\partial n$ (выраженная в Д. Е. на 1 км) приближенно равна

 $\partial X/\partial n = 0.0016 V_{m}$

Рис. 75. Распределение общего содержания озона в Д. Е. 9 марта 1968 г. над юго-западной Европой по отношению к оси струйного течения (скорости ветра на оси указаны в узлах). По [229]

где V_m — скорость на оси СТ на уровне 256 мбар.

На карте распределения X над Тихим океаном 7 мая 1969 г., приведенной Ловиллом [307], хорошо видны вытянувшиеся вдоль оси СТ локальные полосы пониженных (до 270 Д. Е.) X справа от оси СТ и местное повышение X до 420 Д. Е. слева. Это распределение, полагает он, возникло благодаря вертикальному движению вокруг оси струйного течения и горизонтальной адвекции.

Идею о спиральном движении воздуха вокруг оси СТ, также основанную на наблюдениях озона, мы сформулировали независимо немного ранее Ловилла [127]. Но лишь детальные прямые радиоветровые наблюдения смогут проверить, существует ли действительно замкнутое спиральное движение воздуха вокруг СТ, о котором говорят, по-видимому, многие примеры наблюдений озона.

РАДИАЦИОННЫЕ ЭФФЕКТЫ ОЗОНА

Как мы уже упоминали во введении, более полувека назад был открыт теплый слой атмосферы на высоте около 60 км. Почти одновременно в 1923 г. В. Г. Фесенков в Харькове (из наблюдений хода убывания яркости сумерек) и Ф. А. Линдеман и Г. М. Добсон в Англии (из наблюдений возгорания и затухания метеоров) пришли к общему заключению, что такой слой с температурами до + 60 °С-постоянное явление.

В 1932 г. Б. Гутенберг в Германии оценил из опыта скорость звука c на больших высотах атмосферы. Она доходит, по его расчетам, до $c = 370 \text{ м} \cdot \text{c}^{-1}$ на высоте 50 км и $c = 390 \text{ м} \cdot \text{c}^{-1}$ на больших температурам 288 и 296 К. Гутенберг нашел также, что повышение c и T с высотой происходит в основном в слое 35...50 км.

Еще несколько ранее возникла идея, что нагревание верхней атмосферы вызвано озоном, поглощающим часть энергии ультрафиолетовых лучей Солнца. Эта идея подняла интерес к проблеме озона. Однако в 1939 г. В. Н. Оболенский, учитывая более правильные данные о высоте слоя озона (20... 25 км) и замечательный факт, что теплый слой существует также и зимой в Арктике, где никакого радиационного нагрева не может быть, высказал сомнение о связи теплого слоя и озона [97].

Проблема радиационных свойств атмосферы, содержащей озон, подвергалась много раз обсуждению в различных аспектах. Еще в 1957 г. К. Я. Кондратьев высказал мнение, что инфракрасное поглощение озона не играет существенной роли для тепличного эффекта, т. е. для температур нижней атмосферы. Этот правильный вывод, однако, не заслоняет того положения, что для верхней атмосферы, для переноса радиации, охлаждения, режима температур в ней и т. д. озон играет существенную роль.

В то же время о возмущениях давления, которые образует озон, о том, какие слагающие ветра он создает днем и ночью, зимой и летом в обоих полушариях, мы пока еще знаем немного. Напомним, что географические различия радиации, поглощаемой озоном в верхней стратосфере, велики и не смягчены (как это происходит с радиацией, достигающей поверхности Земли) атмосферным поглощением, изменчивостью облачности и пр. Вклад в циркуляцию, создаваемый озоном, должен быть поэтому регулярным и устойчивым. Мы уже видели в гл. III, что озон может поглощать солнечную радиацию с длиной волны $\lambda = 1,14$ мкм и менее, распадаясь (диссоциируя) при этом на кислород молекулярный и атомарный:

$$\mathbf{O}_3 + h \, \mathbf{v} = \mathbf{O}_2 + \mathbf{O}_2$$

Если радиация имеет $\lambda < 1,14$ мкм, то часть поглощаемой энергии идет на диссоциацию, а остальная часть уносится частицами O₂ и O в виде кинетической энергии (т. е. тепла). При $\lambda < 308$ нм может образовываться возбужденная молекула O₂ [${}^{1}\Delta_{\sigma}$].

При поглощении ультрафиолетовой радиаций с $\lambda < 266$ нм (с квантами hv > 4,67 эВ) атом О может возбуждаться до состояния О (¹D) с потенциалом этого электронного возбуждения 1,96 эВ, а молекула О₂ — подниматься из основного состояния О₂ $[{}^{3}\Sigma_{g}^{1}]$ до возбужденного О₂ $[{}^{1}\Sigma_{g}^{+}]$, на что нужно 1,62 эВ. Такая молекула, высвечиваясь, дает атмосферное излучение (полосу кислорода) с длиной волны $\lambda = 762$ нм, а атом О (¹D) — красное излучение с длиной волны 630 . . . 639 нм, например, в свечении ночного неба (СНН).

Наконец, при поглощении озоном радиации с длиной волны $\lambda \ll 236$ нм (квантов с $h \nu \gg 5,26$ эВ) может произойти возбуждение образующегося О до состояния О (¹S) с потенциалом 4,17 эВ. Переходя в состояние О (¹D), такой атом дает зеленое свечение с $\lambda = 558$ нм, тоже типичное для ночного неба.

Мы знаем, также из гл. II, что поглощение ультрафиолетовой радиации Солнца с $\lambda \ll 242$ нм ($h \nu \gg 5,09$ эВ) диссоциирует молекулы кислорода, причем образующиеся атомы могут оказаться либо в нормальном О (³P), либо в возбужденном состоянии, запасая так энергию Солнца.

Нейтральные атомы О (³P), возбужденные частицы О₂ и О могут легко вступать в химические реакции, т.е. превращать свою энергию в химическую, например

$$O(^{3}P) + OH \rightarrow H + O_{2} + 69,6 \ \kappa Дж \cdot моль^{-1}$$

или

 $O(^{3}P) + HO_{2} \rightarrow OH + O_{2} + 232,1 \ кДж \cdot моль^{-1},$

при которых, следовательно, может выделяться значительная тепловая энергия.

Упомянутое выше свечение неба может уносить из стратосферы выделяющуюся энергию. Однако в стратосфере плотность воздуха велика и частицы испытывают многочисленные столкновения. При этом до того как атом потеряет энергию возбуждения в виде красного или зеленого кванта, он (или возбужденная молекула) может быть «потушен» таким столкновением со сторонней частицей, которая унесет энергию возбуждения. Последняя переходит в тепловую.

В мезосфере столкновения частиц значительно реже, атомы успевают высвечиваться и возникает заметное свечение. В нем при-

сутствует также и инфракрасное свечение, создаваемое колебательно-возбужденной молекулой гидроксила ОН, образующейся из пара H₂O. Однако энергия, даваемая СНН, незначительна, менее 10^{-7} энергии солнечных лучей. Это значит, что сток энергии, создаваемый СНН, пренебрежимо мал. В результате практически вся лучистая энергия, поглощаемая частицами O₂, O₃ и H₂O в стратосфере, переходит там в тепло.

В мезосфере выше 80 км время жизни атомов О (³P) и О (¹D) оказывается уже довольно большим. Кроме того, концентрация,

Рис. 76. Вертикальный профиль радиационного нагревания атмосферы, создаваемого различными газами, и его баланс (правая кривая). По [325]

например, O (³P) резко возрастает выше 80 км (примерно до 95 км), что создает диффузионный (турбулентный) перенос атомов вниз, так же как и молекул OH. Такая диффузия, следовательно, нарушает локальный характер нагревания и создает вертикальные потоки химической энергии.

Общее представление о радиационном нагревании, связанном с озоном, дают рис. 76 и 77, заимствованные из расчетов Ньюэлла и Грея (см. [325]) 1971 г. Рисунки описывают местное нагревание атмосферы, в которой озон и другие малые составляющие поглощают ультрафиолетовую радиацию Солнца. Вместе с тем атмосфера охлаждается инфракрасным излучением углекислого газа (полоса излучения с $\lambda > 15$ мкм) и озона (полоса $\lambda = 9,6$ мкм). Это излучение почти точно компенсирует в глобальном среднем поглощенную энергию. Заметим тут, что расчеты для рис. 76 и 77 сделаны для температур стандартной атмосферы.
Из рис. 76 следует, что озон вызывает наибольшее нагревание. Оно достигло бы, по [325], 9 °С·сут⁻¹, если бы не было излучения, на высоте 50 км. Нагревание должно уменьшаться до 2 °С·сут⁻¹ на уровнях 30 и 70 км. Уровень наибольшего нагревания хорошо совпадает с уровнем наивысших наблюдаемых температур, но находится гораздо выше уровня наибольшего p_3 озона: очевидно, в радиационном отношении активна лишь самая верхняя часть его слоя.

Расчеты, сделанные несколько позднее (в 1974 г.) К. Фукуямой [234] и Р. Дикинсоном [199], дали несколько большее нагревание — до 11 и 12 °С · сут⁻¹.

Рис. 77. Вертикальное распределение среднего баланса радиационного нагревания атмосферы в "С·сут-1. Декабрь-февраль. По [325]

Наиболее современные и детальные расчеты озонного нагревания *H* были сделаны и доложены в развернутом виде на симпозиуме в Дрездене в 1976 г. Р. Божковым [159]. Он построил как средние вертикальные разрезы величины *H* для четырех месяцев (январь, апрель, июль, октябрь) до высоты 45 км, так и мировые карты этого элемента для двух месяцев (март—апрель) для уровней 4,5, 7,4, 12,1, 19, 54,5 мбар и слоя 90 ... 245 мбар (соответственно 36,5, 33,3, 29,8, 26,5, 20,0 и 17,6—10,5 км).

На разрезах максимальное нагревание H до 4 °C · сут⁻¹ в январе под 75° ю. ш. и в июле под 75° с. ш. имеет место на высоте около 37 км.¹ Слой, сильно нагреваемый озоном в летнем полушарии, отмечен примерно изолинией 3 °C · сут⁻¹. Она захватывает частично и зимнее полушарие, приблизительно до 20° широты. Область по-

¹ В апреле оно может достигать даже 5° С.сут-1 на высоте около 38 км над северной полярной областью.

вышенных, но гораздо меньших H продолжает нагреваемый слой в зимнее полушарие до 55... 60° широты (рис. 78).

На разрезах виден и вторичный, слабый, максимум H, связанный со слоем наибольшей плотности ρ_3 озона на высоте $22 \dots 26$ км. Однако в целом в нижней и средней стратосфере H невелико, менее 1 °C сут⁻¹.

Над областями полярной ночи при $\varphi > 70^{\circ}$ возникают соответственно области охлаждения, до $H = -5 \, {}^{\circ}\text{C} \cdot \text{сут}^{-1}$ в апреле над Антарктикой и до $-2.5 \, {}^{\circ}\text{C} \cdot \text{сут}^{-1}$ в октябре — январе над Аркти-

Рис. 78. Средний меридиональный разрез озонного нагревания атмосферы в °C·сут-1. По [159] а – январь, б – июль

кой. Уже в этом различни замечается влияние полстилающей поверхности континента и океана. Еще лучше оно видно на картах Божкова на высоких **УДОВНЯХ.** Так. в частности, на уровне 36.5 ĸм локальные максимумы H>2,5 °C · сут⁻¹ видны над областями уже известных нам по гл. VII гребней озона над Северной Америкой, Северной Европой и Восточной Азией.

Р. Божков заключил, что большие изменения зенитного расстояния Солнца и продолжительности солнечного сияния, в особенности над полярными районами, оказывают на величину нагревания гораздо большее влияние, чем обычные вариации в распределении поглощающего веще-

ства, т. е. озона. Напомним тут, что величины *H*, найденные Божковым, меньше цитированных выше значений *H* по Дикинсону и др.

Нагревание, а следовательно и температура, сильно зависит от широты и сезона. Еще в 1967 г. Манабе и Уэзеральд оценили температуру атмосферы для вертикальных распределений озона, типичных для широт 0, 40 и 80°. Они показали, что тропическое ВР озона должно создавать более острую и холодную тропопаузу и немного более теплую стратосферу выше 22 км. Оно понижает температуру близ поверхности Земли примерно на 1 °С по сравнению со средним профилем ВР [309].

Наоборот, полярное ВР должно сглаживать распределение температур близ тропопаузы и охлаждать верхнюю стратосферу примерно на 12 °C на высоте 26 км по сравнению с умеренной стратосферой. Оно повышает температуру нижней тропосферы приблизительно на 1 °C. Очевидно, в последней климатические эффекты озона незначительны, хотя в стратосфере они велики. По Дикинсону [199], общее увеличение озона близ стратопаузы на 10 % может повысить глобальную температуру на 5 °C.

Расчет предсказывает сильную зависимость разности (нагревание минус охлаждение) от широты и сезона. Она представлена на рис. 79 для северного полушария, по [159]. Наибольшее летнее нагревание обнаруживается на высоте 45 км над 30° с. ш., где оно доходит до 6 °C · сут⁻¹, а наибольшее зимнее охлаждение, до

Рис. 79. Средний баланс нагревания атмосферы раднацией, поглощаемой H₂O, CO₂, O₃, O₂

— 6 °C·сут⁻¹, на высоте 55 км над полярной областью. Таким образом, среднее состояние, изображенное на рис. 73, слагается из состояний, типичных для лета и зимы.

Здесь следует напомнить один важный эпизод из истории физики атмосферы. Когда для акустического зондирования верхней атмосферы во время II Международного Полярного года 1932-33 г. было сделано зимой и летом до 30 взрывов на Земле Франца-Иосифа (80° с. ш.), Новой Земле (76—77° с. ш.) и Маточкином Шаре (73° с. ш.) [97], то там также обнаружилась зона слышимости звука, отраженного от теплого слоя атмосферы. Последний, следовательно, существует в Арктике и зимой вопреки преобладанию там охлаждения. Этот вывод подтвердили и позднейшие ракетные зондпрования.

Вместе с тем Рао-Кришна и Кристи [361] в 1972 г. подтвердили расчетом, что в неподвижной кислородной атмосфере зимой поле радиации не может образовывать теплый слой. На высотах от 18 до 52 км над полярной областью радиационные температуры должны быть 200...216 К (— 73...— 57 °C) (рис. 80).

Таким образом, зимний теплый слой на севере может существовать только при притоке теплого воздуха. Он должен превращать охлаждение, предсказанное расчетом радиации *H* на рис. 77, в нагревание. Явления притока, следовательно, могут вносить существенные поправки и в расчеты радиационного равновесия для других широт.

Не раз отмечалось, что понижение температуры замедляет как прямые, так и каталитические процессы разрушения озона и увеличивает поэтому его плотность (и наоборот), т. е. создает отрица-

Рис. 80. Средний меридиональный вертикальный разрез рассчитанного отношения смеси в мкг.г-1 (1) и температуры стратосферы в кельвинах (2) в фотохимическирадиационном равновесии. По [361]

новесной, постоянная времени оказалась равной около 0,07 сут⁻¹ на высоте 30 км, 0,127 сут⁻¹ — на 40 км и 0,21 сут⁻¹ — на 50 км. Эти оценки дают также меру скорости тех динамических процессов, которые могут нарушать радиационное равновесие.

Мы уже говорили выше о возможном антропогенном разрушении озона. Соответствующий радиационный эффект можно оценить с помощью математической модели. Такова зонально-осредненная двумерная равновесная модель Мак-Крэкена (см. [325]), учитывающая поглощение УФ радиации Солица озоном. Этот автор рассмотрел с ее помощью результат «значительной убыли» (ЗУ) озона—

тельную обратную связь: озон — температура — озон. Так, в частности, Дж. Рандхава [358] объяснил увеличение концентрации озона на высоте 45 км при зондированиях над ст. Уайт-Сендс в США в 1971 г. с 3,8·10¹⁷ молекул·м⁻³ 22 января до 4,5·10¹⁷ молекул·м⁻³ 25 марта понижением температуры в это время с 285 до 269 К.

Подобная обратная связь, следовательно, должна тормозить и ослаблять отдельные отклонения как температуры, так и плотности озона. По оценкам Лютера [308], она наиболее сильна на уровне около 42 KM. Рандхава также заметил, что ниже 45 км такой простой термическиалофотохимический механизм

уже не действует. Скорость такой радиационной релаксации температуры оценил Дикинсон. Для «ньютонианского охлаждения», пропорционального отклонению температуры от равна 50% — в стратосфере и «малой убыли» (МУ) — на 16,7 %. Оказалось, что температура стратосферы должна понижаться на 10 °С в случае ЗУ и на 1 . . . 2 °С в случае МУ. В последнем случае приземные температуры должны повышаться на 0,05 . . . 0,10 °С в средних широтах и на 0,5 °С близ полюса, а в случае ЗУ — соответственно на 0,5 и 2 °С. Радиационный баланс поверхности Земли должен при этом изменяться на 1—2 %.

В 1976 г. Раманатан, Каллис и Боухнер рассмотрели более детально климатические эффекты озона, учитывая, что изменения озона должны быть вызваны (см. гл. III) более всего накоплением окислов азота NO_x в стратосфере [356]. NO₂ должно существенно ослаблять озонное нагревание. Обозначив $\delta = \Delta N_x / \Delta N_3$ (где $\Delta N_3 -$ убыль озона в процентах, $\Delta N_x -$ нарастание NO_x тоже в процентах, так что $\delta < 0$), авторы эти показали, что при $\delta = 0$ нагревание должно достигать H = 10 °C·сут⁻¹ на высоте 50 км.

Наиболее интересен модельный расчет изменений температуры, сделанный в [362] для различных ΔN_3 . Эти изменения всегда имеют острый пик около 35 км, где ΔT при $\delta = -10$ % достигало — 2 °С. Оно уменьшается постепенно вниз к тропопаузе и достигает всего 0,1 °С в тропосфере. При $\Delta N_3 = -30$ % ΔT доходит до — 7 °С на высоте 35 км и ослабевает там до — 1,8 °С при $\delta = -10$, т. е. при наличии большого добавочного количества NO_x.

Экспериментируя с изменением высоты $H_{\rm M}$ озонного слоя и X в нем, авторы [362] нашли, что если $H_{\rm M}$ увеличить до 26 км и X уменьшить до 0,26 см (как это бывает в тропической области), то ΔT у поверхности Земли, вызванное убыванием озона, дойдет до — 1,1 °C. В полярной области эффект $\Delta N_3 < 0$ должен быть заметно слабее. Во всяком случае, тропосферные радиационные эффекты изменений озона, несомненно, слабы. В то же время они могут быть сильны в стратосфере и, очевидно, перестраивают там заметно поле температуры, давления и движения.

Предположим, что в атмосферном слое между высотами z_0 и z задан некоторый горизонтальный градиент температуры $\partial T/\partial x$, направленный (для определенности) к полюсу: $\partial T/\partial x < 0$. Тогда приращение вектора ветра (так называемый термический ветер), направленное перпендикулярно $\partial T/\partial x$ на восток, в слое $z_0 - z$ равно по известной формуле

$$u = -\frac{g}{l} \frac{z - z_0}{T_0} \frac{\partial T}{\partial x}, \qquad (1)$$

где $l = 2 \omega \sin \varphi$.

Пусть на меридиональном вертикальном разрезе температур (разрез Рао-Кришна и Кристи мы приводим на рис. 80) проведены изотермы, например, через $\Delta_0 T = 5$ °С. Пусть, далее, вблизи данной вертикали (широты) расстояние между двумя такими изотермами по горизонтали Δx и по вертикали Δz , т. е.

$$\Delta z / \Delta x = \operatorname{tg} \theta, \tag{2}$$

255

где θ — угол изотермы с горизонталью. Тогда, заменяя в (1) днфференциалы разностями Δ , умножая числитель и знаменатель на Δz , имеем

$$u = -\frac{g}{l} \frac{z - z_0}{T_0 \,\Delta z} \,\Delta_0 T \,\overline{\mathrm{tg}\,\overline{\theta}} \cdot M,\tag{3}$$

где M — отношение горизонтального и вертикального масштабов на нашем разрезе. В данном случае $M = \frac{2}{3000}$. Очевидно, $(z-z_0) \Delta_0 T/\Delta z = \overline{\Delta T}$ есть разность температур между уровнями z_0 и z, когда tg θ осреднены по всей этой толще.

Таким образом, согласно (3) термический ветер *и* в стратосфере, подверженной озонному нагреванию, будет силен на высоте *z* там, где под ней разность $T - T_0 = \overline{\Delta}T$ велика и где изотермы круто поднимаются к полюсу. В случае, изображенном на рис. 80, это имеет место примерно под 55° с. ш. К северу и к югу от нее, где изотермы ложатся почти горизонтально и tg $\theta \approx 0$, «озонное» усиление ветра почти отсутствует.

В экваториальной области это геострофическое рассуждение, вероятно, неприменныю. Там даже слабый наклон изотерм может создавать различия ветра и, поскольку агеострофичность течений там велика, создавать даже перетекание воздуха и озона из летнего полушария в знишее.

Приложение 1

Константы скоростей основных реакций (k) для азотного, водородного и галоидного циклов в озоносфере Земли и их отклонения (±1g k) при 230 К

.№ п/п	Реакция	k	±lg k
1	$O_3 + NO \rightarrow NO_2 + O_2$	$2.1 \cdot 10^{-12} \exp(-1450/T)$	0,08
2.	$O + NO_2 \rightarrow NO + O_2$	$9,1.10^{-12}$	0,03
3	$N + O_2 \rightarrow NO + O$	$5,5 \cdot 10^{-12} \exp(-3220/T)$	0,1
4	$N + NO \rightarrow N_2 + O$	$8,2 \cdot 10^{-11} \exp(-410/T)$	0,1
5	$OH + NO_2(+M) \rightarrow HNO_3(+M)$	см. примечание	0,1
6	$OH + HNO_3 \rightarrow H_2O + NO_3$	$8 \cdot 10^{-14}$	0,05
7	$N + NO_2 \rightarrow N_2O + O$	$2 \cdot 10^{-11} \exp(-800/T)$	0,15
8	$NO + O + M \rightarrow NO_2 + M$	$1,55 \cdot 10^{-32} \exp (+584/T)$	0,05
9	$ NO_2 + H_2O + N_2 \rightarrow HO_2NO_2 + + N_2 \rightarrow HO_2N$		
10	$N + O_2 \rightarrow NO + O_2$	$2 \cdot 10^{-11} \exp(-1070/T)$	0,15
11	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1,2 \cdot 10^{-13} \exp(-2450/T)$	0,04
12	$O(^{1}D) + N_{2}O \rightarrow N_{2} + O_{2}$	5,5.10-11	0,1
13	$O(^{1}D) + N_{2}O \rightarrow NO + NO$	$5,5.10^{-11}$	0,1
14	$O(^{1}D) + H_{2}O \rightarrow OH + OH$	$2,3 \cdot 10^{-10}$	0,1
15	$O(^{1}D) + CH_{4} \rightarrow OH + CH_{3}$	$1,3.10^{-10}$	0,05
16	$O(^{1}D) + CH_{4} \rightarrow H_{2} + CH_{2}O$	1,4.10-11	0,1
17	$O(^{1}D) + N_{2} + M \rightarrow N_{2}O + M$	$3,5.10^{-37}$	0,5
18	$O(^{1}D) + H_{2} \rightarrow OH + H$	$9,9.10^{-11}$	0,05
19	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$2,0.10^{-11} \exp(+107/T)$	0,05
20	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$	$2,9 \cdot 10^{-11} \exp(+67/T)$	0,1
21	$O(^{1}D) + O_{2} \rightarrow O_{2} + O_{2}$	$1, 2 \cdot 10^{-10}$	0,1
22	$O(^{1}D) + O_{3} \rightarrow O_{2} + O + O$	$1,2.10^{-10}$	0,1
23	$O(^{1}D) + HCI \rightarrow OH + CI$	$1, 4 \cdot 10^{-10}$	0,05
24	О(¹D) + СFСl ₃ →продукты	$2,3 \cdot 10^{-10}$	0,1
25	$O(^{1}D) + CF_{2}Cl_{2} \rightarrow продукты$	$2,0.10^{-10}$	0,1
26	О(¹D) + ССl₂О→продукты	$1,7 \cdot 10^{-10}$	0,1
27	О(¹D) + СFСЮ→продукты	$1,0.10^{-10}$	0,1
28	$O(^{1}D) + CF_{2}O \rightarrow продукты$	4,5.10-11	0,1
29	$OH + HO_2 \rightarrow H_2O + O_2$	3.10-11	0,25
30	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	$2,5 \cdot 10^{-12}$	0,3
31	$NO + HO_2 \rightarrow NO_2 + OH$	$8 \cdot 10^{-12}$	$\left\{ \pm ^{0,15}_{0,45} \right\}$
32	$HO_{a} + O_{a} \rightarrow OH + 2O_{a}$	$7.3 \cdot 10^{-14} \exp(-1275/T)$	0.3
33	$OH + O_2 \rightarrow HO_2 + O_3$	$1.5 \cdot 10^{-12} \exp(-1000/T)$	0,15
34	$O + OH \rightarrow O_{2} + H$	$4.2 \cdot 10^{-11}$	0,15
35	$0 + HO_{a} \rightarrow OH + O_{a}$	$3.5 \cdot 10^{-11}$	0,15
36	$O + H_2O_2 \rightarrow OH + HO_2$	$2.75 \cdot 10^{-12} \exp(-2125/T)$	0,15
37	$H + O_0 + M \rightarrow HO_0 + M$	$2.1 \cdot 10^{-32} \exp((+290/T))$	0,1
38	$H + O_2 \rightarrow OH + O_2$	$1.2 \cdot 10^{-10} \exp(-560/T)$	0,15
39	$OH + OH \rightarrow H_0O + O$	$1,0 \cdot 10^{-11} \exp(-550/T)$	0,2
			, i

Продолжение прилож. 1

№ п/п	Реакция	k	±lg k
40 41 42 43	$OH + OH + M \rightarrow H_2O_2 + M$ $OH + H_2O_2 \rightarrow H_2O + HO_2$ $OH + CO \rightarrow CO_2 + H$ $OH + CH_2 \rightarrow H_2O + CH_2$	1,25 $\cdot 10^{-32} \exp(+900/T)$ 1,0 $\cdot 10^{-11} \exp(-750/T)$ 1,4 $\cdot 10^{-13}$ 2,35 $\cdot 10^{-12} \exp(-1710/T)$	0,15 0,15 0,1
44 45 46 47 48 49	$CI + CIA_4 \rightarrow CIO + O_2$ $CI + O_3 \rightarrow CIO + O_2$ $O + CIO \rightarrow CI + O_2$ $NO + CIO \rightarrow CI + NO_2$ $OH + HCI \rightarrow CI + H_2O$ $CI + CH_4 \rightarrow HCI + CH_3$ $CI + HO_2 \rightarrow HCI + O_2$	2,7 $\cdot 10^{-11} \exp(-257/T)$ 7,7 $\cdot 10^{-11} \exp(-130/T)$ 1,0 $\cdot 10^{-11} \exp(+200/T)$ 3,0 $\cdot 10^{-12} \exp(-425/T)$ 7,3 $\cdot 10^{-12} \exp(-1260/T)$ 3,10 ⁻¹¹	$ \begin{array}{c} 0,16\\ 0,1\\ 0,15\\ 0,05\\ +0,06\\ -0,18\\ 0,3 \end{array} $
50	$CIO + NO_2 + N_2 \rightarrow CIONO_2 + N_2$	$\frac{3,3\cdot10^{-23}T^{-3,34}}{1+8,7\cdot10^{-9}T^{-0.6}M^{0.5}}$	$\begin{cases} +0,15 \\ -0,06 \end{cases}$
51 52 53 54 55 56 57	O + ClONO ₂ →продукты OH + ClONO ₂ →продукты Cl + ClONO ₂ →продукты O + HCl→Cl + OH Cl + OH→O + HCl Cl + H ₂ →HCl + H Cl + H ₂ O ₂ →HCl + HO ₂ →	3,0 $\cdot 10^{-12} \exp(-808/T)$ 1,2 $\cdot 10^{-12} \exp(-333/T)$ 1,68 $\cdot 10^{-12} \exp(-607/T)$ 1,14 $\cdot 10^{-11} \exp(-3370/T)$ 1,0 $\cdot 10^{-11} \exp(-2970/T)$ 3,5 $\cdot 10^{-11} \exp(-2290/T)$ 1,7 $\cdot 10^{-12} \exp(-384/T)$	0,15 0,18 0,3 0,13 0,13 0,06 0,18
58 59 60 61	$Cl + HNO_3 \rightarrow HCl + NO_3$ $Cl + NO_2 + M \rightarrow ClNO_2 + M$ $Cl + NO + N_2 \rightarrow ClNO + N_2$ $Cl + ClNO \rightarrow NO + Cl_2$	1,0.10 ⁻¹¹ exp (-2170/T) 7,2.10 ⁻³¹ 1,7.10 ⁻³² exp (+530/T) 3,0.10 ⁻¹¹	0,3 0,3 0,3 0,1
62	$CI + O_2 + M \rightarrow CIOO + M$	1,7.10 ⁻³³	$\left\{\begin{array}{c} +1,0\\ -0,5\\ +1,0\end{array}\right.$
63	$CIOO + M \rightarrow CI + O_2 + M$ $K_{eq} = k_{62}/k_{63}$	$5,8\cdot10^{-9} \exp(-3580/T)$ 2,95\cdot10^{-25} exp(+3580/T)	$\begin{cases} -0.5 \\ 1.0 \\ (+0.3) \end{cases}$
64a 646	$CI + CIOO \rightarrow CI_2 + O_2$ $CI + CIOO \rightarrow CIO + CIO$	$1, 1, 6 \cdot 10^{-10}$ $1, 1 \cdot 10^{-11}$	$ \left\{ \begin{array}{c} -1, 0 \\ +0, 5 \\ -1, 0 \end{array} \right. $
65 66 67 68 69 70 71a 716 72a	CIO + $HO_2 \rightarrow HOI + 2O_2$ CIO + $HO_2 \rightarrow HOCI + O_2$ CIO + $CH_4 \rightarrow продукты$ CIO + $H_2 \rightarrow продукты$ CIO + $CO \rightarrow продукты$ CIO + $O \rightarrow Br \rightarrow OCIO$ CIO + $BrO \rightarrow Br + CIOO$ CIO + $CIO \rightarrow CI + CIOO$	$\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$	1,0 2,0 2,0 2,0 0,18 0,18 0,1

Продолжение прилож. 1

№ n/n	Реакция	k	$\pm \lg k$
726	$CIO + CIO \rightarrow Cl_2 + O_2$	$5 \cdot 10^{-13} \exp(-1238/T)$	0,1
72в	$CIO + CIO \rightarrow OCIO + CI$	$2, 1 \cdot 10^{-12} \exp(-2200/T)$	0,55
73	$CIO + CIO + M \rightarrow Cl_2 + O_2 + M$	Данных нет	-
74a	$ClO + O_3 \rightarrow ClOO + O_2$	$1,0\cdot10^{-12}\exp(-4000/T)$	$\left\{\begin{array}{c} +0.3\\ -1.0\end{array}\right.$
746	$CIO + O_3 \rightarrow OCIO + O_2$	$1 \cdot 10^{-12} \exp(-4000/T)$	$\left \left\{ \begin{array}{c} +0,3\\ -1,0 \end{array} \right. \right.$
75	$CI + OCIO \rightarrow CIO + CIO$	5,9.10-11	0,1
7 6	$NO + OCIO \rightarrow NO_2 + CIO$	$2,5\cdot10^{-12} \exp(-600/T)$	0,3
77	$O + OClO \rightarrow ClO + O_2$	$2,0.10^{-11} \exp(-1100/T)$	0,3
78	$OH + CH_3Cl \rightarrow CH_2Cl + H_2O$	$2, 2 \cdot 10^{-12} \exp(-1142/T)$	0,1
79	$OH + CH_2Cl_2 \rightarrow CHCl_2 + H_2O$	$5, 2 \cdot 10^{-12} \exp(-1094/T)$	0,1
80	$OH + CHCl_3 \rightarrow CCl_3 + H_2O$	$4,7\cdot10^{-12}\exp(-1134/T)$	0,1
81	$OH + CHFCl_2 \rightarrow CFCl_2 + H_2O$	$1, 3 \cdot 10^{-12} \exp(-1127/T)$	0,1
82	$OH + CHF_2CI \rightarrow CF_2CI + H_2O$	$1, 2 \cdot 10^{-12} \exp(-1660/T)$	0,04
83	$OH + CH_2CIF \rightarrow CHCIF + + H_2O$	$2,8\cdot10^{-12} \exp(-1259/T)$	0,1
84	$\begin{array}{c} OH + CH_{3}CCl_{3} \rightarrow H_{2}O + \\ + CH_{2}CCl_{3} \end{array}$	$3,5 \cdot 10^{-12} \exp(-1562/T)$	0,18
85	OH -¦- C₂Cl₄→C₂Cl₄OH	$9, 4 \cdot 10^{-12} \exp(-1199/T)$	0,18
86	OH + C₂HCl₃→C₂Cl₃OH	$2,3 \cdot 10^{-12}$	0,18
87	ОН + CFCl₃→продукты	$<1,0.10^{-12} \exp(-3650/T)$	
88	ОН + CFCl₂→продукты	$<1,0.10^{-12} \exp(-3560/T)$	_
89	$Br + O_3 \rightarrow BrO + O_2$	$3,0.10^{-11} \exp(-937/T)$	0,1
90	$O + BrO \rightarrow Br + O_2$	3.10-11	0,4
91	$NO + BrO \rightarrow Br + NO_2$	$2, 1 \cdot 10^{-11}$	0,18
92	$BrO + BrO \rightarrow 2Br + O_2$	$2,9 \cdot 10^{-11} \exp(-450/T)$	0,18
93	$BrO + O_3 \rightarrow Br + 2O_2$	$<1,0.10^{-14}$	
94	$Br + H_2O_2 \rightarrow HBr + HO_2$	$5 \cdot 10^{-12} \exp(-1570/T)$	0,3
95	$Br + HO_2 \rightarrow HBr + O_2$	$5 \cdot 10^{-12}$	0,7
96	$OH + HBr \rightarrow H_2O + Br$	$5, 1 \cdot 10^{-12}$	0,18
97	$O + HBr \rightarrow OH + Br$	$7,6\cdot10^{-12}\exp(-1571/T)$	0,4
98	$OH + CH_{2}Br \rightarrow CH_{2}Br + H_{2}O$	$7,93 \cdot 10^{-13} \exp(889/T)$	0,1
99	$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$	Данных нет	
100	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	$3,3\cdot10^{-12} \exp(-500/T)$	1,0

Окончание прилож. 1

№ п/п	Реакция	k	±lgk
101 10 2 103 104	$CH_{3}O + O_{2} \rightarrow CH_{2}O + HO_{2}$ $CH_{2}O + OH \rightarrow HCO + H_{2}O$ $CH_{2}O + O \rightarrow OH + HCO$ $HCO + O_{2} \rightarrow CO + HO_{2}$	1,6.10 ⁻¹³ exp (3300/T) 3.10 ⁻¹¹ exp (-250/T) 2.10 ⁻¹¹ exp (-1450/T) 6.10 ⁻¹²	1.0 0.2 0.2 0.2
			1

Примечание. Параметры для аналитического выражения константы скорости второго порядка при реакции HO + NO₂ (+ N₂)→HONO₂ (+ N₂)

 $\begin{array}{c} \lg k = -AT/B + T - 0.5 \ \lg \ (T/280): \\ A = A_1 + A_2 Z + A_3 Z^2 + A_4 Z^3, \quad B = B_1 + B_2 Z + B_3 Z^2, \\ A_1 = 31,622 \ 73, \qquad \qquad B_1 = -327,372, \\ A_2 = -0.258 \ 304, \qquad \qquad B_2 = 44,5586, \\ A_3 = -0,089 \ 287, \qquad \qquad B_3 = -1,380 \ 92, \\ A_4 = 2,520 \ 173 \cdot 10^{-3} \ , \end{array}$

где $Z = \lg [N_2]$ применительно только для областей 200 < T/k < 350 и $16,3 < < \lg ([N_2])/см^{-3}) < 19,5$ с оценкой точности в $\lg k = \pm 0,10$. Воздух менее эффективен в качестве третьего тела на 6%.

Приложение 2

Реакции фотодиссоциации, представляющие интерес для фотохимии стратосферы

список литературы

1. Альперин В. З. Кулонометрическое определение микроконцентраций озона с помощью непроточной ячейки. — Автоматиз. хим. произв., 1969, вып. 5, с. 98—103.

2. Аппаратура и методика измерения высотных профилей озона и оптических коэффициентов рассеяния в верхней атмосфере на метеоракете MP-12/A. А. Боголюбов, Г. И. Кузнецов, А. Ф. Чижов и др. — Труды ЦАО, 1977, вып. 127, с 70—78.

3. Артемьев А. В. К теории сезонных вариаций атмосферного озона.— Изв. АН СССР. Физика атмосферы и океана, 1975, т. 11, № 11, с. 1161—1168.

4. Атмосферный озон. Обзор современного состояния знаний о слое озона, включая механизмы, которые могут изменить его содержание. Пер. с англ. А. И. Репнева. — Долгопрудный, ЦАО, 1978.

5. Бейтс Д. Р. Свечение атмосферы. — В кн.: Физика верхней атмосферы. — М.: Физикатгиз, 1963. — 212 с.

6. Бекорюков В. И. О расчете влияния замкнутой воздушной циркуляции на равновесное распределение озона. — Геомагнетизм и аэрономия, 1965, т. 5, № 3, с. 465—470.

7. Белевич Р. Р., Демьяновская Т. С., Кессель В. С. Осуществовании двух внутритропических зон конвергенции в экваториальной зоне Атлантики. — В кн.: ТРОПЭКС-74. Т. 1. — Л.: Гндрометеоиздат, 1976, с. 357—362.

8. Березин В. М., Еланский Н. Ф. Распределение общего содержания озона в атмосфере по наблюдениям с ИСЗ. — Изв. АН СССР. Флзика атмосферы и океана, 1972, т. 8, № 5, с. 526—532.

9. Березин В. М., Шафрин Ю. А. Орасчете вертикального распределения атмосферного озона. — Геомагнетизм и аэрономия, 1964, т. 4, № 1, с. 131—136.

10. Бобков Н. П. Особенности измерения вертикального распределения озона ночью в области атмосферы выше 40 км фильтровыми приборами. — Труды ИПГ, 1975, вып. 23, с. 26—48.

11. Бобков Н. П. Коценке некоторых параметров фотохимических и турбулентных процессов по результатам наблюдений концентрации озона в верхней атмосфере. — Труды ИПГ, 1977, вып. 32, с. 107—122.

12. Бобков Н. П., Микиров А. Е. Ракетный озонометр. — Труды ИПГ, 1975, вып. 23, с. 5—25.

13. Бобков Н. П., Микиров А. Е. Измерение суточного хода концентрации озона на высотах 40—72 км. — Труды ИПГ, 1977, вып. 22, с. 11—21.

14. Бобков Н. П., Микиров А. Е. Некоторые вопросы интерпретации результатов измерений временного хода концентрации озона в верхней атмосфере. — Труды ИПГ, 1977, вып. 23, с. 92—106.

15. Бойченко П. Ф. Оптимальный метод расчета вертикального распределения атмосферного озона по наблюдениям эффекта обращения. Автореф. дисс. на соискание учен. степени канд. физ.-мат. наук. — Долгопрудный, ЦАО, 1978 — 19с.

16. Бойченко П. Ф., Рыбин Ю. Н. Овертикальном распределении озона, определяемом методом обращения. — Труды ЦАО, 1976, вып. 122, с. 94—101.

17. Большакова Л. Г. О хемилюминесцентном методе измерения вертикального распределения озона в атмосфере. — Проблемы физики атмосферы, 1969, № 7, с. 113—125.

 Вольшакова Л. Г., Васильева В. А. О хемилюминесценции родамина-С. — Проблемы физики атмосферы, 1968, № 6, с. 78—86. 19. Большакова Л. Г., Ошерович А. Л., Пейсахсон И. В. Осистематических ошибках при фильтровой озонометрии. В кн.: Атмосферный озон. М., МГУ, 1961, с. 65—71.

20. Борисенков Е. П., Кайгородцев А. В., Покровский О. М. Определение профиля озона по уходящему тепловому излучению. — Метеорология и гидрология, 1977, № 5, с. 11—12.

21. Бритаев А. С. Озонвтропосфере. — Труды ЦАО, 1965, вып. 66, с. 19—50.

22. Бритаев А. С. Некоторые особенности вертикального распределения озона по материалам наблюдений в период МГГ—МГСС. — Метеор. исследования, 1967, № 17, с. 44—50.

23. Бритаев А. С. Метод гашения интенсивностей в спектральной озонометрии. — Труды ЦАО, 1971, вып. 102, с. 55—61.

24. Бритаев А. С. Озонометрические радиозонды. — Труды ЦАО, 1976, вып. 117, с. 134—137.

25. Бритаев А. С., Иозенас В. А. Озонное радиозондирование атмосферы. — Труды ЦАО, 1968, вып. 70, с. 58—65.

26. Бунеев Н. А., Пшежецкий С. Я., Мясников И. А. Действие ионизирующих излучений на органические и неорганические системы. — М.: Изд-во АН СССР, 1958. — 129 с.

27. Ванин Н. В., Мигулии А. В., Рыбаков С. Ю. Лазерное зондирование атмосферы методом сравнительного поглощения. Изв. АН СССР. Физика атмосферы и океана, 1976, т. 12, № 4, с. 389—394.

28. Васильев Р. Ф. Хемилюминесценция в растворах.— Изв. АН СССР. Сер. Физика, 1965, т. 29, № 8, с. 1331.

29. Васси А. Атмосферный озон. — М.: Мир, 1965. — 85 с.

30. Виноградова Н. Н. О распределении общего содержания озона в струйных течениях с искривленными осями. — Труды ГГО, 1977, вып. 384, с. 28—31.

31. Витинский Ю. И., Оль А. И., Сазонов Б. И. Солнце и атмосфера Земли.— Л.: Гидрометеоиздат, 1976.— 352 с.

32. Галин В. Я., Малкевич М. С., Шукурова Л. М. О функции пропускания О₃ 9,6 мкм в атмосфере. — Изв. АН СССР. Физика атмосферы и океана, 1975, т. 11, № 10, с. 1022—1029.

33. Гальцев А. П. Исследование полосы поглощения озона 9,6 мкм в искусственной атмосфере. — Проблемы физики атмосферы, 1967, вып. 5, с. 111—128.

34. Географическое распределение общего количества озона по измерениям на д/э «Обь» (ноябрь 1965 — январь 1966 г.)/В. Ф. Белов, А. М. Ерохин, А. П. Коптев, Р. Ф. Федоров.— Метеорология и гидрология, 1967, № 3, с. 82—84.

35. Гусев М. А. Исследование роли меридиональной циркуляции атмосферы в формировании пространственно-временного режима озона. Изв. АН СССР. Физика атмосферы и океана, 1971, т. 7, № 7, с. 718—765.

36. Гущин Г. К. Основные особенности в распределении общего содержания озона над акваториями океанов. — Труды ГГО, 1976, вып. 357, с. 83—105.

37. Гущин Г. П. Измерение озона с самолета. — Труды ГГО, 1959, вып. 93, с. 60—69.

38. Гущин Г. П. Закономерности горизонтального распределения и колебаний во времени атмосферного озона. — В кн.: Атмосф. озон. МГУ, 1961, с. 149—169.

39. Гущин Г. П. Исследование атмосферного озона. — Л.: Гидрометеоиздат, 1963. — 267 с. 40. Гущин Г. П. Озон и аэросиноптические условия. — Л.: Гидрометеоиздат, 1964.

41. Гущин Г. П. Международные сравнения озонометрических приборов СССР и ГДР в Ташкенте. — Труды ГГО, 1966, вып. 184, с. 35—40.

42. Гущин Г. П. Методические указания по производству и обработке наблюдений за общим содержанием атмосферного озона. — Л.: Гидрометеоиздат, 1970. — 66 с.

43. Гущин Г. П. О некоторых результатах исследования атмосферного озона в Главной геофизической обсерватории. — Метеор. исслед., 1970, № 17, с. 58—71.

44. Гущин Г. П. Международные сравнения озонометрических приборов в Шиофоке, Венгрия. — Труды ГГО, 1972, вып. 279, с. 128—137.

45. Гущин Г. П., Ромашкина К. И., Шаламянский А. М. Опыт измерения общего содержания озона модернизованным озонометром М-83 в Воейково в 1971—1974 гг.— Труды ГГО, 1976, вып. 357, с. 106—120.

46. Данилов А. Д. Химия ионосферы. — Л.: Гидрометеоиздат, 1967. — 295 с.

47. Данилов А. Д., Власов М. Н. Фотохимия ионизированных и возбужденных частиц в нижней ионосфере. — Л.: Гидрометеоиздат, 1973. — 200 с.

48. Дианов-Клоков В. И., Матвеева О. А. Спектр поглощения атмосферного кислорода в области 1,3—0,23 мкм и роль короткоживущих комплексов. — Изв. АН СССР. Физика атмосферы и океана, 1968, т. 4, № 4, с. 414—425.

49. Дмитриев М. Т., Китросский Н. А. О специфических анализах малых концентраций озона. Хемилюминесцентный анализатор озона. — Журн. физ. хим., 1968, т. 42, № 12, с. 3125—3127.

50. Еланский Н. Ф. О механизме воздействия струйного течения на озонный слой. — Изв. АН СССР. Физика атмосферы и океана, 1975, т. 11, № 9, с. 916—926.

51. Еланский Н. Ф., Трутце Ю. Л. Некоторые особенности распределения общего содержания озона и двуокиси азота по наблюдениям с самолета. — Изв. АН СССР. Физика атмосферы и океана, 1979, т. 15, № 1, с. 119—121.

52. Заставенко Л. Г. Барическое поле тропосферы северного полушария. — Л.: Гидрометеоиздат, 1972. — 236 с.

53. Захаров В. М., Костко О. К. Метеорологическая лазерная локация. — Л.: Гидрометеоиздат, 1977. — 222 с.

54. Иванов - Холодный Г. С., Никольский І. М. Солнце и ионосфера. — М.: Наука, 1969. — 465 с.

55. И в а н о в а Г. Ф. Взаимная динамика высот тропопаузы и озонопаузы. — Труды ГГО, 1972, вып. 279, с. 185—193.

56. И в лев О. С., Огородников Б. И. О природе аэрозолей в высоких слоях атмосферы. — Физика мезосферы и мезосферных облаков, 1975, № 22, с. 26—33.

57. Измерение вертикального распределения озона со спутника, движущегося по полярной орбите/Р. Д. Рауклиффе, Д. Е. Мелой, Р. М. Фридман, Е. Х. Роджерс. — В кн.: Озон в земной атмосфере. — Л.: Гидрометеоиздат, 1966, с. 77—83.

58. И о з е н а с В. А., К у з н е ц о в А. П. Фотоэлектрический спектрофотометр для наблюдений за атмосферным озоном. — В кн.: Атмосферный озон. Изд-во МГУ, 1961, с. 14—17.

59. Исследование некоторых свойств хемилюминесцентных детекторов озона на подложках из пористых стекол/В. И. Коньков, М. Л. Миронова, С. П. Перов, Л. А. Удонова. — Труды ЦАО, 1977, вып. 127, с. 38—41.

60. Исследование озоносферы Земли со спутников/В. А. Иозенас и др.— Изв. АН СССР. Физика атмосферы и океана, 1969, т. 5, № 2, с. 149—159.

61. Исследование планетарного распределения озона по ультрафиолетовым спектрам, измеренным на спутниках/В. А. Иозенас и др.— Изв. АН СССР. Физика атмосферы и океана, 1969, т. 5, № 4, с. 395—403.

62. Капустин В. Н., Любовцева Ю. С. Онаблюдении природных фотохимических дымок. — Изв. АН СССР. Физика атмосферы и океана, 1976, т. 12, № 6, с. 620—629.

63. Каримова Г. У. Атмосферный озон в полярных районах. Л.: Гидрометеоиздат, 1975. — 168 с. — (Труды ААНИИ. Т. 333).

64. Каримова Г. У., Александров А. С. Вертикальное распределение озона и положение тропопаузы в Антарктике. — Труды ААНИИ, 1976, вып. 327, с. 172—176.

65. Каримова Г. У., Долгин И. М. Особенности распределения общего содержания озона в Арктике в зависимости от условий циркуляции. — В кн.: Атмосферный озон. — Л.: Гидрометеоиздат, 1965, с. 33—41.

66. Кароль И. Л. Радиоактивные изотопы и глобальный перенос в атмосфере. — Л.: Гидрометеоиздат, 1972. — 380 с.

67. Кароль И. Л. Высотные самолеты и стратосферы. — Л.: Гидрометеоиздат, 1974. — 48 с.

68. Кароль И. Л., Коменская Е. Н. Расчет вертикального распределения содержания окислов азота в атмосфере. — Труды ГГО, 1976, вып. 367, с. 25—34.

69. Каталог изделий Смоленского завода средств автоматики. — М.: ЦНИИТЭИ Приборостроения, 1976. — 10 с.

70. Кондратьев К. Я., Тимофеев Ю. М. Термическое зондирование атмосферы со спутников. — Л.: Гидрометеоиздат, 1970. — 410 с.

71. Кондратьев К. Я., Тимофеев Ю. М. Метеорологическое зондирование атмосферы из космоса. — Л.: Гидрометеоиздат, 1978. — 280 с.

72. Кондратьев К. Я., Васильев О. Б., Ивлев Л. С. Глобальный аэрозольно-радиационный эксперимент (ГАРЭКС). Обнинск, 1976. — 29 с.

73. Константинова - Шлезингер М. А. Флюоресцентный метод определения содержания озона в воздухе. — Вкн.: Труды Эльбрусской экспедиции АН СССР и ВИЭМ, 1934—1935 гг. — М.; Л.: Изд-во АН СССР, 1936. с. 49—60.

74. Коньков В. И., Перов С. П., Удонова Л. А. Лабораторная установка и методика исследования хемилюминесцентных датчиков озона при низких давлениях. — Труды ЦАО, 1977, вып. 127, с. 32—37.

75. Костко О. К., Смирнов Н. Д., Фадеев В. В. Овозможности измерения плотности стратосферного озона лазерным локатором. Квант. электроника, 1976, т. 3, № 11, с. 2392—2398.

76. Краснопольский В. А. Ультрафиолетовый спектр отраженного земной поверхностью излучения и его использование для определения общего содержания вертикального распределения атмосферного озона. — Геомагнетнзм и аэрономия, 1966, т. 6, № 2, с. 298—306.

77. Кузнецов Г. И. Атмосферный озон над тропическим поясом. — ДАН СССР, 1966, т. 171, № 3, с. 587—588.

78. Кузнецов Г. И. Многоволновая методика и аппаратура для исследования атмосферного озона и аэрозоля. — Изв. АН СССР. Физика атмосферы и океана, 1975, т. 11, № 6, с. 647—651.

79. Кузнецов Г. И. Определение содержания двуокиси азота в атмосфере оптическим методом.— Изв. АН СССР. Физика атмосферы и океана, 1977, т. 13, № 8, с. 896—899.

80. Кузнецов Г. И., Хргиан А. Х. Атмосферный озониего изменения, связанные с циркуляцией над Атлантическим океаном. — Изв. АН СССР. Физика атмосферы и океана, 1966, т. 2, № 8, с. 859—871.

81. Кузнецов Г. И., Хргиан А. Х. Общие черты распределения озона в атмосфере от МГГ до МГСС. — Метеорология и гидрология, 1968, № 3, с. 24—38.

82. Кузнецов Г. И., Чижов А. Ф., Штырков О. В. Бортовая аппаратура для измерения эмиссии дневного неба и рассеянной радиации Солнца. — Труды ЦАО, 1976, вып. 119, с. 42—49.

83. Кэдл Р. Д. Взвешенные частицы в нижней атмосфере. — В кн.: Химия нижней атмосферы. — М.: Мир, 1976, с. 80—154.

84. Лавренко В. А. Рекомбинация атомов водорода на поверхностях твердых тел. — Киев: Наукова думка, 1973. — 202 с.

85. Ларин И. К., Тальрозе В. Л. Условия и возможный масштаб влияния заряженных частиц на гибель озона в атмосфере. ДАН СССР, 1977, т. 233, № 3, с. 410—413.

86. Львова А. А., Мнкиров А. Е., Полосков С. М. Ракетные исследования распределения озона с высотой во время полного солнечного затмения. — Геомагнетизм и аэрономия, 1964, т. 4, № 6, с. 1082— 1088.

87. Любовцева Ю. С. О фотохимической и конденсационной изменчивости субмикронной фракции природного аэрозоля. — Изв. АН СССР. Физика атмосферы и океана, 1978, т. 14, № 2, с. 229—233.

88. Малкевич М. С., Шукурова Л. М., Чавро А. И. О некоторых особенностях пропускания солнечной радиации атмосферой в полосе озона 9,6 мкм. — Изв. АН СССР. Физика атмосферы и океана, 1975, т. 11, № 12, с. 1239—1246.

89. Метеорология и гидрология, 1977, № 12. — 108 с.

90. Метеорология и гидрология, 1978, № 1.- 125 с.

91. Метеорология и гидрология, 1979, № 4. — 125 с.

92. Механизм формирования среднесуточного состояния мезосферы и термосферы/Г.В. Гридчин, Е.А. Жадин, А.И.Ивановский, В.А. Марчевский.— Геомагнетизм и аэрономия, 1975, т. 15, № 1, с. 93—100.

93. Микиртумова Г. Г., Розенберг Г. В. Сумеречные измерения высотного распределения озона в мезосфере.— Бюлл. Абаст. астрофиз. обс., 1975, № 46, с. 225—284.

94. Митник Л. М. О вариациях поглощения СВЧ излучения в атмосферном озоне. — Изв. АН СССР. Физика атмосферы и океана, 1979, т. 15, № 4, с. 401—407.

95. Митра С. К. Верхняя атмосфера. — М.: Изд-во иностр. лит., 1955. 639 с.

96. Николе М. Аэрономия. — М.: Мир., 1964. — 298 с.

97. Оболенский В. Н. Метеорология. Ч. 2. — Л.: Гидрометеоиздат, 1939, с. 219.

98. Общее содержание атмосферного озона и спектральная прозрачность атмосферы. 1972—1973 гг./Под ред. Г. П. Гущина.— Л.: Гидрометео-издат, 1978.— 157 с.

99. Общее содержание атмосферного озона и спектральная прозрачность атмосферы. 1974—1975 гг./Под ред. Г. П. Гущина. — Л.: Гидрометеоиздат, 1979. — 340 с. 100. Петросянц М. А., Снитковский А. И., Фалькович А. И. Квопросу об эволюции внутритропической зоны конвергенции. — В кн.: ТРОПЭКС-74. Т. 1. — Л.: Гидрометеоиздат, 1976, с. 86—89.

101. Пространственно-временные вариации оптических свойств атмосферы, обусловленные взаимодействием атмосферного аэрозоля с полем влажности/С. Д. Андреев, Л. С. Ивлев, Н. К. Спажакина, Е. Л. Янченко. — Физика мезосферы и мезосферных облаков, 1975, № 22, с. 34—49.

102. Разумовский С. Д., Заиков Г. Е. Озон и его реакции с органическими соединениями (кинетика и механизм). — М.: Наука, 1974. — 322 с.

103. Ракипова Л. Р. Влияние вариаций концентрации озона на термический режим атмосферы. — В кн.: Труды 1-го Всесоюз. совещ. «Солнечно-атмосферные связи», 1974, с. 359—361.

104. Ракипова Л. Р. Озонный механизм влияния на термический режим атмосферы солнечной активности и антропогенных факторов. — Труды ГГО, 1975, выл. 355, с. 17--22.

105. Ракипова Л. Р. Влияние солнечной активности на циркуляцию и температуру стратосферы. — В кн.: Эффекты солнечной активности. Л.: Гидрометеоиздат, 1977, с. 3—9.

106. Ракипова Л. Р. К вопросу о возможности 11-летней цикличности в вариациях стратосферной циркуляции и температуры. — Труды ГГО, 1978, вып. 407, с. 3—9.

107. Рыбаков А. К. Приток метеорного вещества в атмосферу Земли. — В кн.: Тезисы докладов Всесоюз. симпоз. «Взаимодействие космического вещества с атмосферой Земли». 1978, Фрунзе. 1978, с. 45—46.

108. Рыбин Ю. Н., Бойченко П. Ф. Методика расчета вертикального распределения озона по эффекту обращения. — Труды ЦАО, 1976, вып. 122, с. 124—130.

109. Скляренко И. Я. Методы измерения содержания газовых примесей в толще земной атмосферы. — Изв. АН СССР. Физика атмосферы и океана, 1978, т. 14, № 6, с. 579—590.

110. Смирнов Б. М. Экологические проблемы атмосферы Земли. — Усп. физ. наук, 1975, т. 117, вып. 2, с. 313—332.

111. Смирнов В. И. Скорость коагуляционного и конденсационного роста частиц аэрозолей. — Труды ЦАО, 1969, вып. 92, с. 3—116.

112. Соболев В. В. Курс теоретической астрофизики. — М.:, Наука, 1967. — 528 с.

113. Солонин С. В., Осечкин В. В. Измерение атмосферного озона на рейсовых самолетах. — Труды Лен. Политехн. ин-та, 1976, вып. 61, с. 119—129.

114. Среднесуточная замкнутая модель мезосферы и термосферы/Г. В. Гридчин, Е. В. Жадин, А. И. Ивановский, В. А. Марчевский. — Геомагнетизм и аэрономия, 1976, т. 16, № 1, с. 143—148.

115. Стеблова Р. С. Температурный режим атмосферного озона по наземным данным. — В кн.: Атмосферный озон. Изд-во МГУ, 1961, с. 120—140.

116. Степанова А. Г., Божевольнов Е. А. Хемилюминесцентный метод непрерывного определения озона в газах. — Труды ВНИИ хим. реактивов и особо чистых хим. веществ, 1973, вып. 35, с. 187—190.

117. Структура фронтов в высоких широтах/Л. А. Гаврилова, В. М. Данилова, Л. П. Бурова, Н. В. Шипош.— Метеор. исследования, 1965, № 9, с. 64—71.

118. Тимофеев Ю. М., Кузнецов А. Д., Шпэнкух Д. О точности косвенного восстановления вертикального профиля озона в атмосфере. — В кн.: Радиационные процессы в атмосфере и на земной поверхности. — Л.: Гидрометеоиздат, 1974, с. 126—130. 119. Тимофеев Ю. М., Розанов В. В. Возможности косвенной оценки содержания малых примесей газов в атмосфере. — В кн.: Радиационные процессы в атмосфере и на земной поверхности. — Л.: Гидрометео-издат, 1974, с. 131—135.

120. Тихонов А. Н. О регуляризации некорректно поставленных задач. — ДАН СССР, 1963, т. 153, № 1, с. 49—52.

121. Физическая химия быстрых реакций. Пер. с англ. — М.: Мир, 1976. — 394 с.

122. Филимонихин В. А. О фотометрировании солнечного спектра в ближней ультрафиолетовой области. — Труды ГГО, 1969, вып. 237, с. 127—130.

123. Харчилава Д. Ф. Отклонение общего содержания озона в высоких циклонах и антициклонах. — Труды ЗакНИГМИ, 1960, вып. 22, с. 113—125.

124. Харчилава Д. Ф. Озон и струйные течения. — Труды ЗакНИГМИ, 1967, вып. 21/37, с. 129—142.

125. Химико-кинетические критерии воздействия на озоносферу веществ естественного и антропогенного происхождения/В. Л. Тальрозе, А. И. Поройкова, И. К. Ларин и др.— Изв. АН СССР. Физика атмосферы и океана, 1978, т. 14, № 4, с. 355—365.

126. Хргиан А. Х. Основные черты и вариации атмосферного озона по данным МГГ.— Геофиз. бюлл., 1964, № 14, с. 26—38.

127. Хргиан А. Х. Физика атмосферного озона. — Л.: Гидрометеоиздат, 1973. — 296 с.

128. Хргиан А. Х., Кузнецов Г. И., Кондратьева А.В. Исследования атмосферного озона. — В кн.: Метеор. исследования, № 8, Наука, 1965. — 92 с.

129. Хргиан А. Х., Ламжавын Б. Изменения атмосферного озона в высотных барических образованиях.— Метеорология и гидрология, 1971, № 9, с. 24—29.

130. Хргиан А. Х., Нгуэн Тхи Киен. Некоторые особенности атмосферного озона в тропической зоне.— Вести. МГУ. Сер. физика, 1975, № 4, с. 452—459.

131. Шаламянский А. М. К методике определения содержания озона по свету от зенита неба. — Труды ГГО, 1976, вып. 357, с. 205—213.

132. Шаламянский А. М., Иванова Г. Ф. Некоторые результаты измерений общего содержания озона во время научно-исследовательских полетов 1960—1970 гг.— Труды ГГО, 1973, вып. 312, с. 142— 149.

133. A i m e d i e ul P., B a r a t J. Un ozonomètre stratosphérique à chémiluminescence en phase gazeuse: application a l'étude du transport vertical dans la stratosphère. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 163—174.

134. A laboratory analysis of chemiluminescent measurements/E. H. Steinberger, J. Sivan, J. Neumann, N. W. Rosenberg. — J. Geophys. Res., 1967, vol. 72, N 17, p. 4519-4524.

135. A l d a z L. Flux measurements of atmospheric ozone over land and water. — J. Geophys. Res., 1969, vol. 74, N 28, p. 6943-6946.

136. Altshuller A. P., Wartburg A. F. The interaction of ozone with plastic and metallic materials in a dynamic flow system. — Intern. J. Air a. Water Poll., 1961, vol. 4, N 1/2, p. 70-78.

137. Anderson G. P., Barth Ch. A., Cayla F., London J. Satellite observations of vertical ozone distribution in the upper stratosphere. — In: Intern. Symp. Ozone. Monaco, 1968, p. 239—244.

138. And erson J. G. The absolute concentration of O³(P) in the earth's stratosphere. — Geophys. Res. Lett., 1975, vol. 2, N 6, p. 231-234.

139. And erson L. G. Atmospheric chemical kinetics data survey. — Rev. Geophys. Space Phys., 1976, vol. 14, N 2, p. 151–171.

140. Anderson L. G., Donahue T. M. The neutral composition of the stratosphere and mesosphere. — J. Atmos. Terr. Phys., 1975, vol. 37, p. 365-884.

141. Angell J. K., Korshover J. Recent rocket-sonde derived temperature variations in the western hemisphere. — J. Atmos. Sci., 1978, vol. 35, N 9, p. 1758—1764.

142. A three-dimensional dynamical-chemical model of atmospheric ozone/ D. M. Cunnold, F. N. Alyea, N. A. Phillips, R. G. Prinn. — J. Atmos. Sci., 1975, vol. 32, N 2, p. 170—194.

143. Atlas of global distribution of total ozone. 1957—1967/J. London, R. Bojkov, S. Oltmans, J. J. Kelley.— NCAR, Boulder, 1976.—276 p.

144. Atmospheric ozone: possible impact of stratospheric aviation/ M. B. McElroy, S. C. Wofsy, J. E. Penner, J. C. McConnel. – J. Atmos. Sci., 1974, vol. 31, N 1, p. 287–303.

145. Attmannspacher W., Hartmannsgruber R. On extremely high values of ozone near the ground. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1091—1096.

146. Attmannspacher W., Hartmannsgruber R. 6 Jahre (1967–1972) Ozonsondierungen am Meteorologischen Observatorium Hohenpeissenberg. — Ber. Deutsch. Wetterdienst, Bd 18, N 137. Offenbach a. M. 1975. — 40 S.

147. Attmannspacher W., Hartmannsgruber R. Some results of 6 years (1967—1972) of regular ozone soundings at the meteorological observatory Hohenpeissenberg. — FRG, Beit. Phys. Atmos., 1976, Bd 49, N 1, S. 18—33.

148. Barnett J. J., Houghton J. T., Pyle J. A. The temperature dependence of ozone concentration near the stratopause. — Quart. J. Roy. Meteor. Soc., 1975, vol. 101, N 428, p. 245—257.

149. Basher R. E. The effect of bandwidth on filter instrument total ozone accuracy. — J. Appl. Meteor., 1977, vol. 16, N 8, p. 803—811.

150. B a sher R. E., M at the ws W. A. Problems in the use of interference filters for spectrophotometric determination of total ozone. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol 1., p. 135—138.

151. B a t e s D. R., N i c o l e t M. The photochemistry of water vapor. — J. Geophys. Res., 1950, vol. 55, p. 301-310.

152. Beatty J. R., Juve A. E. A simple objective method for estimating low concentrations of ozone in air. — Rubber World, 1954, vol. 131, p. 232-238.

153. Berkner L. V., Marshall L. C. The rise of oxygen in the earth's atmosphere. — Adv. Geophys., 1967, vol. 12, p. 309—331.

154. Bersis D., Vassiliou E. A chemiluminescence method for determining ozone. — Analyst, 1966, vol. 91, p. 499—505.

155. B i g g E. K. Stratospheric particles. — J. Atmos. Sci., 1975, vol. 32, N 5, p. 910—917.

156. Blake A. J., Carver J. H. The evolutionary role of atmospheric ozone. — J. Atmos. Sci., 1977, vol. 34, N 5, p. 720—728.

157. Bojkov R. Mean pole-to-pole vertical ozone distribution — In: Proc. of the VIIth Stanstead seminar. Quebec, 1968, N 90, p. 221-240.

158. Bojkov R. D. Differences in Dobson spectrophotometer and filter ozonometer measurements of total ozone. — J. Appl. Meteor., 1969, vol. 8, p. 362—368.

159. B o j k o v R. D. Glel al net heating rates due to absorption by ozone — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 375—381.

160. Bonnet R. M. Le flux solaire dans l'ultra-violet lointain: origine, variations relatives. — Ann. Géophys., 1977, t. 33, fasc. 4, p. 409— 422.

161. B o y d A. W., W illis C., C yr R. New dctermination of stoichiometry of the iodometric method for ozone analysis at pH-7. — Analyt. Chem., 1970, vol. 42, p. 670—672.

162. Bradley C. E., Haagen-Smit A. J. The application of rubber in the quantitative determination of ozone. — Rubber Chem. Techn., 1951, vol. 24, p. 750-755.

163. Brasseur G. L'action des oxides d'azote sur l'ozone dans la stratosphère. Belg. Inst. Aéronomie, Bruxelles, 1976. — 349 p.

164. Brasseur G., Bertin M. Un modèle bi-dimensionnel de la stratosphère. — Aeronomica Acta, A, 1975, vol. 196, N 146. — 28 p.

165. B r a s s e u r G., N i c o l e t M. Chemospheric processes of nitric oxide in the mesosphere and stratosphere. — Planet. Space Sci., 1973, vol. 21, N 6, p. 939—961.

166. B r e w e r A. W. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. — Quart. J. Roy. Meteor. Soc., 1949, vol. 75, N 326, p. 351-363.

167. Brewer A. W. A replacement for the Dobson spectrophotometer ? — Pure a. Appl. Geophys. 1973, vol. 106—108, N 5—7, p. 919—927.

168. Brewer A. W., Milford K. R. The Oxford-Kew ozonesonde. – Proc. Roy. Soc. Ser. A, 1960, vol. 256, p. 470.

169. Cabannes J., Dufay J. Transparence de l'atmosphére dans le spectre visible; Diffusion moleculaire; Absorption par l'ozone. — J. Phys. Radium. Ser. 6, 1926, vol. 7, N 9.

170. C a d l e R. D. Daytime atmospheric O (¹D). — Disc. Faraday Soc., 1964, vol. 37, p. 66—71.

171. Cadle R. D., Crutzen P., Ehhalt D. Heterogeneous chemical reactions in the stratosphere. — J. Geophys., Res., 1975, vol. 80, N 24, p. 3381—3385.

172. Callis L. B., Nealy J. C. Solar UV-variability and its effect on stratospheric thermal structure and trace constituents. — Geophys. Res. Letters, 1978, vol. 5, p. 248—252.

173. Calvo-Canales F. Relations entre la répartition verticale de l'ozone atmosphérique et l'évolution de la situation météorologique. — Pure a. Appl. Geophys., 1965, vol. 62, N 3, p. 215—223.

174. Carver J. [H., Horton B. H., Burger F. C. Nocturnal ozone distribution in the upper atmosphere. — J. Geophys. Res., 1966, vol. 71, N 17, p. 4189—4191.

175. Carver J. H., Horton B. H., Burger F. G. Rocket determination of the ozone distribution and the lunar ultraviolet flux. — London: Preprint. COSPAR, 1967. — 13 p.

176. Carver J. H., Horton B. H., O'Brien R. S., Rofe B. Ozone determination by lunar rocket photometry. — Planet. Space Sci., 1972, vol. 20, N 2, c. 217—223.

177. Chameides W., Walker J. C. A photochemical theory of tropospheric ozone. — J. Geophys. Res., 1973, vol. 78, N 36, p. 8751—8760.

178. Chameides W. L., Walker J. C. A time-dependent photochemical model for ozone near the ground. — J. Geophys. Res., 1976, vol. 81, N 3, p. 413-420.

179. C h a p m a n S. On ozone and atomic oxygen in the upper atmosphere. — Phil. Mag. Ser. 7, 1930, vol. 10, N 64, p. 369—385.

180. Chlorofluoromethanes and the stratosphere. NASA Reference Publication N 1010. Ed. R. D. Hudson, 1977. – 266 p.

181. Chopra A. N., Sreedharan C. R., Gangopadhyaya A. K. Standartization of the Dobson spectrophotometers in the national network in India. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1. Berlin, p. 67—87.

182. Christie A. D. Secular or cyclic change in ozone? — Pure A. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1000—1009.

183. COSPAR International Reference Atmosphere 1972, CIRA – 1972. – Berlin: Akademie-Verlag, 1977. – 450 p.

184. COVOS: Activité 1972-1976. Rapport de synthèse, présenté par E. A. Brun. 1976. - 163 p.

185. Crabtree J., Biggs B. S. Cracking of stressed rubber by free radicals. — J. Polymer Sci., 1953, vol. II, p. 280—281.

186. Crutzen P. J. Determination of parameters appearing in the «dry» and the «wet» photochemical theories for ozone in the stratosphere. — Tellus, 1969, vol. 21, N 3, p. 368—388.

187. Crutzen P. J. The influence of nitrogen oxides on the atmospheric ozone content. — Quart. J. Roy. Meteor. Soc., 1970, vol. 96, N 408, p. 320-325.

188. Crutzen P. J. Gas-phase nitrogen and methane chemistry in the atmosphere. Phys. Chem. Upper Atmos. Ed. by McCormac. 1973, p. 110-124.

189. Crutzen P. J. A review of upper atmospheric photochemistry.— Canad. J. Chem., 1974, vol. 52, N 8, p. II, p. 1569—1581.

190. Crutzen P. J., Isaksen I. S. A., Reid G. R. Solar proton events: stratospheric source of nitric oxides. — Science, 1975, vol. 189, N 4201, p. 457—459.

191. Cunnold D. M., Gray C. R., Nerritt D. C. Aerosols: a limitation on the determination of ozone from BUV observations. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1264—1271.

192. Cvetanovic R. J., Overend R. Pand Paraskovopoulus G. Accuracy and precision of gas phase kinetic techniques. — Int. J. Chem. Kinet., Symp. I, 1975, p. 249—271.

193. Danielsen E. F. Stratospheric — tropospheric exchange based on radioactivity, ozone and potential vorticity. — J. Atmos. Sci., 1968, vol. 25, N 3, p. 502-518.

194. Danielsen E. F., Mohnen V. A. Ozone measurements and meteorological analyses of tropopause folding. — In: Proc. Joint. Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 97—114.

195. Daubendiek R. L., Calvert J. G. The reaction of ozone with perfluorinated polyolefins. — Environmental Letters, 1974, vol. 6 (4), p. 253—272.

p. 253-272. 196. Dave J. V., Sheppard P. A., Walshaw C. D. Ozone distribution and continuum from observation in the region of 1043 cm⁻¹ band. — Quart. Roy. Meteor. Soc., 1963, vol. 89, N 381, p. 307-318.

197. De More W. P., Patapoff M. Comparison of ozone determination by ultraviolet photometry and gas-phase titration. — Environ. Sci. Techn., 1976, vol. 10, N 9, p. 897—899.

198. Determination of O_3 densities in the stratosphere and lower mesosphere by measuring the absorption of the UV solar radiation in the upper atmosphere by means of meteorological rockets (type M-100)/L. Martini, B. Stark, B. Trinkkeller, G. Zimmerman. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 21-36. 199. Dickinson R. E. Climatic effects of stratospheric chemistry. — Canad. J. Chem., 1974, vol. 52, N 8, p. 11, p. 1616—1624.

200. Dickinson P. H. G., Twiddy N. D., Young R. A. Atomic oxygen concentrations in the lower ionosphere. — Space Res., 1976, 16, p. 301—305.

201. Direct measurements of the vertical distribution of atmospheric ozone to 75 km altitude/F. S. Johnson, I. D. Purcell, R. Tousey, K. Watanabe. – J. Geophys. Res., 1952, vol. 57, N 2, p. 157–176.

202. Dobson G. M. B. Origin and distribution of the polyatomic molecules in the atmosphere. — In: Proc. Roy. Soc. Ser. A, 1956, vol. 236, p. 187-193.

203. D o b s o n G. M. B. Observers handbook for the ozone spectrophotometer. — Ann. I. G. Y., 1957, vol. 5 (1), p. 46-191.

204. D o b s o n G. M. B. Atmospheric ozone and the movement of air in the stratosphere. — Pure a. Appl. Geophys., 1973, vol. 106-108, N 5-7, p. 1520-1530.

205. D o b s o n G. M. B. The development of instruments for measuring atmospheric ozone during last fifty years. — J. Phys. Sci. Instr., 1973, vol. 6, N 10, p. 938-939.

206. Dobson G. M., Harrison D. M., Lawrence J. Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions. Part I. — Proc. Roy. Soc. Ser. A, 1926, vol. 110, N 756, p. 660—692; Part 2 — ibid. 1927, vol. 114, N 768, p. 521—541; Part 3 — ibid. 1928, vol. 122, N 790, p. 456—486; Part 4 — ibid. 1930, vol. 129, N 811, p. 411—433.

207. Dobson spectrophotometer for measuring atmospheric ozone. R. Beock, London, 1975. — 11 p.

208. Donahue T. M., Guenter D., Thomas R. J. Spatial and temporal behaviour of atomic oxygen determinated by OGO-6 airglow observations. — J. Geophys. Res., 1974, vol. 79, N 13, p. 1959—1964.

209. Dop H. van-, Guicherit R. The vertical distribution of ozone in the atmospheric boundary layer. — In: Proc. Joint Symp. Atmos Ozone, Dresden, 1977, vol. 3, p. 215—236.

210. Doughty R. V., Erisman D. O. A reliable low cost instrument for determining atmospheric oxidant levels. — J. Air Poll. Control Ass., 1961, vol. 11, p. 428—430.

211. Dütsch H. U. Mittelwerte und wetterhafte Schwankungen des atmosphärisches Ozon über Arosa. — Arch. Met. Geophys., 1962, Bd 13 A, H. 2, S. 167—185.

212. D \ddot{u} t s c h H. U. Two years of regular ozone soundings over Boulder. — NCAR. Tech. Not., 1966, N 10. — 411 p.

213. Dütsch H. U. Atmospheric ozone and ultraviolet radiation. — World Survey of Climate, 1969, vol. 4, p. 383-432.

214. Dütsch H. U. Photochemistry of atmospheric ozone. — Advances Geophys., 1971, vol. 15, p. 219—322.

215. Dütsch H. U. Ozone research. Present and future. — In: Proc. Int. Conf. Compos. Gen. Circul. Atmosphere. Melbourne, I, 1974, p. 321—329.

216. Dütsch H. U. Regular ozone soundings at the aerological station of the Swiss meteorological office at Payerne, Switzerland, 1968—1972. LAPETH, 1974, Zürich, 1974. — 338 p.

217. Dütch H. U. Ozone near ground. — In: Proc. Joint Sympos. Atmos. Ozone, Dresden, 1977, vol. 3, p. 197-199.

218. Dütsch H. U., Ling Ch. Ch. Six years of regular ozone soundings over Switzerland.— Pure a. Appl. Geophys., 1973, vol, 106—108, N 5-7, p. 1151—1167.

219. Dütsch H. U., Züllig W., Ling Ch. Ch. Regular ozon observations at Thalwil, Switzerland, and at Boulder, Colorado. LAPETH, Zürich, 1970. — 280 p.

220. D z i e w u l s k a - L o s i o w a A., W a l s h a w C. D. The international comparison of ozone spectrophotometers at Belsk, 24 June — 6 July 1974. — Mater. i pr. Inst. Geofis. PAN, 1975, N 89, p. 3—60.

221. Effect of water vapor on the destruction of ozone in the stratosphere perturbed by Cl_x or NO_x pollutants/S. C. Liu, T. M. Donahue, R. J. Cicerone, W. L. Chameides. — J. Geophys. Res., 1976, vol. 81, N 18, p. 3111-3118.

222. Epstein E. S., Osterberg Ch., Adel A. A new method for the determination of the vertical distribution of ozone from the ground station. — J. Meteor., 1956, vol. 13, N 4, p. 319—334.

223. E v a n s W. F. J., L l e w e l l y n E. Measurements of atmospheric ozone from observations of the 1, 27 μ band. — Radio Sci., 1972, vol. 7, N l, p. 45-50.

224. F a b i a n P. Atmospheric ozone and man-made pollution. — Naturwiss, 1976, vol. 63, N 6, p. 273—279.

225. Fabian P., Pruchniewicz P. G. Final report on project «Troposphärisches Ozon». — Max Planck Inst. Aeron., 1976, W-100-76. —28 S.

226. Fabry Ch., Buisson H. Etude de l'extrémité ultraviolette du spectre solaire. — J. Phys. Radium. Ser. 6, 1921, vol. 2, p. 197.

227. Favarger D. Comparison of several mathematical methods in a model of photochemistry. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 357—360.

228. Fedynski A. V., Yushkov V. A. Direct measurements of water vapor concentration in the stratosphere and mesosphere in the midlatitudes of the USSR and in the equatorial zone. — Preprint COSPAR. 1979. — 10 p.

229. F i g u e i r a M. F. Atmospheric ozone and flow fields over Lisbon. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1586—1599.

230. Findlay W. J., Dowd G., Quickert N. A detailed evaluation of three chemiluminescent ozone monitors. — Sci. Total Envir., 1975, vol. 4, N 2, p. 135-154.

231. FioccoG., MuganiA., Petroncelli P. Sensitivity of the photodissociation rates of O_3 , NO_2 , HNO_3 , H_2O_2 to the solar radiations diffused by ground albedo and scattered by molecules and aerosols, COSPAR 21 Plenary Meeting, Program/Abstracts, p. 114.

232. First results of ozone determination by satellite INTERCOSMOS-11/ W. Lippert, L. Martini, G. Sonnemann, B. Trinkkeller — In: Proc. Joint. Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 37—42.

233. Froment G. Sur les mesures et méthodes de mesure de l'ozone atmosphérique par fusées-sondes. — Not. Intern. EERM, mars 1974, N 339, p. 1—22.

234. F u k u y a m a K. Latitudinal distribution of minor neutral hydrogen-oxygen constituents in the winter mesosphere and lower thermosphere. — J. Atmos. Terr. Phys., 1974, vol. 36, N 8, p. 1297—1320.

235. Fulde J., Künzi K. F. The use of microwave spectroscopy in atmospheric remote sensing. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 199—205.

236. G a 1 b a 1 1 y J. Ozone profiles and ozone fluxes in the atmospheric surface layer. — Quart. J. Roy. Meteor. Soc., 1971, vol. 97, N 411, p. 18-29.

237. George J. D., Zimmerman S. P., Keneshea T. J. The latitudinal variation of major and minor neutral species in the upper atmosphere. Space Research, XIV, Seattle, 1974, p. 693. Berlin, 1974. 238. G h a z i A., E b e l A. A study of satellite observations of ozone and stratospheric temperatures during 1970-1971. - J. Geophys. Res., 1976, vol. 81, N 30, p. 5365-5373.

239. Gibson A. J., Thomas L. Ultraviolet laser sounding of the troposphere and lower stratosphere. — Nature, 1975, vol. 256, N 5518, p. 561—563.

240. Gille J. C., Bailey P. L., Anderson G. P. Global determinations by the Nimbus 6 limb radiance inversion radiometer. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 405—407.

241. Goody R., Walshaw C. D. Absorption by the 9,6 μ band of ozone. — In: Proc. Toronto Meteor. Conf., 1954. London. 1954, p. 49.

242. Grams G., Fiocco G. Stratospheric aerosol layer during 1964 and 1965. — J. Geophys. Res., 1967, vol. 72, N 14, p. 3523—3542.

243. Guenter B., Dasgupta D., Heath D. Twilight ozone measurement by solar occultation from AE-5. — Geophys. Res. Letters, 1977, vol. 4, N 10, p. 434—436.

244. G u s h c h i n G. P. On the technique for measuring the total content of atmospheric ozone at the world network of stations. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 135—147.

245. H a m p s o n J. Chemiluminescent emission observed in the stratosphere and mesosphere. — In: Les problémes météorologiques de la stratosphére et de la mesosphére. Ed. M. Nicolet. Presses Universitaires de France, Paris, 1965, p. 393—440.

246. Hampson R. F., Garvin D. Chemical kinetics and photo chemical data for modelling atmospheric chemistry. NBS US Dep. of Commerce, 1975.

247. Hartmannsgruber R. Vertikales Ozonprofil und Änderungen im troposphärischen Wettergeschehen. — Ann. d. Meteor., 1973, N 6, S. 237—240.

248. Hartmannsgruber R., Attmanspacher W. On the vertical ozone and wind profiles near the tropopause. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1581—1583.

249. Hays P. B., Roble R. G. Observation of mesospheric ozone at low latitudes. — Planet. Space Sci., 1973, vol. 21, N 2, p. 273-279.

250. Hearn A. G. The absorption of ozone in the ultraviolet and visible regions of spectrum. — Proc. Phys. Soc. Ser. A, 1961, vol. 78, pp. 932—940.

251. Heath D. F., Krueger A. J., Crutzen P. J. Influence of a solar proton event on a stratospheric ozone. Rept. X-912-76-172, GSFC, Greenbelt, Maryland, June 1976. — 11 p.

252. Heath D. E., Krueger A. J., Mateer C. L. The Nimbus-4 backscatter ultraviolet (BUV) atmospheric ozone experiment. Two years of operation. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, 1238—1253,

253. Heath D. F., Thekaekara M. P. Measures of the solar spectral irradiance between 1200 and 3000 Å. GSFC, X-912-76-171. Greenbelt, Maryland, July 1976, 17 p.

254. Hering W. S. Ozone, potential temperature and atmospheric transport processes. — In: Symp. Ozone Atmos. Monaco, 1969, p. 275-278.

255. Hersch P., Deuringer R. Galvanic monitoring of ozone in air. — Analyt. Chem., 1963, vol. 35, N 6, p. 687—689.

256. Hesstvedt E. Reduction of stratospheric ozone from high flying aircraft studied in a two-dimensional photochemical model with transport. — In: Paper presented at the IAGA Symposium at Kyoto, Japan, 11—13 Sept., 1973, 16 p.

257. Hesstvedt E., Henriksen S. E., Hjartarson H. On the development of an aerobic atmosphere. A model experiment. — Geophys. Norvegica, 1974, vol. 31, N 1, p. 9.

258. Hilsenrath E. Ozone measurements in the mesosphere and stratosphere during two significant geophysical events. — J. Atmos. Sci., 1971, vol. 28, N 2, p. 295—297.

259. Hilsenrath E., Seiden L., Goodman P. An ozone measurement in the mesosphere and stratospherd by means of a rocket sonde. — J. Geophys. Res., 1969, vol. 74, N 28, p. 6873—6880.

260. Hodgeson J. A. Review of analytical methods for atmospheric oxidant measurements. — Int. J. Environ. Analyt. Chem., 1972, vol. 2, p. 113-132.

261. Hodgeson J. A., Stevens R. K., Martin B. E. A stable ozone source applicable as a secondary standard for calibration of atmospheric monitors. — Air Qual. Instrum., 1972, vol. 1, p. 149—158.

262. How ard C. J., Evenson K. M. Laser magnetic resonance study of the gas phase reactions of OH with CO, NO and NO_2 . — J. Chem. Phys., 1974, vol. 61, p. 1943—1952.

263. Hudson R. D. Absorption cross sections of stratospheric molecules. — Can. J. Chem., 1974, vol. 52, N 8 (part 2), p. 1466—1478.

264. H u n t B. G. The need for a modified photochemical theory of the ozonosphere. — J. Atmos. Sci., 1966, vol. 23, N 1, p. 88—95.

265. H u n t B. G. Photochemistry of czone in a moist atmosphere. — J-Geophys. Res., 1966, vol. 71, N 5, p. 1385—1398.

266. Hutchings J. W., Farkas E. The vertical distribution of atmospheric ozone over Christchurch, New Zealand. — Quart. J. Roy. Meteor. Soc., 1971, vol. 97, N 412, p. 249—254.

267. Inn E., Tanaka Y. Ozone absorption coefficients in visible and ultraviolet regions. — In: Ozone Chemistry and Technology. Wash., 1959, p. 263-268.

268. Intercomparison/compilation on relevant solar flux data related to aeronomy (Solar Cycle 20)/J. P. Delaboudiniére, R. F. Donnelly, H. E. Hinteregger e. a. COSPAR Technique Manual Series, Manual N 7, Feb. 1978, p. 1-105.

269. Investigation of the atmospheric ozone by means of ozonometer with narrow-band interference light filters/A. L. Osherovich, L. G. Bolshakova, N. S. Shpakov, V. T. Zarubailo. — Mater. i pr. Inst. Geofiz. PAN, 1975, N 90, p. 21-30.

270. Is a a k s e n I. S. A. The photochemistry of the mesosphere, ELF-VLF radio wave propagation. — In: Proc. NATO Adv. Study Inst., held at Spatind, Norway, April 17—27, 1974, p. 3—19.

271. Johnson F. S., Purcell I. D., Tousey R. Studies of the ozone layer above New Mexico. — In: Rocket exploration of the upper atmosphere. London, Pergamon Press, 1954, p. 189—199.

272. Johnston H S. Reduction of stratospheric ozone by nitrogen oxide catalysts from SST exhaust. — Science, 1971, vol. 173, N 3996, p. 517-522.

273. Johnston H. S. Global ozone balance in the natural stratosphere. — Rev. Geophys. a. Space Phys., 1975, vol. 13, N 5, p. 637-649.

274. Johnston H. S. Photochemistry in the stratosphere. - UCLA, Berkeley, 1975. - 20 p.

275. Johnston H. S. Analysis of the independent variables in the perturbation of stratospheric ozone by nitrogen fertilizers. — J. Geophys. Res., 1977, vol. 82, N 12, p. 1767—1772.

276. Johnston H. S., Graham R. Photochemistry of NO_x and HNO_x compounds. — Can. J. Chem., 1974, vol. 52, N 8, p. 1415—1423.

277. Johnston H. S., Kattenhorn D., Whitten G. Use of excess carbon 14 data to calibrate models of stratospheric ozone depletion by supersonic transports. — J. Geophys. Res., 1976, vol. 81, N 3, p. 368— 380.

278. Johnston H. S., Whitten G., Birks J. Effect of nuclear explosions on stratospheric nitric acid and ozone. — J. Geophys. Res., 1973, vol. 78, N 27, p. 6107—6135.

279. Kerr J. B., Mateer C. L., McElroy C. T. Intercomparison of the Dobson and grating ozone spectrophotometer. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 109—120.

280. Kobayashi I., Kyozuka M., Muramatsu H. On various methods of measuring the vertical distribution of atmospheric ozone. 1. Optical type ozonesonde. — Pap. Meteor. Geophys., 1966, vol. 17, N 2, p. 76—95.

281. Kockarts G. Absorption and photodissociation in the Schumann — Runge bands of molecular oxygen in the terrestrial atmosphere. — Planet. Space Sci., 1976, vol 24, N 6, p. 589—604.

282. Komhyr W. D., Barrett E. C., Slocum Q., Weickmann H. K. Atmospheric total ozone increase during the 1960's. — Nature, 1971, vol. 232, N 5310, p. 390—391.

283. Komhyr W. D., Sticksel P. R. Ozonesonde observations, 1962—1966. Boulder, Colorado, USA, 1967, vol. 1.

284. Konkov V. I., Perov S. P. Some preliminary results of chemiluminescent measurements of atmospheric ozone by meteorological rockets M-100 B. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 43-46.

285. Krey P. W., Krajewski B. Comparison of atmospheric transport model calculations with observations of radioactive debris. — J. Geophys. Res., 1970, vol. 75, N 15, p. 2901—2908.

286. Krey P. W., Lagomarsino R. J., Frey J. J. Stratospheric concentrations of CCl_3F in 1974. — J. Geophys. Res., 1976, vol. 81, p. 1557—1560.

287. Krueger A. J. Rocket measurements of ozone over Hawaii. — Ann. Géophys., 1969, t. 25, p. 307—311.

288. K r u e g e r A. J. The mean ozone distribution from several series of rocket soundings to 52 km at latitudes from 58° S to 64° N. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1273—1280.

289. Krueger A. J. Behavior of atmospheric ozone determined from Nimbus satellite backscatter ultraviolet data. — In: Proc. Intern. Conf. Structure, Composition and Gen. Circ. Upper and Lower Atmospheres and Possible Anthropogenic Perturbations (January 14—25, 1974), vol. 1. Toronto, May 1974, p. 467—477.

290. Krueger A. J., Foster G. M. Regular rocket ozone sounding data report, March, April and May, 1976, First Quart. Report, August 1976.—20 p.

291. Krueger A. J., Foster G. M., Wright D. U. Scheduled rocket ozone sounding network data. Quart. Report for the period June, July and Aug. 1976, NASA, WFS, Febr. 1977. -8 p.

292. Krueger A. J., Minzner R. A. A mid-latitude ozone model for the 1976 U. S. Standard Atmosphere. — J. Geophys. Res., 1976, vol. 81, N 24, p. 4477—4481.

293. Krueger A. J., Wright D. U. Scheduled rocket ozone sounding network data. Sept. — Nov. 1976, NASA. Aug. 1977.—63 p.

294. Kulkarni R. N. Measurements of NO₂ using the Dobson spectrophotometer. — J. Atmos. Sci., 1975, vol. 32, N 8, p. 1641—1643. 295. Kulkarni R. N. Ozone trend and stratospheric circulation over Australia. — Quart. J. Roy. Meteor. Soc., 1976, vol. 102, N 433, p. 697— 703.

296. Kuznetsov G. I. New multiwave method and instrument for observation of atmospheric ozone and aerosol. — Mater. i pr. Inst. Geofiz. PAN, 1975, N 90, p. 13-20.

297. Lado-Bordovsky O., Amat G., Kaplan L. D. Ground based measurements of atmospheric HNO₃. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 263—265.

298. Larsen L. B., Hendricks R. H. An evaluation of certain direct reading devices for the determination of ozone. — Am. Ind. Hyg. Ass. J., 1969, vol. 30, N 6, p. 620—623.

299. L e t t a u H. Diffusion in the upper atmosphere. -- In: Compendium of Meteorology. Am. Meteor. Soc., New York, 1951, p. 320-333.

300. London J., Dütsch H. U. Variations including possible solar cycle variations of stratospheric ozone over central Switzerland. — In: Proc. Joint Ozone Symp., Dresden, 1977, vol. 1, p. 289-302.

301. London J., Haurwitz M. W. Ozone and sunspots. — J. Geophys. Res., 1963, vol. 68, N 3, p. 795-801.

302. London J., Kelley J. Global trends of total atmospheric ozone. - Science, 1974, vol. 184, N 4140, p. 988-989.

303. London J., Oltmans S. Further studies of ozone and sunspots.—Pure a. Appl. Geophys., 1973, vol. 106—108, N 5-7, p. 1303-1307.

304. London J., Park J. Application of general circulation models to the study of stratospheric ozone. — Pure a. Appl. Geophys., 1973, vol. 106-108, N 5-7, p. 1611-1617.

305. London J., Park J. The interaction of ozone photochemistry and dynamics in the stratosphere. A three-dimensional atmospheric model. — Canad. J. Chem., 1974, vol. 52, N 8, p. 1599—1609.

306. Long-path infrared spectroscopic investigation at ambient concentration of the 2% neutral buffered potassium iodide method for determination of ozone/J. N. Pitts, J. M. McAfee, W. D. Long, A. M. Winer. — Environ. Sci. Techn., 1976, vol. 10, p. 757—793.

307. Lovill J. E. A comparison of the southern and northern hemisphere general circulation characteristics as determined by satellite ozone data. — In: Proc. Intern. Conf. Structure, Compos. a. Gen. Circul. Atmos. Melbourne, 1974, vol. 1, p. 340—360.

308. Luther F., Wuebbles D. G., Chang J. S. Temperature feedback in a stratospheric model. — J. Geophys. Res., 1977, vol. 82, N 31, p. 4935—4944.

309. Manabe S., Wetherald R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. — J. Atmos. Sci., 1967, vol. 24, N 3, p. 241—259.

310. Mani A., Sreedharan C. R. Studies of variations in the vertical ozone profiles over India. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5-7, p. 1180-1191.

311. Mast ozonesondes — model update. December 1976. Mast Development Company.

312. Mast G. M., Saunders H. E. Research and development of the instrumentation of ozone sensing. — ISA Transactions, 1962, vol. 4, p. 325—328.

313. Mastenbrock H. J. Water-vapor measurements in the lower stratosphere. — Can. J. Chem., 1974, vol. 52, N 8 (11), p. 1527—1531.

314. Matthews W. A., Basher R. E., Fraser G. J. Filter ozone spectrophotometer. — Pure a. Appl. Geophys., 1974, vol. 112, N 67, p. 931—938.

315. McKee H. C. Collaborative testing of methods to measure air pollutants. HI. The chemiluminescent method for ozone: determination of precision. — J. Air Poll. Contr. Ass., 1976, vol. 26, N 2, p. 124—128.

316. M c M i l l a n R. D., Jr. Applications of a precision ozone generator in calibration of ozone/oxidant analyzers and inlet sample air. — Anal. Instrum., 1972, vol. 10, p. 61—66.

317. Mesospheric ozone measured from ground-based millimeter wave observations/H. Penfield, M. M. Litvak, C. A. Gottlieb, A. E. Lilley. – J. Geophys. Res., 1976, vol. 81, N 34, p. 6115-6120.

318. Mignon P., Badre R. Le dosage de l'ozone atmosphérique. La revue des méthodes principales d'analyse. — In: Proc. 3d Ozone Int. Inst. Congress, Paris, 4—6 May 1977, p. 15.

319. Miller D. E., Stewart K. H. Observations of atmospheric ozone from an artificial earth satellite. — Proc. Roy Soc., A., 1965, vol. 288, p. 540—544.

320. Molina M. J., Rowland F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom catalysed destruction of ozone. — Nature, 1974, vol. 249, N 5460, p. 810-812.

321. Moortgat G. K. The photolysis of ozone in the atmosphere, O (¹D) quantum yield determination. III Conference on Ozone. Paris, 1977, (preprint). -9 p.

322. Murgatroyd R. J., Singleton F. Possible meridional circulation in the stratosphere and mesosphere. — Quart. J. Roy. Meteor. Soc., 1961, vol. 87, N 372, p. 125-135.

323. Nagata T., Tohmatsu T., Ogawa T. Sounding rocket measurement of atmospheric ozone density, 1965—1970. Space Research XI, 1971, p. 849—855.

324. Naström G. D., Belmont A. D., Dartt D. G. Periodic variations in stratospheric meridional wind from 20 to 65 km. — Quart. J. Roy. Meteor. Soc., 1975, vol. 101, N 429, p. 583—590.

325. Natural and radiatively perturbed stratosphere. CIAP Monograph, 1975, N 4.

326. N e w e 1 1 R. Climatology of the stratosphere from observations. — In: Proc. Surv. Conf. CIAP, 1970, p. 165—185.

327. N e w e 11 R. Transfer through the tropopause and within the stratosphere. — Quart. J. Roy. Meteor. Soc., 1965, vol. 89, N 380, p. 167-204.

328. Newell R. E., Boer G. J., Dopplick T. G. Influence of the veritcal motion field on ozone concentration in the stratosphere. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1531—1543.

329. Nicolet M. Nitrogen oxides in the chemosphere. — J. Geophys. Res., 1965, vol. 70, N 3, p. 679-689.

330. Nicolet M. An overview of aeronomic processes in the stratosphere and mesosphere. — Canad. J. Chem., 1974, vol. 52, N 8, p. 1381— 1396.

331. N i c o l e t N. On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere. — Planet. Space Sci., 1975, vol. 23, N 4, p. 637—649.

332. Ny Tsi-Ze, Choong Piaw. Sur l'absorption ultraviolette de l'ozone. — Chin. J. Phys., 1933, vol. 1, p. 158.

333. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites.— In: Structure and dynamics of the upper atmosphere/Ed. F. Verniani, Elsevier Amsterdam, 1974, p. 167.

334. Offerman D., Drescher A. Atomic oxygen densities in the lower thermosphere as derived from in situ 5577 Å night airglow and mass-spectrometer measurements. -J. Geophys. Res., 1973, vol. 78, N 26, p. 6690-6700.

335. Ozone abundances in the lower mesosphere deduced from backscattered solar radiances/J. E. Frederick, P. B. Hays, B. W. Guenther, D. F. Heath.-J. Atmos. Sci., 1977, vol. 34, N 12, p. 1987-1994.

336. Ozone: effect of UV-variability and stratospheric coupling mechanisms/L. B. Callis, R. E. Boughner, V. Ramanathan, J. C. Nealy. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 331-332.

337. Ozonesonde, bubbler type. Final report, AFCRL-68-0409, by J. I. Muller, Mast Development Company, 1968, p. 1-15.

338. Paetzold H. K. Messungen des atmosphärischen Ozons.-In: Hesse W. Handbuch d. Aerologie. Berlin, 1961, p. 458-531.

339. P a e t z o 1 d H. K. Variation of vertical ozone profiles over middle Europe from 1951 to 1968. — In: Symp. Ozone Atmosphérique. Monaco, 1968, p. 167—169.

340. P a e t z o l d H. K. The influence of solar activity on the stratospheric ozone layer. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5--7, p. 1308—1311.

341. Paetzold H. K., Piscalar F. A new combined ozoneand water vapor ballon sonde.— In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 149—162.

342. P e n n S. Temperature and ozone variations near tropopause level over hurricane Ysbell, Oct. 1964. – J. Appl. Meteor., 1966, vol. 5, N 4, p. 407–410.

343. Penzias A. A., Burrus C. A. Millimeter-wavelength radio astronomy technique. Ann. Rev. Astron. Astrophys., 1973, vol. 11, p. 51-71.

344. Perov S. P., Rakhmanov A. S. Atomic oxygen concentration measurements by a rocket near the mesopause. — COSPAR Space Research, 1977, vol. 17, p. 261—264.

345. Pittock A. B. Possible destruction of ozone by volcanic material at 50 mbar. – Nature, 1965, vol. 207, N 4993, p. 182.

346. Pittock A. B. A thin stable layer of anomalous ozone and dust content. J. Atm. Sci., 1966, vol. 23, N 5, p. 538-542.

347. Pittock A. B. Ozone climatology, trends and the monitoring problem. In: Proc. Intern. Conf. Struct. Comp. Circ. Atm., Melbourne. Vol. 1. 1974, p. 455-466.

348. Pommereau J. P., Hauchecorne A. Atmospheric nitrogen dioxide, diurnal and seasonal variations.— Preprint, COSPAR Meeting, Tel Aviv, June 1977.— 5 p.

349. Prabhakara C., Rodgers E. B., Salomonson V. V. Remote sensing of the global distribution of total ozone and inferred uppertropospheric circulation from Nimbus IRIS experiments. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 57, p. 1226—1237.

350. Preliminary results of the intercomparison test of US and USSR meteorological systems at the Wallops Island in August 1977/A. I. Ivanovsky, L. M. Kolomitseva, E. V. Licenko e. a.— Preprint, XVIII COSPAR Meeting, 1978.— 18 p.

351. Prinn R. G., Alyea F. N., Cunnold D. H. Stratospheric distribution of odd nitrogen and odd hydrogen in a two-dimensional model. J. Geophys. Res., 1975, vol. 80, N 36, p. 4997-5004. 352. Pruchniewicz P. G. A new automatic ozone recorder for near-surface measurements working at 19 stations on a meridional chain between Norway and South Africa. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5-7, p. 1074-1084.

353. R ä b e r J. A. An automated Dobson spectrophotometer. — Pure a. Appl. Geophys., 1973, vol. 106—108, p. 948—949.

354. R ä b e r J. Two years of automatic Dobson measurements. — In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol 1, p. 105—107.

355. R a h b a r M. Variation biennale de la concentration de l'ozone atmosphérique au niveau du sol. — Compt. Rend. Acad. Sci., Paris, 1974, vol. B-279, N 8, p. 199—201.

356. R a m a n a t h a n V., C allis L. B., Boughner R. E. Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen dioxide. — J. Atmos. Sci., 1976, vol. 33, N 6, p. 1092—1112.

357. R and h aw a J. S. Ozone sonde for rocket flight. — Nature, 1967, vol. 213, N 5071, p. 53-54.

358. R and h a w a J. S. Ozone and temperature change in the winter stratosphere. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1490—1498.

359. R and h awa J. S., Megill L. R. Rocket ozone measurement during an auroral activity.— In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 77—90.

360. Rangarajan S., Das H. P., Mani A. Transport of ozone in the troposphere. In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 3, p. 299-317.

361. R a o Krishna V. R., Christie A. D. The effects of water vapor and oxides of nitrogen on ozone and temperature structure. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1498—1519.

362. Rao Krishna V. R., Christie A. D. The effects of water vapor and oxides of nitrogen on the ozone and temperature structure of the stratosphere. J. Atmos. Sci., 1973, vol. 30, N 4, p. 667-676.

363. R a o K. R., V u p p u t u r i R. K. The steady structure of the neutral stratosphere and ozone distribution in a 2-D model incorporating radiation and O-H-N photochemistry and effects of stratospheric pollutants.— Intern. Rept. N APRB 19 N 5, Atmos. Environment Service, Downsview, Ont., Canada, 1975.— 38 p.

364. Ratner M. J., Walker J. C. Atmospheric ozone and the history of life. J. Atmos. Sci., 1972, vol. 29, N 5, p. 803-808.

365. Regener V. H. On a sensitive method for the recording of atmospheric ozone. — J. Geophys. Res., 1960, vol. 65, N 12, p. 3975-3977.

366. R c g e n e r V. H. Measurement of atmospheric ozone with chemiluminescent method. — J. Geophys. Res., 1964, vol. 69, N 18, p. 3795—3800.

367. Regener V. H. The preparation of chemiluminescent substance for the measurement of atmospheric ozone.—In: Techn. Rep. AFCRL 66-246, Bedford, Mass., 1966, p. 2—10.

368. Regener V. H., Aldaz L. Turbulent transports of ozone near the ground.— Ann. Géophys., 1969, vol. 25, N 1, p. 111.

369. Regener V. H. Destruction of atmospheric ozone at the ocean surface. Archiv. f. Met. Biokl., 1974, ser. A, vol. 23, N 2, p. 131-135.

370. Regener E., Regener V. H. Aufname des ultravioletten Sonnenspectrum in der Stratosphäre und verticale Ozonverteilung.— Physik, 1934, Bd 35, S. 788—793. 371. Reiter E. R. Atmospheric transport processes, Part 2: Chemica tracers. Oak Ridge, 1971. - 382 p.

372. Reiter E. R. The role of stratospheric import on tropospheric ozone concentrations. — In: Proc. Joint Sympos. Atm. Ozone, Dresden, 1977, vol. 3, p. 165—182.

373. Reiter E. R., Bauer E., Coronity S. C. The natural stratosphere of 1974. CIAP Monograph I. 1975. Washington D. C. — 1335 p.

374. Relation of the observed far ultraviolet solar irradiance to the solar magnetic sector structure/D. F. Heath, J. M. Wilcox, L. Svalgaard, T. L. Duvall. — Solar Physics, 1975, vol. 45, p. 79-82,

375. R e n z e t t i N. Ozone in Los Angeles atmosphere. — In: Ozone chemistry and technology. Wash., 1959, p. 230-262.

376. Report of the meeting of experts on ozone modelling and stratospheric/tropospheric exchange processes. WMO, Geneva, 1977. — 20 p.

377. Rigaud P., Steiger O., Huguenin D. Absorption atmosphérique dans le proche et moyen U. V. aux altitudes atteintes par les nacelles stratosphériques.— Ann. Géophys., 1975, vol. 31, fasc. 4, p. 455—462.

378. Ripperton L., Vukovich F. M. Gas phase destruction of tropospheric ozone. J. Geophys. Res., 1971, vol. 76, N 3, p. 7328-7333.

379. Roble R. C., Hays P. B. The nighttime distribution of ozone in the low-latitude mesosphere. — Pure a. Appl. Geophys., 1973, vol. 106—108, N 5—7, p. 1281—1289.

380. Rocket observations of atmospheric ozone and aerosol/N. N. Brez gin, G. I. Kuznetsov, A. F. Chizhov, O. V. Shtyrkov. — In: Proc. Joint Symp-Atmos. Ozone, Dresden, 1977, vol. 2, p. 47—58.

381. Rönnebeck K., Sonntag D. Eine weiterentwikelte, electrochemische Ozonradiosonde. – Z. Meteorol., 1976, Bd 26, H. I, S. 15–20.

382. R u d z k i J. E. Remote sensing of mesospheric ozone. — In: Proc. 8th Intern. Symp. Remote Sens. Environ. Univ. Mich., 1972, vol. 1, p. 487— 504.

383. R u g g J. S. Ozone crack depth analysis for rubber. — Anal. Chem., 1952, vol. 24, p. 818—821.

384. R y an I. A., M u k h e r j e e N. R. Sources of stratospheric gaseous chlorine. — Rev. Geophys. Space Phys., 1975, vol. 13, N 5, p. 650—658.

385. Satellite Ozone Analysis Center (SOAC)/J. E. Lovill, T. J. Sullivan, J. B. Knox, J. A. Korver. In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 67-76.

386. S c h w e n t e k K. The sunspot cycle 1958/70 in ionospheric absorption and stratospheric temperature. J. Atmos. Terr. Phys., 1971, vol. 33, p. 1839-1852.

387. Shimabukuro F. I., Smith P. L., Wilson W. J. Estimation of the ozone distribution from millimeter wavelength absorption measurements.— J. Geophys. Res., 1975, vol. 80, N 21, p. 2957—2959.

388. Shimazaki T., Ogawa T. A theoretical model of minor constituent distributions in the stratosphere including diurnal variations.— J. Geophys. Res., 1974, vol. 79, N 24, p. 3411—3423.

389. Shlanta P., Moore C. B. Ozone and point discharge measurements under thunderclouds. — J. Geophys. Res., 1972, vol. 77, N 24, p. 4500—4511.

390. Singer S. E., Wentworth R. C. A method for the vertical ozone distribution from a satellite. J. Geophys. Res., 1957, vol. 62, N 2, p. 299-308.

391. Sissenwine N. Standart and supplemental atmospheres. — In: Climate of the free atmosphere. Ed. by D. F. Rex, 1969, vol. 4, p. 5-44. **392.** Sissons N. V. Results of a rocket dropsonde determination of atmospheric ozone above Woomera 9 December, 1969. — In: Techn. Not. HSA 169, 1970. — 14 p.

393. Sonnemann G. Some methodical questions on ozone determination by means of satellite occultation experiments.— In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 1, p. 193—200.

394. Sources and sinks of atmospheric N_2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers/S. C. Liu, R. J. Cicerone, T. M. Donahue, W. L. Chameides. — Tellus, 1977, vol. 29, N 3, p. 251–263.

395. Spänkuch D., Döhler W. Statistische Charakteristika der Vertikalprofile von Temperatur und Ozon und ihre Kreuzkorrelation über Berlin, Geodät. Geophys. Veröff., DDR, 1975, Reihe II, H. 19–132 S.

396. Sreedharan C. R. An Indian electrochemical ozone-sonde. J. Sci. Instr. Ser. 2, E-1, 1968, vol. 1, N 10, p. 995-997.

397. Sreedharan S. R., Hazra B. K., Kankane R. K. Surface ozone measurements over the Indian Ocean.— In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 3, S. 259-268.

398. Staelin D. H. Passive microwave sensing of the earth. Int. Microwave Symp.: Microwave Serv. Man, Palo Alto, Calif., 1975, p. 20-22.

399. Stellar occultation measurements of nighttime equatorial ozone between 42 and 114 km altitude/G. R. Riegler, K. A. Sushie, R. J. Cicerone e. a. In: Proc Joint. Symp. Atmos. Ozone, 1976, Dresden, 1977, vol. 2, p. 7-19.

400. Stolarski P. S., Cicerone R. J. Stratospheric chlorine: possible sink for ozone. — Canad. J. Chem., 1974, vol. 52, N 8, p. 1610— 1615.

401. Stratospheric ozone transport during the mid-winter warming of December, 1970— January 1971/A. J. Miller, R. M. Nagatani, K. B. Labitzke e. a.—In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 2, p. 135—141.

402. Strong Y. On a new method of measuring the mean height of the ozone in the atmosphere. J. Frankl. Inst., 1941, vol. 231, p. 121.

403. The Nimbus-4 infrared spectroscopy experiment. 3. Observations of lower stratospheric thermal structure and total ozone/C. Prabhakara, E. B. Rodgers, B. J. Conrath, R. A. Hanel. – J. Geophys. Res., 1976, vol. 81, N 36, p. 6391–6399.

404. Tiefenau H., Fabian P. The specific ozone destruction at the ocean surface and its dependence on horizontal wind velocity from profile measurements.— Archiv. f. Meteor. Geophys. Biokl., ser. A, 1972, Bd 21, N 4, S. 399-412.

405. Tiefenau H., Pruchniewicz P. G., Fabian P. Meridional distribution of tropospheric ozone from the measurements aboard commercial airliners. — Z. f. Geoph., 1972, Bd 38, N 2, S. 145—151.

406. T is one G. S. Measurements of the absorption of solar radiation by O_2 and O_3 in the 2150 A region. J. Geophys. Res., 1972, vol. 77, p. 2971.

407. Turco R. P. Photodissociation rates in the atmosphere below 100 km. — Geophys. Surv., 1975, vol. 2, N 2, p. 153—192.

408. Ur a n o v a L. A. Day-to-day variations of the total amount of ozone for different seasons and their relationship with day-to-day variations of the sea-level pressure. In: Mater. Prace Inst. Geofiz. PAN, N 90, 1975, p. 117-125.

409. Van Dijk J., de Leeuw P. The quantitative determination of ozone by reaction with Rhodamine B (Philips). — In: Proc 3d Ozone Int. Instit. Congress, Paris, 4—6 may 1977, p. 9.

410. Vassy A. Radiosonde special pour la mesure de la repartition verticale de l'ozone atmosphérique. J. Sci. Meteor., 1958, vol. 10, p. 63.

411. Vassy A., Vassy E. Rôle de la temperature dans la distribution de l'ozone. — J. Phys., 1949, vol. 2, p. 82.

412. Vertical profile of stratospheric ozone by lidar sounding from the ground/G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont. — Nature, 1977, vol. 270, N 5635, p. 329—331

413. Vigroux E. Contribution a l'étude experimentale de l'absorption de l'ozone. — Ann. Phys., 1953, vol. 8, p. 709-762.

414. Vigroux E. Determination of smooth distribution of atmospheric ozone. Thesis, Univ. Liège, 1963.

415. Vigroux E. Distribution verticale de l'ozone atmosphérique d'aprés les observations en emission et en absorption de la bande 9,6 mcm.— Ann. Géophys., 1969, vol. 25, N 1, p. 121—126.

416. Vigroux N. High resolution analysis of the sun's radiation received at the ground from 9 to $11,6\mu$. — Pure a. Appl. Geophys., 1973, vol. 106-108, N 5-7, p. 1336-1340.

417. Vincent D. C. Mean meridional circulations in the Northern Hemisphere lower stratosphere during 1964 and 1965. — Quart. J. Roy. Meteor. Soc., 1968, vol. 94, N 401, p. 333—349.

418. V u k o v i c h F. Some observations of the variations of ozone concentrations at night in the North Caroline Piedmont boundary layer. J. Geophys. Res., 1973, vol. 78, N 21, p. 4458-4462.

419. V u p p u t u r i R. K. R. The impact of anthropogenic sources of freons (chlorofluoromethanes) on the meridional structure of the stratosphere and ozone distribution.— In: Proc. Joint Symp. Atmos. Ozone, Dresden, 1977, vol. 3, p. 9—49.

420. Walshaw C. D. Integrated absorption by the 9,6µ band of ozone. — Quart. J. Roy. Meteor. Soc., 1957, vol. 83, N 357, p. 315-321.

421. Walshaw C. D., Rogers C. D. The effect of the Curtis-Godson approximation on the accuracy of radiative heating-rate calculations.— Quart. J. Roy. Meteor. Soc., 1963, vol. 89, N 379, p. 122-130.

422. Warmbt W. Ozonmessungen über den Meeresoberfläche. — Z. f. Met., 1965, Bd 18, H. 3-4, S. 151-156.

423. Warmbt W. In: Chemische Untersuchungen des bodennahen Ozons. 1952-1961. Abh. Met. Dienst. DDR, 1964, Bd 10, N 72. 96 S.

424. Watanabe T., Tohmatsu T. An observational evidence for the seasonal variation of ozone concentration in the upper stratosphere and the mesosphere. — Rep. Ionosphere a. Space Res. Japan. 1976, vol. 30, N 1/2, p. 47—50.

425. Welge K. H. Photolysis of O_x, HO_x, CO_x and SO_x compounds.— Can. J. Chem., 1974, vol. 52, N 8, part 2, p. 1424—1435.

426. Went F. W. On the nature of Aitken condensation nuclei.— Tellus, 1966, vol. 18, N 2, p. 549.

427. Wilbrandt P. J. Bestimmung der spezifischen Ozonzerstörungsrate über Buschsteppe und Ozonflusses in diese Oberfläche mit Hilfe von Ozon- und Temperaturprofilmessungen an einen 120-m Mast, Tsumeb, B. W. A. Mitteil. Max Planck Inst. Aeron. 1975, N 54. — 40 S.

428. Willet H. C. The relationship of total atmospheric ozone to the sunspot cycle. J. Geophys. Res., 1962, vol. 67, p. 661-670.

429. Wise H., Wood B. J. Reactive collisions between gas and surface atoms. — Adv. Atomic Mol. Phys., 1967, vol. 3, p. 291-341.

430. Wofsy S. C., McElroy M. B. HO_x , NO_x and ClO_x : their role in atmospheric photochemistry. — Canad. J. Chem., 1974, vol. 52, N 8, part 2, p. 1582—1592.

431. Zeldovich Y. B. The oxydation of nitrogen in combustion explosions. — Acta Physicochimica URSS, 1946, vol. 21, p. 577.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Азот нечетный 53, 60, 97 Антропогенные влияния на озон 74-76, 223-224 Аппаратура бортовая 123, 145, 148-150 Аэрозольная поправка 109, 111, 115 Бароклинность, роль 232, 235, 243, 245 Вертикальное распределение озона 154 — — —, вторичный максимум 164 — — , зависимость от тропопаузы 155 — — —, изменчивость 169 — — —, отношения смеси 161 — — —, среднее 158 — — , типы 154 Вертикальный разрез 159 — отношения смеси озона 161 — — парциального давления озона 160 — — тропосферного озона 179 Взаимодействие с поверхностью Земли 24 Влияние азотных удобрений 78-81 влажности воздуха 53—56, 65. 71, 72 внутритропической сходимости 236 галогенов 73, 76 — реактивных самолетов 11, 78— 80, 99 — — —, модель 97—99 солнечной автивности 60, 68, 70, 71, 73, 76, 109, 215 -- солнечных пятен 41, 42, 215, 216 — ядерных взрывов 78 Водород нечетный 53 Водяной пар 54, 56, 71, 72 Время характеристическое — процесса 53, 63, 230, 254 Вспышки протонные 60 Генераторы озона 105, 145 Гидроксил 8, 23, 53, 65, 72 Годовой ход озона 98, 176, 212 Гребни озона 234, 241 Двуокись азота 23, 34, 35, 57, 115, 143. 255 Диссоциация кислорода 49, 50, 249 — озона 49, 50, 249 Длинные волны и озон 187, 231, 240 Долготное распределение, см. Распределение озона долготное Единицы измерения озона 16 Жизнь на Земле и озон 8

Зона внутритропической сходимости 236, 240 Изменчивость озона 220 общего количества 220 послойного количества 20, 76, 77, 136, 173 – — тропосферного 181 Инверсия пассатная, роль 178 Инжекция озона в тропосферу 179 Источник озона экваториальный 227 Кислород атомарный 15, 37, 41, 44, 51, 170, 249 - нечетный 46, 47, 52, 249 Кислота азотная 58 Колебания долговременные озона 217 Константы скорости химической реакции 33, 34, 74 Континуум Шумана-Рунге 43 Концентрация равновесная 46-50 Коэффициент турбулентной диффузии 53, 74, 95, 164 Лазер (лидар) для наблюдения озона 122, 131 Международные сравнения озонометрических приборов 113 Мезосфера, озон 121, 127, 128, 132, 170 Метод лабораторный определения озона: 101, 107, 108 — спектральный 101, 108 — титрования 102 хемилюминесцентный 105—107, 144 Методы наблюдения озона: — многоволновой 115 — наземный 109, 135 — обращения 43, 76, 115 сумеречный 116 Модель озоносферы двумерная 14, 92, 96, 254 — одномерная 14, 94 — резервуарная 94 среднеширотная Крюгера—Минцнера 17, 48 — трехмерная 99 — фотохимическая 30, 91 Молекула озона 15 Мониторинг 12, 108, 122, 137, 224 Наблюдения озона — —, радиометод 120 — ракетные 68, 70, 73, 76, 120, 132, 146, 172 — самолетные 118, 182 Нагревание верхней атмосферы, вызванное озоном 72, 73, 248

Нитрат хлора 82

283

Обшее содержание озона 17. 18 Обрыв каталитической цепи 52 Озон фотохимический (тропосферы) 81 Озонограмма 18 Озонозонды оптические 20, 121 -126 хемилюминесцентные 141 электрохимические 18, 105, 138— 142 Озонометр М-83 117 модернизованный 119, 235 — фильтровый 116—117 Озонопауза 162 Окись азота 23, 34, 35, 57, 59, 97, 143 Окно прозрачности спектральное 29, 74 Отношение смеси озона 17, 161, 229, 243Пергидроксил 54, 65, 72, 73 Перенос озона вертикальный 228. 232 — — через тропопаузу 91, 185 — — в тропосфере 91, 186 — — горизонтальный 214, 231 Период 27-дневный 40, 43 — квазидвухлетний Пинены, роль в образовании дымки 199 - 200Поглощение инфракрасной радиации в озоне 15, 120, 134, 250 Пограничный слой и озон 189 Полоса поглощения Хартли 28 — — Хюггинса 109 — — Шаппюн 26, 82, 116 — — Шумана-Рунге 43 Поток і озона В тропосфере 164, 178 Приземный озон, приток из стратосферы 185 — , разрушение у земной поверхности 24 – —, суточный ход 189 Примеси газов малые 53, 100, 119. 255Принцип Добсона 227 — Добсона-Норманда 92, 232 — Дютша 227 Прогноз вертикального распределения 174, 238 Разрез вертикальный, см. Вертикальный разрез Разрушение озона 7, 61-63, 181 Распад термический озона 21 Распределение вертикальное, см. Вертикальное распределение озона

Распределение озона долготное 231, 235, 252 - — широтное 208 Реакции озона с резиной 24. 108 — — гетерогенные 23, 24 83 — , химические константы 33, 55, 171 Рекомбинация 34 Родамин 25, 144-146 Свет зенита неба 111, 115, 118. 119 Свойства озона оптические 25-27 — — химические 20—21, 23—24 Сечение поглощения 31, 32 Скорости химических реакций (методы определения) 33-36 Слой теплый стратосферы 5, 248, 253 Cmor 13 Состояние возбужденных частиц 142. 143, 249 Спектр поглощения озона 25-29 Спектрофотометр Брюера 110, 113 — Добсона 111 Спутниковые наблюдения озона: по методу инфракрасного излучения 132—136, 233, 236 по методу обратного ультрафиолетового рассеяния (ОУФР) 8, 76, 129, 132, 228, 233 методу оккультации — по 120,127 Сравнения международные озонометрических приборов 113 Статистические связи: — с температурой 65, 174 с высотой тропопаузы 155, 162 — с воздушными массами 227 Стратопауза 63, 73, 253 Струйные течения и озон 186, 235, 245 - — с искривленными осями 246 — —, наблюденные со спутников 246, 247 Структура слоя озона: в стратосфере 86, 124, 150—153, 165 — в тропосфере 150—153, 182 Тренд озона 217, 220, 223 Тропосферы озон 175 — —, слоистая структура 182 Ураганы и озон 243 Фотодиссоциация (фотолиз) кислорода 43, 44, 249 — озона 43, 44, 249 - --, скорость 31, 44 Фторхлорметаны (фреоны) 25, 74,

76, 137

284

Хемилюминесценция 25, 142

- Хлорфторметаны, см. Фторхлорметаны
- азотный 53, 56, 62, 78, Цикл 257
- аэрозольный 53, 83, 91
 водородный 51, 53, 62, 257
 галоидный 53, 257
- ионный 88—91
- хлорный 53, 62, 73, 82, 257
- Чепмена (кислородный) 5, 30, 45-51, 52

Число Вольфа 66, 67, 70, 215

- Широтное распределение, см. Распределение широтное
- Шкала высот озона 116, 172
- Экстремумы озона 209 Электрические процессы озона при грозах 189, 203
- — при тихом (точечном) раз-ряде 203, 204
- Эффект Дютша 159
- радиационный 248

оглавление

Предисловие	3		
Глава І. Введение	5		
§ 1. Проблема озона § 2. Озон и жизнь § 3. Проблемы новейшего времени	8		
Глава II. Физико-химические свойства озона	5		
§ 4. Общие сведения об озоне. Его молекулярные и термодинами- ческие константы	_		
§ 5. Единицы измедения озона	6		
§ 6. Некоторые физико-химические свойства озона	20		
§ 7. Оптические характеристики озона	5		
Глава III Фотохимия озона и его молели 3	0		
	Ő		
§ 8. Сечения поглощения, фотодиссоциации и константы скоро- стей химических реакций. Лабораторные методы их опреде- лания	1		
§ 9. Солнечное излучение, его вариации, их возможное влияние	7		
$ \begin{array}{c} \mathbf{n} a 0 0 0 \mathbf{n} \\ \mathbf{\delta} 10 0 \mathbf{\delta} 0 0 0 0 0 0 0 0$	2		
	ง ร		
§ П. Кислородный цики ченмена	1		
§ 12. Бодородный цики	г Б		
§ 14. О фотохимическом равновесии озона вблизи стратопаузы (50 км) и ото спратон с соридной активности и	0 2		
Карань салогенов в фотохимии озона Антрополенные возлей.			
ствия на озоносферу	3		
§ 16. Аэрозольный цикл атмосферного озона	3		
§ 17. Ионный цикл	8		
§ 18. Моделирование процессов в озоносфере	1		
Глава IV. Приборы и методы для наблюдений атмосферного озона 10	1		
§ 19. Лабораторные и наземные метолы измерения озона	_		
§ 20. Измерение общего содержания озона оптическими назем-			
ными методами. Метод обращения	9		
§ 21. Раднометоды наблюдения озона. Лазеры)		
§ 22. Методы измерения озона с помощью бортовой оптической аппаратуры	3		
§ 23. Наблюдения озона со спутников методами ОУФР и ИК 129	}		
§ 24. Химические озонозонды	3		
§ 25. Хемилюминесцентный метод измерения озона 142	2		
Глава	V. B	ертикальное распределение озона	
-------	---------------	--	----------
	§ 26.	Типы вертикального распределения озона	
	§ 27.	Среднее вертикальное распределение озона	
	§ 28.	Вертикальные разрезы р ₃ и r ₃	
	§ 29.	Озонопауза и тропопауза	
	§ 30.	Вторичный максимум в вертикальном распределении озона 164	
	§ 31.	Тонкая структура слоя озона	
	§ 32.	Сезонные изменения вертикального распределения озона 167	
	§ 33.	Изменчивость вертикального распределения озона 169	
	§ 34.	Мезосферный озон	
	§ 35.	О прогнозе вертикального распределения озона	
Глава	VI. 1	Гропосферный озон. Общие замечания	
	\$ 36.	Общее вертикальное распределение озона в тропосфере —	
	\$ 37.	Изменчивость тропосферного озона	
	\$ 38.	Слоистая структура	
	\$ 39.	Обмен возлухом и озоном межлу стратосферой и тропосферой 185	
	\$ 40.	Приземный озон	
	\$ 41.	Суточный ход приземного озона	
	\$ 42.	Разрушение озона у земной поверхности	
	§ 43.	Озон и электрические процессы в тропосфере 203	
Глава	VII.	Общее содержание озона	
	§ 44.	Материал наблюдений	
	§ 45.	Проблема длительности периода наблюдений 207	
	§ 46.	Среднее широтное распределение Х	
	§ 47.	Экстремумы озона	
	§ 48.	Годовой ход общего количества озона	
	§ 49.	. Озон и солнечная активность	I
	§ 50.	. Долговременные колебания озона	
	§ 51.	Изменчивость озона)
Глава	VIII	. Динамика озона	,
	\$ 52	Общие свеления. Помицины Лютша и Лобсона —	-
	\$ 53	Принцип Лобсона и Норманда 239	,
	§ 54	Некоторые квазистационарные черты распреледения озона 234	Ļ
	\$ 55	Озон и атмосферные фронты 237	,
	\$ 56	Озон и плинные волны 246	\$
	8 57	Озон и тропические ураганы 945	į.
	8 5 8	Струйные тецения и озон 94	ś
	¥ 00	. струппые теления и озоп	<i>,</i>
Глава	a 1X.	Радиационные эффекты озона	3
Прил	о жени	я	7
Списо	ок л	итературы	l
Преди	метны	й указатель	3

Станислав Петрович Перов, Александр Христофорович Хргиан.

СОВРЕМЕННЫЕ ПРОБЛЕМЫ АТМОСФЕРНОГО ОЗОНА

Редактор В. И. Кузьменко. Художник В. В. Бабанов. Художественный редактор Б. А. Денисовский. Технический редактор Е. А. Маркова. Корректор И. В. Жмакина

ИБ № 1050

Сдано в набор 22.11.79. Подписано в нечать 25.03.80. М-233П. Формат 60 \times 90 $\frac{1}{3}$ Бум. тип. № 1. Јит. гарн. Печать высокая. Печ. л. 18 $\sqrt{9}$.-изд. 20,68. Тираж 1100 экз. Индекс МЛ-218. Заказ 2550. Цена 3 р. 40 к.

Гидрометеоиздат. 199053. Ленинград, 2-я линия, 23.

Ленинградская типография № 4 Ордена Трудового Красного Знамени Ленинградского объединения «Техническая книга» им. Евгении Соколовой Сокозполиграфпромо при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 191126, Ленинград. Социалистическая ул., 14.