МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР

ЛЕНИНГРАДСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ

06

ТРУДЫ

ВЫПУСК 45

ВОПРОСЫ ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ АТМОСФЕРЫ

Под редакцией доктора физико-математических наук профессора Л. Г. КАЧУРИНА и кандидата физико-математических наук доцента Л. И. ГАШИНА

ЛЕНИНГРАД 1972 Одобрено Ученым советом Ленинградского гидрометеорологического инститита

АННОТАЦИЯ

В последние годы в связи с увеличением скорости полета самолетов и их геометрических размеров резко усилились явления, обусловленные электризацией самолетов при полете в облаках и туманах. Выяснению природы этого интересного с научной точки зрения и крайне важного в практическом плане явления посвящены первые две статьи настоящего сборника. В третьей статье изложены результаты наблюдения за радиоизлучением облаков в диапазоне частот 0,5—100 *Мгц* в предгрозовой, а также в грозовой стадиях. Для его обнаружения потребовалось разработать специальную сверхчувствительную радиоприемную аппаратуру с остронаправленными антеннами.

Группа статей посвящена теоретической модели облаков, возникновению и распаду естественных и искусственно спровоцированных движений в облаках и туманах. Рассчитываются и моделируются внутриоблачные процессы: конденсационные, процессы образования просветов в облаках и туманах, флуктуации электрического поля, движение и деформация капель в электрическом поле, таяние града и т. д.

Приведены результаты натурного исследования обледенения морских судов.

В нескольких статьях рассмотрены возможности предвычисления ветровых характеристик на несколько минут вперед, выбор оптимального периода осреднения при измерениях ветра. Эти исследования связаны с проблемой учета воздействия ветра на летательные аппараты. В век больших скоростей летательных аппаратов подобные задачи становятся все больше актуальными. Рассматриваются возможности учета реальной турбулентной структуры ветра при конструировании больших нежестких сооружений.

Сборник предназначен в основном для специалистов по физике атмосферы, но он представляет интерес также для специалистов по авиационной технике, радиоэлектронике, строительству крупных сооружений, ряду отраслей прикладной физики.

В. И. Бекряев, Л. Г. Качурин, В. Ф. Псаломщиков (ЛГМИ)

электризация тел в потоке Аэрозоля

При полетах в облаках и осадках самолеты приобретают значительные статические заряды. Увеличение скоростей полета, характерное для современной авиации, сопровождается резким возрастанием уровня электризации, что, в свою очередь, представляет серьезную опасность для самолета: увеличивается вероятность поражения самолета молнией, при коронировании зарядов с заостренных частей самолетов нарушается радиосвязь и выходят из строя радиокомпасы, при сильном заряжении меняются аэродинамические свойства самолета [2].

Интенсивность процессов электризации зависит от многих факторов как метеорологических (водность облака, спектральное распределение, агрегатное состояние и химический состав аэрозоля), так и связанных с техническими характеристиками летательного аппарата, видом и состоянием поверхности, скоростью полета и т. п.

Непосредственное исследование закономерностей электризации в облаках сопряжено с рядом трудностей, определяемых как сложностью и многообразием процессов электризации, так и невозможностью воспроизведения условий для нахождения однозначных связей и закономерностей явления. В связи с этим представляется целесообразным изучение явления в лабораторных условиях. Ниже излагаются результаты экспериментальных исследований электризации пробных тел, выполненных в аэродинамических трубах. Теории явления посвящена работа [4].

§ 1. Постановка эксперимента

Исследования электризации тел в потоке аэрозоля проводились в нескольких аэродинамических трубах (с различными диапазонами рабочих скоростей), однако общие принципы эксперимента и методика измерений сохранялись во всех случаях одинаковыми.

В рабочую часть открытой аэродинамической трубы с помощью пневматической форсунки впрыскивался поток исследуе-

мой жидкости. Ниже по потоку на расстоянии, где скорость капель практически достигает скорости потока воздуха, на изоляторе из фторопласта укреплялись пробные тела, изготовленные из различных материалов или имеющие различные покрытия.

Электрические измерения проводились с помощью динамического электрометра с последующей записью результатов на электронном потенциометре. Измерение скорости потока осуществлялось трубкой Пито.

В работе были использованы пробные тела, изготовленные из металлов (титан, дюралюминий, алюминий, свинец, медь и др.) и изоляторов (органическое стекло, текстолит, фторопласт и др.), а также никелированные, позолоченные и платинированные шарообразной и цилиндрической формы.

Все опыты выполнены в лабораторных условиях при положительных температурах. Средний диаметр капель воды, создаваемых форсунками, составлял 10—15 мкм.

§ 2. Ход опыта

В основной серии экспериментов, результаты которых представлены ниже, была принята следующая процедура опытов. Устанавливались определенная скорость потока в трубе и определенный расход воды через форсунку. Заземленное пробное тело быстро вводилось в поток и заземление отключалось. Временной ход процесса заряжения фиксировался регистратором.

Было замечено, что характер процесса заряжения со временем изменяется. Типовые кривые изменения потенциалов пробных тел в течение опыта при скоростях потока 35 и 220 *м/сек* представлены на рис. 1.

При скорости 35 m/сек (рис. 1, a) сначала наблюдается монотонное нарастание потенциала до некоторого предельного значения φ_{max} , а затем сравнительно медленное уменьшение до установившегося равновесного потенциала. Если нарушить динамическое равновесие между процессами заряжения и разряда пробного тела, например, кратковременным замыканием пробного тела на землю, то равновесие снова восстанавливается, причем существенно, что относительная скорость нарастания потенциала при этом оказывается несколько больше, чем в начальный момент.

Ход заряжения, представленный на рис. 1, *a*, характерен для всех испытанных пробных тел при скоростях потока 2 ÷ 40 *м/сек*. При прочих равных условиях изоляторы заряжались до меньших потенциалов, чем металлы.

С увеличением скорости потока появляется различие в характере заряжения пробных тел, выполненных из различных материалов. На рис. 1, б показаны характерные кривые заряжения трех пробных тел, два из которых — свинец и текстолит — по характеру заряжения являются антиподами. Кривая заряжения свинца подобна кривой заряжения пробных тел при небольших скоростях. К сожалению, не удалось точно измерить предельные потенциалы заряжения свинцового пробного тела из-за пробоя между пластинами динамического электрометра (значок \swarrow у кривых заряжения).

Рис. 1. Характерные кривые заряжения пробных тел в ходе опыта. (Значок L соответствует кратковременному заземлению пробного тела): *а*-скорость потока 35 *м/сек*; *б*--скорость потока 22.⁹ *м/сек*

Ход заряжения титана оказался более сложным: сначала наблюдается положительное заряжение пробного тела, которое вскоре сменяется отрицательным, достигающим некоторого максимума (по абсолютной величине), затем медленно уменьшаю-

щимся и — при длительной экспозиции — колеблющимся относительно некоторого установившегося значения. Аналогичным образом заряжаются и другие исследованные металлические пробные тела.

Текстолит при больших скоростях заряжается всегда отрицательно до значительных потенциалов. Динамическое равновесие заряд-разряд, нарушенное кратковременным заземлением, быстро восстанавливается.

В связи с изменчивостью потенциалов пробных тел во времени в дальнейшем при построении различных зависимостей будут использоваться значения предельных (максимальных) потенциалов φ_{max} , зафиксированных в течение опытов.

В принципе более корректной характеристикой является установившийся, равновесный потенциал, однако определение его требует удлинения времени опытов примерно на порядок, а изменчивость во времени параметров потока, управляющих электризацией, приводит к тому, что в ряде случаев время установления равновесного потенциала становится неопределенным.

§ 3. О механизме заряжения

Электризация пробного тела, помещенного в поток аэрозоля, может определяться в условиях опыта рядом обстоятельств: собственно зарядом капель; срывом водяной пленки с поверхности пробника на подветренной стороне; кратковременным взаимодействием капли с поверхностью пробного тела, в результате которого капля либо разрушается, разбрызгивается, либо отскакивает от поверхности пробного тела без разрушения. В последнем случае удар капли возможен о «сухую» поверхность пробника или, что более вероятно, о водяную пленку, покрывающую пробное тело. В пользу последнего предположения говорит тот факт, что наблюдается довольно быстрое и интенсивное заряжение в потоке пробных тел из изоляторов (даже из фторопласта), что свидетельствует о существовании на поверхностях во время опытов проводящей водяной пленки. В противном случае время релаксации процесса заряжения было бы на несколько порядков больше.

Что касается собственного заряда капель, то многочисленными исследованиями было показано, что вылетающие из заземленной и экранированной форсунки капли уносят незначительные разнополярные заряды и что в целом поток капель близок к нейтральному. Проведенные в ходе выполнения настоящей работы опыты по улавливанию капель в изолированный сосуд показали, что при прочих равных условиях интенсивность заряжения сосуда на 2—3 порядка меньше, чем пробных тел.

Для исследования заряжения при срыве капель с поверхности был сконструирован специальный пробник. Из изолированного от земли сосуда по трубчатому стержню вода поступала внутрь металлического шарообразного пробного тела и далее на его поверхность через круговую щель на наветренной стороне. Вытекающая из щели на поверхность пробника вода увлекалась воздушным потоком на подветренную сторону и там срывалась в виде отдельных капель, как и в случае, когда пробник смачивался потоком аэрозоля. Расход воды через круговую щель можно было подобрать, регулируя величину зазора, равным массе воды, налетающей на пробник при обтекании его потоком аэрозоля.

Были выполнены измерения потенциала пробного тела отдельно при срыве капель с его поверхности и при воздействии на него аэрозольного потока, а также при одновременном действии обоих этих механизмов. Опыты выполнены при скорости 35 *м/сек*. Результаты измерений представлены в табл. 1. В целом заряжение за счет срыва капель с пробника примерно на порядок меньше заряжения в потоке. Аналогичный результат получен и при больших скоростях.

Другие возможные механизмы трудно отделимы друг от друга.

Таблица 1

7

Потенциал пробного тела, в					
в потоке аэрозоля	только при срыве	суммарное действиє			
+25	+3	+19			
+27	+4	+21			
+31	+4	+23			
	П в потоке аэрозоля +25 +27 +31	Потенциал пробного тела, в потоке аэрозоля только при срыве +25 +3 +27 +4 +31 +4			

§ 4. Основные результаты

Примеры, приведенные на рис. 1, уже дают представление о степени зависимости предельных потенциалов и скорости заряжения от скорости потока и материала пробного тела. Отметим, что при сравнительно небольших скоростях (до 35—40 *м/сек*) зависимость от материала пробного тела проявляется сравнительно слабо: все металлы заряжаются практически одинаково, лишь предельные потенциалы заряжения изоляторов оказываются несколько меньше.

Что касается зависимости от скорости потока, то она проявляется значительно резче. На рис. 2 представлены результаты двух серий опытов, выполненных с никелированным шаром диаметром 3 см. Максимальное положительное заряжение наблюдается при скорости 30—40 м/сек, далее происходит уменьшение предельных потенциалов, при скорости 50—60 м/сек заряжение отсутствует, затем отмечается изменение знака заряжения и резкий рост (по абсолютной величине) предельных потенциалов с возрастанием скорости. На рис. 3—5 показаны зависимости предельных потенциалов от скорости потока для пробных тел, выполненных из различных материалов: текстолита, свинца, титана, меди. В этих опытах использовались пробные тела в виде стержней диаметром 1 см.

Рис. 2. Предельные потенциалы заряжения шарообразного пробного тела (никель, диаметр 3 см) при скоростях до 80 м/сек:

1, 2-две идентичные серии опытов ($q \approx 0.3 \ z/cek$, температура потока $t \approx 20^{\circ}C$)

8

В аэродинамическую трубу с сечением рабочей части 10×10 с m^2 вводилась часть стержня длиной 8 сm.

результаты Опыты. KOTOрых представлены на рис. 2 и 3—5, проведены в различных аэродинамических TDVбах — с различными диапазонами скоростей — поэтому на рис. 3-5 отсутствуют сведения, относящиеся к скоростям до 40 м/сек. Однако, экстраполируя полученные результаты в область малых скоростей, можно заметить, что они согласуются С результатами, представленными на рис. 1, а и 2.

Текстолит и свинец, как уже отмечалось, заряжались разнополярно. В исследованном диапазоне условий текстолит заряжался устойчиво отрицательно, свинец столь же определенно в этих опытах заряжался положительно.

Для других пробных тел характерен значительный разброс экспериментальных данных, возрастающий с увеличением скорости. Результаты, приведенные на рис. 5 для титана и меди, получены

в ограниченных условиях при расходах воды через форсунку 0,2—0,4 г/сек (что соответствует при скорости 200 м/сек эквивалентной водности 0,1—0,2 г/м³). Было замечено, что интенсивность заряжения и даже его знак меняются вслед за изменением расхода воды. Однако зависимости неоднозначны и неустойчивы. По-видимому, это связано с тем, что при изменении расхода меняются спектральный состав аэрозоля и относительная влажность в потоке. Последняя зависит, кроме того, от температуры и относительной влажности воздуха, поступающего на вход воздуходувки. В этих же опытах во всем диапазоне расходов (до 1 *г/сек*) наблюдалось положительное заряжение свинцового пробного тела. Ограниченность характеристик измерительного прибора не позволила получить количественную связь интенсивности заряжения с расходом воды. Однако было замечено, что скорость нарастания

потенциала свинцового пробного тела с увеличением расхода растет. Так, например, при расходе 0,2 г/сек заряжение идет с такой скоростью, что пробой между пластинами электрометра происходит через 3,5 сек, а при расходе 0,4 г/сек — через 2 сек. Можно отметить то обстоятельство, что в отличие от всех остальных пробных тел визуально наблюдается существенное изменение структуры поверхности (эрозия) свинцового пробного тела. После получасовой экспозиции в потоке обнаружено уменьшение его массы на 0,03% от исходного значения. Разумеется, этот факт трудно привлечь к объяснению аномального поведения свинца, тем бо-

лее, что, как будет показано ниже, в других условиях (см. § 5) свинец, так же как и остальные металлы, заряжался отрицательно.

Выше в качестве меры интенсивности процесса заряжения было использовано значение предельного потенциала. Представляет интерес оценить и плотность тока, заряжающего пробное тело в потоке аэрозоля. С этой целью вход электрометра шунтировался

Рис. 4. То же, что на рис. 3, для свинцового пробного тела.

конденсатором большой емкости — 8 $m\kappa\phi$ с сопротивлением изоляции более 10^{12} ом. В ходе опыта конденсатор медленно заряжался до невысокого потенциала, так что ток разряда, связанный с уносом зарядов отлетающими от пробного тела каплями, был пренебрежимо мал. Зная максимальную величину этого потенциала, время заряжения и параметры потока и пробного тела, легко можно рассчитать как ток заряда (плотность тока), так и производительность, «удельный заряд» механизма электризации — количество электричества, генерируемого при взаимодействии единичной массы воды с пробным телом. Результаты измерений и расчетов представлены в табл. 2. Опыты проведены при скорости потока 220 $m/се\kappa$ и расходе воды 0,25 $c/ce\kappa$.

Рассчитанный удельный заряд 10⁻⁴—10⁻⁵ к/г оказался на несколько порядков больше производительности исследованных до сих пор механизмов электризации, связанных с разбрызгиванием воды в аналогичных условиях — без наложения внешнего электрического поля [1, 5].

·						
Пробное тело	Максимальный потенциал, в	Время заряжения, <i>мин</i>	Скорость заряжения, в/сек	Суммарный ток, а	Плотность тока, а/см ²	Удельный заряд, <i>к/г</i>
Гекстолит Медь Алюминий Свинец	-124 -8 +40 +105	12,5 16,0 11,0 14,0	0,166 0,008 +-0,046 +-0,125	$-1,33 \cdot 10^{-6} \\ -0,06 \cdot 10^{-6} \\ +0,37 \cdot 10^{-6} \\ +1,00 \cdot 10^{-6}$	$-1,66 \cdot 10^{-7} \\ -0,08 \cdot 10^{-7} \\ +0,46 \cdot 10^{-7} \\ +1,25 \cdot 10^{-7}$	$-5,30 \cdot 10^{-5} \\ -0,24 \cdot 10^{-5} \\ +1,48 \cdot 10^{-5} \\ +4,00 \cdot 10^{-5}$

Полученные результаты в принципе позволяют говорить о разработке покрытий, резко снижающих интенсивность заряжения. Покрывая частично пробное тело, например из свинца, материа-

(

11

Таблица 2

лом, заряжающимся в данных условиях отрицательно, легко удается подбирать такие соотношения экспонируемых поверхностей, чтобы полностью нейтрализовать процесс заряжения. Однако эти соотношения не остаются постоянными при изменении параметров потока.

§ 5. Аэрозольный генератор

Анализ полученных закономерностей подсказывает другой путь изучения явления электризации в потоке аэрозоля — без использования громоздких и энергоемких экспериментальных установок на базе аэродинамических труб. Задача заключается в создании потока быстро летящих капель воды. Она сравнительно легко решается при использовании осевых форсунок высокого давления. Струя воздуха, истекающая из сопла осевой форсунки, имеет довольно высокую скорость (которая, однако, быстро падает вдоль струи). Если капли воды успевают разгоняться струей до значительных скоростей, то поток этих капель, направленный на препятствие (пробное тело) может быть использован для генерации статического электричества.

На рис. 6 показана зависимость предельных потенциалов заряжения пробного тела на различном удалении от сопла форсунки. Видно, что сначала, по мере удаления от сопла, потенциал быстро нарастает, достигает некоторого максимума, а затем спадает и в согласии с результатами предыдущего параграфа — при скоростях 50—60 *м/сек* меняет знак. Скорость потока, приведенная на рисунке, измерена с помощью трубки Пито на оси струи.

Вода, подаваемая в форсунку через центральное сопло, имеет скорость истечения существенно меньшую, чем скорость воздуха. Таким образом, попадая в поток воздуха, капли воды ускоряются, прежде чем их скорость сравняется со скоростью потока. Этим, очевидно, и объясняется тот факт, что максимальное заряжение наблюдается на некотором удалении от сопла.

Оценим скорость движения капли V_{κ} , ускоряемой потоком воздуха V. Ускорение движения капли определяется отношением силы F, действующей на каплю, к ее массе

$$\frac{dV_{\kappa}}{d\tau} = \frac{F}{m} = \frac{F}{4/3\pi r^{3}\rho},\qquad(1)$$

где т — время; *г* — радиус капли; о — плотность воды.

Сила аэродинамического давления, действующая на каплю,

$$F = C_{a} \rho_{B} \frac{(V - V_{\kappa})^{2}}{2} \pi r^{2}, \qquad (2)$$

где $\rho_{\rm B}$ — плотность воздуха; $C_{\rm a}$ — аэродинамический коэффициент сопротивления. Заменяя $d\tau = \frac{dx}{V_{\kappa}}$, где x — расстояние от сопла вдоль струи, и подставляя (2) в (1), получим

$$\frac{d V_{\kappa}}{dx} = \frac{3 C_{a} \rho_{B} (V - V_{\kappa})^{2}}{8 \rho r V_{\kappa}}.$$
(3)

Задавая зависимость V = V(x) и интегрируя (3), можно получить формулу для расчета скорости капли.

Расчеты скорости для капель радиусом 5 и 10 мкм, выполненные при численном интегрировании (3) с учетом меняющейся вдоль струи скорости потока V, также представлены на рис. 6. Экстремальный характер изменения предельного потенциала при удалении от сопла хорошо согласуется с экстремальным характером изменения скорости капель. Опыты с каплями, ускоренными узкой струей воздуха, показывают реальную возможность создания аэрозольного электростатического генератора, позволяющего снимать или генерировать статический заряд определенного знака, если не на самолетах, то, по крайней мере, при осуществлении ряда технологических процессов, где статическая электризация также является серьезной помехой [5, 6]. Была сконструирована и испытана модель такого аэрозольного генератора рис. 7.

Рис. 7. Аэрозольный генератор.

В герметически закрытый металлический сосуд 1 заливается дистиллированная вода. Через трубку 2 и насадку 3 (игла медицинского шприца) вода подается к соплу форсунки 4, где распыляется и ускоряется воздушным потоком, нагнетаемым от компрессора по трубке 5 через кран Kp_1 . При открытом кране Kp_2 воздух от компрессора поступает также в верхнюю часть сосуда 1. Избыточное давление в сосуде способствует более равномерному истечению жидкости из форсунки. Капли воды, ускоряемые струей воздуха, ударяются о пробное тело 6 шаровой или цилиндрической формы, укрепленное на изоляторе 7. Расстояние между пробным телом и соплом форсунки можно было менять от 0 до 12 см. Пробное тело соединяется со входом электрометра, а при замкнутом ключе K₁ также с сосудом и форсункой. Ключ K₂ замыкает систему на землю. Через фторопластовую прокладку 8 система изолируется от кронштейна, на котором она закреплена, а фторопластовая втулка 9 препятствует утечке заряда по воздухоподводящему шлангу от компрессора.

Измерения предельного потенциала выполнялись в нескольких вариантах:

1. Измерение предельного потенциала пробного тела при заземленной форсунке (ключ K₂ замкнут, K₁ — разомкнут).

2. Измерение предельного потенциала системы пробное тело — сосуд с форсункой (ключ K_1 замкнут, ключ K_2 — разомкнут).

3. Измерение предельного потенциала генератора при свободном истечении струи из сопла (ключ K₂ разомкнут, пробное тело выведено из струи капель).

На рис. 8 представлено изменение во времени предельных потенциалов, измеренных в варианте 2 (кривая 1) и в варианте 3 (кривая 2). В последнем случае кривая заряжения характеризует заряд, уносимый струей с форсунки. Как видно из рисунка, интенсивность заряжения пробного тела струей капель на два порядка выше суммарного заряда, приобретенного каплями при распылении воды форсункой. Изменения потенциалов в вариантах 1 и 2 оказываются практически идентичными.

Рис. 8. Характер заряжения генератора при ударе капель о пробное тело (1) и при свободном истечении струи (2).

Производительность модели аэрозольного генератора, определенная способом, изложенным в § 4, оказалась при соответствующих параметрах близка к той, которая получена в аэродинамических трубах ($5 \cdot 10^{-5} \kappa/c$).

Существенное отличие между результатами, приведенными в § 4 и полученными в опытах с форсункой, не нашедшее пока своего объяснения, заключается в том, что в опытах с генератором не было обнаружено при фиксированных условиях изменения знака заряжения металлических пробных тел.

В табл. 3. приведены результаты типовой серии опытов по измерению предельных потенциалов пробных тел, помещаемых в струю на фиксированном расстоянии от сопла (скорость потока на этом расстоянии при выведенном из струи пробном теле составляет 200 м/сек — на оси струи). Как видно из таблицы, все металлы заряжаются примерно одинаково, в то время как в опытах в аэродинамической трубе эти же пробные тела при фиксированных условиях заряжались различно не только по величине, но и по знаку. Любопытно, что органическое стекло, заряжающееся в аэродинамической трубе отрицательно, в струе форсунки заряжается положительно. Устойчиво до высокого отрицательного потенциала текстолит. Требуются дальнейшие заряжается исследования. чтобы объяснить противоречивость полученных результатов.

Таблица З

Материал пробного тела	Предельный потенциал, <i>в</i>		
Титан	2600		
Алюминий			
Свинец	2500		
Медь	2300		
Текстолит	6000		
Органическое стекло	+ 900		

§ 6. Зависимость интенсивности заряжения от химического состава аэрозоля

В ходе экспериментов было замечено, что интенсивность процесса заряжения меняется при изменении степени чистоты разбрызгиваемой воды. Добавление к дистиллированной воде растворимых примесей в небольшом количестве существенно изменяет интенсивность заряжения, при использовании водопроводной воды процесс заряжения практически отсутствует.

На рис. 9 приведена зависимость предельного потенциала пробного тела от концентрации примеси в разбрызгиваемой воде при фиксированных скорости потока (80 *м/сек*) и расходе воды (0,2 *г/сек*). Опыты выполнены с растворами кислот и оснований. В качестве меры концентрации примесей принята величина рН содержание водородных ионов в растворе. Растворителем служила 16 дистиллированная вода с исходным pH = 6,0 ÷ 6,2. Аналогичные опыты были проведены также с веществами, слабо меняющими pH, в частности с солями NaCl, KCl и др. При растворении солей, так же как кислот и оснований, происходило резкое уменьшение предельных потенциалов с увеличением концентраций.

На рис. 10 представлены результаты опытов, полученных с помощью аэрозольного генератора. Как и на рис. 9, здесь приводится зависимость предельных потенциалов от рН раствора. Измерения осуществлялись на фиксированном расстоянии от сопла форсунки, осевая скорость струи на этом расстоянии составляла 160 *м/сек.* Опыты велись таким образом, что практически после каждого опыта с пробами растворов производился контрольный опыт с дистиллированной водой.

Сравнивая рис. 9 и 10. можно заметить, что с увеличением скорости потока зависимость предельных потенциалов от рН обостряется. Это может быть связано с различиями в поглощении каплями газов из окружающего воздуха, что, в свою очередь, определяется временем полета капли от форсунки до пробного тела. Это время для опытов, относящихся к рис. 10, было существенно меньше.

Можно думать, что изменение содержания в воздухе газов, хорошо растворимых в воде (углекислый газ, аммиак), не контролируемого в процессе опытов, объясняет значительную изменчивость от серии к серии результатов, приведенных в предыдущих параграфах.

Любопытно, что резкая экстремальная зависимость потенциалов пробных тел от рН

Рис. 9. Изменение предельных потепциалов пробного тела в зависимости от рН распыляемого раствора при скорости потока 80 *м/сек* (опыты в аэродинамической трубе).

аналогична зависимости, полученной для принципиально другого механизма заряжения — возникновения потенциалов на гра нице фаз вода — лед при замерзании слабых водных растворов [3]. Очевидно, что, как и в случае потенциалов замерзания, сильная зависимость предельных потенциалов от концентрации примесей может быть использована для разработки методов управления процессами электризации как в естественных условиях, так и в ряде технологических процессов.

Рис. 10. То же, что на рис. 9 для скорости потока 160 м/сек (опыты с аэрозольным генератором).

ЛИТЕРАТУРА

- 1. Арабаджи В. И. Гроза и грозовые процессы. Изд-во Белгосуниверситета, Минск, 1960.
- 2. Имянитов И. М. Электризация самолетов в облаках и осадках. Гидрометеоиздат. Л., 1970.
- 3. Качурин Л. Г., Бекряев В. И., Псаломщиков В. Ф. Экспериментальное исследование электрокииетического эффекта, возникающего при кристаллизации слабых водных растворов. Доклады АН СССР, т. 174, № 5, 1967.
- 4. Качурин Л. Г., Розенталь О. М. К построению теории электрического заряжения тел в потоке аэрозоля. См. настоящий сборник.

5. Лёб Л. Статическая электризация. Госэнергоиздат, М.-Л., 1963.

6. Лившиц М. Н., Моисеев В. М. Электрические явления в аэрозолях и их применение. Изд-во «Энергия», М., 1965.

Л. Г. Качурин (ЛГМИ), О. М. Розенталь (СГПИ)

К ПОСТРОЕНИЮ ТЕОРИИ ЭЛЕКТРИЧЕСКОГО ЗАРЯЖЕНИЯ ТЕЛ В ПОТОКЕ АЭРОЗОЛЯ

В последние годы стало известно, что. летательные аппараты в облаках могут заряжаться до высоких потенциалов. Так, например, прямые измерения потенциалов самолетов дали величины $10^5-10^6 \ s$ [6]. Есть косвенные данные, позволяющие считать, что в некоторых случаях возможно и большее заряжение. В лабораторных условиях [8] тела в потоке аэрозоля заряжались до $10^3-10^4 \ s$.

Чтобы научиться подавлять это крайне опасное явление, надо знать причины заряжения.

Единственная попытка дать теорию явления принадлежит И. М. Имянитову [4, 5, 6]. Однако его теория не в состоянии охватить все стороны этого чрезвычайно сложного явления, интенсивность которого обусловливается суммой, как минимум, нескольких механизмов заряжения, каждый из которых проявляется в определенном диапазоне условий, зависящих, прежде всего, от скорости движения тела в потоке-аэрозоля.

Настоящая статья посвящена исследованию возможных механизмов заряжения тел в потоке водного аэрозоля.

Прежде всего, обратим внимание на аналогию зависимостей от pH, полученного в [8] потенциала заряжения металлических пробных тел в водном аэрозоле (при не очень больших скоростях встречи аэрозоля с телом) и кристаллизационных потенциалов [7, 9]. Это следовало ожидать, так как в обоих случаях движущаяся граница разделяет среды, резко отличающиеся электродиффузионными характеристиками, только теперь вместо льда выступает металл. Теория, развитая в [9], в пределах тех приближений, которые были приняты в [9] и которые допустимы в настоящей задаче, может быть использована полностью.

При больших скоростях встречи частиц аэрозоля с пробным телом необходимо привлечь к рассмотрению ударную поляризацию веществ, которой в последние годы уделяется большое внимание в связи с другими проблемами [2, 3, 19].

2*

Наконец, при гидродинамическом ударе должна иметь место еще экзоэлектронная эмиссия [14, 18], а также экстрагирование ионов с поверхности соударения за счет поверхностной ударной ионизации [20].

Сначала рассмотрим ударную поляризацию. В соответствии с представлениями [16], будем различать каркасные молекулы воды и полостные, лишенные (при отсутствии внешних сил) ориентационной упорядоченности. Последние представляем как свободные осцилляторы. Именно они под действием удара ориентируются: более тяжелые «ОН-концы» молекул, которые можно рассматривать как свободные осцилляторы, устремляются вперед по направлению удара.

Направим ось x по направлению удара. Тогда уравнение движения «ОН-конца» во время удара может быть записано в виде (пока без учета кристаллизационных потенциалов):

$$\mu \ddot{x} + \mu \omega^2 x - \frac{\mu V}{\Delta \tau} - e E = 0, \qquad (1)$$

где μ — масса молекулы воды (пренебрегаем разницей масс молекулы воды и иона OH); ω — частота колебаний молекулы воды; e — элементарный заряд; V — скорость полета капли перед ударом; $\Delta \tau$ — время потери количества движения μV (продолжительность удара); E — напряженность электрического поля. Первые два слагаемых представляют собой x-ю составляющую движения свободного осциллятора [12], третье слагаемое — силу удара, четвертое силу действия электрического поля. Решение линейного неоднородного уравнения (1) имеет вид

$$x = c_1 e^{i\omega t} + c_2 e^{-i\omega t} + \frac{V}{\Delta \tau \,\omega^2} + \frac{eE}{\mu \,\omega^2}, \qquad (2)$$

где *t* — время; *c*₁, *c*₂ — постоянные интегрирования. Поляризация одной молекулы по направлению оси *x* может быть представлена как

$$p = ex. \tag{3}$$

(5)

Поляризация единицы объема (в случае равномерной по объему поляризации) численно равна заряду единичного сечения внешней поверхности

$$P = \xi p \; \frac{N \rho}{M} = \xi \, ex \; \frac{N \rho}{M}, \tag{4}$$

где N — число Авогадро; ρ — плотность воды; M — ее молекулярный вес; ξ — доля полостных молекул, способных ориентироваться ударом.

Введем дипольный момент молекулы

$$q = er_0$$

и момент механической инерции

$$I = \mu r_0^2, \tag{6}$$

где r₀ — размер диполя.

Тогда, подставляя (2) в (4), используя (5) и (6), получим

$$P = \xi \frac{N\rho q^2}{MI} \left(c_1 - \frac{\mu}{e} e^{i\omega t} + c_2 - \frac{\mu}{e} e^{-i\omega t} + \frac{V\mu}{e\Delta\tau\omega^2} + \frac{E}{\omega^2} \right).$$
(7)

Осредняя по интервалу времени, большему, чем период колебаний осциллятора, но меньшему, чем $\Delta \tau$, получим (значок среднего здесь и далее опускаем):

$$P = \xi \frac{N\rho q^2}{MI \omega^2} \left(E + \frac{V\mu}{e \Delta \tau} \right).$$
(8)

Положив V = 0, получим известную формулу поляризации полярных молекул в электрическом поле.

Полученные формулы непригодны при очень больших силах (удара и электрической), когда поляризация приближается к максимально возможной. Учесть возможность насыщения можно повторив выкладки Ланжевена, выполненные им для расчета поляризации в электрическом поле (см., например, [10]). Тогда при тех же условиях, что и выше

$$p = q \left(cth \frac{qE + q \frac{\mu V}{e \Delta \tau}}{kT} - \frac{kT}{qE + q \frac{\mu V}{e \Delta \tau}} \right), \tag{9}$$

где T — температура; k — постоянная Больцмана.

Пока силы малы, разложение (9) в ряд дает

$$p \simeq \frac{q^2}{3 \, kT} \left(E + \frac{\mu V}{e \, \Delta \tau} \right) \tag{10}$$

и соответственно

$$P = \xi \frac{N\rho}{M} \frac{q^2}{3kT} \left(E + \frac{\mu V}{e \Delta \tau} \right). \tag{11}$$

Если учесть, что $I\omega^2 \simeq 3kT$, то это означает, что (8) и (11) тождественны.

Для определения продолжительности удара капли о пробник привлечем теорию Герца (в изложении Лява [13]), развитую, в частности, для соударения двух шаров. Обозначив радиус капли r, а радиус пробника R приняв много большим $\left(\frac{R}{r} \to \infty\right)$, легко на основании [13] получить следующее выражение для продолжительности удара:

$$\Delta \tau \simeq 2.9 \left[\frac{5\pi (1-\sigma)^2}{4 (1-2\sigma)} \right]^{2/5} \frac{r}{V^{1/5} V_{3B}^{4/5}}, \qquad (12)$$

где σ — коэффициент Пуассона для капли: V_{3B} — скорость звука в капле, а для площади контакта с пробником $S = K \pi r^2$, где

$$K = \left(\frac{V}{V_{_{3B}}}\right)^{4/5} \left[\frac{5\pi (1-\sigma)^2}{4 (1-2\sigma)}\right]^{3/5}$$
(13)

 коэффициент, учитывающий деформацию капли при ударе. Возможность применения теории Герца в данном случае не является очевидной по ряду причин. Во-первых, не определен диапазон скорости удара капель о пробник, при котором она справедлива. Во-вторых, для молекул и ионов время потери количества движения тем меньше и соответственно сила удара тем больше, чем ближе они расположены к точке встречи капли и тела. Благодаря этому поляризация неравномерна по объему. Время (12), которое в лучшем случае может характеризовать среднюю для всех молекул продолжительность удара, можно принять как нижний предел. Верхний предел времени

$$\Delta \tau_0 = \Delta \tau \frac{r_0}{r}.$$
 (14)

Изменение заряда пробного тела в потоке капель воды определяется тремя факторами: передачей телу каплями отрицательного заряда, возникающего в результате ударной поляризации, током ионов, который создается в результате диссоциации молекул воды в капле на границе с телом за время удара, и, наконец, утечкой заряда Q с тела в окружающее пространство (эмиссию электронов и ионов пока не учитываем)

$$\frac{dQ}{d\tau} = an \, Vs \, S \, \left(\int_{0}^{\Delta \tau} j_{\rm D} \, d\tau - P \right) - \frac{Q}{\tilde{\tau}}, \tag{15}$$

где s — площадь миделева сечения пробного тела; a — среднеинтегральный коэффициент захвата капель телом; n — число капель в единице объема в потоке; $j_{\rm D}$ — плотность диссоциационного тока; $\tilde{\tau}$ — характерное время потери заряда телом.

Для пробников-шаров радиуса *R*, переходя от заряда *Q* к потенциалу ф по формуле

$$Q = R\varphi \tag{16}$$

и заменяя сечение

$$S=\pi R^2,$$

(17)

получим

$$\frac{d\varphi}{d\tau} = a\pi^2 r^2 Rn \, KV \left(\int_0^{\Delta\tau} j_{\rm D} d\tau - P\right) - \frac{\varphi}{\tilde{\tau}}.$$
 (18)

Отсюда легко получить установившееся напряжение

$$\varphi = a\pi^2 r^2 Rn \,\tilde{\tau} \, KV \left(\int_{0}^{\Delta \tau} j_{\rm D} \, d\tau - P \right). \tag{19}$$

Впрочем, для сравнения с опытом лучше использовать выражение, не содержащее $\tilde{\tau}$

$$\left. \frac{d\varphi}{d\tau} \right|_{\varphi \to 0} = a\pi^2 r^2 Rn \, KV \left(\int_0^{\Delta^\tau} j_{\rm D} \, d\tau - P \right). \tag{20}$$

Переходим к определению диссоциационного тока. Если, как и в [9], принять концентрацию ионов воды на границе капель с металлическим пробником равной нулю, то для времени удара значительно меньшего, чем время установления диссоциационного равновесия, можно принять во внимание лишь величину диффузионного потока водородных ионов к границе.

Тогда плотность тока

$$j_{\rm D} = ec_{\infty} \left(\frac{D}{\pi\Delta\tau}\right)^{\varkappa},\tag{21}$$

где D — коэффициент диффузии водородных ионов; c_{∞} — их концентрация на достаточном удалении от границы.

Подставив в (19) выражение (8), заменив для молекул поверхностного слоя капли в момент их поляризации ударом

$$E = \frac{\varphi}{R},\tag{22}$$

и разрешив результат относительно ф, получим

$$\varphi = \left(1 + a\pi^2 r^2 n \tilde{\tau} K \xi V \frac{N \rho q^2}{3k TM}\right)^{-1} a \pi^2 r^2 R n \tilde{\tau} K V \times \left[2e c_{\infty} \left(\frac{D \Delta \tau}{\pi}\right)^{\frac{14}{2}} - \xi \frac{\rho q^2}{3e k T} \frac{V}{\Delta \tau_0}\right].$$
(23)

Изменение знака потенциала заряжения пробного тела происходит при

$$V_{0} = \frac{6e^{2} c_{\infty} kT D^{k}}{\pi^{\frac{1}{2}} \xi \rho q^{2}} \Delta \tau_{0} \sqrt{\Delta \tau}.$$
 (24)

Используя (12) и (14) при $V = V_0$, можно переписать последнее выражение в виде

$$V_{0} \simeq \left\{ \frac{6 \left(2,9\right)^{1.5} e^{2} c_{\infty} \ k \ T D^{0.5} \left[5\pi \left(1-\sigma\right)^{2}\right]^{0.6} \ r^{0.5} \ r_{0}}{\pi^{0.5} \xi \rho \ q^{2} \ V_{3B}^{1.2} \left[4 \ \left(1-2\sigma\right)\right]^{0.6}} \right\}^{0.77}.$$
 (25)

Для определения $\tilde{\tau}$ необходимо при каждом значении V получить зависимость $\varphi = \varphi(\tau)$ и определить далее $\tilde{\tau}$ по формуле, которую легко получить из (18)

$$\frac{d \ln \varphi}{d \ln \tau} = \frac{\tau/\tau}{\left[\exp\left(\tau/\tau\right) - 1\right]} \,. \tag{26}$$

В опытах, описанных в [8], величина т равнялась 25 сек при скорости 80 *м/сек*, что было использовано при построении рис. 1.

Рис. 1. Расчет потенциала заряжения шара в потоке водного аэрозоля: I-A=1,7 эв; 2-A=4 эв; $3-A \rightarrow \infty$; $I_n, I_A=0$

Рассмотрим дополнительно заряжение тел в потоке за счет электронной эмиссии. Если эмиттером служит само тело, то суммарное напряжение запишется, по аналогии с выражением (19), в виде

$$\varphi = a\pi^2 r^2 Rn \tau KV \left[\int_0^{\Delta \tau} (j_{\rm D} + j_{\rm s}) d\tau - P \right], \qquad (27)$$

где j_{ν} — плотность тока эмиссии.

Исследования (см., например, [11, 15]) показали, что эмиссия сложным образом зависит от характера удара, комбинации меха-24 нических, тепловых и световых воздействий на эмиттер, состояния его поверхности. Все это затрудняет вычисление величины /_э. Однако максимальное число электронов g, экстрагируемых из тела при соударении с каплей массы m, определяется из равенства

$$gA = \frac{mV^2}{2}, \qquad (28)$$

где А — работа выхода электронов из металла. С другой стороны,

$$g = \frac{1}{e} \int_{0}^{\Delta \tau} j_{\mathfrak{s}} d\tau.$$
 (29)

Записывая, как это делалось раньше, ј и Р в явном виде и используя (28) и (29), получим выражение, аналогичное (23), но учитывающее ток эмиссии:

$$\varphi = \left(1 + a\pi^2 r^2 \, \tilde{n\tau} \, KV \, \xi \, \frac{N\rho \, q^2}{3k \, TM}\right)^{-1} a\pi^2 \, r^2 \, Rn \, \tilde{\tau} \, KV \times \\ \times \left[2e \, c_\infty \left(\frac{D \, \Delta\tau}{\pi}\right)^{\frac{1}{2}} - \xi \frac{\rho \, q^2}{3e \, kT} \, \frac{V}{\Delta\tau_0} + \frac{em \, V^2}{2A \, \pi R^2}\right]. \tag{30}$$

Определение величины A в последнем выражении представляет сложную задачу. Кроме того, что A зависит от вещества, геометрии и структуры поверхности тела, ее изменяют и механические напряжения, сопровождающие удар [20]. Для оценки порядков величин φ на рис. 1 представлен типовой расчет. При построении рисунка были приняты типичные значения работы выхода для металлов (см. подпись к рис. 1). Величины K, $\Delta \tau_0$ и $\Delta \tau$ определялись для заданных скоростей на основании формул (12)—(14), кроме того, использовались следующие значения величин:

$$r = 10^{-3} \text{ cm}; D = 1,5 \cdot 10^{-5} \text{ cm}^2/\text{cek}; \sigma = 0,45;$$

$$c_{\infty} = 6 \cdot 10^{14} \text{ cm}^{-3}; T = 273^{\circ} \text{ K}; n = 10^2 \text{ cm}^{-3}; R = 1 \text{ cm};$$

$$a = 1; q = 1,84D (1D = 10^{-18} \text{ eg. } CGSE);$$

$$V_{3B} = 1,8 \cdot 10^3 \text{ m/cek}; r_0 = 2,7 \cdot 10^{-8} \text{ cm}.$$

В ряде работ (см. [1, 17]) величина ξ была определена. Однако использование опубликованных значений затруднено тем, что продолжительность удара сравнима или больше времени, в течение которого полостные и каркасные молекулы меняются ролями, из-за чего в создании поляризации может участвовать доля молекул большая, чем равновесное ξ . Соответственно остается открытым вопрос о том, насколько в процессе ударной поляризации ξ отличается от равновесного значения; при построении рис. 1 было принято равновесное значение $\xi = 0,017$ (см. [1]). Серия кривых, изображенных на рис. 1, укладывается в пределы значений потенциалов металлического шара (см. [8]). Если шар выполнен из диэлектрика (притом не поляризующегося ударом), то первое и последнее слагаемые в квадратной скобке (30) оказываются равными нулю и мы получим незнакопеременную зависимость $\varphi = \varphi(V)$, изображенную на том же рисунке.

Заключение

Развитая теория заряжения тел в потоке водного аэрозоля, учитывающая диссоциационный ток, ударную поляризацию и экзоэлектронную эмиссию, дает правильный порядок величин потенциалов заряжения. Теория позволяет наметить серию экспериментов, которые должны способствовать дальнейшему выяснению механизма электризации тел в потоке аэрозоля, а тем самым — выработке способов подавления эффекта заряжения в одних случаях и усиления — в других. Практический интерес представляют оба случая.

ЛИТЕРАТУРА

- Гуриков Ю. В. Строение льдоподобного каркаса в воде. ЖСХ, т. 9, № 5, 1968.
- 2. Зельдович Я. Б. ЭДС, возникающая при распространении ударной волны по диэлектрику. ЖЭТФ, т. 1, № 53, 1967.
- 3. Иванов А. Г., Лисицын Ю. В., Новицкий Е. З. Задача о поляризации диэлектриков при ударном нагружении. ЖЭТФ, т. 54, № 1, 1968.
- 4. Имянитов И. М. К вопросу о механизме электростатического заряжения. ДАН СССР, т. 121, № 1, 1958.
- 5. Имянитов И. М., Старовойтов А. Т. Вопросы теории электростатического заряжения тел в потоках. ЖЭТФ, т. 32, № 6, 1962.
- 6. Имянитов Й. М. Автореферат диссертации на сонскание ученой степени доктора физ.-мат. наук, Л., 1967.
- 7. Качурин Л. Г., Бекряев В. И., Псаломщиков В. Ф. Экспериментальное исследование электрокинетического эффекта, возникающего при кристаллизации слабых водных растворов. ДАН СССР, т. 174, № 5, 1967.
- 8. Качурин Л. Г., Бекряев В. И., Осипов Ю. Г., Псаломщиков В. Ф. Экспериментальное исследование статической электризации. См. настоящий сборник.
- Качурин Л. Г. Электрокинетические явления, возникающие при кристаллизации жидкостей. Электрохимия, т. 6, № 9, 1970.
- 10. Компанеец А. С. Теоретическая физика. ГИТТЛ, М., 1965.

- Кортов В. С., Минц Р. П. Электронная эмиссия как метод изучения деформированной поверхности металлов. Физика металлов и металловедение, т. 19, № 6, 1965.
- 12. Ландау Л. Д., Лившиц Е. М. Механика. Изд-во «Наука», М., 1965.
- 13. Ляв А. Математическая теория упругости. ГИТТЛ, М.-Л., 1935.
- Минц Р. Н., Кортов В. С. Об инерционности экзоэлектронной эмиссии металлов. Изв. АН СССР, Металлы, № 2, 1967.
 Поляков А. М., Кротова Н. А. Исследование электрических свойств
- 15. Поляков А. М., Кротова Н. А. Исследование электрических свойств свежеобработанной поверхности по эмиссии быстрых электронов. Сб. Исследования в области поверхностных сил. Изд-во «Наука», М., 1964.

- Самойлов О. Я. Структура водных растворов электролитов и ѓидратация ионов. Изд-во АН СССР, М., 1957.
 Фишер И. З., Андрианова А. С. О степени заполнения пустот в кристаллической структуре воды, ЖСХ, т. 7, № 3, 1966.
 Экзоэлектронная эмиссия (сборинк). ИЛ, М., 1962.
 Еichelberger R. J., Haver L. E. Solid State transduces for recording of intense pressure pulses. Les ondes de detonation. Paris, 1931, p. 364.
 Tinder R. F. Stress dependence of ion and thermoinic emission. J. Appl. Phys., vol. 39, N 1, 1968.

Л. Г. Качурин (ЛГМИ), М. И. Кармов, Х. Х. Медалиев (ВГИ ГУГМС)

О РАДИОИЗЛУЧЕНИИ ОБЛАКОВ В ПРЕДГРОЗОВОЙ СТАДИИ

Несмотря на то, что до сих пор нет удовлетворительной теории грозовых явлений, в последние годы неоднократно предпринимались попытки воздействия на грозовые облака с целью управления электрическими процессами в них. Эти попытки нельзя признать удачными, но они существенным образом способствовали выяснению физики грозовых процессов.

В зрелом грозовом облаке механизм возникновения электричества приходится изучать на фоне значительно более мощного, хотя и более кратковременного явления — молниевых разрядов.

С этой точки зрения изучение этого механизма в предгрозовой стадии имеет очевидные преимущества. Следует также иметь в виду, что изучение предгрозовых явлений — предвестников грозы — представляет самостоятельный интерес в связи с прогностическими задачами.

Настоящая работа посвящена изучению микрорадиоизлучения облаков на всех стадиях развития облака, но особое внимание уделено предгрозовой стадии.

Если электромагнитному излучению зрелых грозовых облаков посвящено большое количество работ (см., например, [1—6], то по поводу излучения облаков в предгрозовой стадии имеются лишь отрывочные сведения [7].

По-видимому, в какой-то мере это связано с тем, что до настоящего времени развивалось представление о спонтанном развитии грозовых явлений и не принималась во внимание возможность постепенного расширения во времени масштабов искровых разрядов. Между тем, есть основания предположить, что внутри развивающихся облаков в результате флюктуаций плотности зарядов и градиента потенциала образуется большое количество ячеек различных как по знаку, так и по емкости, между которыми могут развиваться мелкомасштабные внутриоблачные разряды, дающие электромагнитное излучение в предгрозовой стадии в широком спектре частот. В ряде работ последних лет развиваются идеи, предполагающие постепенное развитие явлений и соответственно постепенное усиление радиоизлучения облаков.

В связи с тем, что ожидалось микрорадиоизлучение облаков в предгрозовом состоянии значительно более слабое, чем излучение линейных молний на тех же частотах, потребовалась разработка специальной высокочувствительной радиоаппаратуры.

Для обнаружения и исследования эффекта радиоизлучения облаков в предгрозовом состоянии был разработан комплект аппаратуры, состоящий из четырех высокочувствительных приемников, направленных антенн, индикаторного устройства и записывающего блока. Аппаратура имеет четыре фиксированных диапазона на частотах 0,498; 3,15; 30,5; 101 Мгц.

Чувствительность приемников возрастает с увеличением частоты и лежит в пределах $2 \cdot 10^{-11} \div 3,5 \cdot 10^{-13}$ в, отношение сигнал/шум не хуже $3 \div 2$.

На низких частотах применялись антенны с кардиоидной диаграммой направленности. На частоте 101 *Мец* применена двухэтажная синфазная антенна типа «волновой канал» с коэффициентом направленного действия не ниже 18. Ширина полос пропускания высокочастотных цепей приемных устройств в пределах 25 ÷ 44 кец.

Запись радиосигналов производилась магнитофоном с полосой записывающих частот порядка 11 кгц. Сигнал мог воспроизводиться электронным осциллографом, обладающим большим полеосвещением и работающим в ждущем режиме. Фотографирование импульсов производилось с экрана осциллографа.

Следует отметить, что в работе [7] запись производилась механическим пишущим устройством с большой постоянной времени, в связи с чем была затруднена интерпретация результатов эксперимента.

Подробное описание нашей установки будет дано в другой работе.

Ниже приводятся предварительные результаты полевых работ 1969 г. на Куба-Табинском научно-экспериментальном полигоне Высокогорного геофизического института ГУГМС. С 6 августа по 19 сентября 1969 г. было проведено 18 опытов, из которых 8 были записаны на магнитную ленту. Кроме того, зарегистрировано кинокамерой около 200 кадров радиоимпульсов от облаков как в предгрозовой, так и грозовой стадиях на всех частотах.

Момент возникновения зоны радиолокационного отражения отмечался трехсантиметровым радиолокатором, который одновременно использовался для коррекции антенной системы нашей аппаратуры.

На рис. 1 представлены осциллограммы, относящиеся к опыту 17/IX 1969 г. для приемника, настроенного на частоту 101 *Мец.* Кадры экспонировались приблизительно через десятиминутные интервалы времени. Рис. 1, *а* соответствует облаку в начальной ang 2. 19 10 10 10 10

Berg. -

the the w

Рис. 1. Опыт 17/IX 1969 г., f₀ = 101 Мец. Начало отыпа 14 час. 28 мин. Калибровка по вертикали v≈3 мкв/дел. Скорость развертки u=15 мксек/дел. Время съемки: a-t=14 час. 35 мин.; б-t=14 час. 42 мин.; s-t=14 час. 50 мин.; t-t=15 час. 05 мин.; д-t=15 час. 15 мин.; e-t=15 час. 25 мин.

стадии развития. Рис. 1, б, 1, в соответствуют стадии интенсивного роста грозовой ячейки — увеличивались как высота верхней границы зоны отражения, так и радиолокационная отражаемость. К моменту, изображенному на рис. 1, в, облако, находившееся в это время на расстоянии 47 км, имело параметры: отражаемость порядка 10^{-7} 1/см, высота верхней границы зоны отражения — 8 км. Рис. 1, г соответствует моменту разряда линейной молнии. На рис. 1, д, 1, е — стадия разрушения облака.

Грозовые явления в облаке постепенно развивались, достигли апогея и затем затихли. Фотографии указывают на то, что имеются характерные особенности излучения облаков в предгрозовой, грозовой и послегрозовой стадиях: по мере развития облака характер импульсов существенно меняется.

Чтобы получить количественные характеристики радиоизлучения на различных стадиях развития облака, были построены функции распределения пакетов радиоимпульсов по длительностям. С этой целью опыт разбивался на три стадии: предгрозовую, грозовую и послегрозовую.

Если в предгрозовом состоянии максимум повторяемости приходится на $\tau_n = 8$ мсек (рис. 2, *a*), то по мере развития облака появляются пакеты импульсов с большой длительностью вплоть до 150—200 мсек и более (рис. 2, *б*). В то же время следует отметить, что периоды следования сигналов, соответствующие предгрозовой стадии, примерно сохраняются и для грозы. На рис. 2, *б* видны максимумы в области $\tau_n = 80$, 150, 290 мсек, однако нет уверенности в том, что они статистически обеспечены.

После прекращения грозы (рис. 2, в) распределение сигналов по длительности становится похожим на то, что наблюдалось в начале развития грозовых явлений.

Любопытный случай наблюдался 21/VIII 1969 г.

Измерения велись приемником на частоте $f_0 = 0,5$ *Мгц.* На рис. 3 представлено 6 кадров осциллограмм. Характерным для этого опыта является отсутствие грозовых очагов на площади радиусом 200 км. Само исследуемое облако (которое также не проявляло визуально обнаруживаемой грозовой активности) находилось в непосредственной близости от точки наблюдения. Тем не менее, аппаратура обнаруживала радиоизлучение, характерное для предгрозовой стадии.

Параметры опыта были таковы. Расстояние с пункта наблюдения до облака в период наблюдения менялось с 9 до 14 км. Высота верхней границы зоны радиолокационного отражения была 6—7 км; отражаемость (2 ÷ 8) · 10⁻⁸ 1/см. Интересно отметить, что импульсы имели почти правильную форму — треугольную, чаще всего колокольную иногда появлялись импульсы, характерные для апериодического затухания. Серии одиночных импульсов следовали друг за другом через более или менее равные промежутки времени. Частота прихода импульсов была в среднем 2—3 имп/мин, т. е. более низкой по сравнению с другими опытами на той же длине волны. Из графиков функции распределения для этого опыта (рис. 4) видно, что положение максимума примерно сохраняется, но наблюдается сдвиг в сторону больших длительностей, как в предыдущем опыте. Это свидетельствует об отсутствии мощных грозовых разрядов.

Рис. 2. Функция распределения длительностей пакетов импульсов. Опыт 17/IX - 1969 г., $f_0 = 101$ Мец.

и-1 этап-предгрозовая стадия, N=221, t=14 час. 28 мин. - 14 час. 45 мин.; б-11 этап - грозовая стадия; N=369, t=14 час. 45 мин. - 15 час. 10 мин.; s-111 этап-послегрозовая стадия, N=373, t=15 час. 10 мин. - 15 час. 25 мин

Типичный пример радиоизлучения грозового облака наблюдался 22/VIII 1969 г. Для сравнения с предыдущими опытами, ниже приводятся данные этого эксперимента, когда наблюдались частые линейные разряды на частоте 3,15 *Мгц*. Параметры облака: расстояние до облака 15 ÷ 20 км, высота верхней границы зоны отражения 8 ÷ 10 км, отражаемость $\eta = 10^{-7} \div 8 \cdot 10^{-7}$ 1/см. 32

Рис. 3. Опыт 21/VIII 1969 г., $f_0 = 0.5$ Мгц. Начало опыта 15 час. 15 мин., $v \approx 13$ мкв/дел., u = 15 мксек/дел. Время съемки: a - t = 15 час. 18 мин.; 6 - t = 15 час. 50 мин.; s - t = 16 час. 15 мин.; $z_2 - t = 16$ час. 40 мин.; $\partial - t = 17$ час. 10 мин.; $e - \frac{15}{2} = 17$ час. 40 мин.

3 3ak. 243

జు

Из фотографий (рис. 5) и графика (рис. 6) видно, что длительности радиосигналов лежат в пределах 10 ÷ 300 мсек, причем максимум «размазан», т. е. располагается в широкой области. Частота грозовых разрядов была примерно 2 ÷ 2,5 разряда в минуту.

Рис. 4. Функция распределения длительностей пакетов радиоимпульсов Опыт 21/VIII 1969 г., $f_0 = 0,5$ Мац. a - 1 этап. N=103, t=1 час. 15 мин. - 15 час. 35 мин.; 6 - 11 этап, N=205, t=15 час. 35 мин. - 16 час. 20 мин.; e - 111 этап, N=101, t=16 час. 20 мин. - 17 час. 50 мин

30

50

Плм сек

0

ι'n

Несмотря на недостаточность количества опытов, все же мы хотели обратить внимание на некоторые характерные особенности радиоизлучения облаков в предгрозовом состоянии:

1. Когда развивается грозовое облако, то первому мощному молниевому разряду задолго, по крайней мере за 5—15 минут, предшествует радиоизлучение, менее мощное, чем радиоизлучение грозовых разрядов, но которое может быть обнаружено современными радиотехническими средствами.

2. Подтверждаются три стадии жизни грозового облака: предгрозовая, собственно грозовая и послегрозовая, различающиеся по длительности пакетов радиоимпульсов, частоте появления сигнала, форме импульсов и, конечно, по амплитуде излучения.

Рис. 5. Опыт 22/VIII 1969 г., $f_0 = 3,1$ Мгц. Начало опыта 16 час. 25 мин., $v \approx 10$ мкв/дел., u = 30 мксек/дел. Время съемки: a - t = 16 час. 30 мин.; $\delta - t = 16$ час. 40 мин.; s - t = 16 час. 52 мин.; z - t = 17 час. 03 мин.; $\delta - t = 17$ час. 12 мин.; e - t = 1/2 час. 20 мин

3. Излучение электромагнитной энергии развивающегося облака является недостаточным, но обязательным условием перехода облака в грозовую стадию. В связи с этим эффект микрорадноизлучения облаков в предгрозовом состоянии может быть в какойто мере использован для краткосрочного прогноза грозовых ситуаций.

3*

4. В основу гипотезы, объясняющей радиоизлучение облаков в предгрозовом состоянии, по-видимому, можно положить следующие механизмы излучения электромагнитной энергии.

- а. Аннигиляционное излучение при столкновении противоположно заряженных крупных гидрометеоров.
- б. Дипольное излучение нитевидного разряда при сближении противоположно заряженных крупных гидрометеоров, напряженности порядка 10 ÷ 12 кв/см.

Рис. 6. Функция распределения длительностей пакетов радиоимпульсов. Опыт 22/VIII 1969 г., f₀ = 3,1 Мец. Три этапа, t=16 час. 25 мин. — 17 час. 28 мин

- в. Излучение лавинностримерных и лидерных потоков в облаке — магнитнотормозное излучение системы заряженных частиц.
- г. Тормозное излучение при взрыве замерзающих переохлажденных капель в облаке.

Авторы благодарят И. М. Имянитова за плодотворную дискуссию по результатам работы.

ЛИТЕРАТУРА

- 1. Кашпровский В. Е. Определение местоположения гроз радиотехническими методами. Изд-во «Наука», М., 1966.
- 2. Нориндер Х. Исследование грозовых разрядов. Госэнергоиздат, М., 1956.
- 3. Альперт Я. Л. Распространение радиоволн и ионосфера. Изд. АН СССР, М., 1960.
- K impara H. Electromagnetic Energy Radiation from lightnings. Problems of Atmospheric and space Electricity. Amsterdam, N. 4, Elserier, 1965.
- 5 Насилов Д. Н. Радиометеорология. Гостехиздат, М., 1965.
- Косарев Е. Л. и др. Результаты экспедиции по исследованию радиоизлучений линейных молний в дециметровом диапазоне. ЖТФ, т. XXXVIII, вып. II, 1968.
- 7. Zonge K. L. and Evans W. H. Prestrokl Radiation from Thunderclouds. Journal of Geophys. Research, vol. 71, N. 6, 1519-1523, 1966.

Л. Г. Качурин (ЛГМИ), О. М. Розенталь, Ф. Е. Четин (СГПИ)

ФЛЮКТУАЦИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ГРОЗОВОМ ОБЛАКЕ

Современные атмосферно-электрические исследования [1—3] позволяют заключить, что в грозовом облаке создается разномасштабная электрическая поляризация. Помимо суммарного электрического момента имеются разномасштабные неоднородности электрического заряда. Для упрощения модели в данной работе ограничимся рассмотрением неоднородностей заряда, размеры которых соизмеримы с размером крупномасштабных турбулентных струй [1, 3].

Условия развития природных электрических разрядов отличаются от лабораторных. В облаке вместо двух разноименно заряженных электродов имеется динамическая коллоидная система и решающим фактором для грозовых молний являются флюктуации градиента потенциала, а не среднее значение этой величины [1]. Поэтому необходимо рассмотреть статистику электрических параметров облака.

Электрическую структуру облака будем моделировать в виде непрерывной системы разноименно заряженных подвижных зон (ячеек) радиуса r с объемным зарядом $\pm q$. Градиент потенциала удовлетворяет уравнению Гаусса

$$\operatorname{div} \vec{E} = 4\pi \left(q_+ \rho_+ - q_- \rho_- \right) \tag{1}$$

с соответствующими граничными условиями. Здесь $\rho_{\pm} - \phi$ ункция распределения положительно и отрицательно заряженных ячеек.

Исходное уравнение в сферически-симметричной задаче имеет вид

$$\frac{d}{d\eta} (E \eta^2) = 4\pi \eta^2 (q_+ \rho_+ - q_- \rho_-), \qquad (2)$$

где n — радиус-вектор.

Облако является практически неупорядоченной системой, поэтому корреляциями выше первого порядка следует пренебречь. 38 В этом случае поле создается только теми ячейками, которые находятся в непосредственной близости от точки наблюдения. Заряд остальных ячеек взаимно скомпенсирован. Следовательно,

$$q_{+}\rho_{+} - q_{-}\rho_{-} = \begin{cases} 0 & \text{при } \eta > r, \\ \frac{n \, q_{+} - m q_{-}}{4/3 \, \pi r^{3}} & \text{при } \eta \leqslant r, \end{cases}$$
 (3)

где h — число ячеек с положительным зарядом q_+ в объеме 4/3 πr^3 ; m — число ячеек с отрицательным зарядом в том же объеме.

Подставляя условие (3) в (2), получим для максимального градиента поля

$$E_{\max} = \frac{nq_{+} - mq_{-}}{r^{2}}.$$
 (4)

Следовательно, в среднем по объему радиуса r при $q_+ = \dot{q}_- = \dot{q}$

$$E_i = \frac{qi}{2r^2},\tag{5}$$

где i = n - m.

Вероятность совместного попадания в объем $4/3\pi r^3 n + m = N$ штук ячеек определяется из формулы Пуассона

$$w_N = \frac{\overline{N}^N}{N!} e^{-\overline{N}}, \qquad (6)$$

где \overline{N} — среднее значение величины N. Число соответствующих ситуаций, реализующихся в грозовом облаке, равно

$$w_{v,N} = N_0 \frac{\overline{N}^N}{N!} e^{-\overline{N}}, \qquad (7)$$

где N₀ — полное число ячеек.

Вероятность того, что из N ячеек n штук имеют одинаковый знак заряда и m штук — противоположный определится как соответствующий член биноминального распределения

$$w_{n,N} = \frac{N!}{n! m!} \left(\frac{1}{2}\right)^N.$$
(8)

Термодинамическая вероятность сложного события запишется в виде

$$w = w_{v, N} \cdot w_{n, N} = \frac{N_0 \overline{N}^N}{n! \, m!} e^{-\overline{N}} \left(\frac{1}{2}\right)^N.$$
(9)

Термодинамическая вероятность того, что напряженность определяется по выражению (5), равна

$$w_{i} = N_{0} e^{-\overline{N}} \sum_{n=0}^{N_{0}-i} \overline{N}^{N} \frac{1}{(n+i)! n!} \left(\frac{1}{2}\right)^{2n+i}.$$
 (10)

Здесь $N_0 \gg |t| \gg 0$, поэтому не будет существенной ошибки, если в приведенной быстро сходящейся сумме верхний предел принять равным бесконечности.

Если объем всех ячеек равен объему облака, то напряженность при $i = 1(E_1)$ является средним значением этой величины в облаке по модулю. Тогда

$$E_i = iE_1. \tag{11}$$

Кроме того, в этом случае $\overline{N} = 1$ и, следовательно, выражение (10) упрощается

$$w_{i} = \frac{N_{0}}{e} \sum_{n=0}^{\infty} \frac{1}{(n+i)! n!} \left(\frac{1}{2}\right)^{2n+i}.$$
 (12)

Последний ряд быстро сходится, особенно при больших *i*. В этом случае

$$w_i \simeq \frac{N_0}{e \cdot |i| 2^{|i|}}.$$
(13)

Радиус ячейки в грозовом облаке порядка 200 *м* [1, 3]. Следовательно, в облаке объемом 100 км³, в случае принятой модели, полное число ячеек $N_0 \simeq 10^4$. Кроме того, предполагаем, что величина E_1 равна среднему значению напряженности поля (при равномерном распределении зарядов), т. е. $E_1 = 2 \cdot 10^5 \ \text{в/м}$ [1, 2]. Результат расцета по формудам (11-13) дан в таблице.

гезультат	расчета по	формулам	(11 - 10)	дан в	таолице.

i	0	±1	± 2	±3	± 4	±5	±6	±7	±8	±9	± 10
E _i (10 ⁵ B/M)	0	± 2	±4	±6	±8	±10	±12	±14	<u>+</u> 16	±18	± 20
Wi	4657	2079	499	81,5	11	0,91	8,27.10-2	5 ,8 9 · 10 ⁻³	3,6.10-4	2 •10 ^{−5}	10-6

Из таблицы видно, что напряженность пробоя возникает практически при $|i| = |n - m| \ge 6$.

Следовательно, отнесенная к единице времени термодинамическая вероятность электрического пробоя, т. е. частота появления молний равна

$$v = \frac{1}{\tau} \sum_{i=-6}^{-\infty} w_i + \frac{1}{\tau} \sum_{i=6}^{\infty} w_i \simeq \frac{2N_0}{e\tau} \sum_{i=6}^{\infty} \frac{1}{2^i i!}, \quad (14)$$

где т — время релаксации соответствующих динамических структур в облаке, т. е. эффективное время, в течение которого в тур-40 булентном потоке происходит полное перемешивание и возникает практически независимая конфигурация ячеек. Эта величина для крупномасштабных флюктуаций равна времени релаксации электрических параметров после удара молнии [2, 3]. Следовательно, $\tau \approx 10$ сек. Тогда частота $v \approx 2 \cdot 10^{-2}$ сек-1.

Молнии повторяются в облаке в среднем через промежуток времени 1/v, т. е. приблизительно через минуту. Это заключение совпадает с результатом соответствующего измерения [2].

Приведенный в работе расчет относится к крупномасштабным флюктуациям поля и позволяет оценить частоту длинных электрических разрядов. Очевидно, что флюктуации меньшего масштаба могут сопровождаться многочисленными мелкими разрядами.

ЛИТЕРАТУРА

1. Имянитов И. М. Исследование электричества облаков. Бюлл. ВМО, № 4, 1970.

2. Имяннтов И. М., Лободин Т. В. О зонах неоднородности в грозовых облаках. Труды ГГО, вып. 157, 1964.

3. Vonnegat B. a. o. Electric Potentialgradients above thunderstarms. J. Atm. Sci., 23, № 6, 1968.

А. И. Гвелесиани (Ин-т геофизики АН ГССР)

НЕКОТОРЫЕ ВОПРОСЫ ТАЯНИЯ ЛЕДЯНЫХ СФЕР

Для проникновения в механизм градообразования разрабатываются различные методы исследования выпавшего на землю града. Изучают внутреннее строение града и его форму; пытаются связать их между собой [4-8]. Полная «история жизни» града будет восстановлена, если наряду с процессом роста будет учтен также и эффект, вызываемый процессом таяния. Рост и таяние градин — противоположно направленные фазовые превращения. Однако они различаются тем, что в первом случае структура и геометрическая форма в сильной степени зависят от метеорологических параметров среды, таких, как водность, температура, влажность, скорость и др. [1, 2], в то время как во втором случае структурные изменения протекают бесконечно медленно и, получаемая в результате таяния, форма зависит в основном от скорости обдува. В этом смысле изучение процесса таяния в результате взаимодействия частицы и потока частиц между собой в воздушном потоке можно вести со значительно большей корректностью.

Как известно, таяние падающих ледяных частиц любой формы сопровождается их сплющиванием в направлении падения ориентированной частицы [3, 6, 9, 10] и срывом капель оттаявшей и аккумулированной воды.

В настоящей работе изучается изменение формы ледяных сфер и спектр сорванных капель при таянии в различных условиях обдува. Воздушный поток в опытах не был ламинаризирован для большего приближения к реальным условиям. Скорости воздушного потока менялись в интервале 5—30 м/сек. В облаке возможны условия, при которых градина, независимо от размера, может, двигаясь попеременно в восходящих и нисходящих потоках, обдуваться указанными скоростями. Форма, принимаемая градиной, зависит от распределения жидкой воды на ее поверхности; последнее же главным образом определяется величиной скорости обтекающего воздушного потока. Толщина накопленной воды (из-за коагуляции с облачными каплями или из-за таяния) будет определяться как интенсивностью осаждения воды, так и скоростью движения градины относительно воздуха. Благодаря наличию между ледяной поверхностью и воздухом водяной пленки, создается дополнительное термическое сопротивление, от чего скорость передвижения фронта таяния задерживается.

Результаты опытов по таянию градин при различных скоростях обдува при прочих одинаковых условиях приведены на рис. 1, 2, 3 (на рис. 3 v = 20 м/сек). В случае v = 5 м/сек градина приняла форму катушки-гантели. По бокам, в середине, градина обтаяла сильнее, так как из-за наличия жидкой пленки в средней части нижней полусферы за ней возникают завихрения. Сравнивая частицы, обдуваемые при скоростях 10 и 20 м/сек и выше, видим, что в первом случае получается именно форма сплющенного эллипсоида вращения, а во втором случае и для больших скоростей сфера превращается в полусферу.

Рис. 1. Форма, принимаемая градиной при скорости обдува v=5 м/сек.

Рис. 2. Форма, принимаемая градиной при скорости обдува v=10 м/сек.

На рис. 4. показаны формы, полученные при таянии пары ориентированных градин в потоке теплого водного аэрозоля. Качественно получен тот же результат.

Таким образом, при таянии сферических градин в интервале скоростей 10—30 *м/сек* получаются формы, лежащие в промежутке между сплющенным эллипсоидом вращения и полусферой.

Представляет интерес изучение таяния градин при их взаимодействии в условиях, моделирующих естественный процесс. Рассмотрена пара ледяных сфер разных размеров, ориентированных одна за другой вдоль воздушного потока и рядом, в контакте, поперек воздушного потока. В последнем случае эффект мал и, как не представляющий интереса, не приведен. Ледяные сферы помещаются на различных расстояниях Δx друг от друга. Частица, находящаяся в гидродинамической тени, вытягивается и принимает сфероконическую форму при $R < \Delta x < 2R$ и коническую форму

Рис. 3. Форма, принимаемая парой одинаковых градин, ориентированных вдоль воздушного потока одна за другой на расстоянии $\Delta x = 3/4 R$, R — радиус градины.

Рис. 4. Формы, получаемые при обдуве пары ориентированных вдоль воздушного потока градин, при обдуве потоком теплого водного аэрозоля. Рис. 5. Формы, принимаемые парой соприкасающихся равных ледяных сфер, расположенных одна за другой вдоль воздушного потока $\Delta x = 0$.

Рис. 6. Форма, принимаемая сферической градиной в кильватере дважды большей градины на расстоянии $\Delta x = 3/4 R, R$ —радиус передней градины.

Рис. 7. Форма, принимаемая сферической градиной в кильватере дважды большей градины при их непосредственном соприкосновении $\Delta x = 0$. при $R/2 < \Delta x < R$ (рис. 3). При одинаковых условиях опыта и одинаковой продолжительности таяния конус, полученный при $\Delta x = 0$ (рис. 5 и 7), вытянут более, чем в 1,6 раза, нежели в случае $\Delta x = 3/4 R$ (рис. 3 и 6). При значениях $\Delta x > (2 \div 2,5) R$, где R есть радиус передней ледяной сферы, эффект не обнаруживается.

Рис. 6 и 7 показывают формы пары градин для случая, когда размеры сферы, находящейся в кильватере, в два раза меньше градины, находящейся перед ней. Указанные выше интервалы формирования конических форм для сфер одинаковых размеров, как видно из фотографий, остаются почти неизменными в последнем случае. Только при $\Delta x = 0$ маленькая градина целиком погружена в турбулентный поток (рис. 7) и поэтому она вытягивается сильнее, чем в первом случае (рис. 5).

Стало быть, в гидродинамической тени градины имеются условия для формирования градин конической формы различной степени вытянутости.

Рис. 8. Таяние разноориентированных ледяных сфероконических форм. Стрелка показывает направление воздушного потока:

а-конус ориентирован апексом навстречу потоку воздуха; б-вершина конуса обращена к потоку воздуха

Рис. 9. Изменение степени эллипсоидальности є при таянии:

1-градины, ориентированные апексом навстречу воздушному потоку; 2-градины, ориентированные вершиной конуса навстречу потоку воздуха

На рис. 8, а и б приведены результаты таяния сфероконических форм, разно ориентированных вдоль воздушного потока; стрелки показывают направление воздушного потока. На рис. 9 приведены для обоих случаев кривые зависимости степени эллипсоидальности $\varepsilon = h/d$ от отношения d/d_0 , где h — высота конуса; d — диаметр основания конуса; d_0 — его значение в начальный момент таяния.

На градине, обращенной апексом навстречу воздушному потоку, из-за наличия большего слоя воды обтаивание вдоль диаметра основания протекает медленнее, чем во втором случае. Кроме того, в случае (рис. 8, *a*) вершина конуса не притупляется, по всей вероятности, из-за того, что она обтачивается с боков в турбулентном следе; в случае рис. 8, *б* имеет место характерное сплющивание [3]. Этими причинами, по-видимому, вызвано смещение кривых на рис. 9.

Были проведены опыты по изучению таяния, изменению массы в единицу времени градины, находящейся в турбулентном следе. Было обнаружено более интенсивное таяние последней по сравнению с передней градиной примерно на 10%.

Наконец, изучался спектр капель, сорванных с поверхности сферических градин, тающих в воздушном потоке при различных ско-

Рис. 10. Кривые зависимости радиуса капель наибольшего размера (верхняя) в данном спектре и наиболее часто встречаемого размера (нижняя) при данной скорости обдува v. ростях обдува. На рис. 10 представлены кривые зависимости максимального размера сорванных капель оттаивающей воды от скорости воздушного потока.

На рис. 11 дано распределение по размерам сдутых капель при скоростях воздушного потока 10 *м/сек* и 30 *м/сек*. Как видно из рисунка, при v = 10 *м/сек* кривая сильно размыта и максимум лежит в области кривых капель $r \approx 0.8$ мм; при v = 30 *м/сек* кривая заметно суживается и перетягивается к более однородному спектру и максимум приходится примерно на частицы размера $r \approx 0.2$ мм.

Крупная фракция, интересующая нас, снималась на фильтро-

вальную бумагу, покрытую красителем. Мелкая — взятием проб на масле. На рис. 11 приведены результаты измерений грубодисперсной фракции; поэтому кривая для v = 30 м/сек резко обрывается слева. На рис. 12 показана проба на масле, взятая при v = 20 м/сек. Отчетливо видна граница большой капли ($r \approx 0,4$ мм) и мелкие капли, осевшие на нее (r = 30 µ). Кривые рис. 11 не учитывают мельчайших капелек радиусом r < 100 µ.

Траектория сдуваемых капель в турбулентном следе за градиной носит случайный характер. Большие капли тем чаще возврашаются вновь на тающую градину с ее тыльной стороны, чем

меньше скорость обдува. Наличие гидродинамической тени способствует одновременному выпадению градин различного размера. В самом деле, наблюдаемый при выпадении крупного града спектр градин является довольно широким, в то время как мелкий град или крупа имеют сравнительно однородный спектр. Отмечаемая выше неоднородность может возникнуть либо при одновременном выпадении градин различного размера в нисходящих потоках воздуха, либо из-за упоминаемого эффекта вовлечения; в противном случае мелкие частицы не смогли бы сами преодолеть сравнительно сильных восходящих потоков воздуха. Указанные выше обстоятельства, а именно повышенный теплообмен

в турбулентном следе градины и эффект вовлечения в него частиц осадков позволяют заключить, что в холодной части облака. попавшие в гидродинамическую тень большой градины леляные частицы могут примерзнуть к ней, а в теплой же части атмосферы эффект таяния будет тем заметнее. чем меньшего размера окаградина, попавшая жется в тыл большей. За счет вовлечения в кильватер большой градины могли образоваться приведенные в сообщении Лауе формы необычного града [12]: гради-

Рис. 11. Зависимость относительной концентрации сорванных капель данного размера от радиуса капель при таянии:

1-при v=10 м/сек; 2-при v=30 м/сек

ны диаметром 8—10 см облеплены ледяными шариками диаметром более 1 см.

В сильно развитом кучевом облаке, когда выпадает крупный град, градины, находящиеся вблизи нулевой изотермы, могут явиться поставщиками гигантских капель, которые, срываясь с поверхности градин, могут быть перенесены восходящими потоками воздуха в переохлажденную часть облака. При условиях, когда кристаллизация протекает под жидкой пленкой воды [2], а также при большой водности, что имеет место на стадии, когда идет крупный град, наряду с таянием будет наблюдаться приток воды к градине. В работе [11] утверждается, что при взрыве переохлажценных капель воды повышается температура их замерзания, г. е. ускоряется процесс замерзания капель. Учитывая этот эффект и принимая во внимание тот факт, что к середине и к концу градобития размеры градин и их плотность увеличиваются, можно цопустить, что в механизме образования крупного града немалозажную роль играет срыв оттаявшей и аккумулированной воды. При этом мелкая фракция фигурирует в масштабе «зародышей» градин, крупные же капли в результате спонтанного замерзания могут явиться «растущими» градинами (градины с прозрачным ядром).

Таким образом, явление отрыва капелек от градины из пояска водяного слоя должно играть определенную роль в эволюции спектра выпавшего на землю града.

Рис. 12. Спектр капель, полученный на масле для скорости воздушного потока v=20 м/сек.

В заключение выражаю благодарность научному руководителю доктору физико-математических наук, профессору Качурину Л. Г. за внимание к работе и ценные замечания.

ЛИТЕРАТУРА

- 1. Качурин Л. Г., Гашин Л. И. Кристаллизация тонких пленок жидкости. Труды III совещания по росту кристаллов АН СССР, М., 1965.
- 2. Качурии Л. Г. К теории обледенения самолетов. Изв. АН СССР, сер. геофиз., № 6, 1962.
- 3. Гвелеснани А. И. К вопросу изменения формы градин при таянии. Труды ин-та геофизики АН Грузинской ССР, т. XXV, вып. 1, 1967.
- 4. Kidder R. E., Carte A. E. Structures of artificial hailstones. J. Rech. Atm., № 4, 1964.
- 5. Hallet J. Observations of the structure of conicol hailstones. J. Rech. Atm., № 3, 1965.
- 6. Mossop S. C., Kidder R. E. Artificial hailstones. Bull. Obs. Puy de Dome, 2, 1962.
- List R. On the grouth of hailstones. Nubila IV, 1961.
 Browning K. A., Ludlam F. H., Macklin W. C. The density and structure of ice formed by accretion. Quart. J. R. Met. Soc., vol. 89, № 379, 1963.
- 9. Macklin W. C. Factors affecting the heat transfer from hailstones. Quart. J. R. Met. Soc., vol. 90, № 383, 1964.
- 10. Blachard D. C. Artificial stimulation of rain. Weickamann et Smith ed. Pergamon Press, 1957.
- 11. Randall K. L. Drop freesing through drop breakup. J. Atm. Soc., 22. № 4, 1965.
- 12. Lowe A. B. Some Unusual Hailstones. Weatherwise, 18, № 2, 1965.
- 48

М. Н. Бейтуганов (ВГИ ГУГМС)

ДРОБЛЕНИЕ КАПЕЛЬ ВОДНЫХ РАСТВОРОВ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Известно, что под действием электрического поля капля воды деформируется; в сильных полях — с выбросом тонких капельных струй. Исследованию этого явления был посвящен ряд работ: поведение капель в воздухе изучалось в [1—2], в жидкостях — [3]. Учет деформации и разбрызгивания необходим при расчете конденсационно-коагуляционных явлений в грозовом облаке, а также при изучении электрического пробоя в воздухе и в жидких средах.

В работе [1] экспериментально установлена следующая зависимость между напряженностью электрического поля *E*, при которой наступает неустойчивость капли, и ее радиусом *r*:

$$Er^{\frac{1}{2}} \sigma^{-\frac{1}{2}} = \operatorname{const}, \qquad (1)$$

где о — коэффициент поверхностного натяжения воды.

Тэйлор [2] сделал попытку определить значение const в уравнении (1); рассматривая уравнение равновесия капли эллипсоидальной формы в электрическом поле, он получил

$$Er^{\frac{1}{2}} \sigma^{-\frac{1}{2}} = MI, \qquad (2)$$

где
$$M^2 = 8 \pi a^{4/3} (2 - a^{3/2} - a^{3/2}); a = b^2 a^{-2}; I = \frac{1}{2} e^{-3} \ln (1 + e)$$

 $(1-e)^{-1}-e^{-2}$; *а* и *b* — соответственно большая и малая полуоси эллипса; *e* — эксцентриситет.

Для капли воды с диэлектрической проницаемостью ε_2 , находящейся в жидкости с диэлектрической проницаемостью ε_1 , в работе [3] получена зависимость между E и r, которая в наших обозначениях имеет вид:

$$Er^{\frac{1}{2}} = 1062 \left[\varepsilon_1^{\frac{1}{2}} \ (\varepsilon_1 - \varepsilon_2)^{-1} - C_1 \ \varepsilon_1^{-\frac{1}{2}} \right] \ H_1, \tag{3}$$

где $H_1^2 = 2\alpha^{-3/2}$ $[2 - \alpha - \alpha^3];$ $C_1 = \alpha^2 (1 - \alpha^2)^{-1}$ $[\cos h^{-1} \alpha^{-1} (1 - \alpha^2)^{-3/2} - 1].$ 4 Зак. 243 49 Из физических соображений следует, что нестабильность капли должна зависеть от ряда физических величин, не входящих в приведенные уравнения. Опыты [1—3] проводились с каплями чистой воды, между тем в естественных условиях капли обычно являются электролитами, что, как будет ясно из дальнейшего, существенно меняет условия устойчивости капли в электрическом поле.

Настоящая работа посвящена изучению деформации капель водных растворов электролитов в электрическом поле. Капля помещается на границе раздела двух несмешивающихся жидкостей: четыреххлористого углерода и трансформаторного масла. Поле создается между обкладками плоского конденсатора, находящегося в жидкости. Обкладки конденсатора соединены с источником постоянного высокого напряжения. Напряженность поля между обкладками меняется с помощью делителя напряжения в пределах до 2 кв/см. Наблюдение за поведением капли осуществляется с помощью длиннофокусного микроскопа. По мере увеличения напряженности поля, капли начинают деформироваться, превращаясь в эллипсоид с большой полуосью, параллельной направлению напряженности поля. При этом каждой E_i соответствует определенное соотношение $(a/b)_i$. При определенной величине напряженности поля деформированная капля эллипсоидальной формы с соотношением между полуосями a/b = 1,6-1,8 без дальнейшего увеличения поля начинает быстро вытягиваться в направлении поля. Обозначим эту предельную напряженность, при которой капля становится нестабильной, через Е_н.

При $E = \text{const} > E_{\text{H}}$ один конец сильно вытянувшейся капли превращается в конус, после чего от его вершины начинают отрываться капельки, т. е. начинается дробление. Через некоторое время капля прекращает дробиться. Для того, чтобы она возобновила дробление, следует увеличить напряженность поля до значения, определяющегося радиусом оставшейся после первого дробления капли.

В большинстве опытов (примерно 95%) дробление начинается с той стороны капли, которая обращена к отрицательному полюсу внешнего источника поля. Если увеличить напряженность, то дробление начинается с другого конца. Изменяя величину напряженности поля, можно менять размер отрывающихся от вершины конусов капелек: с увеличением напряженности уменьшается их величина. В результате отрыва капелек дробящаяся капля испытывает реактивное смещение в противоположном направлении. Опыты были проведены для капель различных водных растворов электролитов с различной концентрацией: кислотами HCl, H₂SO₄, HNO₃; щелочами LiOH, NaOH, KOH; солями NaCl, KCl, K₂CO₃, Na₂CO₃, Ba(OH)₂.

Опыты показали, что из вышеперечисленных растворов в интервале концентраций от 0,001 до 3,4 *г-моль/л* в поле напряженностью до 450 *в/см* дробятся только капли водных растворов щелочей LiOH, NaOH, KOH, а также K₂CO₃ и Na₂CO₃, которые, растворяясь в воде, образуют KOH и NaOH.

Установлено соотношение между $E_{\rm H}$ — величиной напряженюсти электрического поля, при которой наступает нестабильность капли определенного радиуса, и концентрацией C.

В наших опытах, так же как и в опытах с каплями чистой воды, связь между $E_{\rm H}$ и r^{-16} оказалась близкой к линейной. На рис. 1 показана соответствующая зависимость для 0,05 г-моль/л, раствора КОН. С учетом рис. 1, на рис. 2 на оси ординат отложена величина Er^{16} в CGSE. Опыты проводились с каплями радиусом 0,08—0,09 см.

Рис. 1. Зависимость напряженности нестабильности $E_{\rm H}$ от $r^{-\varkappa}$

Рис. 2 показывает, что зависимость напряженности, при котоюй наступает нестабильность от концентрации раствора, во-перых, очень сильная и, во-вторых, экстремальная. $E_{\rm H}$ имеет минииум для разных растворов при разных концентрациях. На рис. 2 ,ля наглядности левее основной оси ординат нанесена ось $E_{\rm H}$ в/см ри r=r=0.08 см.

Опыты были проведены в переменном поле с частотой 50 гц.

Оказалось, что в пределах воспроизведения параметров в опыах кривые зависимости между $E_{\rm H}$ и концентрацией для постояного и переменного поля совпадают.

Постараемся объяснить полученные результаты.

При замене воздушной среды вокруг капли чистой воды кидкостью в уравнении (2) меняется только величина о. Вычислим величину напряженности поля, необходимую дл наступления нестабильности капли воды в масле. Примен $\sigma = 37 \ \partial u h/cm$ [2], $r = 0.09 \ cm$, a/b = 1.6, тогда по (2) получаем

$$E_{\rm H} = 9,71 \cdot 10^3 \ {\rm s/cm}.$$

Расчет напряженности по формуле (3) для значений $H_1 = 2,0$ и $C_1 = 0,21$ (значения H_1 , C_1 взяты из [3] при a/b = 1,6) дает

 $E_{\rm H} = 6.75 \cdot 10^3 \ {\rm B/CM}.$

Рис. 2. Зависимость $E_{\mathbf{n}} r^{\frac{1}{2}}$ от концентрации раствора С.

Наши опыты с растворами (см. выше) дают значительно мень шую величину $E_{\rm H}$, особенно в области экстремума. Выше не рас сматривалась роль ионов в процессе деформации и дроблени капель, между тем их наличие сказывается двояко: стремясь смє ститься в электрическом поле, они способствуют деформаци капли, но одновременно, создавая собственное электрическое пс ле, способствуют уменьшению результирующего электрическог поля в капле, тем самым препятствуя ее деформации.

Соотношения между силами, действующими на каплю с ди электрической проницаемостью ε_2 в среде с диэлектрической проницаемостью ε_1 , если каплю для наглядности представить в вид

тараллелепипеда с квадратным сечением d^2 и длиной l, могут быть представлены в следующем виде:

$$\frac{z_2 - z_1}{4\pi} d^2 \left[E_{\rm H} - E_{g} \right]^2 + g \left[E_{\rm H} - E_{g} \right] - \sigma d \left(1 - \frac{d}{l} \right) = 0, \quad (4)$$

де g — эффективный интегральный заряд всех ионов, находяиихся в капле, а E_g — поле, создаваемое этими зарядами.

Первое слагаемое в уравнении (4) — пондемоторные силы, дейтвующие на диэлектрик, оно учитывает силы, действующие на звязанные заряды. Второе слагаемое выражает силы, действуюцие на свободные заряды, а третье слагаемое — изменение позерхностных сил, связанных с изменением отношения dll.

С увеличением концентрации раствора увеличивается число вободных зарядов в капле, что способствует усилению эффекта (еформации, а тем самым уменьшению $E_{\rm H}$. Однако с увеличением концентрации наблюдается и противоположный эффект, способтвующий увеличению $E_{\rm H}$. Свободные заряды, в соответствии с засоном Пуассона, создают электрическое поле, противоположное по направлению исходному. В результате действия обоих эффектов нависимость $E_{\rm H}$ от концентрации оказывается экстремальной.

Таким образом, уравнение (4) дает экстремальную зависичость $E_{\rm H}$ от концентрации. Так как подвижность положительных чонов больше, чем подвижность отрицательных ионов, в единицу эремени к положительному полюсу поляризованной капли прихоцит несколько больше ионов, чем к отрицательному.

Этим и объясняется, на наш взгляд, тот факт, что дробление преимущественно начинается с положительного конца капли.

Ниже приводятся некоторые факты, подтверждающие наши представления о деформации и дроблении капли.

1. Если капли одинакового размера одной и той же конценрации помещать в электрическое поле разной величины напрякенности, то время, необходимое для начала дробления, отсчитыаемое от момента включения поля до начала дробления, зависит т величины напряженности электрического поля. Опыты были гроведены для капель водного раствора КОН радиусом 0,06-1,07 см и концентрации 0,07 г-моль/л. Результаты приведены на ис. 3, где на оси абсцисс отложена напряженность поля в B/cM, а а оси ординат время т сек. График показывает, что, чем больше апряженность поля, тем меньше время, необходимое для начала робления капли. Это является доказательством того, что для насопления количества заряда в единице объема у поверхности апли, необходимого для начала деформации, наступления нестаильности и последующего дробления, требуется определенное ремя. Чем больше напряженность поля в растворе, тем с бользей скоростью разделяются заряды, так как скорость движения арядов прямо пропорциональна напряженности поля. Подавая ольшее поле, мы увеличиваем скорость движения ионов, а значит

за меньшее время мы собираем необходимое для начала деформа ции количество зарядов в единице объема у экватора вдоль поля

Отметим, что время, проходящее от момента включения поля да начала дробления, при постоянном амплитудном значении пол: не зависит от его частоты в пределах до $5 \cdot 10^4 \ eq$. Видимо, для больших частот такая зависимость должна наблюдаться, так кан подвижность ионов зависит от частоты переменного поля.

Рис. 3. Зависимость времени т, проходящего от момента включения поля до начала дробления, от напряженности поля.

2. Если довести напряженность поля до величины, при которої начинается дробление, т. е. отрыв капелек от вершин конусообраз ных концов капли, потом, отключив поле и выждав определенноє время τ_1 — время ожидания, снова включить поле, то время τ , не обходимое для последующего начала дробления, будет зависети от τ_1 . Эта зависимость показана на рис. 4, где по абсциссе отло жена $\lg \tau_1 се\kappa$, а по ординате $\tau се\kappa$; опыты проведены для $0,01 \ e-monb/n$ раствора KOH.

Рисунок показывает, что чем больше время ожидания т₁, тем большее время т требуется для начала последующего дробления 54

Это означает, что после выключения поля заряды, находящиеся у поверхностей, в результате диффузии начинают рассеиваться, т. е. перераспределяться. Это явление ускоряется кулоновским взаимодействием зарядов: Процесс перераспределения зарядов можно представить как разряжающийся конденсатор, пространство между обкладками которого заполнено диэлектриком с определенной диэлектрической проницаемостью большей, чем у чистой воды.

Рис. 4. Зависимость времени т, проходящего от момента включения поля до начала дробления, от времени ожидания т₁ сек.

Рассматривая дополнительные силы, возникающие из-за наличия свободных разделенных зарядов на границе раздела сред перед началом деформации, нужно учитывать при этом их взаимодействие. Когда капля мало отличается от сфероида, заряды взаимодействуют сильнее. С увеличением деформации расстояние между разделенными зарядами увеличивается и силы взаимодействия между ними ослабевают. Это на наш взгляд объясняет тот факт, что существует напряженность нестабильности, когда без дальнейшего увеличения поля деформированная капля, предоставленная самой себе, начинает вытягиваться в поле и дробиться.

Представляет интерес проведение аналогичных исследований в высокочастотных полях как в жидких, так и в воздушных средах.

Автор выражает глубокую благодарность Л. Г. Качурину за руководство при выполнении данной работы.

ЛИТЕРАТУРА

i. Macky W. A. Some investigations on the deformation and breaking of water drops in strong electric fields. Proc. Roy. Soc., A 133 pp. 565-587, 1931. 2. Taylor G. I. Disintegration of water drops in an electric field. Proc. Roy. Soc., A 280 pp. 211-226, 1964. 3. Garton G. G. and Krasucki Z. Bubbles in insulating liquids: stability in an electric field. Proc. Roy. Soc., A 280 pp. 211-226, 1964.

Л. Г. Качурин, С. Р. Степаненко (ЛГМИ)

ПЕРЕСТРОЙКА СТРУКТУРЫ ТУМАНА И ИЗМЕНЕНИЕ ДАЛЬНОСТИ ВИДИМОСТИ ПРИ НАГРЕВАНИИ

Одна из стадий анализа возможностей метода улучшения видимости водяных туманов связана с определением изменения спектра капель тумана, вызванного нагреванием. Дальность видимости можно рассчитывать по формуле Траберта. Для расчета используем теорию конденсационных процессов, развитую в [1]. Правда, там речь шла об укрупнении капель при понижении температуры, а теперь речь идет об испарении капель при нагревании. Однако процесс рассматривается как термодинамически обратимый, поэтому полученные уравнения будут справедливы в обоих случаях. Напишем их в виде, удобном для выполнения численных расчетов

$$-\frac{df}{d\tau} = f \frac{L}{kT^2} \frac{dT}{d\tau} + \frac{4\pi Dn' MP}{kNT} \left[(f-1) \int_{0}^{\infty} \eta(r) r dr - \frac{2\sigma\mu}{\rho kNT} \right]; (1)$$
$$-\frac{dr}{d\tau} = \frac{1}{r^2} \frac{2\sigma\mu^2 DE^*}{(\rho kNT)^2} - \frac{1}{r} (f-1) \frac{D\mu E^*}{\rho kNT}, \qquad (2)$$

где f — относительная влажность воздуха; $\eta(r)$ — относительная функция распределения капель по размерам; D — коэффициент диффузии пара в воздухе; L — теплота испарения в расчете на одну молекулу; $\frac{dT}{d\tau}$ — скорость охлаждения тумана; P — давление воздуха; n' — число капель в единице массы тумана; M — молекулярный вес воздуха; τ — время; E^* — упругость насыщения пара относительно плоской поверхности воды при температуре T с учетом психрометрического эффекта; σ — поверхностное натяжение; μ — молекулярный вес воды; k—постоянная Больцмана; N—число Авогадро; ρ — плотность воды.

Если разбить интервал радиусов на N частей, то система двух уравнений (1), (2) превращается в систему N + 1 уравнений

с N + 1 неизвестными $(f, r_1, r_2, r_3, ..., r_N)$ которая может быть решена численно, в частности на ЭВЦМ. Точность расчетов определяется заданными величинами: числом N и шагом по времени $\Delta \tau$. Чем больше N и чем меньше шаг, тем больше объем вычислений, но зато тем более точным получим решение. Итак, вместо уравнений (1), (2) теперь будем иметь

$$-\frac{df}{d\tau} = f \frac{L}{kT^2} \frac{dT}{d\tau} + \frac{4\pi Dn' MP}{kNT} \left\{ (f-1) \sum_{i=m}^{N-1} \left[\eta(r_i) r_i + \eta(r_{i+1}) r_{i+1} \right] \frac{\Delta r_i}{2} - \frac{2 \sigma \mu}{\rho k NT} \right\};$$
(3)

$$-\frac{dr_i}{d\tau} = \frac{1}{r_i^2} \frac{2\sigma \,\mu^2 \, DE^*}{(\rho k \, NT)^2} - \frac{1}{r_i} \, (f-1) \, \frac{D\mu E^*}{\rho k \, NT}, \qquad (4)$$

где $i = 1, 2, 3 \dots N$.

Суммирование в формуле (3) ведется только по каплям тех размеров, которые не успели к данному моменту испариться, т. е. для которых выполняется условие

$$r_{mj} + \frac{dr_{mj}}{d\tau} \quad \Delta \tau > 0.$$

Величину $\overline{r^2}$ будем определять из равенства:

$$\overline{r^2} = \sum_{l=1}^{N} \left[r_{i-1}^2 \eta \left(r_{i-1} \right) + r_i^2 \eta \left(r_i \right) \right] \frac{\Delta r_i}{2}.$$
(5)

Зафиксируем в момент времени *j* два радиуса r_{ij} и r_{i+1j} . В момент времени *j* + 1 они будут иметь размеры соответственно $r_{ij} + \frac{dr_{ij}}{d\tau}$. $\Delta \tau$ и $r_{i+1j} + \frac{dr_{i+1j}}{d\tau} \cdot \Delta \tau$. Считая спектр капель не-прерывным, можно написать:

$$\varphi_{ij}\,\Delta r_{ij} = \varphi_{ij+1}\,\Delta r_{ij+1}\,. \tag{6}$$

Здесь ϕ — абсолютная функция распределения капель по размерам

$$\varphi_j(r_i) = n'_j \eta_j(r_i). \tag{7}$$

Количество капель n'_{j} на каждом шаге по времени будем определять из очевидного равенства:

$$n'_{i} = \sum_{i=1}^{N} \left[\varphi_{j} \left(r_{i-1} \right) + \varphi_{j} \left(r_{i} \right) \right] \frac{\Delta r_{i}}{2}.$$
 (8)

Система уравнений (3)—(8) является замкнутой. Для ее решения осталось задать начальные условия. При анализе опытов они задаются на основании результатов измерений.

Ниже при решении примеров начальное значение $\eta(r)$ при $\tau = 0$ было принято (см. [1]):

$$\eta (r) = \frac{r^2 \exp \left[-\frac{2}{c} \left(\frac{r}{r_{m_0}}\right)^c\right]}{\frac{r_{m_0}^3}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma \left(\frac{3}{c}\right)}.$$
(9)

Что касается $f(\tau)|_{\tau=0}$, то истинное начальное значение ее с достаточной степенью точности в туманах измерить не удается. Для определенности ниже принято:

$$f_0 = 1 + \frac{2 \sigma \mu}{\rho k N T r_{m_0}}.$$
 (10)

Следует иметь в виду, что роль исходного значения f велика только при малых т. Чем больше т, тем в меньшей мере f (0) сказывается на результате вычислений.

Итак, решая систему (3)—(8) шагами по времени с учетом начальных условий (9), (10), получаем зависимость n' и $\overline{r^2}$ от τ , а затем по формуле Траберта легко вычислить дальность видимости L.

Начальные параметры: $q_0=0,15 \ r/m^3$; $T_0=273^\circ$; $n'_0=4\cdot10^5 \ \frac{1}{r}$; $\frac{dT}{d\tau}=$ = 10⁻³ град/сек; 1-1.ачальная функция распределения ($\tau=0$); 2, 3, 4, 5, 6 — функции распределения соответственно при τ , равном 120, 240, 480, 240, 480 сек

На рис. 1 показан пример расчета трансформации спектра капель тумана при нагревании. Пунктиром, для сравнения, пока-

зана функция распределения $\varphi(r)$ при охлаждении. Теория не учитывает образование новых капель, поэтому n' монотонно уменьшается до нуля при нагревании стремится некоторому И Κ предельному значению при охлаждении тумана. Средний радиус г при нагревании вначале растет за счет более быстрого испарения

Рис. 2. Изменение дальности видимости L во времени при нагревании для различных начальных значений водности.

мелких капель, а затем, естеуменьшается; ственно, при охлаждении может только r vвеличиваться.

На рис. 2 показано, ĸäĸ меняется видимость во вре-Домени при нагревании. полнительный анализ показывает, что в данном случае эффект воздействия на туман сводится только к уменьшению n'; r при этом практически не меняется. Впрочем, этот вывод можно распространить и на реальные туманы; существенно может измениться только время, необходимое для увеличения видимости.

Мы рассмотрели изменение характеристик тумана при заданном значении $\frac{dT}{dr}$. Прак- $1 - q_0 = 0.07 \ \epsilon/M^3; \ 2 - q_0 = 0.15 \ \epsilon/M^2; \ 3 - q_0 = 0.30 \ \epsilon/M^3;$ значения остальных параметров те же, что на рис. 1 тический интерес представляет dQслучай, когда задается внешний приток тепла Развитый метод решения задачи о перестройке структуры тумана при нагревании остается справедливым и в этом случае; необходимо тольперейти к ко от по очевидной формуле:

$$\frac{dQ}{d\tau} = c_p \frac{dT}{d\tau} - L \frac{dS}{d\tau} + cS \frac{dT}{d\tau},$$
(11)

где *S* — количество жидкой влаги в единице массы аэрозоля: с_о — теплоемкость воздуха при постоянном давлении; с — теплоемкость воды; Q - количество тепла. 60

Пренебрегая последним слагаемым в формуле (11), легко получить

$$\frac{dT}{d\tau} = \frac{1}{c_p} \left(\frac{dQ}{d\tau} + 4\pi L\rho n \int_{0}^{\infty} r^2 \eta(r) \frac{dr}{d\tau} dr \right).$$
(12)

При дальнейшем усовершенствовании методики расчета могут быть введены в рассмотрение такие эффекты, как отличие коэффициента диффузии пара от молекулярного, флуктуации температуры и др. Однако следует иметь в виду, что при построении полной теории теплового метода рассеяния туманов придется делать ряд приближений, значительно более существенных, чем упомянутые выше.

ЛИТЕРАТУРА.

1. Качурин Л. Г., Алаптьева Л. Е., Ся Юй-жень. Концентрация пара и скорость роста капель конденсата в водных аэрозолях. Известия АН СССР, сер. геофиз., № 9, 1961.

В. И. Бекряев (ЛГМИ)

ТУРБУЛЕНТНАЯ НЕИЗОТЕРМИЧЕСКАЯ СТРУЯ В СТРАТИФИЦИРОВАННОЙ АТМОСФЕРЕ

В качестве исходных уравнений используем, как и в [1], уравнения изменения количества движения и избыточного теплосодержания в струе. В отличие от [1] откажемся от предположения, что струя на любом уровне переносится со скоростью сносящего потока, т. е. учтем инерционность струи. Инерционность струи преодолевается под действием двух факторов: ускорения струи за счет присоединения к ней воздуха, движущегося со скоростью окружающей среды, и ускорения под действием силы аэродинамического давления.

Рассмотрим струю, направленную под произвольным углом β_0 к горизонту (рис. 1). Тогда в направлении *z*, совпадающем с направлением исходного импульса струи, и в перпендикулярном ему направлении *x* изменение количества движения в струе можно записать в виде:

$$d(mw) = dm \cdot w^* + F_z dt + F_{a,z} \cdot dt, \qquad (1)$$

$$d(mu) = dm \cdot u^* + F_x \cdot dt + F_{a,x} dt.$$
(2)

Здесь w^* и u^* , w и u — составляющие по осям z и x скорости сносящего потока (ветра) и осредненной по сечению скорости газа в струе; m — секундная масса в струе.

Если принять, что сечение струи, перпендикулярное ее оси, является кругом, то секундная масса

$$m = \pi R^2 \, \rho' \, \sqrt{u^2 + w^2}, \tag{3}$$

где R — радиус струи; ρ' — осредненная по сечению плотность газа в струе.

Составляющие силы аэродинамического давления, действующей на элемент струи, равный секундной массе, можно соответственно записать:

$$F_{z} = \pm C_{a} - \frac{\rho (w^{*} - w)^{2}}{2} \cdot 2R |u|, \qquad (4)$$

$$F_x = \pm C_a \frac{\rho (u^* - u)^2}{2} \cdot 2R |w|,$$

где ρ — плотность воздуха вне струи; C_a — коэффициент аэродинамического сопротивления. Множители 2R|u| и 2R|w| представляют собой площади, на которые действует аэродинамическое давление. Так как площадь не может быть знакопеременной, то (во избежание возможных сокращений с действительными скоростями) u и w должны быть взяты здесь по абсолютной величине. Знак в правой части выражений (4) и (5) определяется соотношением

между скоростью струи и сносящего потока. Если (w^*-w)>0, (u^*-u)>0, то струя увлекается потоком и F_x , F_z >0. При (u^*-u)<0, (w^*-w)<0 в правой части выражений (5) и (4) нужно сохранить знак минус. Выбор знака упрощается, если квадрат разности скоростей представить в виде произведения, взяв один из сомножителей по абсолютной величине. Тогда:

$$F_{z} = C_{a} \rho (w^{*} - w) (|w^{*} - w|) R |u|, \qquad (4^{1})$$

$$F_{x} = C_{a} \rho (u^{*} - u) (|u^{*} - u|) R |w|.$$
(5¹)

63

(5)

Составляющие силы Архимеда по осям *z* и *x* можно представить в виде:

$$F_{a, z} = mg \frac{T' - T}{T} \cdot \sin \beta_0, \qquad (6)$$

$$F_{a,x} = mg \; \frac{T'-T}{T} \cdot \cos\beta_0 \,, \tag{7}$$

где T' и T — температуры струи и среды на соответствующем уровне; g — ускорение силы тяжести.

Используя (3) — (7) и заменяя

$$dt = \frac{dz}{w} = \frac{dx}{u},\tag{8}$$

получим уравнения для w и u:

$$\frac{dw}{dz} = \frac{1}{m} \frac{dm}{dz} \left(w^* - w \right) + \frac{C_a \cdot \rho \left(w^* - w \right) \left(\left| w^* - w \right| \right) R}{m} \frac{|u|}{w} + \frac{g}{m} \frac{T' - T}{T} \sin \beta_0 \right)$$
(9)

$$\frac{du}{dz} = \frac{1}{m} \frac{dm}{dz} (u^* - u) + \frac{C_a \rho (u^* - u) (|u^* - u|) R}{m} \cdot \frac{|w|}{w} - \frac{g}{w} \frac{T' - T}{T} \cos \beta_0.$$
(10)

Изменение теплосодержания в струе определяется изменением температуры среды, внешней по отношению к струе, γ и адиабатическим понижением температуры в струе в результате падения давления с высотой γ'_{α}

$$d [m (T' - T)] = m (\gamma - \gamma'_a) dZ$$
(11)

или с учетом того, что

$$dZ = dz \cdot \sin \beta_0 - dx \cos \beta_0 , \qquad (12)$$

$$dX = dz \cdot \cos \beta_0 + dx \cdot \sin \beta_0, \qquad (13)$$

$$\frac{dT'}{dz} = -\frac{1}{m} \frac{dm}{dz} (T' - T) - \frac{g}{c_p} \frac{T'}{T} \left(\sin \beta_0 - \frac{u}{w} \cos \beta_0 \right), \quad (14)$$

где c_p — теплоемкость воздуха при постоянном давлении.

Для того чтобы привести уравнения (9) и (10), (14) к расчетному виду нужно найти закон изменения секундной массы вдоль струи. Строгое теоретическое решение встречается здесь, по-видимому, с непреодолимыми трудностями. В связи с этим обычно используют различные экспериментальные константы. Широко 64 распространенным является предположение постоянства степени расширения струи [1, 2, 3]

$$\frac{dR}{dl} = \operatorname{tg} \alpha, \qquad (15)$$

где *l* — расстояние вдоль оси струи; *а* — угол между внешней границей струи и ее осью — угол раствора струи.

Экспериментально установлено [3], что на основном участке изотермической затопленной струи угол раствора ее является практически постоянным tg $\alpha = 0,22$. Легко, однако, показать, что в ряде случаев использование предположения (15) оказывается недостаточно оправданным. В частности, если вертикальная струя обладает отрицательным избыточным теплосодержанием, то решение уравнений (9, 10, 14) с учетом (15) приводит к нелепому пределу (T'-T) $\rightarrow -\infty$. Этот результат предопределяется тем, что струя ограничена линейно растущим с высотой радиусом, в то время как в реальных условиях происходит растекание воздуха в стороны. Наглядным примером этого является образование наковальни у мощных кучевых облаков, вершина которых достигает устойчивых слоев. Неприемлемо условие (15) также для спутных или встречных струй.

Рассмотрим затопленную струю. Изменение ее секундной массы компенсируется радиальным вовлечением воздуха из окружающей среды

$$\frac{dm}{dl} = 2\pi R \rho \, v_n \,, \tag{16}$$

 v_n — скорость потока вовлечения, нормального к оси струи. Относительное изменение секундной массы

$$\frac{1}{m}\frac{dm}{dl} = 2\frac{v_n}{w}\cdot\frac{T'}{T}\cdot\frac{1}{R}.$$
(17)

Найдем связь между выражениями (15) и (17). Условие (15), как уже отмечалось, хорошо выполняется для изотермической струи. Из уравнений (1), (2) для изотермической струи при $u^* = w^* = 0$ найдем

$$Rw = R_0 w_0. \tag{18}$$

Подставляя (3) и (18) в (17), получим

$$\frac{dR}{dl} = 2 \frac{v_n}{w}.$$
 (19)

Сравнивая (15) и (19), можно сделать вывод, что для изотермической струи $2 \frac{v_n}{w} = tg \alpha = c$. Величина *с* названа в работе [4] константой вовлечения.

5 Зак. 243

Относительное изменение массы струи (17) с учетом (19) может быть представлено теперь выражением

$$\frac{1}{m} \frac{dm}{dl} = \frac{c}{R} \frac{T'}{T},$$
(20)

отличающимся от приведенного в работе [4] множителем $\frac{1}{T}$.

Распространим выражение (20) на струю, искривленную сносящим потоком. Тогда из геометрических соображений

$$\frac{1}{m} \frac{dm}{dz} = \frac{1}{m} \frac{dm}{dl} \cdot \frac{dl}{dz} = \frac{c}{R} \frac{T'}{T} \frac{\sqrt{u^2 + w^2}}{w}.$$
 (21)

Изменение радиуса струи вдоль оси *z* найдем из (21), произведя соответствующие преобразования. Используем также уравнение статики в виде

$$\frac{1}{p} \frac{dp}{dz} = -\frac{Mg}{kNT} \left(\sin\beta_0 - \frac{u}{w}\cos\beta_0\right),$$

где *р* — давление воздуха; *М* — молекулярный вес воздуха; *k* — постоянная Больцмана; *N* — число Авогадро. Тогда

$$\frac{dR}{dz} = \frac{R}{2} \left[\frac{c}{R} \cdot \frac{T'}{T} \frac{\sqrt{u^2 + w^2}}{w} + \frac{Mg}{kNT} \left(\sin\beta_0 - \frac{u}{w} \cos\beta_0 \right) + \frac{1}{T'} \frac{dT'}{dz} - \frac{u}{u^2 + w^2} \frac{du}{dz} - \frac{w}{u^2 + w^2} \frac{dw}{dz} \right].$$
(22)

С учетом (21) приведем уравнения (9), (10), (14) к расчетному виду:

$$\frac{dw}{dz} = \frac{c}{R} \frac{T'}{T} \frac{\sqrt{u^2 + w^2}}{w} (w^* - w) + \frac{C_a (w^* - w) (|w^* - w|)}{\pi R \sqrt{u^2 + w^2}} \cdot \frac{T'}{T} \cdot \frac{|u|}{w} + \frac{g}{w} \frac{T' - T}{T} \sin \beta_0, \quad (23)$$

$$\frac{du}{dz} = \frac{c}{R} \frac{T'}{T} \frac{V u^2 + w^2}{w} (u^* - u) + \frac{C_a (u^* - u) (|u^* - u|)}{\pi R \sqrt{u^2 + w^2}} \frac{T'}{T} \frac{|w|}{w} - \frac{g}{w} \frac{T' - T}{T} \cos \beta_0, \quad (24)$$

$$\frac{dT'}{dz} = -\frac{c}{R} \frac{T'}{T} \frac{\sqrt{u^2 + w^2}}{w} (T' - T) - \frac{g}{c_p} \frac{T'}{T} \left(\sin\beta_0 - \frac{u}{w} \cos\beta_0 \right).$$
(25)

Для того, чтобы иметь возможность рассчитывать траекторию струи, замкнем систему (22)—(25) уравнением траектории

$$\frac{dz}{dx} = \frac{w}{u}.$$
 (26)

Система уравнений (22)—(26) позволяет рассчитать траекторию струи при любом угле наклона струи к горизонту. Траекторию струи в нормальных координатах можно непосредственно получить, воспользовавшись соотношением (12), (13), (26). Тогда

$$\frac{dZ}{dX} = \frac{dz \cdot \sin\beta_0 - dx \cdot \cos\beta_0}{dz \cdot \cos\beta_0 + dx \cdot \sin\beta_0} = \frac{\operatorname{tg}\beta_0 - \frac{u}{w}}{1 + \frac{u}{w}} \operatorname{tg}\beta_0.$$
(27)

Заметим, что составляющие скорости в струе w и u задаются здесь в координатах *хог*. Составляющие скорости в системе координат *XoZ* находятся из соотношений, аналогичных (12, (13):

$$W = \boldsymbol{w} \cdot \sin \beta_0 - \boldsymbol{u} \cdot \cos \beta_0 , \qquad (28)$$

$$U = \mathbf{w} \cdot \cos \beta_0 + u \cdot \sin \beta_0 \,. \tag{29}$$

Обычно газовая струя в атмосфере содержит некоторое количество водяного пара. Перемешивась с окружающим воздухом, также содержащим водяной пар, струя увлекает его за собой в слой, как правило, с более низкой температурой. В результате при определенных условиях в струе может начаться конденсация водяного пара. Выделяющееся тепло конденсации в свою очередь изменяет архимедову плавучесть струи.

Изменение удельной влажности в струе q' до уровня конденсации может быть записано аналогично (11)

$$d \left[(q'-q) \ m \right] = -m \ \frac{dq}{dz} \ dz, \tag{30}$$

где q — удельная влажность окружающей среды, или

$$\frac{dq'}{dz} = -(q'-q) \frac{c}{R} \frac{T'}{T} \frac{\sqrt{u^2 + w^2}}{w}.$$
 (31)

Заметим, что уравнение (31) может быть также использовано для расчета концентрации в струе любой газообразной или взвешенной примеси.

Перейдя в (31) от удельной влажности к относительной через соотношения:

$$\begin{array}{c}
q' = 0,622 \quad \frac{f' E'}{P}, \\
q = 0,622 \quad \frac{fE}{P}
\end{array}$$
(32)

:*

и использовав уравнение Клаузиуса-Клапейрона в виде

$$\frac{dE'}{dT'} = \frac{LE'\,\mu}{kN\,{T'}^2},\tag{33}$$

получим уравнение, позволяющее рассчитывать изменение отно сительной влажности в струе до уровня конденсации

$$\frac{df'}{dz} = f' \left[-\frac{Mg}{kNT} \left(\sin \beta_0 - \frac{u}{w} \cos \beta_0 \right) - \frac{L\mu}{kNT'^2} \frac{dT'}{dz} - \left(1 - \frac{fE}{f'E'} \right) \frac{c}{R} \frac{T'}{T} \frac{\sqrt{w^2 + u^2}}{w} \right].$$
(34)

Здесь f' и f — относительные влажности воздуха в струе и окружающей среде; L — теплота конденсации; µ — молекулярный вес водяного пара.

Если полагать, что вся сконденсировавшаяся влага увлекается струей, то для изменения удельной водности струи s' выше уровня конденсации можно записать уравнение

$$d \left[(Q' + s' - q) m \right] = -m \frac{dq}{dz} dz, \qquad (35)$$

где Q' — удельная влажность насыщения при температуре струи q' = Q' при f' = 1

$$-\frac{ds'}{dz} = \frac{0,622}{P} \left[\frac{LE' \mu}{k NT'^2} \cdot \frac{dT'}{dz} + \frac{ME' g}{k NT} \left(\sin \beta_{\theta} - \frac{u}{w} \cos \beta_0 \right) + \frac{c}{R} \cdot \frac{T'}{T} \frac{\sqrt{w^2 + u^2}}{w} \left(E' - fE + \frac{sP}{0,622} \right) \right].$$
(36)

С появлением в струе сконденсировавшейся влаги увеличивает ся вес единичного объема воздуха и соответственно уменьшается архимедова плавучесть. Архимедову силу с учетом веса сконден сировавшейся воды можно записать в виде

$$F_{a} = mg\left(\frac{T'-T}{T} - s'\right). \tag{37}$$

Как следует из выражения (37), архимедово ускорение може быть равным нулю не только при равенстве температуры струи в среды, но даже при значительном перегреве, если удельная вод ность струи оказывается достаточно большой.

С учетом (37) уравнения (9), (10) соответственно принимаю вид:

$$\frac{dw}{dz} = \frac{1}{m} \frac{dm}{dz} \left(w^* - w\right) + \frac{C_a \rho \left(w^* - w\right) \left(\left|w^* - w\right|\right) R}{m} \frac{|u|}{w} + \frac{g}{w} \left(\frac{T' - T}{T} - s'\right) \sin \beta_0, \qquad (38)$$

$$\frac{du}{dz} = \frac{1}{m} \frac{dm}{dz} (u^* - u) + \frac{C_a \rho (u^* - u) (|u^* - u|) R}{m} \frac{|w|}{w} - \frac{g}{w} \left(\frac{T' - T}{T} - s'\right) \cos \beta_0.$$
(39)

Выше уровня конденсации в уравнение (11) следует добавить слагаемое, учитывающее выделение тепла конденсации,

$$d [(T'-T) m] = m (\gamma - \gamma'_a) \ dZ + \frac{L}{c_p} \ m \ ds'.$$
(40)

Преобразуем (40) к расчетному виду:

$$\frac{dT'}{dz} = -\frac{\frac{c}{R} \frac{T'}{T} \frac{\sqrt{w^2 + u^2}}{w} \left[0,622 \frac{L}{c_p \cdot P} (E' - fE) + (T' - T) \right]}{1 + 0,622 \frac{L^2 E' \mu}{c_p k N T'^2 P}} - \frac{\left(0,622 \frac{E'}{P} \frac{Mg L}{k N T c_p} + \frac{g}{c_p} \frac{T'}{T} \right) \left(\sin \beta_0 - \frac{u}{w} \cos \beta_0 \right)}{1 + 0,622 \frac{L^2 E' \mu}{c_p k N T'^2 P}}, \quad (41)$$

или

$$\frac{dT'}{dz} = -\frac{\frac{c}{R} \frac{T'}{T} \frac{\sqrt{w^2 + u^2}}{w} \left[0,622 \frac{L}{c_p P} (E' - fE) + (T' - T) \right]}{1 + 0,622 \frac{L^2 E' \mu}{c_p k N T'^2 P}} - \frac{1}{\gamma'_{\text{B. a}} \left(\sin \beta_0 - \frac{u}{w} \cos \beta_0 \right)}, \qquad (42)$$

где $\gamma'_{B,a}$ — влажноадиабатический градиент.

Эффекты, которые учитываются уравнениями (36), (38), (39), (41) существенно проявляются только в струях, распространяющихся на значительные расстояния, например в мощных кучевых облаках. При этом необходимо сделать следующее замечание. Уравнения (36), (38), (39) получены в предположении, что вся сконденсировавшаяся влага увлекается вместе с воздушным потоком. В реальных облаках частицы конденсата, выросшие до знанительных размеров и обладающие некоторой скоростью движеия относительно воздуха, будут отставать от воздушного потока, увеличивая тем самым общую водность облака, исключая его предвершинную часть. Расчет изменения водности и других харакгеристик облака во времени не может быть непосредственно выполнен в рамках струйной модели. Однако, задавая определенный

профиль водности, учитывающий накопление сконденсировавшейся влаги в облаке, можно рассчитать, как при этом изменяются другие характеристики облака-струи.

Для облака-струи представляется интересным учесть выделение тепла, связанного с замерзанием переохлажденных капель в облаке при достижении определенных температур. Уравнение для избыточного теплосодержания с учетом выделяющейся теплоты кристаллизации можно записать аналогично (40)

$$d [(T'-T)m] = m (\gamma - \gamma'_a) \left(\sin\beta_0 - \frac{u}{w}\cos\beta_0\right) dz + \frac{L}{c_p} m ds' + \frac{L_3}{c_p} m ds'_a, \qquad (43)$$

где L_3 — удельная теплота замерзания; s'_{π} — количество закристаллизовавшейся воды в единичной массе воздуха, или, как иногда говорят, — удельная ледность. Доля замерзших в облаке капель J может быть представлена в соответствии с [5] выражением

$$\frac{dJ}{dt} = (1-J) \cdot 4/3 \ \pi r^3 \ \omega, \qquad (44)$$

или

$$\frac{ds'_{\pi}}{dt} = (s' - s'_{\pi}) \ 4/3 \ \pi r^3 \ \omega, \tag{45}$$

где ω — удельная вероятность замерзания; *г* — среднекубический радиус капель.

Переходя от производной по времени к производной по высоте, запишем

$$\frac{ds'_{\pi}}{dz} = (s' - s'_{\pi}) \frac{4/3 \pi r^3 \omega}{\varpi}.$$
(46)

Строго говоря, в выражении (46) в правой части в знаменателе следует писать не w, а w - v(r) — разность вертикальной скорости в струе и скорости падения капли радиусом r в спокойном воздухе. Однако в соответствии со сделанным выше предположением, что вся вода увлекается восходящим потоком, нужно принять v(r) = 0.

Удельная вероятность замерзания сильно зависит от температуры. Аналитическое выражение для $\omega = \omega(T')$ оказывается достаточно сложным и использование его затрудняется в связи с недостаточно надежной экстраполяцией входящих в него параметров в область отрицательных температур. Поэтому для практических расчетов может быть использована полученная Б. М. Воробьевым 70 формула, аппроксимирующая экспериментальные результаты различных авторов:

$$\omega = A (273 - T') e^{b (273 - T') - 1}, \qquad (47)$$

где $A = 2 \cdot 10^{-8}$ см⁻³ сек⁻¹; b = -0,615 град⁻¹. Таким образом, преобразуя (43) к виду

$$\frac{dT'}{dz} = -\frac{1}{m} \frac{dm}{dz} (T'-T) - \frac{g}{c_p} \frac{T'}{T} \left(\sin\beta_0 - \frac{u}{w} \cos\beta_0 \right) + \frac{L}{c_p} \left(\frac{ds'}{dz} + \frac{L_3}{L} \frac{ds'_{\pi}}{dz} \right)$$
(48)

и подставляя вместо $\frac{ds'}{dz}$ его значение из (36), а вместо $\frac{ds'_{\pi}}{dz}$ —

из (46), с учетом (47), можно рассчитать температуру в струё.

Если ненасыщенная струя распространяется в слое тумана или внутри облака, то следует учитывать затраты тепла на испарение капель, вовлекаемых в струю вместе с воздухом из окружающей среды. Аналогично следует учитывать изменение удельной влажности в струе до уровня конденсации и водности после уровня конденсации.

Изменение избыточного влагосодержания в ненасыщенной струе (до уровня конденсации) можно записать в виде

$$d [m (q'-Q-s)] = -md (Q+s), \qquad (49)$$

где Q и s — соответственно удельная влажность насыщения и водность в окружающей среде. Перейдем, как и ранее, к относительной влажности, предполагая при этом, что капли, попадающие в струю, испаряются достаточно быстро

$$\frac{df'}{dz} = f' \left[\frac{1}{P} \frac{dP}{dz} - \frac{1}{m} \frac{dm}{dz} \left(1 - \frac{fE}{f'E'} - \frac{sP}{0,622 f'E'} \right) - \frac{L\mu}{k N T'^2} \frac{dT'}{dz} \right].$$
(50)

Уравнение для избыточного теплосодержания до уровня конденсации должно учитывать затраты тепла на испарение

$$d\left[m\left(T'-T\right)\right] = m\left(\gamma-\gamma'_{a}\right) dZ - \frac{L}{c_{p}} s dm.$$
(51)

Преобразуя (51) к расчетному виду, получим для температуры струи

$$\frac{dT'}{dz} = -\frac{1}{m} \frac{dm}{dz} \left(T' - T + \frac{L}{c_p} s \right) - \frac{g}{c_p} \frac{T'}{T} \left(\sin \beta_0 - \frac{u}{w} \cos \beta_0 \right).$$
(52)

После уровня конденсации удельная водность в струе может быть определена из выражения, аналогичного (35),

$$d [m (Q' + s' - Q - s)] + m \cdot d (Q + s) = 0,$$
 (53)

где s'-суммарная удельная водность, определяемая конденсацией водяного пара при понижении температуры в струе и дополнительной водностью, обусловленной вовлечением

$$-\frac{ds'}{dz} = \frac{0.622}{P} \left[\frac{LE' \mu}{k NT'^2} \frac{dT'}{dz} - \frac{dP}{dz} - \frac{1}{m} \frac{dm}{dz} \left(E' - fE + \frac{(s'-s)P}{0.622} \right) \right].$$
 (54)

Так как вовлечение в насыщенную струю конденсированной влаги из окружающей среды не изменяет избыточное теплосодержание струи, то выше уровня конденсации расчет температуры следует вести по уравнениям (41), (42) или (48).

ЛИТЕРАТУРА

- 1. Качурин Л. Г., Бекряев В. И., Дыдина Г. П. Траектории турбулентных нагретых затопленных струй в атмосфере. Изв. АН СССР, сер. геофиз., № 12, 1964.
- 2. Pristley C. H. B., Ball F. K. Continuous convection from a isolated source of heat. Quart. Journ. Royal Met. Soc., vol. 81, № 348, 1955.
- Абрамович Г. Н. Теория турбулентных струй. Физматиз. М., 1960.
 S quirs B. P., Turner J. S. An entraining jet model for cumulonimbus updraughts. Tellus, vol. 14, № 4, 2002.
 Качурин Л. Г., Морачевский В. Г. Кинетика фазовых переходов
- воды в атмосфере. Изд-во ЛГУ, 1965.
В. И. Бекряев (ЛГМИ), Я. З. Бухман (ин-т «Унипромедь»), О. А. Степаненко (ЛГМИ)

ВЫСОКОСКОРОСТНАЯ ТУРБУЛЕНТНАЯ СТРУЯ, СОЗДАВАЕМАЯ РЕАКТИВНЫМ ДВИГАТЕЛЕМ. СРАВНЕНИЕ ТЕОРИИ И ЭКСПЕРИМЕНТА

Теория вертикальных турбулентных струй [1] проверялась в широком диапазоне условий и получила достаточно надежное экспериментальное подтверждение [2, 3]. Модификация теории [1] в изложении [4] для струи, направленной под произвольным углом к внешнему потоку, в частности для горизонтальной неизотермической струи, такой проверке не подвергалась. Представляется интересным сравнить результаты расчетов по схеме [4] с результатами наблюдений за распространением турбулентных струй, создаваемых турбореактивными двигателями РД-ЗМ. Такие наблюдения (по-видимому, впервые) были выполнены группой сотрудников института «Унипромедь» на Сибайском горнорудном карьере в 1968 г.

Ниже представлены результаты для двух пар опытов, проведенных соответственно на двух режимах работы двигателя.

Отвлекаясь от деталей, Сибайский карьер можно представить в виде перевернутого усеченного конуса с радиусом верхнего основания около 1 км и нижнего около 200 м, глубина карьера к моменту проведения опытов составляла 180 м. Двигатель был установлен на одном из уступов, на глубине 140 м от поверхности земли. В течение опыта проводилось фотографирование струи сбоку перпендикулярно ее движению. Визуализация струи достигалась с помощью дымовых шашек. Общие сведения об исходных параметрах струи и внешних условиях представлены в табл. 1.

Предварительные расчеты показывают, что характер распространения струи в значительной мере определяется метеорологическими условиями, в частности профилями температуры и скорости ветра. Измерения температуры воздуха и ветра производились в двух точках: на метеоплощадке, расположенной на борту карьера, и на глубине 150 м. Линейная интерполяция метеоэлементов между этими двумя точками представляется недостаточно надежной, тем более ненадежной представляется линейная экстра-

поляция профиля выше уровня поверхности земли. Однако в связи с отсутствием дополнительных данных при расчетах использобался линейный профиль.

Таблица 1

№ опыта	Режим работы двига- теля, <i>об\мин</i>	Средняя скорость исте- чения газа, <i>м/сек</i>	Средняя температура на срезе сопла, °К	Радиус солла, м	Азимут струи, град	Угол наклона струи к горизонту, <i>град</i>	Температура воздуха, °С		Ветер			
							на поверхности	на глубине 150 <i>м</i>	на поверхно- сти		на глубине 150 м	
									скорость, м/сек	направление	скорость, м/сек	направление
1a 16	3600 4200	285 412	591 721	0,43	48	0	. 11,6	13,9	0		0	
2а 2 б	3600 4200	285 412	593 7 2 3	0,43	48	-10	17,6	15,5	2,0	3Ю3	1,5	3

Экспериментальные и теоретические траектории представлены на рис. 1—3 в координатах: высота — удаление по горизонтали от сопла двигателя. Остановимся подробнее на анализе отдельных опытов.

Рис. І. Опыт 1а:

Траектории оси и контуры струи: эксперимент (сплошные линии) и расчет (прерывистые); горизонтальная пунктирная линня на этом и последующих рисунках соответствует уровню поверхности земли (140 м)

Опыт 1 проводился при штилевой погоде. Расчет для режима 1a (рис. 1) довольно близко совпадает с экспериментом, существенное отклонение наблюдается только выше карьера, где, по-видимому, существует некоторое движение воздуха. Поскольку абсолютный штиль — явление чрезвычайно редкое, то представляет интерес оценить возможный вклад в изменение траектории струи воздушных потоков, отмечаемых наблюдателями как штиль. Для режима 16 (рис. 2) расчет дан в виде области возможных положений расчетной траектории оси струи при изменении скорости ветра в пределах точности измерений от 0 (левая граница области — кривая 1) до 1 м/сек (правая граница — кривая 2).

Рис. 2. Опыт 16: 1, 2 — расчет траектории оси струи-для штилевых условий и скорости ветра 1 *м/сёк* соответственно; 3—экспериментальная ось струи

На рис. З представлены результаты опыта 2 а, б. В связи с тем, что исходное направление струи не совпадает с направлением ветра, при расчете учитывались составляющие скорости ветра, спутные относительно струи: 1,0 *м/сек* на дне карьера и 1,6 *м/сек* на поверхности. Для этого опыта характерно инверсионное распределение температуры и, как следствие этого, довольно резкое замедление скорости подъема на высотах, не достигающих еще уровня поверхности земли. Расхождения между теоретическими и экспериментальными траекториями для опыта 2 оказались больше, чем для опыта 1. Однако эти расхождения с учетом сделанных выше замечаний относительно точности измерений и правдоподобности линейных профилей метеоэлементов представляются вполне допустимыми для подобного рода опытов.

В целом приведенные результаты, с одной стороны, свидетельствуют об удовлетворительном соответствии теории и эксперимента, с другой стороны, показывают, что для детальной проверки

требуется очень точное определение профилей скорости и направления ветра и температуры — не только внутри карьера, но и выше его. Кроме того, требуются тщательные наблюдения за изменением метеорологических условий в карьере при работе струйной турбореактивной установки.

Рис. 3. Опыты 2а, 2б: сплошные линии-эксперимент; прерывистые-расчет

ЛИТЕРАТУРА

- 1. Качурин Л. Г., Бекряев В. И., Дыдина Г. П. Траектории турбулентных нагретых затопленных струй в атмосфере. Изв. АН СССР, сер. геофиз., № 12, 1964.
- Качурин Л. Г., Бекряев В. И. Дыдина Г. П. Исследование траекторий турбулентных струй в сносящем потоке. Труды ЛГМИ, вып., 21, 1966.
 Бекряев В. И., Гашин Л. И., Качурин Л. Г. Исследование необратимых фазовых переходов воды в атмосфере. Труды ЛГМИ, вып. 29, 1967.
 Бекряев В. И. Турбулентная неизотермическая струя в стратифицирован-Состативности с состативности с струка.
- ной атмосфере. См. настоящий сборник.

Л. Г. Качурин, Г. П. Дыдина (ЛГМИ)

О РАССЕЯНИИ ОБЛАКОВ И ТУМАНОВ НИСХОДЯЩИМИ СТРУЯМИ ВЕРТОЛЕТА

Возможность рассеяния туманов нисходящими потоками, созданными наземными вентиляторами, рассмотрена в работе [1]. В работе [2] описаны успешные опыты «пробивания» туманов вертолетами, летящими над верхней границей тумана. Известны, однако, случаи, когда в аналогичной ситуации вертолет не оставляет даже следа в нижележащем облаке или тумане. Поэтому представляет интерес теоретическое рассмотрение вопроса о воздействии струи вертолета на нижерасположенные облака или туманы.

Предположим, что вертолет «завис» над верхней кромкой облака. Тогда в нисходящем потоке, который он создает, будет происходить испарение облака. Если скорость потока задана и параметры облака известны, то теория [3, 4] позволяет оценить время испарения облачной частицы

$$\frac{dr^3}{d\tau} = -\frac{3 LE \mu}{4\pi \rho_n nk T'^2 MP} \cdot \frac{dT'}{d\tau}, \qquad (1)$$

где r — радиус облачных капель; L — скрытая теплота испарения воды; E — упругость насыщения водяного пара; μ — молекулярный вес воды; τ — время; $\rho_{\rm B}$ — плотность воды; n — концентрация частиц в единице массы; k — постоянная Больцмана; T' — температура облака; M — молекулярный вес воздуха; P — давление.

Если ввести в рассмотрение водность облака (в г/м³)

$$q = \frac{4}{3} \pi r^3 \frac{\rho_8}{\rho} n, \qquad (2$$

где р — плотность воздуха, то

$$\frac{dq}{d\tau} = -\frac{LE\,\mu^2\,\rho}{k\,N{T'}^2\,MP} \cdot \frac{dT'}{dz} \cdot \frac{dz}{d\tau} = -\frac{LE\,\mu^2\,\rho}{k\,N{T'}^2\,MP} \cdot \gamma \cdot w, \qquad (3)$$

где ү — вертикальный влажноадиабатический градиент температуры в облачной частице; w — вертикальная скорость потока. На участке движения воздушной частицы, где можно принять

$$\frac{E\,\gamma w}{T'^2} = \text{const},$$

время полного испарения облачной частицы может быть представлено в виде

$$\tilde{\tau} = \frac{qk N T'^2 MP}{EL \mu^2 \rho \gamma \omega}.$$
(4)

Соответственно путь полного испарения

$$\tilde{z} = w\tilde{\tau} = \frac{qk NT'^2 MP}{LE \mu^2 \rho \gamma}.$$
 (5)

Задавая w, q, T', мы получаем характерное время полного испарения облачной частицы.

Расчет показывает, что неконвективные облака (для них характерны токи $\sim 1 \ cm/ce\kappa$) естественным путем распадаются очень медленно: на это уходит несколько часов, впрочем столь же медленно они, как правило, и возникают. Одновременно из расчета следует, что искусственно созданный нисходящий поток, имеющий всего лишь несколько метров в секунду, способен быстро уничтожить неконвективное облако вне зависимости от стадии его развития. Следует также обратить внимание на то обстоятельство, что при изменении вертикальной скорости меняется время рассеяния, но сохраняется путь, проходимый облачной частицей до испарения.

Предположим, что над облаком или туманом появился вертолет. Под ним образуется нисходящий поток воздуха.

Винт формирует вертикальную струю. Скорость ее в том сечении, в котором расположен винт (обозначим его сечение 1) — так называемая характеристическая скорость вертолета, может быть рассчитана по приближенному уравнению [5]

$$w_1 = \left(2 \frac{P}{S \chi \rho}\right)^{\frac{1}{2}},\tag{6}$$

где *P* — секундный импульс силы тяги; *S* — площадь, ометаемая винтом; *х* — коэффициент концевых потерь.

Формула (6) с точностью до множителя х выражает связь между скоростью потока и динамическим давлением

$$\frac{P}{S} = \rho \frac{w_1^2}{2}.$$
 (7)

В сечении 2, где давление выравнивается с атмосферным, вертикальная скорость w_2 , как показывает теория, в два раза больше, чем в сечении 1, а площадь сечения 2 в два раза меньше. Расстояние между сечениями равно примерно диаметру винта. 78 Для вертолета типа МИ-1А диаметр винта D = 14,3 м, соответственно площадь, ометаемая винтом, S = 161,6 м², $\frac{P}{S} = 14,2 \kappa z/M = 14,2 \cdot 10^2 \ \partial u \mu/cm^2$. Если принять $\chi \approx 0,9$, $\rho = 1,3 \cdot 10^{-3} \ z/cm^3$, то $w_1 = 1560 \ cm/ce\kappa = 15,6 \ m/ce\kappa$.

В сечении $2-w_2=2 w_1 \approx 31,2 \ \text{м/сек}$, площадь $S_2=80,8 \ \text{м}^2$. Ниже сечения 2 развивается свободная турбулентная струя. Применив для приближенного расчета закон сохранения количества движения изотермической струи в виде

$$\frac{\sqrt{R}}{R_0} = \frac{w_0}{w} \tag{8}$$

и перейдя от *R* к *z* по закону

$$z = \frac{R - R_0}{\operatorname{tg} \alpha},\tag{9}$$

получим

$$w = \frac{w_0 R_0}{z \operatorname{tg} \alpha + R_0},\tag{10}$$

где *z* — отсчитывается вниз от сечения 2.

Рис. 1. Скорость нисходящих движений (*a*), радиус и время испарения облака (б) в струе вертолета: Пунктир – расчет без учета неизотермичности; $1-\gamma = -1^{\circ}/100 \ M$; $2-\gamma = 0; \ 3-\gamma = 1^{\circ}/100 \ M$; $R_{0} = 5 \ M$

На рис. 1 пунктиром показаны рассчитанные по уравнениям (8)—(10) скорость нисходящего потока *w* под вертолетом и радиус изотермической струи. Тангенс угла раствора принят равным

0,22. Расчет времени полного испарения облачной капли с учетом изменения ее скорсти движения производился по формуле

 $\tau = \int_{z_0}^{z_0 + \tilde{z}} \frac{1}{w} dz.$ (11)

Полагаем, что вертолет завис непосредственно над облаком. Судя по грубому расчету, он способен «пробить» облако значительной мощности. Зависнув над облаком с вертикальной мощностью 1 км, вертолет пробьет в нем конусное окно радиусом около 5 м в верхнем сечении непосредственно под вертолетом и 200 м в нижнем.

Следует иметь в виду, что оценка времени испарения облака в струе по формулам (4), (11) приближенна в основном в связи с неучетом перемешивания струи с окружающим воздухом. При полном расчете это должно быть введено в расчетную схему. Более определенным в этом отношении является путь полного испарения \hat{z} . В нашем примере он оказался равным ~ 50 м. Он несколько занижен из-за неучета зависимости γ от перемешивания.

Выше расчет выполнялся для изотермической струи. Между тем изложенная в [6] теория свидетельствует о том, что даже для небольших расстояний неизотермичность струи в реальной атмосфере может существенно изменить картину вертикальных токов в струе, а следовательно и результат расчета скорости испарения облака.

Опускаясь в область более высокого давления, воздух нагревается, одновременно в результате испарения облачных капель создается сток тепла. Возникает разность температур между струей и окружающим воздухом, даже если ее не было сначала непосредственно под вертолетом; струя испытывает архимедово ускорение и в результате этого либо тормозится, либо дополнительно разгоняется.

Легко понять (см. об этом подробнее в работе [7]), что этот эффект существенно зависит от температурной стратификации в облаке (или тумане). Все это учитывается в теории, развитой в [6, 7]. Используя ее, получаем возможность повторить расчет рассеяния облака, но теперь уже с учетом изменения температуры струи, вызванной влиянием стратификации атмосферы в облаке. Рассмотрено три варианта расчета (рис. 1): линия 1— в облаке инверсия 1°/100 м, линия 2—изотермия, линия 3— падение температуры с высотой с градиентом 1°/100 м. Расчет выполнен на ЭВЦМ «Раздан» по программе, составленной О. А. Степаненко.

Оказывается, уже на 100—200 м ниже вертолета температурная стратификация дает о себе знать. Размеры окна и времена испарения в примерах 1, 2, 3 оказываются существенно различными и отличающимися при том от тех, которые рассчитаны при условии изотермичности струи.

Учет стратификации существенно изменяет результаты расчетов. В неустойчивой атмосфере струя доходит до земли. Однако при изотермии струя пройдет вниз всего лишь на 250 м, потом получит ускорение, направленное вверх, совершит несколько циклов движения «вверх-вниз», затем заглохнет. В инверсии все это произойдет в еще более высоком слое облака.

Ветвь линии w со знаком «плюс» условна; на самом деле воздушная частица, получив ускорение, направленное вверх, столкнется с частицей, идущей вниз ей на смену; произойдет «разбрызгивание» струи в стороны и вниз. Ниже уровня разбрызгивания образуется так называемая воздушная подушка, куда струя не проникнет.

Если вертолет смещается по горизонтали или если он завис, но скорость ветра относительно его заметно отлична от нуля, то восходящие и нисходящие движения будут смещены друг относительно друга. Тогда знакопеременная ветвь линии w будет характеризовать волнообразное движение в следе вертолета.

Все четыре примера расчета, хотя они различны, говорят о возможности использования вертолетов для пробивания окон в облаках и туманах. Однако степень успешности этого мероприятия сильно зависит от стратификации атмосферы.

Следует иметь в виду, что рассмотрение велось применительно к случаям, когда вертолет находится над верхней кромкой облака или тумана. Если же выше вертолета также облако или туман, то перенос конденсата сверху вниз иногда будет способствовать не рассеянию, а наоборот уплотнению облака или тумана ниже вертолета (если водность с высотой растет).

Опыты по рассеянию туманов с помощью вертолетов были выполнены в 1968 г. в США (штат Виргиния). Вертолет типа СН-ЗЕ, пролетая на высоте около 30 м над верхней границей тумана (высота тумана 50—70 м, видимость в нем не более 100 м), в течение нескольких секунд пробил в нем окно радиусом около 250 м (рис. 2).

Видим, что как время рассеяния тумана, так и размеры пробитого отверстия в тумане по порядку величин близки к тем, которые могут быть получены расчетным путем при не очень устойчивой атмосфере.

Дальнобойность струи, а также время рассеяния определяют максимальную скорость, с которой может смещаться вертолет по горизонтали, оставляя под собой просветленный коридор. На рис. 3 показано, как двигающийся с горизонтальной скоростью ~ 50—70 км/час вертолет пробивает коридор в тумане, вертикальная мощность которого около 100 м.

На рис. 4 виден след полета самолета над облаком [8]. Видимо, нисходящая составляющая струй, которые создавались самолетами, проникала на небольшую глубину в облаке. По сообщению наблюдателя, ширина и глубина следа составляли около 250 *м*, след отставал от самолета примерно на 3 *км*.

Рис. 3. Коридор в тумане, созданный вертолетом. Виден мост и ведущая к нему дорога (США, штат Виргиния, 24/II—1968 г.).

В настоящей статье не рассматривался вопрос о том, с какой скоростью исчезает окно в тумане или облаке. Его постепенно затягивает в силу двух причин: имеет место турбулентный диффузионный поток капель из окружающей среды в окно и конденсация в окне, если облако (или туман) в целом развивается. И то и другое может быть рассчитано,

Рис. 4. След полета двух самолетов типа В-17 над слоистым облаком.

Если нисходящий поток не стационарный, а имеет импульсный характер, то его воздействие на облако определяется как количеством движения в потоке, так и стратификацией атмосферы. Судьба импульса при прочих равных условиях зависит от температурной стратификации атмосферы. В устойчивой атмосфере импульс постепенно гаснет, в неустойчивой — развивается; от того, что изображено на рис. 1, отличие лишь количественное. Разница в том, что при импульсном движении к сопротивлению перемешивания добавится «лобовое» сопротивление двигающегося вниз который создается в результате действия воздушного пузыря, нисходящего потока.

Если самолет кабрирует над облаком — распадающимся или развивающимся при небольшой устойчивости, то эффект его воздействия невелик. Если же бурно развивается кучевое облако, то это свидетельствует о сильной термической неустойчивости атмосферы и тогда кабрирование может привести к распаду облака.

Соответствующие опыты были проведены в СССР в 1960-х гг. [9, 10]. Они подтверждают развитые выше представления. Кучевые 6* 83 облака мощностью до 5—6 км через несколько минут после воз действия существенно понижали свою верхнюю границу или исчезали совсем. Опыты подтвердили также, что более интенсивныє развивающиеся облака разрушаются сильнее и быстрее.

Сброс в облако весомых частиц создает в нем силы, дополнительные к тем, которые были рассмотрены в [6]. Это может привести к деформации профиля вертикальных скоростей в облаке и тем самым повлиять на его судьбу.

Чтобы учесть это, в теорию [6] следует ввести дополнительно, отнесенную к секундной массе силу аэродинамического сопротивления *F'*. Если частицы распределены по объему равномерно, то

$$F' = S' n \rho' w \int_{0}^{\infty} C r^2 \frac{v^2}{2} \eta(r) dr, \qquad (12)$$

где n — концентрация сброшенных в облако частиц; $\eta(r)$ — функция их распределения по радиусам r; v — скорость их падения относительно облака; C — коэффициент, характеризующий аэродинамическое сопротивление; ρ' — плотность частиц.

При упрощенном рассмотрении можно, по-видимому, считать. что движение сброшенных частиц не очень сильно отличается от установившегося. Тогда сила аэродинамического сопротивления может быть заменена уравновешивающей ее силой тяжести, отнесенной к секундной массе облака

$$F' = S' \omega m g, \tag{13}$$

где *m* — масса сброшенных частиц, отнесенная к единице объема воздуха (в *с/см*³). Тогда получим уравнение

$$\frac{dw}{d\tau} = g \left[\frac{T'-T}{T} - \frac{m}{\rho'} \right] - w^2 \frac{c}{R} \frac{T'}{T}, \qquad (14)$$

где с — константа вовлечения, которая позволит оценить взаимную роль перегрева облака по отношению к атмосфере (первое слагаемое), перемешивания (третье слагаемое) и сброса (второе) Сброс, который может изменить знак ускорения струи, определим если положим в уравнении (14) левую часть равной нулю. Тогда в безразмерных единицах

$$\frac{m}{\rho'} = \frac{T' - T}{T} - \frac{w^2}{g} \frac{c}{R} - \frac{T'}{T}.$$
 (15)

Как следовало ожидать, эффект сброса сильно зависит от того в каком состоянии облако.

Если до сброса (при m=0) на каком-то уровне выполнялос условие $\frac{dw}{dz} = 0$, то после сброса появится направленное вних ускорение струи при любом самом малом количестве сброшенного 84 вещества. Однако в активной части облака, где первое слагаемое в уравнении (14) значительно больше третьего, т. е. где w резко растет с высотой, это ускорение сможет заметно изменить скорость, если левая часть формулы (15) окажется такого же порядка, что и каждое из слагаемых в правой части:

$$\frac{m}{\rho'} \approx \frac{T' - T}{T} \gg 10^{-3},\tag{16}$$

или при $\rho' \approx 10^{33} \ e/cm^3$; $m > 10^{-6} \ e/cm^3 = 1 \ e/m^3$. Это следовало ожидать. Чтобы бороться путем сброса с причинами, порождающими восходящий поток, необходимо вводить в облако громадное количество веществ, не меньшее, чем масса воды в облаке.

Выше шла речь о частицах, которые, попадая в облако, не меняют своих размеров. Опустившись до уровня, на котором они уравновешиваются восходящим потоком, частицы будут накапливаться, и если сброс продолжается, то это может привести к появлению вблизи этого уровня нисходящего потока. Тогда вышележащая часть облака лишится подтока влаги и начнет рассеиваться. Процесс распада будет распространяться вниз, но с ослабевающей интенсивностью.

Положение существенно улучшится, если сбрасываются частицы, растущие в облаке. Тогда величина *m*, а следовательно, и эффект сброса может увеличиться во много раз, при том он окажется зависящим как от степени дисперсности частиц, так и от их поверхностных свойств. Условие (16) может оказаться выполненным в значительной части облака, появится нисходящий поток, который разрушит облако.

Через некоторое время ему на смену придет другое, так как, уничтожив облако, мы не устраним причину его возникновения, но для возникновения нового облака потребуется время. В некоторых случаях подобное временное освобождение пространства (например, района аэродрома) от кучево-дождевых облаков имеет смысл.

Создать же нисходящий поток в термически неустойчивой атмосфере, в том месте, где пока нет еще восходящего потока, можно, сбросив небольшое количество вещества. Далее, аналогично тому, как это изображено на рис. 1, нисходящий поток будет развиваться, черпая из атмосферы энергию термической неустойчивости.

Если облако уже образовалось, то для создания нисходящего потока требуется преодолеть восходящий поток. Здесь скажет свое слово свойство неразрывности воздуха: либо развитие нисходящих движений приведет к тому, что восходящие токи ослабнут или исчезнут совсем (а вместе с ними и облако), либо, несмотря на запас энергии неустойчивости, искусственно созданный нисходящий поток исчезнет.

При оценке результатов расчетов не следует забывать, что мы рассматриваем судьбу потока, изолированного от других вертикальных и горизонтальных движений в пространстве.

В 1960-х гг. была выполнена серия сбросов в кучево-дождевые облака размолотого цемента [9, 10]. Опыты оказались удачными: несколько десятков килограммов цемента - частиц размером в несколько десятков микрон — обычно приводили к распаду облаков, но одновременно усиливали турбулентность.

Направленный вниз импульс может быть создан, как уже указывалось выше, самолетом. Пролетая по горизонтали над облаком или в его верхней части, самолет воздействует на облако силой, равной подъемной силе самолета. Пикируя на облако сверху, он изменяет количество движения в струе силой, пропорциональной массе самолета и ускорению пикирования; кабрируя, он посылает навстречу облачному потоку мощный высокоскоростной нисходящий поток, создаваемый турбинами его двигателей. Оценка эффекта пикирования может быть выполнена аналогично тому, как это делалось применительно к сбросу частиц. Оценка эффекта кабрирования связана с решением задачи о встречных струях.

Авторы благодарят В. И. Бекряева за плодотворную дискуссию.

ЛИТЕРАТУРА

- 1. Зилитинкевич С. С. Динамический метод рассеяния тумана. Исследование по физике облаков и активным воздействиям на погоду. Докл. на VII межведомственной конференции. ГМИ, 1967.
- 2. Vernon G. Plank. Clearing Ground Fog with Helicopters. Weatherwise. 91-98, 126 (June), 1969.
- 3. Качурин Л. Г., Алешина Г. И., Беляшова М. А., Заливи-на В. И., Кудрявцева В. И., Нестерова М. И., Серебрякова А. А., Серякова Л. П. Анализ зон осадков из фронтальных облаков слоистых форм. Труды ЛГМИ, вып. № 5-6, 1956.
- 4. Качурин Л. Г., Алантьева Л. Е., Ся Юй-жень. Концентрация пара и скорость роста капель конденсата в водных аэрозолях. Изв. АН СССР, серия геофизич., № 9, 1961.
- 5. Юрьев Б. Н. Аэродинамический расчет вертолетов. Оборонгиз, М., 1956.
- 6. Качурин Л. Г., Бекряев В. И., Дыдина Г. П. Траектории турбулентных нагретых затопленных струй в атмосфере. Изв. АН СССР, серия геофизич., № 12, 1964. 7. Бекряев В. И. Турбулентная неизотермическая струя в стратифициро-
- ванной атмосфере. См. настоящий сборник.
- 8. Vernon G. Plank. Comments on «An experiment on fog dispersion by the use of downward air current by the fall of water drops, J. Appl. Meteorol. 3. No. 2, p. 213-214, 1964.
- 9. Вульфсон Н. И., Левин Л. М., Черепанова Е. П. Разрушение развивающихся конвективных облаков искусственно созданными нисходящими сгруями. Изв. АН СССР, ФАО, т. VI, № 1, 1970.
- 10. Гайворонский И. И., Зацепина Л. П., Серегин Ю. А. Результаты опытов воздействия на конвективные облака. Изв. АН СССР, ФАО, т. VI, № 3, 1970.

Н. Д. Быкова (ЛГМИ)

НЕКОТОРЫЕ ОСОБЕННОСТИ ИСКУССТВЕННОГО ПРОСВЕТЛЕНИЯ ТУМАНОВ С ПОМОЩЬЮ РЕАГЕНТОВ, ИНТЕНСИФИЦИРУЮЩИХ КОНДЕНСАЦИОННЫЕ ПРОЦЕССЫ

Наиболее успешно метод искусственного просветвления используется при рассеянии переохлажденных туманов с помощью кристаллизующих реагентов.

Упругость водяного пара над искусственно созданными ледяными частицами-кристалликами оказывается значительно Меньше, чем над переохлажденными каплями: кристаллики интенсивно растут поглощая водяной пар, упругость пара в тумане становится меньше насыщающей над каплями и последние испаряются. Происходит процесс конденсационной перегонки водяного пара с капель на кристаллы. Если концентрация искусственно созданных кристалликов подобрана удачно (см. ниже), то это приводит к тому, что туман становится оптически более прозрачным.

Предположим, что при температуре $t < 0^{\circ}$ С в монодисперсном водяном тумане в результате действия реагента во всем объеме равномерно распределились ледяные частицы. Концентрацию (число их в единице массы) водяных и ледяных частиц обозначим $n_{\rm B}$ и $n_{\rm a}$, их радиусы будем характеризовать $r_{\rm B}$ и $r_{\rm a}$. Для упрощения расчетов ледяные частицы полагаем сферическими.

Поток пара к $n_{\rm B}$ сферическим каплям определяется уравнением [1]

$$\left(\frac{dJ}{d\tau}\right)_{\rm B} = 4\pi r_{\rm B} n_{\rm B} D \frac{\mu}{k NT} (e - E_{\rm r}^{\rm B}) =$$
$$= 4\pi r_{\rm B} n_{\rm B} D \frac{\mu}{k NT} \left[(e - E_{\infty}^{\rm B}) - E_{\infty}^{\rm B} \frac{2\sigma_{\rm B} \mu}{\rho_{\rm B} k NT r_{\rm B}} \right], \qquad (1)$$

где *D* — коэффициент диффузии пара; µ — молекулярный вес воды; *k* — постоянная Больцмана; *N* — число Авогадро; *T* — абсолютная температура; е — упругость пара в аэрозоле; $E_{\infty}^{\text{в}}$ — упругость насыщения пара относительно плоской поверхности воды при температуре T; $\rho_{\text{в}}$ — плотность воды; $\sigma_{\text{в}}$ — поверхностное натяжение воды при температуре T.

Заменив е на $fE_{\infty}^{\text{в}}$ (f — относительная влажность), приходим к выражению

$$\left(\frac{dJ}{d\tau}\right)_{\rm B} = \frac{4\pi D n_{\rm B} r_{\rm B} \mu E_{\infty}^{\rm B}}{k NT} \left[(f-1) - \frac{2 \sigma_{\rm B} \mu}{\rho_{\rm B} k NT r_{\rm B}} \right].$$
(2)

Поток пара к *п*_л ледяным кристалликам (считаем их сферическими) аналогично выражению (2) запишется

$$\left(\frac{dJ}{d\tau}\right)_{\pi} = \frac{4\pi D n_{\pi} r_{\pi} \mu E_{\infty}^{\pi}}{k N T} \left[\left(f \frac{E_{\infty}^{B}}{E_{\infty}^{\pi}} - 1 \right) - \frac{2\sigma_{\pi} \mu}{\rho_{\pi} k N T r_{\pi}} \right], \quad (3)$$

где E_{∞}^{n} — упругость насыщения пара относительно плоской поверхности льда при температуре T; σ_{n} — поверхностное натяжение льда при температуре T; ρ_{n} — плотность льда.

Уравнение баланса воды в тумане имеет вид

$$\left(\frac{dJ}{d\tau}\right)_{\rm B} + \frac{dS}{d\tau} = -\left(\frac{dJ}{d\tau}\right)_{\rm B},\qquad(4)$$

где $\frac{dS}{d\tau}$ — удельная концентрация пара в аэрозоле. Для изотермического процесса

$$\frac{dS}{d\tau} = \frac{\mu}{MP} \frac{de}{d\tau} = \frac{\mu E_{\infty}^{B}}{MP} \frac{df}{d\tau},$$
(5)

где *М* — молекулярный вес воздуха; *Р* — давление воздуха. Тогда уравнение (4) можно записать в виде

$$\frac{4\pi Dn_{\rm B}r_{\rm B}\mu E_{\infty}^{\rm B}}{kNT} \left[(f-1) - \frac{2\sigma_{\rm B}\mu}{\rho_{\rm B}kNTr_{\rm B}} \right] + \frac{\mu E_{\infty}^{\rm B}}{MP} \frac{df}{d\tau} + \frac{4\pi Dn_{\rm A}r_{\rm A}\mu E_{\infty}^{\rm A}}{kNT} \left[\left(f - \frac{E_{\infty}^{\rm A}}{E_{\infty}^{\rm B}} \right) - \frac{2\sigma_{\rm A}\mu}{\rho_{\rm A}kNTr_{\rm A}} \cdot \frac{E_{\infty}^{\rm A}}{E_{\infty}^{\rm B}} \right] = 0 \quad (6)$$

или после элементарных преобразований получим первое дифференциальное уравнение

$$\frac{df}{d\tau} + f \frac{4\pi DMP}{kNT} (n_{\rm B}r_{\rm B} + n_{\rm A}r_{\rm A}) - \frac{4\pi DMP}{kNT} \left(n_{\rm B}r_{\rm B} + n_{\rm A}r_{\rm A}\frac{E_{\infty}^{\rm A}}{E_{\infty}^{\rm B}}\right) - \frac{8\pi D\mu MP}{(kNT)^2} \left(\frac{n_{\rm B}\sigma_{\rm B}}{\rho_{\rm B}} + \frac{n_{\rm A}\sigma_{\rm A}}{\rho_{\rm A}}\frac{E_{\infty}^{\rm A}}{E_{\infty}^{\rm B}}\right) = 0.$$
(7)

Приравняв $\left(\frac{dJ}{d\tau}\right)_{\rm B}$ изменению массы капли, получим второе дифференциальное уравнение

$$\left(\frac{dJ}{d\tau}\right)_{\rm B} = 4\pi r_{\rm B}^2 \rho_{\rm B} \frac{dr_{\rm B}}{d\tau} = 4\pi r_{\rm B} D \frac{\mu E_{\infty}^8}{kNT} \left[(f-1) - \frac{2\sigma_{\rm B} \mu}{\rho_{\rm B} kNT r_{\rm B}} \right]$$
(8)

или, решая относительно $\frac{dr_{\rm B}}{d\tau}$,

$$\frac{dr_{\rm B}}{d\tau} + \frac{1}{r_{\rm B}^2} - \frac{2\sigma_{\rm B}\mu^2 DE_{\rm \infty}^{\rm B}}{(\rho_{\rm B}kNT)^2} - \frac{1}{r_{\rm B}} (f-1) \frac{D\mu E_{\rm \infty}^{\rm B}}{\rho_{\rm B}kNT} = 0.$$
(9)

Аналогично формуле (9) для роста ледяного кристалла

$$\frac{dr_{n}}{d\tau} + \frac{1}{r_{n}^{2}} \frac{2\sigma_{n}\mu^{2}DE_{\infty}^{n}}{(\rho_{n}kNT)^{2}} - \frac{1}{r_{n}} \left(f\frac{E_{\infty}^{B}}{E_{\infty}^{n}} - 1\right)\frac{D\mu E_{\infty}^{n}}{\rho_{n}kNT} = 0.$$
(10)

Мы получили систему трех дифференциальных уравнений с тремя неизвестными $r_{\rm B}$, $r_{\rm A}$, f и аргументом τ .

Решим эту систему уравнений для следующих начальных и граничных условий:

при
$$\tau = 0$$
, $n_n = 0$, $f_0 = 1 + \frac{2\sigma_{\rm B}\mu}{\rho_{\rm B}kNTr_{\rm B}}$;

при τ → ∞ справедливо уравнение баланса влаги (капли, кристаллы, водяной пар) в виде

$$\frac{4}{3} \pi r_{B}^{3} \rho_{B} n_{B} + \frac{\mu E_{\infty}^{B}}{kNT} \left[1 + \frac{2\sigma_{B-\pi} \mu}{\rho_{B} kNT r_{B}} \right] = \frac{4}{3} \pi r_{\pi}^{3} \rho_{\pi} n_{\pi} + \frac{\mu E_{\infty}^{A}}{kNT} \left[1 + \frac{2\sigma_{\pi-\pi} \mu}{\rho_{\pi} kNT r_{\pi}} \right].$$
(11)

Начальные параметры тумана: $r_{\rm e} = 6 \cdot 10^{-4}$ см, $h_{\rm B} = 10^5 \, e^{-1}$, P = 1000 мб, $t = 10^{\circ}$ С. Для расчета видимости использовалась формула Траберта, в которой в качестве суммарной поверхности использовалась величина

$$r_{\rm B}^2 n_{\rm B} + r_{\rm A}^2 n_{\rm A} \,. \tag{12}$$

Результат решения этой задачи представлен на рис. 1, из которого следует, что эффект просветления тумана сильно зависит как от концентрации вводимого в туман реагента, так и от времени срабатывания механизма переконденсации. Как показывает ход кривых 2, 3, при подобных процессах имеет место инкубационный период, когда видимость увеличивается незначительно, но затем резко возрастает до максимума и далее плавно спадает до установившегося состояния. Притом существенно, что чем больше установившаяся видимость, тем больше требуется времени для достижения как максимума, так и установившегося состояния.

Перестроим рис. 1. По оси абсцисс отложим концентрацию реагента, по оси ординат — отношение рассчитанной максимальной видимости (кривая 1) и рассчитанной установившейся видимости (кривая 2) к исходной (рис. 2). На этом же рис. 2 показано 90

время установления устойчивой видимости (кривая 3), время инкубации (кривая 4) и разность этих времен (кривая 5). Из рис. 2 следует, что чем меньше вводить реагента (но в разумных пределах), тем большей видимости в конечном счете можно добиться, но ждать придется долго, так как, как видно из рис. 3, очень медленно происходит процесс переконденсации (кривая 3). С другой стороны, когда ледяных кристаллов много, капли (кривая 1 на рис. 3) испаряются быстро, но дальность видимости увеличивается незначительно из-за большого количества ледяных кристаллов (кривая 1 на рис. 1).

Таким образом, имеются оптимальные условия, когда время срабатывания реагента не слишком велико, но притом и эффект просветления не слишком мал.

Основная искусственность выполненного расчета обусловлена тем, что он относится к туману бесконечной вертикальной протяженности, засеянного равномерно. Туман конечной протяжен-

Рис. 3. Время переконденсации с капель на ледяные кристаллы при различных дозировках реагента. *1, 2, 3*-рост ледяных кристалов и испарения капель при $n_n = 10^3 e^{-1}$, $n_n = 10^2 e^{-1}$, $n_n = 10^2 e^{-1}$

ности, даже если он засеян равномерно, будет постепенно очищаться от выросших до значительных размеров ледяных частиц, так как они, отяжелев, будут падать на землю. Дальнейшее уточнение решения связано с учетом этого обстоятельства, а также психрометрического эффекта.

Выражаю благодарность руководителю Л. Г. Качурину.

ЛИТЕРАТУРА

1. Качурин Л. Г., Морачевский В. Г. Кинетика фазовых переходов воды в атмосфере. Изд-во ЛГУ, 1965.

Б. М. Воробьев (ЛГМИ)

К РАСЧЕТУ ЗАМЕРЗАНИЯ КАПЕЛЬ В КУЧЕВЫХ ОБЛАКАХ

По современным представлениям, образование ледяных частиц в атмосфере, по крайней мере при температурах не ниже — 65°, является вторичным процессом и осуществляется путем замерзания водяных капель [1—3]. В этом случае в развитии процесса кристаллизации переохлажденного облака можно выделить следующие весьма различные, но зависимые друг от друга стадии:

1) зарождение в переохлажденной капле кристаллических зародышей — «центров кристаллизации»;

2) последующий рост образовавшихся кристаллов — процесс собственно замерзания капли;

3) конденсационно-коагуляционные процессы в фазово-неоднородном облаке, направленные в сторону перехода влаги из жидкой фазы в твердую.

Следует иметь в виду, что помимо указанного выше основного кристаллизующего механизма не исключена возможность образования ледяных частиц в облаках и в результате таких дополнительных процессов, как расщепление («взрыв») замерзающих капель и заражение водяных облаков кристаллами извне [4—7, 23].

В настоящее время выполнено значительное число работ, в которых рассматриваются кристаллизационные процессы в облаках. До сих пор, однако, отсутствует единая точка зрения относительно начальной стадии этих процессов, связанной с появлением в переохлажденной капле гетерофазных зародышей — «центров кристаллизации». Различают два механизма образования кристаллических зародышей и соответственно два механизма замерзания капель: г о м о г е н н ы й (спонтанный, самопроизвольный), происходящий в объеме чистой жидкости, и г е т е р о г е н н ы й, происходящий на поверхности содержащейся в жидкости примеси [6, 8—13]. Сравнение указанных механизмов на основании экспериментов, выполненных с большим числом переохлажденных капель, явно говорит в пользу теории гомогенной кристаллизации.

Так, в случае охлаждения водного аэрозоля теория гомогенной кристаллизации предсказывает понижение температуры замерзания капель с увеличением скорости охлаждения. Эта зависимость вытекает из исходного положения гомогенной теории о пропорциональности скорости кристаллизации переохлажденного аэрозоля вероятности образования гетерофазных ледяных зародышей. являющейся, в свою очередь, функцией температуры. В то же время, с точки зрения гетерогенной теории, указанной зависимости не должно наблюдаться, поскольку замерзание капель при этом определяется лишь свойствами содержащихся в них примесей. В настоящее время эффект понижения температуры замерзания капель с увеличением скорости охлаждения можно считать экспериментально доказанным [10, 13-15], хотя и имеются различия в количественной величине этого эффекта, обусловленные условиями проведения опытов (степенью чистоты воды, способом охлаждения капель и определения их агрегатного состояния и т. д.).

Детальное исследование кинетики кристаллизации в изотермических условиях выполнено недавно в [16]. Опыты велись с высокодисперсным водным аэрозолем, составляющим дисперсную фазу эмульсии типа «вода-масло», в широком диапазоне температур ($-20^{\circ} \div -50^{\circ}$ С). Обнаруженное в этих опытах отчетливо выраженное экспоненциальное уменьшение скорости кристаллизации от времени убедительно подтверждает теорию гомогенной кристаллизации.

Аналогичная временная зависимость скорости кристаллизации получена в лабораторных опытах [13] и в естественных условиях [25] при замерзании переохлажденного тумана. С точки зрения гетерогенного механизма, указанный эффект не должен иметь место, поскольку в изотермических условиях по этой гипотезе кристаллизуются лишь те капли, в которых содержатся «активные» при данной температуре примеси, а остальные должны все время оставаться не замерзшими.

Таким образом, эксперименты, выполненные в двух существенно разных режимах кристаллизации, подтверждают справедливость гомогенной теории, что дает возможность применить ее к расчету естественного замерзания капель в переохлажденных кучевых облаках.

Исходное кинетическое уравнение для расчета относительного числа P капель радиуса r, замерзших к моменту времени τ , имеет, как известно, вид [3, 8]:

$$P = 1 - \exp\left(-\int_{0}^{\tau} \omega \frac{4}{3} \pi r^{s} d\tau\right), \qquad (1)$$

где ω — вероятность (скорость) образования гетерофазных ледяных зародышей в единице объема за единицу времени. 94 В свою очередь, согласно флуктуационной теории фазовых превращений [9, 17]:

$$\omega = \exp\left[C - \frac{u}{kT} - \frac{16 \pi \sigma_*^3}{3 \, kT \, \rho_*^2 \, L_*^2 \, \left(\ln \frac{T_0}{T}\right)^2}\right], \qquad (2)$$

где C — некоторая константа, определяемая из опытов; u — энергия активации молекул, характеризующая их подвижность в жидкости; k — постоянная Больцмана; ρ_* — плотность ледяного кристалла; L_* — удельная теплота плавления; T, T_0 — температура и температура стабильного равновесия фаз соответственно; σ_* — поверхностная энергия по границе раздела фаз «жидкость — кристалл».

Основные трудности при расчетах замерзания капель связаны с вычислением функции ω , зависящей от таких параметров переохлажденной воды, как величина межфазной поверхностной энергии σ_* на границе «вода-лед» и константа *C*. Прямых методов измерения величины σ_* пока не существует. Однако она может быть сравнительно легко определена косвенным путем, если имеются надежные экспериментальные данные о скорости спонтанного образования «центров кристаллизации» при различных температурах.

В самом деле, логарифмируя и дифференцируя уравнение (2) по *T*, получим

$$\frac{d \ln \omega}{dT} = \frac{u}{kT^2} - \frac{16 \pi \sigma_*^3}{3 kT^2 \rho_*^2 L_*^3 \left(\ln \frac{T_0}{T} \right)^3} \left[3 T L_* \ln \frac{T_0}{T} \cdot \frac{d\sigma_*}{dT} + \sigma_* \left(2 L_* - 2T \ln \frac{T_0}{T} \cdot \frac{dL_*}{dT} - L \cdot \ln \frac{T_0}{T} \right) \right].$$
(3)

Уравнение (3) решается относительно σ_* , если известен закон ее изменения от температуры. Предположим сначала, что σ_* не зависит от температуры, т. е.

$$\frac{d\sigma_*}{dT} = 0. \tag{4}$$

Тогда из уравнения (3) сразу получаем уравнение для нахождения σ_*

$$\sigma_{*} = \left[\frac{3k\rho_{*}^{2} T^{2}L_{*}^{3} \left(\ln \frac{T_{0}}{T} \right)^{3} \left(\frac{u}{kT^{2}} - \frac{d\ln\omega}{dT} \right)}{16\pi \left(2L_{*} - 2T \cdot \ln \frac{T_{0}}{T} \cdot \frac{dL_{*}}{dT} - L_{*} \cdot \ln \frac{T_{0}}{T} \right)} \right]^{\frac{1}{3}}.$$
 (5)

Константа C в этом случае определяется непосредственно из уравнения (2) подстановкой в него значений σ_{st}

$$C = \ln \omega + \frac{u}{kT} + \frac{16 \pi \sigma_*^3}{3 kT \rho_*^2 L_*^2 \left(\ln \frac{T_0}{T} \right)^2}.$$
 (6)

Рассмотрим другой вариант функциональной связи о_{*} (T). Примем, исходя из теоретических соображений [3], что

$$\frac{\sigma_{*}}{L_{*}\rho_{*}^{\#}} = \frac{\sigma_{*0}}{L_{*0}\rho_{*0}^{\#}}$$
(7)

(индекс (₀) относится к значениям параметров при 0°С), откуда, ввиду малой зависимости плотности льда от температуры:

$$\sigma_* = \sigma_{*_0} \frac{L_*}{L_{*_0}} \tag{8}$$

И

$$\frac{d\sigma_*}{dT} = \frac{\sigma_{*0}}{L_{*0}} \frac{dL_*}{dT}.$$
(9)

С учетом соотношений (8) и (9) из уравнения (3) будем иметь

$$\sigma_{*_0} = \left[\frac{\left(\ln \frac{T_0}{T}\right)^3 \cdot 3k\rho_*^2 T^2 \left(\frac{u}{kT^2} - \frac{d\ln^*\omega}{dT}\right) \cdot L_{*_0}^3}{16 \pi \left(T \ln \frac{T_0}{T} \cdot \frac{dL_*}{dT} + 2L_* - L_* \ln \frac{T_0}{T}\right)} \right]^{\frac{1}{2}}.$$
 (10)

Подставив формулу (10) в (8), получим другое расчетное уравнение для определения величины σ_*

$$\sigma_{*} = L_{*} \ln \frac{T_{0}}{T} \left[\frac{3 k \rho_{*}^{2} T^{2} \left(\frac{u}{kT^{2}} - \frac{d \ln w}{dT} \right)}{16 \pi \left(T \ln \frac{T_{0}}{T} \cdot \frac{dL_{*}}{dT} + 2L_{*} - L_{*} \ln \frac{T_{0}}{T} \right)} \right]^{*}.$$
 (11)

Константа С и в этом случае находится непосредственной подстановкой в уравнение (2) значений σ_* из уравнения (11). Нередко при расчетах спонтанного замерзания вместо выра-

Нередко при расчетах спонтанного замерзания вместо выражения (2) используют уравнение Турнбалла-Фишера [18]

$$\omega = \frac{n k T}{h} \exp\left[\frac{u}{kT} - \frac{16 \pi \sigma_*^3}{3 k T \rho_*^2 L_*^2 \left(\ln \frac{T_0}{T}\right)^2}\right],$$
 (12)

где n — число молекул в единице объема жидкой фазы; h — постоянная Планка. Заметим, что предэкспоненциальный множитель $\frac{n kT}{h}$, аналогичный по смыслу множителю exp (C) в уравнении (2), введен Турнбаллом и Фишером не вполне строго.

Из уравнения (12) сразу получаем выражение для «

$$p_* = \left[\frac{3 k T \rho_*^2 L_*^2 \left(\ln \frac{T_0}{T}\right)^2}{16 \pi} \left(\ln \frac{n k T}{h} + \frac{u}{kT} - \ln \omega\right)\right]^{\frac{1}{2}}.$$
 (13)

Уравнения (5), (11) и (13) позволяют, по найденным в опытах значениям скорости образования гетерофазных ледяных зародышей, определить величину межфазной поверхностной энергии σ_* .

Как мы уже отмечали, наиболее надежные эксперименты по спонтанной кристаллизации переохлажденных капель воды, в том числе и определение скорости образования кристаллических зародышей, выполнены недавно в [16]. Используя результаты этих опытов, а также данные о величине энергии активации [19] и удельной теплоты плавления [20], были вычислены, согласно изложенным методам, значения параметров σ_* и C.

Суммарные результаты расчетов представлены на рис. 1. Цифры 1 и 2 в параметрах σ_* и С соответствуют двум различным исходным предположениям относительно функциональной зависимости σ_* (*T*), описываемым уравнениями (4) и (7). Кривая σ_{**3} — результат расчета по уравнению Турнбалла—Фишера.

Судя по результатам вычислений, имеют место существенные расхождения в оценках величины межфазной поверхностной энергии, обусловленные как выбором конкретного вида основного уравнения замерзания, так и заданной при расчетах формой связи $\sigma_* = f(r)$. Особенно велики расхождения между σ_{*_2} , определенной по формуле (11), и σ_{*_3} , найденной непосредственно из уравнения Турнбалла-Фишера. Значения этих величин отличаются друг от друга в среднем более чем в два раза (во всяком случае в диапазоне температур от — 25°С до — 50°С). Более того, оказываются совершенно противоположными и зависимости их от $d\sigma_*$.

температуры: $\frac{d\sigma_{*_3}}{dT} > 0$, a $\frac{d\sigma_{*_3}}{dT} < 0$.

Возрастание величины межфазной поверхностной энергии с понижением температуры, найденное из уравнения Турнбалла—Фишера, не может быть объяснено с точки зрения классической теории фазовых превращений, предполагающей пропорциональность поверхностной энергии на границе фаз энергии фазового перехода молекул, образующих поверхность. Такое «аномальное» поведение функции σ_{*3} наряду с большими ее значениями, обусловленными

величиной предэкспоненциального множителя $\frac{n kT}{h}$, заставляет

¢

критически относиться к уравнению Турнбалла—Фишера и приводимым на его основе некоторыми авторами [2, 19, 20] значениям величины межфазной поверхностной энергии ~ 20 эрг/см². Наиболее достоверными в настоящее время следует считать значения σ_* и *С*, найденные по уравнениям классической теории фазовых превращений. Заметим, однако, что полученные здесь данные относительно значений σ_* и *С* носят оценочный характер. Более надежные значения этих параметров могут быть определены лишь на основании опытов по замерзанию большого числа капель при достаточно глубоком переохлаждении ($T < -50^{\circ}$ С), т. е. в области максимума функции $\omega(T)$.

В дальнейших вычислениях замерзания капель нами были использованы экспериментально найденные в [16] значения функции $\omega(T)$. Они представлены на рис. 2 и, как видно, довольно хорошо аппроксимируются зависимостью

$$\omega = B(T_0 - T) \exp [\beta (T_0 - T) - 1], \qquad (14)$$

где B, β — некоторые положительные константы, численно равные $2 \cdot 10^{-8} \ cm^{-3} ce\kappa^{-1}$ и 0,615 $\ cpad^{-1}$ соответственно. На этом же рисунке для сравнения нанесены результаты вычислений функции ω по 98

уравнению (2) с использованием значений σ_{*_2} и C_2 , взятых из рис. 1. Видно, что сильное расхождение теории с экспериментом имеет место лишь в области сравнительно малых (менее $\sim -21^{\circ}$ C) переохлаждений.

Используем полученные результаты для расчета естественной кристаллизации кучевых облаков. Перепишем уравнение (1) в более удобном для расчетов виде:

$$P = 1 - \exp\left(-\int_{T_0}^{T} \omega \frac{4}{3} \pi r^3 \frac{dT}{T}\right) = 1 - \exp\left(\int_{T_0}^{T} \frac{\omega \frac{4}{3} \pi r^3}{\gamma (w - v)} dT\right). (15)$$

Здесь P — относительное число капель радиуса r, замерзших при температуре T; $\dot{T} = -dT/d\tau$ — скорость охлаждения капель; γ — вертикальный температурный градиент в облаке; w — скорость восходящих движений; v — гравитационная скорость падения капель радиуса r.

 7^*

Некоторые результаты вычислений вероятности P представлены на рис. 3. При расчетах значение γ принято равным 7°/км, а скорость восходящих движений составляет 20 м/сек (сплошные линии) и 10 м/сек (пунктир). Расчеты выполнены для капель радиусами 5, 50 и 500 мкм. Видно, что появление отдельных замерзших капель происходит с той или иной вероятностью P в довольно широком диапазоне температур. Так, например, замерзание одной капли радиусом 500 мкм из тысячи таких же по размеру переохлажденных капель (т. е. при $P = 10^{-3}$) происходит при температуре $\sim -18^{\circ}$ С, а тысячная доля мелких капель радиусом 50

Рис. 3. Зависимость относительного числа (P) замерзших капель радиуса r от температуры в кучевом облаке. $w=10 \ m/ce\kappa (1) + w=20 \ m/ce\kappa (2)$

и 5 мкм замерзает при более низких температурах, равных соответственно —29°С и —40°С. Т. е. изменение размера капель в 10 раз приводит (при одной и той же вероятности P) к изменению температуры их замерзания примерно на 11°С. В то же время скорость восходящих движений w оказывает сравнительно малое влияние (ср. сплошные линии и пунктир) на процесс замерзания капель. На рис. З точками выделена область A — зона интенсивной («массовой») кристаллизации кучевого облака. Положение ее 100

оказывается в сильной степени зависящим от внутренней структуры облака (размеров облачных капель).

Переходим к полидисперсным облакам. В этом случае вместо формулы (15) будем иметь [3, 9]:

$$p(r) = n(r) \left[1 - \exp\left(\int_{T_0}^{r} \frac{\omega}{\gamma} \frac{4}{(w-v)} dT\right) \right], \quad (16)$$

где p(r) — относительное число (плотность распределения) капель радиуса r, замерзших при температуре T; n(r) — о тносительное число капель радиуса r до начала замерзания.

В достаточно общем для практических расчетов виде распределение облачных капель по размерам может быть описано функцией

$$n(r) = ar^2 e^{-br^c}, \qquad (17)$$

где *a*, *b*, *c* — некоторые коэффициенты, определяющие конкретный вид функции *n*(*r*).

Нормируя и вводя модальный радиус r_m капель, приведем выражение (17) к виду [21]

$$n(r) = \frac{r^2 \exp\left[-\frac{2}{c} \left(\frac{r}{r_m}\right)^c\right]}{\frac{r_m^3}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma\left(\frac{3}{c}\right)}.$$
(18)

Здесь Г — гамма-функция.

С учетом формулы (18) вместо уравнения (16) получим

$$p(r) = \frac{r^2 \exp\left[-\frac{2}{c} \left(\frac{r}{r_m}\right)^c\right]}{\frac{r_m^3}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma\left(\frac{3}{c}\right)} \left[1 - \exp\left(\int_{T_0}^{T} \frac{\omega \frac{4}{3} \pi r^3}{\gamma(\omega - \upsilon)} dT\right)\right].$$
(19)

Результаты расчета функции p(r) представлены на рис. 4. Вычисления сделаны для температур — 20°С и — 30°С. Значения других параметров облака: $r_m = 20$ мкм, w = 20 м/сек и $\gamma = 7^{\circ}/км$. Видно, что при охлаждении поднимающегося облачного воздуха в первую очередь кристаллизуются самые крупные капли, а затем более мелкие. С понижением температуры спектр замерзших капель расширяется, постепенно приближаясь со стороны крупнокапельной части к исходному спектру облачных капель. Заметим также, что максимум функции p(r) смещен относительно максимума n(r) в область бо́льших размеров капель, Найдем то значение радиуса капель r_* , при котором функция p(r) экстремальна. Для этого перепишем уравнение (16) в виде

$$\ln\left[1-\frac{p(r)}{n(r)}\right] = r^3 \int_{T}^{T} \frac{\frac{4}{3}\pi\omega}{\gamma(w-v)} dT.$$
(20)

Рис. 4. Спектры замерзших капель (пунктир) при различных температурах в облаке. $w = 20 \ \text{м/сек}; \ r_m = 20 \ \text{мкм}$

В случае, когда $p(r) \ll n(r)$ (такой случай, в частности, показан на рис. 4), из формулы (20), с учетом функции распределения (18), будем иметь

$$-p(r) = r^{3} n(r) \int_{T_{0}}^{T} \frac{\frac{4}{3} \pi \omega}{\gamma(\omega - v)} dT =$$

$$= \frac{r^{5} \exp\left[-\frac{2}{c} \left(\frac{r}{r_{m}}\right)^{c}\right]}{\frac{r_{m}^{3}}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma\left(\frac{3}{c}\right)} \int_{T_{0}}^{T} \frac{\frac{4}{3} \pi \omega}{\gamma \left(\omega - \upsilon\right)} dT, \qquad (21)$$

откуда

$$-\frac{dp(r)}{dr} = \frac{r^4 \exp\left[-\frac{2}{c} \left(\frac{r}{r_m}\right)^c\right]}{\frac{r_m^3}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma\left(\frac{3}{c}\right)} \left[5 - 2\left(\frac{r}{r_m}\right)^c\right] \int_{T_0}^{T} \frac{\frac{4}{3} \pi \omega}{\gamma(w-v)} dT, (22)$$

а искомый радиус

$$r_* = r \left| \frac{dp(r)}{dr} \right|_{=0} = \left(\frac{5}{2}\right)^{1/c} r_m.$$
 (23)

Заметим, что полученное значение r_* близко к среднекубическому радиусу $(\overline{r^3})^{1/3}$ капель, связанному с r_m соотношением

$$(\overline{r^{3}})^{1/3} = \left(\int_{0}^{\infty} r^{3} n(r) dr\right)^{1/3} = \left(\frac{c}{2}\right)^{1/c} \left[\frac{\Gamma\left(\frac{6}{c}\right)}{\Gamma\left(\frac{3}{c}\right)}\right]^{1/3} \cdot r_{m}.$$
 (24)

Так, например, при c = 1: $r_* = 2.5 \cdot r_m$, а $(\overline{r^3})^{1/3} = 1.96 \cdot r_m$.

Любопытно отметить, что при не слишком больших переохлаждениях и постоянной общей водности (q) облака абсолютная концентрация замерзших капель не зависит от степени дисперсности облака (значений r_m и c). В самом деле, общее количество замерзших капель N_* можно представить, с учетом выражения (21), в виде

$$N_* = N \int_{0}^{\infty} p(r) dr = N \int_{0}^{\infty} \frac{r^5 \exp\left[-\frac{2}{c} \left(\frac{r}{r_m}\right)^c\right]}{\frac{r_m^3}{c} \left(\frac{c}{2}\right)^{3/c} \Gamma\left(\frac{3}{c}\right)} \times \int_{0}^{T} \frac{\frac{4}{3} \pi \omega}{\gamma \left(\omega - \upsilon\right)} dT \cdot dr.$$

103

(25)

Проинтегрировав уравнение (25) и подставив в него значение N из очевидного выражения

$$N = \frac{q}{\frac{4}{3} \pi \rho \int_{0}^{\infty} r^{3} n(r) dr} = \frac{3q \left(\frac{2}{c}\right)^{3/c} \Gamma \left(\frac{3}{c}\right)}{4 \pi \rho r_{m}^{3} \Gamma \left(\frac{6}{c}\right)}$$
(26)

в окончательном виде получим:

$$N_* = -\frac{q}{\rho} \int_{T_0}^T \frac{\omega}{\gamma (\omega - v)} dT.$$
 (27)

Отсутствие, согласно (27), зависимости N_* от степени дисперсности облака объясняется тем, что увеличение вероятности замерзания капель с ростом r_m в данном случае (при $p(r) \ll n(r)$) компенсируется уменьшением их общего количества в соответствии с выражением (26).

Переходим к расчету капельно-жидкой водности в кучевом облаке. Будем считать, в первом приближении, что скорость замерзания капель намного превышает скорость конденсационнокоагуляционных взаимодействий между замерзшими и переохлажденными каплями^{*}. Тогда водность q(r), содержащаяся в незамерзших каплях радиуса r, будет равна

$$q(r) = \frac{4}{3} \pi r^{2} \rho a N [n(r) - p(r)] =$$

$$= \frac{4}{3} \pi r^{3} \rho a N \cdot n(r) \exp\left(\int_{T_{0}}^{T} \frac{\omega}{\gamma} \frac{4}{(w-v)} dT\right), \quad (28)$$

где ρ — плотность капель; α — коэффициент, учитывающий расширение поднимающегося воздуха и численно равный отношению илотностей воздуха на уровне с температурой T и уровне нулевой изотермы.

Просуммировав уравнение (28) по всем размерам капель, имеем

$$q = \frac{4}{3} \pi \rho \alpha N \int_{0}^{\infty} r^{3} n(r) \exp\left(\int_{T_{0}}^{T} \frac{\omega \frac{4}{3} \pi r^{8}}{\gamma(\omega - v)} dT\right) dr \qquad (29)$$

* Последние начинают интенсивно протекать, судя по выполненным в [22] оценкам, лишь при достаточно высоких концентрациях ледяных частиц, сравнимых с концентрацией переохлажденных облачных капель.

или, в долях от начального (до замерзания) значения водности

$$q_{\rm H} = \frac{q}{\frac{4}{3} \pi \rho N \int_{0}^{\infty} r^{3} n(r) dr} = \frac{\alpha \int_{0}^{\infty} r^{3} n(r) \exp\left(\int_{T_{0}}^{T} \frac{\omega \frac{4}{3} \pi r^{3}}{\gamma (w-v)} dT\right) dr}{\int_{0}^{\infty} r^{3} n(r) dr}.$$
(30)

Подставив в формулу (30) уравнение (18), в окончательном виде получим

$$q_{\mathfrak{n}} = \frac{c\left(\frac{2}{c}\right)^{6/c}}{r_{\mathfrak{m}}^{6} \Gamma\left(\frac{6}{c}\right)_{0}^{6}} \int_{0}^{\infty} r^{5} \exp\left[-\frac{2}{c}\left(\frac{r}{r_{\mathfrak{m}}}\right)^{c} + \int_{T_{0}}^{T} \frac{\omega}{\gamma} \frac{4}{(w-v)} dT\right] dr. (31)$$

Рис. 5. Бертикальный профиль капельножидкой водности $(q_{\rm H})$ при различных значениях модального радиуса (r_m) капель: $w=10 \ m/ce\kappa (1)$ и $w=20 \ m/ce\kappa (2)$

Результаты вычислений функции q_н представлены на рис. 5. Расчеты выполнены для трех значений модального радиуса r_m облачных капель: 10, 50 и 250 мкм. Значения w и γ — те же, что

и в предыдущих примерах. Как видно, мелкокапельные кучевые облака остаются почти целиком водяными до температур $\sim -40^{\circ}$ С и ниже, в то время как крупнокапельные облака могут содержать влагу в переохлажденном состоянии только до более высоких температур. При типичном для кучевых облаков значении r_m , равном 25 *мкм* [1, 2], их интенсивная кристаллизация, судя по расчетам, должна начинаться при температуре около -35° С. По наблюдениям Дессана [24], уровень «массовой» кристаллизации в мощнокучевых облаках располагается вблизи изотермы $-33 \pm 2^{\circ}$ С, что вполне удовлетворительно согласуется с результатами. наших расчетов.

Рис. 6. Высота $(z'_{ик})$ и температура $(T_{ик})$ на уровне интенсивной естественной кристаллизации кучевого облака в зависимости от величины r_m . $w = 10 \ m/cek$ (1) и $w = 20 \ m/cek$ (2)

Из рис. 5 также видно, что переход облака из переохлажденного $(q_n \approx 1)$ в кристаллическое $(q_n \approx 0)$ состояние происходит в сравнительно узком температурном интервале. Правда в действительности, ширина этой переходной зоны будет еще уже, так как интенсивно протекающие здесь конденсационно-коагуляционные процессы ускоряют кристаллизацию облака. С учетом сказанного за верхнюю границу переохлажденной зоны облака в первом приближении можно принять уровень, где начинается заметное уменьшение капельно-жидкой водности (в частности уровень, где $q_{\rm H} = 0,90$). Результаты расчета положения этого уровня в облаке (будем называть его уровнем интенсивной естественной кристаллизации) в зависимости от значений модального радиуса облачных капель представлены на рис. 5. Как видно, имеет место до вольно сильная зависимость степени переохлаждения облака от модального радиуса его капель.

Представленные на рис. 6 результаты расчета Т_{ик} получены для функции распределения (17) при c=1. Судя по результатам расчетов, изменение величины *с* приводит как к понижению (при c > 1), так и повышению (c < 1) температуры интенсивной кристаллизации по сравнению со значением $T_{\mu\kappa}$ при c=1.

В заключение выражаю благодарность профессору Л. Г. Качуэину за постановку задачи и обсуждение полученных результатов.

ЛИТЕРАТУРА -

- 1. Боровиков А. М. и др. Физика облаков. Гидрометеоиздат, Л., 1961.
- 2. Майсон Б. Дж. Физика облаков: Пер. с англ. Гидрометеоиздат, Л., 1961. 3. Качурин Л. Г., Морачевский В. Г., Кинетика фазовых переходов
- воды в атмосфере. Изд-во ЛГУ, 1965.
- 4. Качурин Л. Г., Бекряев В. И. Исследование процесса электризации кристаллизующейся воды. ДАН СССР, т. 130, № 1, 1960.
- 5. Mason B. I. Some outstanding problems in cloud physics the interaction of microphysical and dynamical processes. Quart. J. Roy. Met. Soc., v. 95, № 405, 1939.
- 6. Braham R. I., Ir. Meteorological bases for precipitation development. BAMS, v. 49, № 4, 1969.
- 7. Houghton H. G. On precipitation mechanisms and their artificial modi-
- 1. С. Аррі. Меt., v. 7, № 5, 1968.
 8. Качурин Л. Г. Замерзание переохлажденных водных аэрозолей. Изв. АН СССР, сер. геофиз., № 2, 1951.
 9. Качурин Л. Г. Вероятность образования ледяных зародышей в пере-тикания с страна.
- охлажденной воде. ДАН СССР, т. 93, № 2, 1953.
- 0. Bigg E. K. The supercooling of water. Proc. Phys. Soc., v. 66, № 404 B, 1953.
- 1. Carte A. E. Probability of freesing. Proc. Phys. Soc., v. 73, № 470 B, 1959.
- 2. Langham E. I., Mason B. I. Heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc., v. 247, № 1250 Å, 1958.
- 3. Vali G., Stansbury E. J. Time dependent characteristic of the heterogeneous nucleation of ice. Canad. J. Phys., v. 44, № 3, 1966.
- 4. Mossop S. C. The freesing of supercooled water. Proc. Phys. Soc., v. 68, № 424 B, 1955.
- 5. Gohale N. R. Dependence of freesing temperature of supercooled water drops on rate of cooling. J. Atm. Sci., v. 22, № 2, 1965.
- 6. Козлов Г. А. Изучение кинетики кристаллизации переохлажденных капель воды с помощью модельных систем (эмульсий типа «вода-масло»). Диссертация, ЛТИ, Л., 1968.
- 7. Френкель Я. Н. Кинетическая теория жидкостей. Изд-во АН СССР, M., 1945.
- 8. Turnbull D., Fischer J. C. Rate of nucleation in condensed systems. J. Chem. Phys., v. 17, № 1, 1949.
- 9. Dufour L., Defay R. Thermodynamics of clouds. New York-London, Pergamon Press, 1963.
- 0. Mc Donald J. E. Homogeneous nucleation of supercooled water drops. J. Meteorol., v. 10, № 6, 1953.
- 1. Качурин Л. Г. Образование осадков в облаках с малыми вертикальными токами. Изв. АН СССР, сер. геофиз., № 6, 1956.
- 2. Воробьев Б. М. К расчету процессов, протекающих в искусственно кристаллизующемся мощном кучевом облаке. См. настоящий сборник.
- 3. Hobbs P. V. Ice multiplication in clouds. J. Atm. Sci., v. 26, № 2, 1969.
- 4. Dessens J. Variations accidentalles du niveau de congelation des cumulus
- congestus. Association d'etudes, № 9, 1961.
 5. Warner J., Newnham T. D. Time lag in ice crystal nucleation in the atmosphere. Bull. Observ. Puy-de-Dòme, № 1, 1958.

Б. М. Воробьев (ЛГМИ)

К РАСЧЕТУ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В ИСКУССТВЕННО КРИСТАЛЛИЗУЮЩЕМСЯ МОЩНОМ КУЧЕВОМ ОБЛАКЕ

В свете современных исследований [1—4], образование слоистой структуры крупных градин свидетельствует о том, что рост их в кучевом облаке осуществляется при обычных, близких к адиаба тическим, значениях капельно-жидкой водности, составленной из мелкокапельной фракции.

Принципиально возможный путь искусственной модификации таких облаков с целью предотвращения либо ослабления градо битий — кристаллизация (полная или частичная) зоны облака расположенной над уровнем преимущественного образования гра довых зародышей. При этом дальнейший рост зародышей може замедлиться настолько, что, не успев вырасти, они будут вы носиться в верхнюю, обычно полностью кристаллическую, част облака. Представляет определенный интерес количественная оцен ка возможности искусственной кристаллизации мелкокапельны: кучевых облаков.

При построении численной модели процессов, протекающи: в переохлажденной части кучевого облака при засеве его льдо образующими (ледяными) частицами, необходимо учесть кинетик конденсационно-коагуляционных взаимодействий между водяными каплями, ледяными кристаллами и водяным паром. Скорость про текания таких взаимодействий, определяющая переход облачної влаги из жидкого в кристаллическое состояние, и управляет в конечном итоге, процессом образования и роста града. В чис ленной схеме нужно учесть также выделение тепла при вынужден ной (искусственной) кристаллизации облачной влаги. Исследова ние будем вести в рамках стационарной во времени струйной мо дели облака, что дает возможность использовать полученные в [5 результаты.

Исходные уравнения для расчета вертикальной *w* скорости движения и радиуса *R* облачной струи запишем в обычном вид-108
для простоты ограничимся рассмотрением штилевой атмосферы)

$$\frac{dw}{dz} = \frac{g}{w} \left[\frac{T'-T}{T} - (S+S_*) \right] - \frac{wc}{R} \frac{T'}{T}, \qquad (1)$$

$$\frac{dR}{dz} = \frac{R}{2} \left(\frac{c}{R} \frac{T'}{T} + \frac{Mg}{kNT} + \frac{1}{T'} \frac{dT'}{dz} - \frac{1}{w} \frac{dw}{dz} \right), \quad (2)$$

де g — ускорение силы тяжести; T', T — температура воздуха струе и окружающей среде; S, S_* — удельные водность и ледюсть в струе; c — константа вовлечения; M — молекулярный вес юздуха; k — постоянная Больцмана; N — число Авогадро.

В уравнении для расчета температуры T' учтем выделение епла в результате: а) конденсации (испарения) водяного пара на каплях; б) сублимации пара на кристаллах; в) замерзания переохлажденных капель при их столкновении с ледяными сристаллами. Т. е. можем написать:

$$-\frac{dT'}{dz} = \frac{g}{c_{p}} \frac{T'}{T} + \frac{(T'-T)c}{R} \frac{T'}{T} - \left[\frac{L}{c_{p}} \left(\frac{dS}{dz}\right)_{\text{конд}} + \frac{(L+L_{*})}{c_{p}} \left(\frac{dS_{*}}{dz}\right)_{\text{конд}} + \frac{L_{*}}{c_{p}} \left(\frac{dS_{*}}{dz}\right)_{\text{коаг}}\right], \quad (3)$$

де c_p — удельная теплоемкость воздуха; L, L_* — удельная тепота конденсации и плавления.

Выведем теперь соотношения, позволяющие рассчитать в струе дельные водность и ледность. Для этого рассмотрим баланс влаги поднимающемся облачном воздухе, содержащем водяные капли, ар, а также, начиная с некоторого уровня z_* (уровня засева), скусственно созданные ледяные кристаллы. Считаем все облачые частицы монодисперсными, полностью увлекающимися возушным потоком.

Изменение удельной водности в поднимающемся воздухе бусловлено: конденсацией (испарением) влаги на водяных капях вследствие избытка (недостатка) парообразной влаги в обаке; уменьшением количества переохлажденных капель в резульате их замерзания при столкновении с ледяными кристаллами.

Конденсационное изменение удельной водности можно запиать в виде

$$\left(\frac{dS}{dz}\right)_{\text{KOHA}} = \frac{d}{dz} \left(\frac{4}{3} \pi r^3 \rho n\right) = 4 \pi r^2 \rho n \left(\frac{dr}{dz}\right)_{\text{KOHA}}, \quad (4)$$

це r, ρ — радиус капель и их плотность; n — число капель в едиице массы воздуха. В свою очередь, изменение радиуса капель при конденсацион ных процессах описывается известным уравнением [6]:

$$\left(\frac{dr}{dz}\right)_{\text{конд}} = \frac{D\,\mu E'\,(f'-1)}{wr\rho\,k\,N\,T'} - \frac{2\,\sigma\mu^2\,DE'}{w\,(r\rho\,kN\,T')^2},\tag{5}$$

где σ — поверхностное натяжение воды; D — коэффициент диф фузии водяного пара; μ — молекулярный вес пара; E' — упругости насыщения пара над плоской поверхностью воды при температурє облака; f' — относительная влажность в облаке.

С учетом уравнения (5) вместо (4) получим

$$\left(\frac{dS}{dz}\right)_{\text{конд}} = \frac{3 SD \,\mu E'}{w \, r^2 \,\rho k \, NT'} \left[(f'-1) - \frac{2 \,\sigma \mu}{r \,\rho k \, NT'} \right]. \tag{6}$$

Уменьшение удельной водности в результате замерзания ка пель при их столкновении (коагуляции) с ледяными кристаллами происходит в основном за счет гравитационной коагуляции, так как кристаллы, внесенные в переохлажденную часть облака практически мгновенно вырастают до размеров в несколькс микрон, где влиянием броуновской коагуляции можно пренебречь Значит можем написать, что

$$-\left(\frac{dS}{dz}\right)_{\text{KOAR}}\Big|_{z\gg z_*} = \frac{4}{3} \left[\pi r^3 \rho \left(\frac{dn}{dz}\right)_{\text{KOAR}}\right]$$
(7)

Изменение числа *n* переохлажденных капель при коагуляциг пропорционально вероятности их столкновения с кристаллами $p(r, r_*)$, числу капель *n* и объемной концентрации ледяных час тиц n_{*of} :

$$\left(\frac{dn}{dz}\right)_{\text{KOBF}} = \frac{p(r, r_*)}{w} n n_{*_{06}} = \frac{p(r, r_*)}{w} n n_* \rho_{\text{BOBH}}, \qquad (8)$$

где

$$p(r, r_*) = \pi (r + r_*)^2 |v(r) - v(r_*)| E(r, r_*).$$
(9)

Здесь v(r), $v(r_*)$ — скорости падения капель и кристаллов $E(r, r_*)$ — коэффициент их захвата.

Подставим формулы (9) и (8) в уравнение (7), а также заме ним плотность воздуха $\rho_{возл}$ через давление и температуру. Тогда в окончательном виде получим (знак $|_{z > z_{*}}$ опускаем)

$$-\left(\frac{dS}{dz}\right)_{\text{KOAF}} = \frac{MPS \, n_*}{wk \, NT'} \, \pi \, (r+r_*)^2 \, E(r,r_*) \, |v(r)-v(r_*)| \, . \quad (10)$$

Просуммировав (6) и (10), найдем исходное уравнение для расчета удельной водности в облачной струе, засеянной с уровня z_* ледяными кристаллами:

$$\frac{dS}{dz} = \frac{3 SD \mu E'}{w r^2 \rho k N T'} \left[(f'-1) - \frac{2 \sigma \mu}{r \rho k N T'} \right] - \frac{MPS n_*}{w k N T'} \pi (r + r_*)^2 E(r, r_*) |v(r) - v(r_*)|.$$
(11)

Изменение удельной ледности в фазово-неоднородной струе будет обусловлено: «переконденсацией» облачной влаги с капель на кристаллы; коагуляцией ледяных частиц с переохлажденными каплями, что приводит к их замерзанию и, следовательно, увеличению удельной ледности.

Уравнение для конденсационного изменения удельной ледности может быть записано аналогично (4)

$$\left(\frac{dS_*}{dz}\right)_{\text{KOHI}}\Big|_{z > z_*} = 4\pi r_*^2 \rho_* n_* \left(\frac{dr_*}{dz}\right)_{\text{KOHI}}, \quad (12)$$

или, так как [6, 9]

$$\left(\frac{dr_*}{dz}\right)_{\text{KOHA}} = \frac{D\mu E'_*\left(f'\frac{E'}{E'_*}-1\right)}{\varpi r_* \rho_* k NT'} - \frac{2\sigma_* \mu^2 DE'_*}{\varpi (r_* \rho_* k NT')^2}, \quad (13)$$

то (знак $|_{z \gg z_*}$ здесь и далее опускаем)

$$\left(\frac{dS_*}{dz}\right)_{\text{KOBL}} = \frac{3S_*D_{\mu}E'_*}{\varpi r_*^2\rho_*kNT'} \left[\left(f'\frac{E'}{E'_*} - 1\right) - \frac{2\sigma_*\mu}{r_*\rho_*kNT'} \right], \quad (14)$$

где σ_* — поверхностное натяжение льда; ρ_* — плотность ледяного кристалла; n_* — число их в единице массы воздуха; E'_* — упругость насыщения пара над плоской поверхностью льда при температуре T'; r_* — радиус кристалла.

Коагуляционное взаимодействие ледяных частиц с каплями протекает, в общем случае, в два этапа. Вначале, когда размер искусственно внесенных в облако кристаллов меньше, чем размер водяных капель, роль коагулирующей (собирающей) частицы играют капли, замерзающие при столкновении с кристаллом. Количественно этот процесс описывается уравнением, аналогичным (10). Когда ледяные частицы вырастут до размеров, превышающих размер капель, роль коагулирующей частицы играют кристаллы, увеличивающие свою массу за счет присоединения капель. Первый процесс начинает срабатывать, если радиус облачных капель превышает некоторое критическое для начала коагуляции значение, равное [10] ~ 20 мкм. Следовательно, для мелкокапельных облаков ($r \ll 20$ мкм) коагуляционное изменение удельной ледности будет обусловлено лишь вторым процессом и может быть представлено как

$$\left(\frac{dS_{*}}{dz}\right)_{\kappa_{0}ar}\Big|_{r_{*}>r} = 4\pi r_{*}^{2}\rho_{*} n_{*} \left(\frac{dr_{*}}{dz}\right)_{\kappa_{0}ar}$$
(15)

или, так как

$$\left(\frac{dr_{*}}{dz}\right)_{\text{KOAF}} = \frac{[v(r_{*}) - v(r)]}{w} \frac{q E(r, r_{*})}{4\rho_{*}} = \frac{[v(r_{*}) - v(r)]}{w} \frac{SMPE(r, r_{*})}{4\rho_{*} k NT'},$$
(16)

TO (ЗНАК $|_{r_*>r}$ опускаем)

$$\left(\frac{dS_{*}}{dz}\right)_{\text{KOBT}} = \frac{\left[v\left(r_{*}\right) - v\left(r\right)\right]}{w} \frac{\pi r_{*}^{2} n_{*} SMPE\left(r, r_{*}\right)}{k NT'}.$$
 (17)

Просуммировав уравнения (14) и (17), найдем исходное уравнение для расчета удельной ледности в струе

$$\frac{dS_{*}}{dz} = \frac{3 S_{*} D\mu E'_{*}}{w r_{*}^{2} \rho_{*} k NT'} \left[\left(f' \frac{E'}{E'_{*}} - 1 \right) - \frac{2 \sigma_{*} \mu}{r_{*} \rho_{*} k NT'} \right] + \pi r_{*}^{2} n_{*} \frac{SMPE(r, r_{*}) \left[v(r_{*}) - v(r) \right]}{w k NT'}.$$
(18)

Уравнение для расчета радиуса ледяных кристаллов можно найти, суммируя уравнения (13) и (16). Тогда

$$\frac{dr_{*}}{dz} = \frac{D\mu E'_{*}}{wr_{*}\rho_{*} k NT'} \left[\left(f' \frac{E'}{E'_{*}} - 1 \right) - \frac{2\sigma_{*} \mu}{r_{*} \rho_{*} k NT'} \right] + \frac{SMP E(r, r_{*}) \left[v(r_{*}) - v(r) \right]}{4 w \rho_{*} k NT'}.$$
(19)

Подставив формулы (6), (14) и (17) в соотношение (3), получим исходное уравнение для расчета температуры T' в облачной струе

$$-\frac{dT'}{dz} = \frac{g}{c_p} \frac{T'}{T} + \frac{(T'-T)c}{R} \frac{T'}{T} - \left\{ \frac{L}{c_p} \frac{3SD\,\mu E'}{wr^2\,\rho k\,NT'} \left[(f'-1) - \frac{2\,\sigma\mu}{r\rho\,k\,NT'} \right] + \frac{(L+L_*)}{c_p} \frac{3S_*\,D\mu\,E'_*}{wr^2_*\rho_*\,k\,NT'} \left[\left(f'\frac{E'}{E'_*} - 1 \right) - \frac{2\,\sigma\mu}{r_*\,\rho_*\,k\,NT'} \right] + \frac{L_*}{c_p} \frac{[v\,(r_*) - v\,(r)]\,\pi r^2_*\,n_*\,SMP\,E\,(r,r_*)}{wk\,NT'} \right\}.$$
 (20)

Чтобы замкнуть систему уравнений водного баланса, выведем соотношение для расчета относительной влажности воздуха в струе. Для этого напишем уравнение баланса парообразной влаги в облаке.

Изменение удельного влагосодержания d(ma') происходит за счет бокового вовлечения в струю водяного пара вместе с окружающим воздухом (adm), а также в результате конденсационных процессов, уменьшающих влагосодержание на сумму конденсационных приращений удельной водности $m(dS)_{конд}$ и ледности $n(dS_*)_{конд}$. Тогда общее уравнение баланса парообразной влагн запишется в виде

$$d(ma') = adm - [m(dS)_{KOHA} + m(dS_*)_{KOHA}], \qquad (21)$$

-де *a'*, *a* — удельная влажность воздуха в струе и окружающей среде соответственно; *m* — секундная масса струи.

Дифференцируя уравнение (21) по dz, получаем

$$\frac{da'}{dz} + \frac{(a'-a)}{m} \frac{dm}{dz} + \left(\frac{dS}{dz}\right)_{\text{конд}} + \left(\frac{dS_*}{dz}\right)_{\text{конд}} = 0.$$
(22)

Так как

$$a' = \frac{\mu}{M} \frac{f'E'}{P}; \quad a = \frac{\mu}{M} \frac{fE}{P}, \tag{23}$$

де f — относительная влажность в окружающей среде; P — давіение воздуха, то, продифференцировав a' по dz, будем иметь

$$\frac{da'}{dz} = \frac{\mu E'}{MP} \left[\frac{df'}{dz} - \frac{f'}{E'} \frac{dE'}{dT'} \left(-\frac{dT'}{dz} \right) - f' \frac{1}{P} \frac{dP}{dz} \right].$$
(24)

Подставив в формулу (24) уравнение Клаузиуса-Клапейрона ссновное уравнение статики атмосферы, получим

$$\frac{da'}{dz} = \frac{\mu E'}{MP} \left[\frac{df'}{dz} - \frac{f' \mu L}{k N T'^2} \left(-\frac{dT'}{dz} \right) + \frac{Mg f'}{k N T} \right].$$
(25)

В свою очередь относительное приращение секундной массы струе описывается известным выражением [5, 7]

$$\frac{1}{m}\frac{dm}{dz} = \frac{c}{R}\frac{T'}{T}.$$
(26)

С учетом уравнений (6), (14), (23), (25) и (26) вместо (22) апишем

$$\frac{3 SD \mu E'}{w r^2 \rho k NT'} \left[(f'-1) - \frac{2 \sigma \mu}{r \rho k NT'} \right] + \frac{3 S_* D \mu E'_*}{w r^2_* \rho_* k NT'} \left[\left(f' \frac{E'}{E'_*} - 1 \right) - \frac{2 \sigma_* \mu}{r_* \rho_* k NT'} \right] + \frac{\mu E'}{MP} \left[\frac{df'}{dz} + \right]$$

Зак. 243

$$+\frac{Mgf'}{kNT} - \frac{f'\mu L}{kNT'^2} \left(-\frac{dT'}{dz}\right) + \frac{c\left(f' - \frac{fE'}{E}\right)}{R} \frac{T'}{T} = 0. \quad (27)$$

Разрешив формулу (27) относительно df'/dz найдем исходноє уравнение для расчета влажности воздуха в облачной струе

$$\frac{df'}{dz} = f' \left[\frac{\mu L}{k N T'^2} \left(-\frac{d T'}{dz} \right) - \frac{Mg}{k N T} - \frac{c}{R} \frac{T'}{T} \right] - \frac{3 D M P}{w k N T'} \left[\frac{S}{r^2 \rho} \left(f' - 1 \right) + \frac{S_*}{r_*^2 \rho_*} \left(f' - \frac{E'_*}{E'} \right) \right] + \frac{6 D \mu M P}{w \left(k N T' \right)^2} \left(\frac{S \sigma}{r^3 \rho^2} + \frac{S_* \sigma_*}{r_*^3 \rho_*^2} \frac{E'}{E'_*} \right) + \frac{f E'}{E} \frac{c}{R} \frac{T'}{T}.$$
 (28)

Полученная система восьми уравнений: (1), (2), (5), (11) (18)—(20) и (28) позволяет, при заданных начальных и гранич ных условиях, рассчитать основные процессы, протекающие в мел кокапельной облачной струе как до, так и после засева ее льдо образующими частицами. Следует заметить, однако, что расчеведется лишь до уровня интенсивной естественной кристаллизации облака, положение которого может быть определено согласно [8]

В заключение выполним типовой расчет искусственной кристаллизации кучевого облака. Причем, в первом приближении рассмотрим, при заданных параметрах (w, T') облака, лишь один чисто конденсационный, механизм кристаллизации. Влияни кристаллизационных процессов на макродинамику облака, а так же эффект вовлечения учитывать пока не будем.

На рис. 1 показан результат расчета вертикальных профиле капельно-жидкой водности q и размеров водяных капель и ледя ных кристаллов в кристаллизующемся кучевом облаке. Здесь же для сравнения представлено распределение «адиабатической» вод ности q_a в «не засеянном», полностью переохлажденном облаке Расчеты выполнены при следующих условиях: w(z) = const == 10 $m/ce\kappa$; $-\frac{dT'}{dz} = \text{const} = 6^\circ/\kappa m$; $r_0 = 10 \ m\kappa m$; $n = 10^6 \ e^{-1}$ $r_{*_0} = 0,1 \ m\kappa m$; $\rho_* = 0,92 \ e/cm^3$. Предполагается, что ледяные части цы непрерывно вводятся в облако на уровне с температурой $T_* =$

цы непрерывно вводятся в облако на уровне с температурой $T_* = -5^{\circ}C \ (z_* = 5 \ \kappa m)$, притом концентрация их от случая к случак меняется.

Видно, что при заданных в примере условиях интенсивна: искусственная кристаллизация облака за счет одного процесс: «переконденсации» возможна лишь при значениях концентрации ледяных частии, равных $10^4 \ e^{-1}$ и более. При $n_* = 10^5 \ e^{-1}$ (кри вые q_3 , r_3 , r_{*_3}) процесс «пожирания» капель кристаллами иде настолько быстро, что облако нацело кристаллизуется в непосред 114 ственной близости от уровня засева. В то же время концентрация $n_* = 10^3 e^{-1}$ оказывается явно недостаточной, чтобы изменить существенным образом фазовое состояние облака.

Введение в расчет коагуляционных взаимодействий между кристаллами и каплями должно привести к значительному снижению концентрации ледяных частиц, обеспечивающей интенсивную кристаллизацию облака.

Рис. І. Вертикальное распределение в кристаллизующемся путем «переконденсации» кучевом облаке капельно-жидкой водности *q*, радиуса водяных капель *r* и ледяных кристаллов *r*_{*}.

 $n_{\pm}=10^3$ г⁻¹ (кривые q_1 , r_1 , r_{\pm_1}); 10^1 г⁻¹ (кривые q_2 , r_2 , r_{\pm_2}); 10^5 г⁻¹ (кривые q_3 , r_3 , r_{\pm_3})

ЛИТЕРАТУРА

- Качурин Л. Г., Воробьев Б. М. Особенности вертикальной структуры радиоэхо градовых облаков, обусловленные кристаллизационными процессами. Изв. АН СССР, ФАО, т. IV, № 5, 1968.
- 2. Качурин Л. Г. и др. Некоторые вопросы фазовых переходов воды в атмосфере применительно к проблеме управления градовыми процессами. Труды ВГИ, вып. 14, 1969.
- 3. Розенберг В. И., Воробьев Б. М. Рассеяние и ослабление электромагнитных волн длиной 3,2 см неоднородным градом. Изв. АН СССР, ФАО, т. VII, № 6, 1971.

3*

- 4. Browning K. A. The growth environment of hailstones. Meteorol. magazine, v. 96, № 1140, 1967.
- 5. Бекряев В. И. Турбулентная неизотермическая струя в стратифицированной атмосфере. См. настоящий сборник.
- 6. Качурин Л. Г., Морачевский В. Г. Кинетика фазовых переходов воды в атмосфере. Изд-во ЛГУ, 1965.
- 7. Squires P., Turner J. S. An entraining jet model for cumulonimbus updraughts. Tellus, v. 14, \mathcal{N}_2 4, 1962.
- 8. Воробьев Б. М. К расчету замерзания капель в кучевых облаках. См. настоящий сборник.
- 9 Быкова Н. Д. Некоторые особенности искусственного просветления туманов с помощью реагентов, интенсифицирующих конденсационные процессы. См. настоящий сборник.
- Chafrir V., Neiburger M. Collision efficiencies of two sphere falling in a viscous medium. Journ. Geophys. Res., v. 68, № 5, 1963.

Л. И. Гашин (ЛГМИ), А. В. Шарапов (Дальрыбвтуз)

ОБ ОЦЕНКЕ ИНТЕНСИВНОСТИ ОБЛЕДЕНЕНИЯ МОРСКИХ СУДОВ

Обледенение морских судов в значительной степени затрудняет работу промыслового флота, связанную с продолжительным пребыванием в суровых условиях дальневосточных и северных морей. Образование льда на палубных механизмах, антеннах радио и локаторов препятствует их нормальному использованию, а работа людей на палубе, покрытой льдом, становится опасной.

Обледенение малых судов сопровождается существенным увеличением нагрузки судна и повышением его центра тяжести. Это ведет к ухудшению, а в ряде случаев к полной потере остойчивости. Использование коллективных спасательных средств в период обледенения сильно затруднено, а подчас и невозможно из-за толстого ледяного панцыря, покрывающего шлюпки, плоты и механизмы их спуска на воду. Известны случаи, когда причиной гибели команды рыболовных судов являлось обледенение спасательных средств.

Необходимыми условиями обледенения являются понижение температуры воздуха ниже точки замерзания воды и ее приток к обледеневающей поверхности. По характеру образования аэрозольного облака, наносимого ветром на судно, различают несколько видов явления [4, 7].

Обледенение в потоке морских брызг, образующихся при ударе волны о корпус судна. Нередко процесс забрызгивания сопровождается заливанием палуб судна забортной водой.

Обледенение в переохлажденном тумане. В адвективном тумане, водность которого с высотой растет, сильнее обледеневают верхние части судна — рангоут и такелаж. Это так называемый «черный гололед». При тумане парения водность с высотой резко падает и соответственно интенсивнее обледеневает корпус судна. Такое обледенение обычно называют «белым». Из этих двух видов наиболее опасен «черный гололед».

Обледенение в атмосферных осадках — в переохлажденном дожде или мокром снеге. Наблюдались случаи обледенения, вызванные несколькими причинами одновременно. Наиболее опасным и часто встречающимся видом обледенения является обледенение в морских брызгах. Интенсивность и опасность его резко увеличивается в снежных зарядах.

В настоящее время наметились два направления в исследованиях по созданию мер и средств защиты судов от обледенения. Первое из них связано с изменением конструкций проектируемых судов с учетом возможного обледенения, поисками покрытий, обладающих малыми силами сцепления со льдом, разработкой механических, химических и тепловых средств борьбы с этим опасным явлением. Второе направление предполагает создание надежной методики прогнозирования обледенения и его интенсивности с учетом гидрометеорологических условий, режима плавания и конструкции судов.

На начальном этапе работы по созданию прогноза обледенения делались попытки найти связь между интенсивностью обледенения судна с каким-либо из гидрометеорологических параметров [3] или с комплексом таких параметров [4, 7]. Экспериментальные данные, которые использовались для построения таких связей, представляют собой результаты качественной оценки судоводителями обледенения судна в градациях «слабое», «сильное», «умеренное». Надежность таких данных существенно снижается тем обстоятельством, что в разных случаях одна и та же оценка может относиться как к скорости, так и к степени обледенения судна. Основная часть данных получена из наблюдений за обледенением малых рыболовных судов типа СРТ и РС, для которых это явление не телько затрудняет работу, но и опасно при интенсивном нарастании льда. Таким образом, исследованные зависимости характерны только для судов указанного типа.

Авторы настоящей работы использовали, во-первых, результаты наблюдений за обледенением промысловых судов на дальневосточных морях. Были отобраны 1500 случаев, когда оценивалась только интенсивность нарастания льда на судах типа СРТ и РС. Ряд наблюдений сопровождался измерением толщины льда на различных поверхностях судна. Во-вторых, — результаты натурных исследований по обледенению, проведенных в 1967—1969 гг. на судах «Академик Бер», «Профессор Сомов», «Алаид», и результаты японских исследований [9]. В этих экспедициях получены количественные данные о скорости нарастания общей массы льда на судне типа СРТ в зависимости от гидрометеорологических условий и режима плавания. При анализе данных отобраны случаи, когда курсовой угол плавания волн находится в пределах 0—45° левого и правого бортов.

Перечисленный экспериментальный материал позволил выполнить оценку корреляционных связей интенсивности обледенения малых рыболовных судов с отдельными гидрометеорологическими 118 параметрами, комплексами таких параметров и разработанными к настоящему времени критериями, характеризующими скорость процесса обледенения.

На рис. 1 представлены графики, показывающие зависимость измеренных толщин льда, образовавшегося на палубе, от температуры воздуха, температуры воды, скорости ветра. Видно, что связь между коррелируемыми величинами отсутствует. Выше упоминалось, что известны попытки рекомендовать такие зависимости для прогнозов обледенения. Так, в работе [3] приводятся аналогичные графики, которые иллюстрируют достаточно высокую корреляцию. Резкое отличие в качестве связи на графиках в работе [3] и графиках рис. 1 настоящей работы обусловлено, по-видимому, различным подходом к методике отбора исходного экспериментального материала.

Рис. 1. Зависимость измеренных толщин льда на палубе промысловых судов типа СРТ от температуры воздуха (a), температуры воды (б) и скорости ветра (в).

Более определенный характер обнаруживает связь интенсивности обледенения с комплексом, объединяющим два или более гидрометеорологических параметра.

На рис. 2 нанесены условными значками данные наблюдений за обледенением в градациях «слабое», «умеренное», «сильное» в зависимости от температуры воздуха Θ_a °С и скорости ветра V в баллах, измеренных в период обледенения данной интенсивности. Для построения графика использованы результаты 1500 наблюдений за 1967—1969 гг. На графике можно выделить три зоны. Зона *I* ограничена ординатами V = 0 баллов и V = 5 баллов и абсциссами $\Theta_a = 0^{\circ}$ С и $\Theta_a = -5^{\circ}$ С. Зона *II* лежит за пределами ординаты V = 5 баллов при V > 5 баллов и ограничена абсциссами $\Theta_a = -5^{\circ}$ С и $\Theta_a = -10^{\circ}$ С. Зона *III* лежит за пределами ординаты V = 5 баллов при V > 5 баллов и за пределами абсциссы $\Theta_a = -10^{\circ}$ С при $\Theta_a < -10^{\circ}$ С.

Зона I содержит 948 случаев. Из них 98,3% слабого, 1,6% умеренного и 0,1% сильного обледенения. Зона II содержит 321 случай. Из них 68,5% умеренного, 24,0% сильного и 7,5% слабого обледенения. В зоне III—201 случай обледенения. Из них 93% сильного, 6,5% умеренного и около 0,5% слабого обледенения.

1-сильное; 2-умеренное; 3-слабое; 4-без обледенения. Цифры у точек обозначают число случаев, объединяемых одной точкой 1-2111-зоны

Рис. 2. показывает, что при силе ветра до 5 баллов и во всем диапазоне наблюдаемых температур воздуха, а также во всем диапазоне скоростей ветра, но при температуре воздуха выше —5°С наиболее вероятным является обледенение слабой интенсивности или отсутствие этого явления. При ветре более 5 баллов и при температуре воздуха ниже —10°С наиболее вероятным является обледенение сильной интенсивности. При ветре более 5 баллов в диапазоне температур воздуха (—5°)—(—10°С) наиболее вероятно умеренное обледенение.

Результаты, полученные в специальных натурных исследованиях по обледенению судов типа СРТ, позволили оценить количественные градации интенсивности, характерные для сочетаний скоростей ветра и температур воздуха в зонах *I*, *II*, *III* на рис. 2, в тоннах льда, нарастающего на судне за единицу времени. Так, для условий зоны *I*, где слабая интенсивность обледенения превалирует, скорость нарастания льда может быть принята 0—1,5 *т/час.* Для зоны *III*, т. е. для сильного обледенения, эта скорость более 3,5 *т/час.* В условиях зоны *II* — для умеренного обледенения скорость нарастания льда на судне — 1,5—3 *т/час.*

Очевидно, что характер процесса нарастания льда определяется всем комплексом факторов — температурой воздуха, температурой воды, скоростью и направлением ветра, высотой волн, направлением и скоростью их распространения относительно судна, размерами, геометрией и высотой над уровнем моря обледеневающих объектов. Степень влияния каждого из параметров на интенсивность обледенения различна и оценка ее может быть выполнена лишь на основе расчета физической модели процесса.

Такой расчет обледенения объектов в потоке аэрозоля выполнен в работе [5]. Он позволил оценить вклад различных параметров и рассчитать скорость нарастания льда на различных частях судна с учетом их размеров и геометрии, скорости, температуры и водности потока, обтекающего обледеневающие поверхности, теплофизических свойств воды и объектов. К настоящему времени еще недостаточно изучены факторы, определяющие интенсивность забрызгивания судна, в том числе зависимость величин водности брызгового облака от гидрометеорологических условий, режима плавания и конструкции судна. Кроме того, не исследована теплоотдача с поверхности различных частей и объектов на судне в воздушный поток. Это заставило при практическом применении развитой теории загрубить схему расчета, приняв водность постоянной и решая задачу применительно к обледенению объектов простых форм, для которых известны методы расчета коэффициента теплоотдачи. Приближенное решение позволило найти критерий H, который может быть использован для оценки максимальной скорости нарастания льда на судах типа СРТ при обледенении в потоке брызг:

$$H = \frac{1, 1 \cdot 10^4}{3\rho_a L - \rho_B c_p} \frac{\lambda V}{[(T_{\phi} - \Theta_a) - 2(\Theta_B - T_{\phi})]}, \qquad (1)$$

где Θ_a , Θ_B и T_{ϕ} — соответственно температура воздуха, температура воды и температура равновесия твердой и жидкой фаз; Nu — число Нусселта для обледеневающего объекта; Re — число Рейнольдса для обледеневающего объекта; λ и v — теплопроводность и кинематическая вязкость воздуха; V — скорость потока;

р_л й р_в — плотность льда и воды соответственно; *L* — скрытая теплота плавления льда; *c*_p — теплоемкость воды.

На рис. З приведена связь между скоростью нарастания общего количества льда на судне в *т/час* и величиной теоретического критерия *H*, расчет которого выполнялся по величинам метеоэлементов, измеренных в период обледенения данной интенсивности.

Рис. 3. Связь между интенсивностью обледенения и теоретическим критерием *H*.

Удовлетворительная связь коррелируемых величин позволяет использовать полученную зависимость для расчетов интенсивности обледенения судов типа СРТ по величинам основных гидрометеорологических параметров, прогнозируемых или измеренных непосредственно на судне.

На рис. 4 показано распределение числа случаев обледенения разной интенсивности в зависимости от величины *H*. Видно, что обледенение слабой и сильной интенсивности однозначно определяется величиной *H*. Случаи обледенения умеренной и слабой ин-

тенсивности наблюдаются в одном и том же диапазоне *H* и не могут быть надежно разделены по величине критерия.

Анализ соотношения основных параметров в формуле (1) позволил подобрать комплексный критерий

$$N = V_{\kappa} \left(\left| \Theta_{\rm a} + \Theta_{\rm B} \right| \right),$$

где V_к — курсовая скорость ветра в баллах.

Расчет этого критерия существенно упрощается по сравнению с формулой (1) и в то же время характер связи с интенсивностью обледенения сохраняется прежний.

Можно грубо оценить зависимости обоих критериев от отдельных параметров. Для этого достаточно рассчитать величины

$$\frac{1}{N} \frac{dN}{d\Theta_{a}} = \frac{1}{H} \frac{dH}{d\Theta_{a}}; \quad \frac{1}{N} \frac{dN}{d\Theta_{B}} = \frac{1}{H} \frac{dH}{d\Theta_{B}}; \quad \frac{1}{N} \frac{dN}{dV} = \frac{1}{H} \frac{dH}{dV}$$

для различных значений H и N во всем интервале их изменения. Расчет показал, что средние значения этих величин равны соответственно 0,08 и 0,12; —0,10 и —0,03; 0,14 и 0,11. На рис. 5 показаны зависимости критериев H и N от параметров Θ_a , Θ_B , V. Различие зависимостей критериев N и H от Θ_a и V невелико. Несколько больше разница в изменении N и H за счет Θ_B . Однако, принимая во внимание небольшие амплитуды колебаний Θ_B по сравнению с Θ_a и V, в первом приближении можно считать величины H и N пропорциональными.

Рис. 4. Распределение числа случаев обледенения различной интенсивности в зависимости от величины критерия *H*.

1-слабое; 2-умеренное; 3-сильное обледенение

Рис. 5. Зависимость критериев N (кривые 1) и H (кривые 2) от температуры воздуха (a), температуры воды (δ) и скорости ветра (β).

На рис. 6 приведена зависимость интенсивности нарастания общего веса льда на судне типа СРТ от величины критерия N Очевидно, что рис. 3 и 6 идентичны.

Для практических расчетов интенсивности обледенения судна в пределах той точности, которая обеспечивается данными натурного эксперимента, отобранными для построения рис. 3 и 6, при ветре не менее 5 баллов рационально использовать величину *N* в качестве критерия интенсивности обледенения.

Рис. 6. Связь между интенсивностью обледенения и критерием *N*.

На рис. 7 показано распределение числа случаев обледенения различной интенсивности в зависимости от величины *N*. Видно что характер кривых распределения на рис. 7 и 4 один и тот же.

Выше были приведены примеры использования для прогнозирования обледенения экспериментально подобранных комплексов гидрометеорологических параметров, а также критериев, которыс хотя и получены из расчета физической модели процесса, учитывающей всю совокупность гидрометеорологических и теплофизических факторов, но в значительной степени загрубленных при практических расчетах [6].

Такие попытки успешны на определенном этапе исследований когда речь идет о прогнозе максимальной интенсивности обледенения определенного типа судов при малых курсовых углах плавания относительно направления распространения волн. При этом оценивается общее количество льда, растущего на судне. Точность такого прогноза полностью определяется качеством экспериментальных данных, использованных для построения корреляционных связей. Наиболее надежными являются данные, полученные в спе-

циальных натурных исследованиях, где измерялась скорость нарастания льда. Однако количество их невелико, особенно для случаев тяжелого обледенения.

Результаты наблюдений, полученные судоводителями, менее надежны и носят качественный характер. Возможность точного расчета интенсивности нарастания как общего количества льда на судне, так и обледенения отдельных его частей может дать использование теории обледенения [2, 5]. Но для этого необходимо знание величины теплоотдачи с различных поверхностей судна в воздух и закономерностей, определяющих интенсивность забрызгивания судна. Исследование этих процессов является задачей, решение которой позволит в значительной степени улучшить качество прогноза обледенения судов в море.

Результаты исследований, изложенные в статье, докладывались на межведомственном семинаре в г. Калининграде в мае 1969 г. Впоследствии часть этих результатов опубликована в работе [10].

ЛИТЕРАТУРА

- Беренбейм Д. Я. Гидрометеорологические условия обледенения судов. Труды ААНИИ «Гидрометеорологические условия обледенения». Л., 1969.
- 2. Борисенков Е. П. О физическом обосновании гндрометеорологических комплексов, обусловливающих обследование судов. Труды ААНИИ «Гидрометеорологические условия обледенения». Л., 1969.
- Буянов Н. Ф. О критериях остойчивости комплекса при обледенении судов в море. Труды ААНИИ «Гидрометеорологические условия обледенения» Л., 1969.
- 4. В асильева Г. В. Гидрометеорологические условия, способствующие обледенению судов. Рыбное хозяйство, № 12, 1966.

- 5. Қачурин Л. Г., Гашин Л. И. Расчет обледенения объектов в потоке переохлажденного аэрозоля применительно к задаче об обледенении су дов. Труды ААНИИ «Гидрометеорологические условия обледенения». Л. 1969.
- 6. Качурин Л. Г., Гашин Л. И., Борисенков Е. П., Панов В. В. Временные указания по предупреждению возможности обледенения судов Расчетный метод оценки интенсивности обледенения. Изд. ГМЦ, М., 1969
- 7. Никифоров М. И. Обледенение траулеров. Калининград, 1966.
- Шехтман А. Н. Гидрометеорологические комплексы для расчетов обледенения судов на вычислительных машинах. Труды НИИАК, вып. 45. М., 1967.
- 9. Studies on Ice Accumulation on Ships. IMCO, PFY/101, 1967 (представлено Японией).
- 10. Тюрин А. П. Судоводителю об обледенении промысловых судов. М., 1970.

М. А. Герман (ЛГМИ), К. Г. Хацкевич (ЛенЗНИИЭП)

К ИССЛЕДОВАНИЮ ДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ АТМОСФЕРНОЙ ТУРБУЛЕНТНОСТИ НА РАДИАЛЬНО-ВАНТОВОЕ ПОКРЫТИЕ ДВОРЦА СПОРТА «ЮБИЛЕЙНЫЙ»

Использование пространственных висячих покрытий при проектировании различных строительных сооружений выдвинуло проблему, связанную с учетом динамического воздействия атмосферной турбулентности.

Особенностью пространственных висячих покрытий, имеющих площадь десятки квадратных метров, является возникновение над поверхностью покрытия вихрей, характерных как для области «пристеночной» турбулентности, так и для спутной струи за плохообтекаемым телом. Совместное рассмотрение этих двух явлений, создающих поток с поперечным сдвигом, позволит в какой-то степени охарактеризовать динамические нагрузки на висячие системы того или иного сооружения.

Естественно, что указанные выше обстоятельства вызывают определенный интерес к экспериментальным исследованиям, тем более, что в настоящее время имеется необходимая аппаратура, которая позволяет производить измерения с последующей обработкой полученных данных на электронно-вычислительных машинах.

На первый взгляд, наиболее простым методом решения задачи является исследование аэроупругой конструкции в аэродинамической трубе путем моделирования атмосферной турбулентности. Однако такой подход к решению проблемы осложняется широким спектром масштабов турбулентности в приземном слое атмосферы. Кроме этого, в аэродинамической трубе чрезвычайно трудно создать градиент вертикальной компоненты скорости ветра, и полученные результаты можно отнести лишь для случая нейтральной стратификации. Немаловажным является и то обстоятельство, что стенки аэродинамической трубы оказывают существенное влияние на формирование воздушного потока над плохообтекаемым телом. С другой стороны, технически весьма трудно создать аэроупругую модель висячего покрытия. Например, с целью моделирования мембраны покрытия строящейся в Ленинграде «Большой спортивной арены» (диаметр 160 м, толщина 6,0 мм) потребовалась бы сталь толщиной 0,01—0,02 мм.

Поэтому было решено, что изучение влияния атмосферной турбулентности на динамическую устойчивость гибких висячих систем целесообразно проводить на натурном объекте. В сентябреоктябре 1969 г. кафедрой экспериментальной физики атмосферы ЛГМИ (ЭФА) в творческом содружестве с лабораторией испытаний и исследований конструкций, зданий и сооружений ЛенЗНИИЭПа были начаты натурные исследования на дворце спорта «Юбилейный» в Ленинграде.

Основная цель эксперимента — исследование динамического воздействия атмосферной турбулентности на колебания радиально-вантового покрытия дворца спорта «Юбилейный» путем синхронной записи флуктуаций горизонтальной компоненты скорости воздушного потока и колебаний отдельных точек покрытия при различных термодинамических условиях. Задачи, которые были сформулированы при этом, сводились к следующему:

1. Исследование интенсивности форм турбулентных образований, формирующихся над зданием. Определение деформации вихрей по данным расчета коэффициентов асимметрии и эксцесса.

2. Расчет автокорреляционных функций горизонтальной компоненты скорости ветра и определение по этим функциям интегральных масштабов турбулентности для различных условий над покрытием.

3. Определение автокорреляционных функций колебаний покрытий для фиксированных точек, использование их с целью нахождения интегральных масштабов коррелирования и характерных частот колебаний покрытия.

4. Спектральный анализ энергии пульсаций воздушного потока и колебаний радиально-вантового покрытия.

Конструкция покрытия дворца спорта «Юбилейный» представляет собой систему 48 вантовых ферм, соединенных в центре металлическим барабаном и крепящихся с наружного края к железобетонным колоннам. Фермы состоят из двух тросов (вант): несущего (нижнего) и стабилизирующего (верхнего). Ванты в пролете соединены несжимаемыми распорками через 4 м. Кровля в виде утеплителя, металлических листов толщиной 2 мм и слоя изоляции крепится к узлам ферм с помощью специальных столиков. Диаметр здания 96 м, высота 21,1 м, общий вес покрытия около 600 т.

Для получения пульсационных характеристик ветра был использован малоинерционный искровой анемометр, разработанный сотрудником кафедры ЭФА Е. В. Зарубиным [6]. Датчик прибора крепился к передвижной мачте на высотах 0,3; 2,0; 4,0; 7,0; 9,0; 11,0 и 13,5 м над поверхностью покрытия Дворца спорта. В зависи-128 мости от направления воздушного потока мачта устанавливалась в точках А, Б, В, Г, Д, Е, Ж и К (рис. 1).

Колебания вантовых ферм фиксировались динамическими прогибомерами, разработанными одним из авторов статьи [11]. Приборы устанавливались в линию (по диаметру) в количестве 12 шт. в узлах вантовых ферм как вдоль, так и поперек ветровому потоку (рис. 1). Выбор линии установки датчиков определялся направлением воздушного потока и необходимостью получить данные перемещений практически всех точек покрытия. Синхронная

Рис. 1. Схема установки приборов над радиально-вантовым покрытием дворца спорта «Юбилейный». Бугвенными индексами указаны места установки мачты с искровым анемометром; инфровыми-датчики, фиксирующие колебания покрытия; стрелками-господствующие направления ветра

запись пульсаций ветра и колебаний покрытия производилась осциллографом H-700 со скоростью протяжки 10 мм/сек. Таким образом, одновременно с помощью осциллографа регистрировались флуктуации ветра в одной точке (на фиксированной высоте) и перемещения вантового покрытия в шести точках. Направление ветра определялось серийной установкой М-47. Исходные данные для нахождения термодинамических условий исследования записывались специальной автоматической градиентной установкой. Обработка полученной информации производилась по специаль-

9 3ak. 243

ной программе вычислений. С этой целью была составлена и отлажена программа вычислений на электронно-вычислительной машине М-20. Исходными данными служили дискретные значения (ординаты) той или иной физической величины, которые были получены в результате апертурного квантования непрерывного электрического сигнала датчика по времени. Используя теорему В. А. Котельникова [7], была определена величина апертурного интервала по времени для конкретного исследования $\tau_0 = 0,2$ сек. Выбор апертурного интервала определил диапазон достоверного спектрального анализа с необходимой статистической обеспеченностью нижней и верхней границ спектральной функции. В данном исследовании этот диапазон определен в пределах от 0,04 до 2,5 гц. Скорость протяжки ленты осциллографа и время осреднения реализации определялось с учетом критерия, предложенного Р. Б. Блекманом и Т. В. Тьюки [12]. При этом в каждом определенном случае учитывалась средняя скорость воздушного потока.

Для машинной обработки и анализа структуры воздушного потока и колебаний ферм вантового покрытия были использованы 220 реализаций записей с различным интервалом осреднения (в зависимости от стратификации приземного слоя атмосферы) Схема обработки исходных данных натурного эксперимента предусматривала получение ряда статистических характеристик и величин спектрального анализа.

Учитывая большой объем и сложность обработки данных, полученных во время натурного эксперимента, в работе рассматриваются лишь предварительные результаты исследования.

Рассмотрим числовые характеристики законов распределения — статистические моменты для горизонтальной компоненты воздушного потока на различных уровнях над покрытием Дворца спорта. Для оценки закона распределения вычислялись центральные моменты второго µ₂, третьего µ₃ и четвертого µ₄ порядков.

Анализ дисперсий скорости ветра свидетельствует о сложной структуре воздушного потока. Учитывая то, что эта величина существенно зависит от термической стратификации в слое исследования, характера подстилающей поверхности, а в нашем случае еще от локальных условий эксперимента, так как аэродинамика воздушного потока в зависимости от направления ветра неоднородна, была предпринята попытка систематизировать данные в зависимости от перечисленных факторов. В результате систематизации можно выделить несколько характерных для данных условий вертикальных профилей величины µ2.

Так, в случае, когда воздушный поток имеет направление югозападной четверти, со средними скоростями, не превышающими 5—8 $m/ce\kappa$, величива дисперсии горизонтальной компоненты скорости ветра имеет тенденцию постепенного уменьшения с высотой над покрытием. При усилении ветра на высоте 7,0 и 13,5 m могут наблюдаться отдельные максимумы μ_2 . При ветрах северной четверти очень часто наблюдается минимум на высоте около 7,5 m, 130 причем такой вертикальный профиль характерен в этом случае иля точек В, Д, Е и Ж. Однако общая тенденция почти для всех тоянок — уменьшение дисперсии с высотой над поверхностью покрытия — позволяет считать этот вертикальный профиль наиболее карактерным. При воздушных потоках северо-восточной четверти этмечается неоднородность в вертикальном распределении µ₂.

Центральный момент третьего порядка μ_3 позволил определить соэффициент асимметрии A, характеризующий несимметричность соспределения случайной величины горизонтальной пульсации издушного потока относительно ее среднего значения. По данным засчета, коэффициент A изменяется в относительно широком (ределе 0,05—0,30. Небольшое количество обработанных данных те позволяет пока сделать вывод о переносе интенсивности расматриваемой компоненты самой этой компонентой. В настоящее ремя данные по величине A для приземного слоя малочисленны, тожно указать на единичные измерения, полученные для приземцого слоя при неустойчивой стратификации A. С. Гурвичем [3], E. Л. Диконом [13] и др. По данным этих авторов, величина Aмеет значения 0,2—0,8. Для пограничного слоя, по данным измечений В. Н. Иванова [4], для неустойчивой стратификации велиина A существенно больше (до 0,5—1,5), чем в приземном слое.

Отметим, что вертикальные профили величины A систематизиовать по данным эксперимента не удается, хотя для большинства ривых характерен рост до уровня порядка 1,5—2,5, затем сохраение постоянства величины A с высотой.

Коэффициент эксцесса K, который вычислялся по данным ентрального момента μ_4 , с высотой практически оставался потоянным, имел отрицательную величину, изменяясь в пределах т 2,918 до 3,126. В отдельных случаях вертикальные профили еличины K имеют тенденцию роста, однако определенных завиимостей от стратификации приземного слоя атмосферы прослеить не удается.

Таким образом, анализ центральных моментов свидетельствует сложном процессе вихреобразования над покрытием дворца порта «Юбилейный», причем сами вихри имеют достаточно неодородную структуру, что подтверждается вертикальными профиями проанализированных величин μ_2 , μ_3 , μ_4 .

Самостоятельный интерес представляет анализ дисперсий коебаний вантовых ферм покрытия. Данные расчета свидетельгвуют о волновом характере возмущенных поперечных колебаний о вертикали покрытия как единого целого. Амплитуды этих колеаний невелики, однако они зависят от направления и скорости оздушного потока.

Большое значение для измерения структуры воздушного поока имеют спектральные характеристики горизонтальной компоенты скорости ветра и вертикальных колебаний вантового покрыия. Учитывая важность определения спектральной плотности при выполнении данного исследования, остановимся подробнее н схеме вычисления этой величины.

Наиболее оптимальным путем определения спектральной плот ности по экспериментальным данным является определение, осно ванное на предварительном вычислении корреляционной функции процесса. Однако получение низкочастотных спектральных компо нент в этом случае связано с определенными трулностями В основном они характеризуются тем, что абсолютная величин случайной ошибки в определении корреляционной функции при близительно одинакова для всех значений слвигов, а относитель ная ошибка существенно возрастает по мере увеличения слвига так как амплитуда корреляционной функции при этом падает. Сле дует отметить, что именно при больших сдвигах корреляционна: функция содержит информацию о низкочастотных составляющи: спектра. В таких случаях при вычислении спектральной плотности вводят так называемый фильтр пропускания полос, т. е. тако математический фильтр, который позволяет отфильтровать высо кочастотные составляющие спектра, повысить удельный вес низко частотных компонент в общей энергии (соответственно амплитудь корреляционной функции при больших сдвигах).

Фильтрацию случайного процесса можно производить сглажи ванием, путем введения в расчеты весовых функций. Простейшим статистическим фильтром является скользящая средняя с рав ными весами, которая рассчитывается путем суммирования n по следовательных величин временного ряда и делением полученної суммы на n, т. е. все веса фильтрации одинаковы и равны 1/n.

Если рассматривать интервал длиной *T*, то в данном случаскользящая средняя будет представлять собой результат осредне ния высокочастотной компоненты, а низкочастотная компонента останется без изменений. Однако такой подход к фильтрации для решения ряда задач неприемлем.

При выборе весовой функции можно воспользоваться тем, что корреляционная функция является преобразованием Фурье ос спектральной плотности. Производя усечения корреляционной функции и выполняя расчет по этой усеченной функции, можно за метить, что из полученного преобразования по сравнению с истин ным значением спектральной плотности также исчезнут высшигармоники.

К выбору весовой функции надо подходить осторожно. Весо вая функция

$$P^{2}(\omega) = \frac{\sin^{2} \omega t}{\omega^{2} \pi}$$
(1)

может принимать как положительные, так и отрицательные зна чения, поэтому в результате расчета можно получить отрицатель ную оценку спектральной плотности, что является существенным 132 седостатком этой функции. В этом отношении выгоднее испольювать весовую функцию

$$P^{2}(\omega) = \frac{\sin^{2} \frac{\omega t}{2}}{\pi t \, \omega^{2}}, \qquad (2)$$

соторая является неотрицательной. Однако введение дополниельного члена несколько замедляет сходимость оценки спектральюй плотности при $T \to \infty$.

Исследования показывают, что спектральная плотность во мноом определяется видом весовой функции. Выполненные сравнисельные расчеты [1] показали, что наиболее целесообразно в консретных расчетах численное интегрирование выражения спектральюй плотности производить методом Филона [10] с учетом весовой рункции, предложенной Р. В. Хеммингом,

$$P(\tau) = \begin{cases} \left(1 - \frac{|\tau|}{T}\right) \left\{0,54 + 0,46\cos\frac{\pi\tau}{\tau_{\max}}\right\} |\tau| \leq \tau_{\max} \\ 0 & |\tau| > \tau_{\max}, \end{cases}$$
(3)

де τ_{\max} — максимальный сдвиг по времени; T — длина интервала зеализации по времени; $\tau = t_i - t_{i+1}$; t_i — текущее время.

С учетом этих соображений определена схема расчета спекральной плотности.

Для всех точек стоянок мачты (рис. 1) произведен расчет спектральной плотности. Получение устойчивых кривых распрецеления энергии по высоте обеспечивалось предварительным среднением автокорреляционных функций отдельных реализаций на неопределенной высоте, а затем расчетом по осредненной рункции спектральной плотности. Рассмотрим спектры кривых $S(\Omega)$ на примере измерений в точке A. В этой точке кривые спекральных плотностей продольной компоненты скорости воздушного ютока, рассчитанные для различных уровней, хорошо аппроксииируются прямой линией. В области высоких частот все спекгральные функции имеют степенную зависимость от пространстзенной частоты Ω с показателем степени, близким к — 5/3 — значечию, являющемуся следствием «закона 2/3» Колмогорова-Обухова.

На низкочастотном участке спектры имеют излом кривых с ясно выраженным максимумом для отдельных высот, например на высоте 13 *м*.

Наибольший интерес имеют представленные на рис. 2 кривые спектральных функций вида fS(f). В этом случае почти на всех зысотах исследования наблюдается отчетливо выраженный максимум, лежащий в диапазоне частот 0,50—0,75 рад/сек (0,08—),12 гц). Известно, что площадь, ограниченная кривой спектральної плотности, в таких координатах пропорциональна «энергии». На личие отчетливо выраженного максимума свидетельствует о том что основная часть «энергии» при данной стратификации призем ного слоя сосредоточена в сравнительно узком диапазоне часто $\frac{\Delta f}{r} \sim 0.3-0.5$ со средней частотой 0,62 рад/сек. Пространственные

масштабы, соответствующие этой частоте, согласно оценке, со ставляют 30—60 м. Исключением в этом случае являются данные для уровня 7 м. Следует отметить, что кривая спектральной плот ности для этой высоты (рис. 2) не достигает максимума в иссле дованном диапазоне частот. По-видимому, можно предположить что максимум кривой fS(f) наблюдается в более низком диапа зоне. Однако в нашем конкретном случае частоту максимума fS(f) установить не удалось.

Рис. 2. Спектральные плотности пульсации продольной компоненты воздушного потока fS(t) для различных уровней над покрытием в точке A.

Представляет интерес вертикальное распределение «энергии» для определенных частот (масштабов возмущений). На рис. 3 по оси абсцисс отложены масштабы турбулентности, отнесенные к средней скорости 6,4 *м/сек*. На перпендикулярах, восстановленных на оси абсцисс, соответствующих частотам 0,25; 0,50; 0,75; 134 1,0; 3,0; 5,0 рад/сек, отложены в определенном масштабе величины fS(f) для различных высот. Для большинства частот наблюдается сложное вертикальное распределение энергии с двумя отчетливо выраженными максимумами на высоте 2 м. Это обстоятельство, возможно, объясняется особенностью формирования турбулентных вихрей над радиально-вантовым покрытием у наветренной кромки.

Рис. 3. Вертикальное распределение интегральных масштабов турбулентности в точке А.

Таким образом, выполненный анализ спектров указывает на существенную зависимость «энергии» от направления воздушного потока, обтекающего дворец спорта «Юбилейный». Вместе с этим данные расчета $S(\Omega)$ свидетельствуют о неоднородности структуры потока и формировании над радиально-вантовым покрытием турбулентных вихрей различных масштабов.

Большой интерес представляет сравнение интегральных масштабов турбулентности в фиксированной точке на различных уровнях от покрытия. В качестве характерного примера рассмотрим данные для случая, когда измерения проводились в точке A при направлении ветра юго-западной четверти (рис. 4). Эта точка имеет ряд особенностей, предусмотренных методикой эксперимента. Согласно теоретическим исследованиям, в основу которых положен метод комфорных отображений здания на плоскости

с разрезом вдоль действительной оси, вихрь, возникающий с наветренного края, должен располагаться в секторе под углом в 45—60°, рассчитываемого для данного типа покрытия от крайней точки. Такой вихрь должен иметь форму эллипса с малой полуосью, равной 0,3—0,4 высоты здания [2]. Естественно, эта величина в каждом отдельном случае является функцией термиче-

Рис. 4. Вертикальное распределение «энергии» для дисперсных масштабов атмосферной турбулентности в точке А. ской стратификации исследуемого слоя. В конкретном примере она находится в пределах 12—16 м.

С учетом этих соображений мачта была установлена на расстоянии 6 *м* от наветренного края покрытия. Таким образом, на высоте 13—15 *м* в точке *А* можно было получить параметры турбулентного вихря, характеризующие невозмущенный турбулентный поток, который должен резко отличаться от потока, состоящего из вихрей, вызванных аэродинамикой здания.

Из рис. 4 видно, что с увеличением высоты над покрытием величина интегрального масштаба турбулентности уменьшается, достигает глубокого минимума для 3—4 *м*, вновь растет до 7—9 *м*, а затем опять уменьшается.

Кривые спектральной плотности колебаний различных фиксированных точек покрытия Дворца спорта (рис. 5) представляют распределение квадрата амплитуды отклонения покрытия от некоторого среднёго положения в отличие от энергетической кривой.

приведенной для уровня 9 *м* точки *А*. Сравнение этих кривых позволяет отметить некоторые важные, на наш взгляд, особенности распределения энергии колебаний конструкции вантового покрытия.

Во-первых, по мере удаления от наветренной кромки дворца спорта отмечается резкое ослабление «энергии» возмущенных колебаний. Так «энергия» (площадь под кривой) точки 6 по своей величине примерно на порядок меньше, чем эта же величина в точке 8, а «энергия», измеренная в точке 4, уже на два порядка меньше, чем для точки 8. Этот факт свидетельствует о постепенном ослаблении возмущенных колебаний ферм покрытия по мере удаления от наветренной кромки здания. При рассмотрении колебаний отдельных точек от центра к подветренной кромке покрытия (имеется в виду линия вдоль направления воздушного потока) 136 амплитуды колебаний постепенно начинают возрастать, достигая своего максимума у точки 14 (см. рис. 1), однако его величина меньше, чем у точки 8 (с наветренного края). Такая схема растределения амплитуд колебаний позволяет сделать вывод о волнозом характере возмущений вантового покрытия. При изменений направления ветра на 90° по отношению к линии датчиков они становятся на порядок меньше. Таким образом, отчетливо выявтяется зависимость возмущенных колебаний отдельных точек покрытия от направления воздушного потока.

Во-вторых, анализ кривых, проведенный для точек 8, 6 и 4 (рис. 1 и 5), указывает на определенный сдвиг максимума амплигуды по частотному интервалу. Причем этот сдвиг максимума направлен в сторону повышения частоты возмущенных колебаний покрытия. Это свидетельствует о сложной схеме формирования зозмущенных колебаний различных точек вантового покрытия.

Рис. 5. Спектральные плотности возмущенных колебаний конструкции вантового покрытия для трех точек и ветра в точке А.

В то же время можно считать, что наличие максимума на всех кривых возмущенных колебаний покрытия свидетельствует о том, что основная часть энергии колебаний конструкции вантовых ферм сосредоточена в сравнительно узком диапазоне частот от 0,70 до 1,25 рад/сек. Сдвиг частот между максимумами энергии воздушного потока и возмущенными колебаниями вантового покрытия невелик. По-видимому, особенности покрытия вызывают этот сдвиг при его работе в режиме вынужденных колебаний от пульсации наиболее энергоемкой части воздушного потока. В заключение авторы выражают свою признательность науч кому сотруднику И. Ф. Назаровой за помощь, оказанную при об работке экспериментальных данных на ЭВМ.

ЛИТЕРАТУРА

- Герман М. А. К вопросу определения вертикальных пульсаций скорости ветра по акселерографическим записям перегрузок центра тяжести вертолета КА-18. Труды ГГО, вып. 185, 1966.
- 2. Глики А. А. Экспериментальное исследование движения вихрей вблизи плохообтекаемого тела. Уч. зап. ЛГУ, вып. 172, 1951.
- 3. Гурвич А. С. Экспериментальное исследование частотных спектров и функций распределения вероятностей вертикальной компоненты скорости ветра Изв. АН СССР, № 4, 1966.
- Иванов В. Н. Использование высотной метеорологической мачты ИЭМ для изучения пограничного слоя атмосферы. Труды ИЭМ, вып. 12, 1970.
- Исследование физических основ рабочих процессов топок и печей. Сб. статей. Оргтехиздат, М., 1964.
- 6. Качурин Л. Г. Электрические измерения аэрофизических величин. Изд-вс «Высшая школа», М., 1967.
- 7. Котельников В. А. Теория потенциальной помехоустойчивости. Госэнергоиздат, М., 1956.
- 8. Попов С. Г. Механика жидкостей и газов. Изв. АН СССР, № 2, 1966.
- 9. Таунсенд А. А. Структура турбулентного потока с поперечным сдвигом. ИЛ, М., 1959.
- 10. Трантер К. Дж. Интегральные преобразования в математической физике. Гостехиздат, М., 1956.
- Хацкевич К. Г., Митрофанов Е. Н. К методике динамических испытаний висячих покрытий. Материалы 2-го Всесоюзного симпозиума 1969. Стройиздат, М., 1970.
 Вlackman R. B., Tukey T. W. The measurement of power spectra from
- 12. Blackman R. B., Tukey T. W. The measurement of power spectra from point of view communications engineering. The Bell System Technical J. № 313, 1958.
- 13. Deacon E. L. The turbulent transfer of momentum in the lower layer of the atmosphere C. SJR. O. Div. Met. Phys. Techn. Pap. № 4. Melbourne.
- 14. Klebanoff P. S. Characteristics of turbulence in a Baundary layer with zero pressure gradient. Nat. adv. Com. Aeronaut Rep., № 1247.

М. А. Герман (ЛГМИ)

К ПРОГНОЗУ СКОРОСТИ ВЕТРА НА НЕПРОДОЛЖИТЕЛЬНЫЙ ИНТЕРВАЛ ВРЕМЕНИ

Развитие современной авиации существенно повысило требования к метеорологической информации. Среди сведений, которые передаются на борт самолета, наибольшее внимание пилота привлекают данные о высоте нижней кромки облаков, видимости и ветре.

Учитывая повышенную чувствительность самолетов и вертолетов к различным изменениям ветра при взлете и посадке, соответствующими правилами эксплуатации авиационной техники введены определенные ограничения. Так, например, для самолета TV-104 предельная скорость бокового ветра, при которой разрешены взлет и посадка, равна 15 *м/сек*; для более легких самолетов допустимая скорость этого ветра обычно меньше.

Информация о ветре, поступающая на борт самолета, состоит из двух частей: первая часть — это данные о ветре, полученные в момент наблюдений; вторая часть — это прогностические данные, соответствующие моменту времени захода самолета на посадку. Временной интервал между моментом наблюдений и посадкой самолета не превышает 10—15 мин. Этот интервал и определяет время, для которого необходимо дать прогноз скорости и направления ветра.

Прогнозы ветра на небольшие интервалы времени нужны и для других не менее важных практических задач. Представляет также интерес автоматизировать выдачу величины прогностического ветра в различных метеорологических устройствах, используемых на пунктах управления взлетом и посадкой авиации и т. п.

Для прогноза скорости ветра на требуемый интервал времени существует несколько методов.

Ниже рассматриваются результаты проверки оправдываемости некоторых методов, которые используются в оперативной практике службы погоды, и тех методов, с помощью которых можно дать прогноз ветра на небольшой интервал времени. Наиболее широкое применение получил так называемый инерционный метод прогноза. Сущность его сводится к тому, что принимается сохранение максимальной величины скорости ветра, наблюдаемой в данный момент времени, на последующий 10—15-минутный интервал времени. Для проверки инерционного метода был поставлен комплекс измерений скорости ветра на высоте флюгера.

Измерения производились с января по май, в дневные часы на территории метеоплощадки ЛГМИ, с помощью датчика узла скорости ветра М-63 с регистрацией на диаграммную ленту самописцем Н-375.

После производства измерений диаграммная лента разбивалась на участки, соответствующие десятиминутному интервалу, для которого определялось максимальное значение скорости ветра V_{max} . Затем давался прогноз V_{max} по схеме, рассмотренной выше.

Из 320 прогнозов, представленных в табл. 1, видно, что в большинстве случаев корреляционная связь между прогностическими и фактическими величинами $V_{\rm max}$ невысокая. Анализ табл. 1 не позволяет выявить закономерности качества прогноза в зависимости от времени дня. Однако для тех случаев, когда скорости ветра превышают 10 *м/сек*, оправдываемость инерционного метода оказывается более высокой.

Таблица 1

Дата	Кол-во прогнозов	Коэффициент корреляции, <i>R</i>	Ошибка коэф- фициента кор- реляции, <i>Е_R</i>	Время наблюдений, часы и минуты
27/I	45	0,69	$\pm 0,05$	13.30-17.15
29/1	46	0,74	±0,0 5	10.15-14.05
1/11	37	0,48	\pm 0,12	14 00-17.10
4/11	41	0,32	±0,10	11 30-14,55
5/11	3 9	0,64	±0,06	9.00—12. 20
9/111	19	0,46	±0,13	10.50-12.25
24/IV	36	0,57	$\pm 0,07$	9.05-12.10
24/IV	37	0,39	$\pm 0,09$	1 2.3 5-15.45
25/IV	20	0,33	$\pm 0,14$	12.40-14.20

Результаты расчета корреляционной связи между прогностическими и фактическими максимальными величинами скорости ветра в 1967 году (прогноз по инерционному методу)

Исследования закономерностей распределения приращения скорости ветра в нижнем 10—15-метровом слое показывают, что изменчивость скорости ветра может быть охарактеризована зако-140 нами распределения, близкими к нормальному закону [4]. Используя эти результаты, запишем соотношение, определяющее прогностическую величину максимальной скорости ветра, в виде

$$V_{\max} = \overline{V} + k | \overline{V'} |, \qquad (1)$$

где V_{\max} — прогнозируемая максимальная величина скорости ветра; \overline{V} — средняя скорость ветра и $|\overline{V}'|$ — средний порыв скорости ветра, для одного и того же интервала времени; k — коэффициент, характеризующий степень вероятности появления порыва ветра величины V'.

С помощью формулы (1) для различных значений k было выполнено 786 прогнозов на материалах наблюдений в аэропорту Шоссейная (г. Ленинград). Для оценки оправдываемости использовался критерий

$$Q = \left(1 - \frac{n}{N}\right) \cdot 100\%, \qquad (2$$

где Q — оправдываемость прогноза (в %); n — количество неоправдавшихся прогнозов; N — общее число прогнозов.

Согласно рекомендациям ICAO, прогноз максимальной скорости ветра считается оправдавшимся, если разность между $V_{\phi a \kappa \tau}$, и $V_{п p o r H}$ не превышает 10% от фактически наблюдаемой скорости ветра за период времени, для которого давался прогноз [5].

Анализ расчетных прогностических величин показал, что в тех случаях, когда скорость ветра невелика (меньше 8 $M/ce\kappa$), величины оправдываемости прогноза не превышают 60%; при скорости воздушного потока более 8 $M/ce\kappa$ оправдываемость прогноза, выполненного по формуле (1), начинает медленно расти, достигая 70%, и только в 10% от общего числа спрогнозированных величин оправдываемость оказалась равной 78—80%.

Таким образом, рассмотренные методы не отличаются высокой степенью оправдываемости прогнозируемых величин и поэтому использование этих методов вряд ли является целесообразным.

Для прогноза скорости ветра автором была сделана попытка использовать динамико-статистический метод Ю. М. Алехина [1]. Этот метод, являясь перспективным для решения гидрологических задач, к сожалению, хороших результатов в решении нашей за-* дачи не дал. Возможно, что при более тщательном трактовании физики исследуемого процесса метод Ю. М. Алехина может и в данном случае дать более высокие результаты.

Кроме рассмотренных методов прогноза существуют и другие, например синоптический, климатологический и т. п. методы. Однако их оправдываемость также невелика и обычно не превышает 70%.

Исследование порывистости ветра указывает на сложную схему формирования величины порыва. К основным факторам, кото-

рые вносят свой вклад в формирование величины порыва ветра, следует отнести термодинамические условия, обусловливающие структуру воздушного потока. Сложная зависимость $V_{\rm max}$ от ряда величин не позволяет теоретически получить аналитическое выражение, с помощью которого можно было бы спрогнозировать $V_{\rm max}$ на тот или иной интервал времени. Наиболее приемлемым решением этой задачи следует признать исследование эмпирических связей и составление на этой основе прогностического соотношения.

Простейшими эмпирическими формулами могут быть выражения, представляющие результаты наблюдений в виде полиномов от тех величин, которые при наблюдении являются независимыми переменными [7].

У.Учитывая то, что практически те или иные наблюдения сопряжены с неизбежными ошибками, а также необходимость получения эмпирической формулы в достаточно простом виде, обычно решение такой задачи сводится к отысканию полинома *m*-ой степени. Такая схема вполне удовлетворительно отражает результаты наблюдений, сохраняя при этом некоторую минимальную погрешность. Задачи такого рода решаются способом наименьших квадратов. Сущность этого-метода сводится к следующему.

Пусть имется *п* значений независимого переменного Х

$$x_1, x_2, x_3, \ldots, x_n$$

и соответственно им значения функции f(X)

$$f_1, f_2, f_3, \ldots, f_n.$$
 (3)

Требуется определить полином *m*-ой степени $\phi(X)$

$$\varphi(X) = a_0 x^m + a_1 x^{m-1} + a_2 x^{m-2} + \dots + a_{m-1} x + a_m, \qquad (4)$$

обращающийся при $X = X_i$ в величину f_i . Составим систему уравнений:

$$\left. \begin{array}{c} a_{0} x_{1}^{m} + a_{1} x_{1}^{m-1} + a_{2} x_{1}^{m-2} + \ldots + a_{m-1} x_{1} + a_{m} = f_{1}, \\ a_{0} x_{2}^{m} + a_{1} x_{2}^{m-1} + a_{2} x_{2}^{m-2} + \ldots + a_{m-1} x_{2} + a_{m} = f_{2}, \\ \ldots \\ a_{0} x_{n}^{m} + a_{1} x_{n}^{m-1} + a_{2} x_{n}^{m-2} + \ldots + a_{m-1} x_{n} + a_{m} = f_{n}, \end{array} \right\}$$
(5)

где a_0 , a_1 , a_2 , ..., a_m представляют собой (m + 1) неизвестных коэффициентов. Для получения (m + 1) линейных уравнений необходимо в выражении (4) коэффициенты a_0 , a_1 , a_2 , ..., a_m выбрать таким образом, чтобы сумма квадратов разностей $\varphi(X_i) - f_i$ была наименьшей, т. е. чтобы наименьшей была сумма

$$\Sigma = \sum_{i=1}^{n} (a_0 x_i^m + a_1 x_i^{m-1} + a_2 x_i^{m-2} + \ldots + a_m - f_i)^2.$$
(6)

Іля выполнения этого условия очевидно достаточно, чтобы

$$\frac{\partial \Sigma}{\partial a_0} = 0; \ \frac{\partial \Sigma}{\partial a_1} = 0; \ \frac{\partial \Sigma}{\partial a_2} = 0; \ \frac{\partial \Sigma}{\partial a_2} = 0.$$
(7)

Таким образом, задача отыскания простейших эмпирических рормул сводится в общем виде к решению системы линейных гравнений. Представление данных наблюдений более сложными эмпирическими формулами в конечном счете тоже может быть ведено к решению системы линейных уравнений.

Воспользуемся изложенной схемой для составления эмпиричекой формулы прогноза максимальной величины скорости ветра. Прелположим, имеется *n* наблюдений скорости ветра

$$V_1, V_2, V_3, \ldots, V_n.$$

Представим эти наблюдения в виде функций от переменных \tilde{V} , $\Lambda \overline{V}, \overline{T}$, значения которых будут:

$$\left. \begin{array}{c} \overline{V}_{1}, \ \overline{V}_{2}, \ \overline{V}_{3}, \ \dots, \ \overline{V}_{n}, \\ \Delta \overline{V}_{1}, \ \Delta \overline{V}_{2}, \ \Delta \overline{V}_{3}, \ \dots, \ \Delta \overline{V}_{n}, \\ \overline{T}_{1}, \ \overline{T}_{2}, \ \overline{T}_{3}, \ \dots, \ \overline{T}_{n}, \end{array} \right\}$$
(8)

де V — максимальная скорость ветра; V — средняя скорость вети; $\Delta \overline{V}$ — среднее отклонение ветра; \overline{T} — среднее время сохранеия порыва ветра. Все эти величины отнесены к одному интервалу времени.

В общем случае эта функция может зависеть от ряда парачетров, например от X, Y, Z.

В нашей задаче необходимо выбрать эти три параметра так, тобы требуемая эмпирическая формула выражала результаты аблюдений с возможно малой погрешностью.

Положим, что V выражается формулой

$$V_{\max} = f(\overline{T}, \overline{V}, \Delta \overline{V}, X, Y, Z),$$

огда совокупность *п* наблюдений позволяет составить *n* уравений

$$V_{1 \max} = f(\overline{I}_{1}, V_{1}, \Delta V_{1}, X, Y, Z),$$

$$V_{2 \max} = f(\overline{I}_{2}, \overline{V}_{2}, \Delta \overline{V}_{3}, X, Y, Z),$$

 $V_{i,\max} = f(\overline{T}_n, \overline{V}_n, \Delta \overline{V}_n, X, Y, Z).$

(9)

Определим величины X, Y, Z из произвольно выбранных тре уравнений. В результате решения этой системы трех уравнении находим значения

$$X_0, Y_0, Z_0.$$
 (10)

При подстановке величин (10) в систему уравнений (9) оказы вается, что некоторые из равенств (9) будут выполнены достаточ но точно, а другие будут выполнены слишком приближенно.

Для того чтобы получить значения параметров, которы удовлетворяли бы, по возможности точно, все уравнения си стемы (9), придадим значениям X_0 , Y_0 , Z_0 малые поправки x, y, zТаким образом получим последовательность

 $X_0 + x; \quad Y_0 + y; \quad Z_0 + z.$ (11)

Подставим значения величин (11) в уравнение (9), предвари тельно разложив по степеням x, y, z и ограничиваясь членами первой степени относительно этих малых поправок. В этом слу чае первое из уравнений (9) может быть записано в виде

$$V_{1 \max} = f(\overline{T}_1, \overline{V}_1, \Delta \overline{V}_1, X_0, Y_0, Z_0) + a_1 x + b_1 y + c_1 z.$$
 (12)

Обозначим через е разность

$$e = f(\overline{T}_1, \overline{V}_1, \Delta \overline{V}_1, X_0, Y_0, Z_0) - V_{\max}, \qquad (13)$$

после чего уравнение (12) может быть записано следующим об разом:

$$a_1 x + b_1 y + c_1 z + e = 0. \tag{14}$$

Применив аналогичные преобразования к другим уравнениям системы (9), имеем

$$\begin{array}{c} a_{1}x + b_{1}y + c_{1}z + e_{1} = 0, \\ a_{2}x + b_{2}y + c_{2}z + e_{2} = 0, \\ \vdots \\ a_{n}x + b_{n}y + c_{n}z + e_{n} = 0. \end{array} \right\}$$
(15)

Таким образом, вопрос о нахождении трех параметров сведен к получению *x*, *y*, *z* из линейных уравнений системы (15).

Найдем оптимальные значения x, y, z, при которых уравнения системы (15) удовлетворялись бы с возможно малой погреш ностью. Обозначим эти погрешности через $\vartheta_1, \vartheta_2, \vartheta_3, \ldots, \vartheta_n$ т. е. полагая

$$\vartheta_i = a_i x + b_i y + c_i z + e_i \,, \tag{16}$$

можно представить сумму квадратов величины ϑ_i

$$S = \vartheta_1^2 + \vartheta_2^2 + \vartheta_3^2 + \ldots + \vartheta_n^2$$
(17)
как некоторую общую меру погрешностей. Чем меньше S, а следовательно, чем меньше значения ϑ_i , тем точнее удовлетворены уравнения системы (15). В этом случае задача сводится к отысканию таких x, y, z, при которых S обращается в минимум.

Накладывая на систему (15) условие, что сумма (17) имеет наименьшее значение, получаем три уравнения с тремя неизвестными

$$\frac{\partial S}{\partial x} = 0, \ \frac{\partial S}{\partial y} = 0, \ \frac{\partial S}{\partial z} = 0.$$
 (18)

Уравнения (18) образуют нормальную систему.

Рассмотрим составление нормальной системы уравнений при наличии трех переменных для случая *n* уравнений

$$a_{1}x + b_{1}y + c_{1}z + e_{1} = \vartheta_{1},$$

$$a_{2}x + b_{2}y + c_{2}z + e_{2} = \vartheta_{2},$$

$$a_{3}x + b_{3}y + c_{3}z + e_{3} = \vartheta_{3},$$

$$a_{n}x + b_{n}y + c_{n}z + e_{n} = \vartheta_{n}.$$
(19)

Введем для системы (19) условие:

$$\vartheta_1^2 + \vartheta_2^2 + \vartheta_3^2 + \ldots + \vartheta_n^2 = S_{\min},$$
 (20)

его выполнение может быть записано аналогично (18). Выполняя дифференцирование выражения (17), получаем

$$\left. \begin{array}{c} \vartheta_{1} \frac{\partial \vartheta_{1}}{\partial x} + \vartheta_{2} \frac{\partial \vartheta_{2}}{\partial x} + \cdots + \vartheta_{n} \frac{\partial \vartheta_{n}}{\partial x} = 0, \\ \vartheta_{1} \frac{\partial \vartheta_{1}}{\partial y} + \vartheta_{2} \frac{\partial \vartheta_{2}}{\partial y} + \cdots + \vartheta_{n} \frac{\partial \vartheta_{n}}{\partial y} = 0, \\ \vartheta_{1} \frac{\partial \vartheta_{1}}{\partial z} + \vartheta_{2} \frac{\partial \vartheta_{2}}{\partial z} + \cdots + \vartheta_{n} \frac{\partial \vartheta_{n}}{\partial z} = 0. \end{array} \right\}$$

$$(21)$$

Значения производных приведены в табл. 2.

Таблица 2

	-		- · · · · · · · · · · · · · · · · · · ·
Величина	$\frac{\partial \vartheta}{\partial x}$	$\frac{\partial \vartheta}{\partial y}$	$\frac{\partial \vartheta}{\partial z}$
······		1	
ϑ_1 .	a_1	. b ₁	c_1
ϑ_2	a_2	<i>b</i> ₂	C2
ϑ_3	a_3	<i>b</i> ₃	c_3
	• • •		
9 ₁₁	a_n	b_n	c_n
₿ ₁₁	a_n	b_n	c_n

Значения производных величины в

подставляя наиденные значения производных и выражения по грешностей через x, y, z в систему (21), после приведения подоб ных членов получаем

$$\begin{array}{l} (a_{1}^{2} + a_{2}^{2} + \ldots + a_{n}^{2}) x + (a_{1}b_{1} + a_{2}b_{2} + \ldots + a_{n}b_{n}) y + \\ + (a_{1}c_{1} + a_{2}c_{2} + \ldots + a_{n}c_{n}) z + (a_{1}e_{1} + a_{2}e_{2} + \ldots + a_{n}b_{n}) = 0, \\ (a_{1}b_{1} + a_{2}b_{2} + \ldots + a_{n}b_{n}) x + (b_{1}^{2} + b_{2}^{2} + \ldots + b_{n}^{2}) y + \\ + (b_{1}c_{1} + b_{2}c_{2} + \ldots + b_{n}c_{n}) z + (b_{1}e_{1} + b_{2}e_{2} + \ldots + b_{n}e_{n}) = 0, \\ (a_{1}c_{1} + a_{2}c_{2} + \ldots + a_{n}c_{n}) x + (b_{1}c_{1} + b_{2}c_{2} + \ldots + b_{n}c_{n}) y + \\ + (c_{1}^{2} + c_{2}^{2} + \ldots + c_{n}^{2}) z + (c_{1}e_{1} + c_{2}e_{2} + \ldots + c_{n}e_{n}) = 0. \end{array}$$

Обозначив коэффициенты данной системы по Гауссу, с последовательностью (22) имеем

[aa], [ab], [ac], [ae], [bb], [bc], [be], [cc], [ce].

При этих обозначениях формальная система представляется следующим образом:

$$[aa]x + [ab]y + [ac]z + [ae] = 0, [ab]x + [bb]y + [bc]z + [be] = 0, [ac]x + [bc]y + [cc]z + [ce] = 0.$$
 (23)

Решение этой системы практически не представляет трудности. В нашем случае оно было реализовано с помощью программы вычислений на ЭВМ М-20.

Прежде чем перейти к составлению корреляционных уравнений, необходимо определить параметры, формирующие максимальный порыв.

Известно, что, при прочих равных условиях, на величину V_{max} влияют те термодинамические факторы, которые обусловливают развитие атмосферной турбулентности в приземном слое атмосферы. Важное место в этом случае отводится температурной стратификации и влиянию подстилающей поверхности. Непосредственный учет температурной стратификации существенно усложняет схему расчета и требует привлечения дополнительных данных. Влияние же подстилающей поверхности непосредственному учету практически не поддается. Поэтому подход к решению, предложенный выше, в нашем случае является оправданным.

Предположим, что на формирование максимального порыва ветра на прогнозируемый интервал времени влияют:

1) средняя скорость воздушного потока V_i , за прошедший прогностический интервал времени (равный времени прогнозирования);

2) величина среднего приращения скорости воздушного потока $\Delta \bar{V}$ за прогностический интервал времени;

средняя величина времени сохранения порыва ветра T;
 146

4) предполагаемая величина максимальной скорости ветра Vmax_{i+1} за прогностический интервал времени;

5) величина максимальной скорости V_{max i}, которая наблюдалась за отрезок времени, предшествовавший прогнозу.

Эти предположения были положены в основу исследования множественной корреляции между величинами

$$V_{\max_{i+1}} \sim \overline{V_i} \sim \Delta \overline{V_i} \sim \overline{T_i}, \qquad (24)$$

$$V_{\max_{i+1}} \sim V_{\max_i} \sim \overline{V}_i \sim \Delta \overline{V}_i \,. \tag{25}$$

Предварительная оценка коэффициента корреляции между величинами соотношений (24) и (25) свидетельствует о вполне удовтетворительных связях. С учетом полученной корреляционной связи в дальнейшем были составлены исходные уравнения вида

$$a\overline{V}_i + b\Delta\overline{V}_1 + c_0\overline{T}_i - V_{\max_{i+1}} = 0; \qquad (26)$$

$$a\overline{V}_i + b\Delta\overline{V}_2 + c_0\overline{T}_i - V_{\max_{i+1}} = 0; \qquad (27)$$

$$a\overline{V}_i + b\Delta\overline{V}_1 + cV_{\max_i} - V_{\max_{i+1}} = 0; \qquad (28)$$

$$aV_i + b\Delta V_2 + cV_{\max_i} - V_{\max_{i+1}} = 0, \qquad (29)$$

де a, b и c — эмпирические весовые коэффициенты (безразмерые; c_0 — эмпирический весовой коэффициент с размерностью $\iota \cdot ce\kappa^{-2}$; $\Delta \overline{V}$ — средняя величина приращения скорости ветра, коорая определялась с помощью выражений:

$$\Delta \overline{V}_{1} = V_{\max_{i}} - \overline{V}_{i}, \qquad (30)$$

$$\Delta \overline{V}_2 = \frac{V_{\max_i} + V_{\min_i}}{2} - \overline{V}_i. \tag{31}$$

Отметим, что выражения (26)—(29) не лишены недостатков, частности они не полностью учитывают термодинамику формиования порыва скорости ветра. Однако в форме представленных равнений уже имеется определенная тенденция, которая в комлексе позволяет учесть указанные факторы. Уравнения (26)—(29) легли в основу составления условных

Уравнения (26)—(29) легли в основу составления условных истем для определения весовых коэффициентов

$$aV_j + b\Delta V_j + cT_j - V_{\max_j(l+1)} = 0;$$

$$a \overline{V}_{(j+1)} + b \Delta V_{(j+1)} + c T_{(j+1)} - V_{\max_{(i+1)}(j+1)} = 0;$$

$$a \overline{V}_{(j+m)} + b \Delta V_{(j+m)} + c T_{(j+m)} - V_{\max_{(i+1)}(j+m)} = 0.$$

Таким образом, были составлены четыре условные системы, со стоящие из 40 уравнений с тремя неизвестными: *a*, *b*, *c*.

Используя метод наименьших квадратов, с помощью специаль ной программы вычислений были получены нормальные системь уравнений, а затем определены весовые коэффициенты для каж дого уравнения. Результаты расчета представлены в табл. 3.

Таблица З

House	Весовые коэффициенты					
формулы	a	в	<i>c</i> ₀			
26	1,20	0,71	0,01			
27	1,11	0,52	0,01			
28	— 0, 01	0,57	+1,12			
29	0,54	- 0,10	0,59			

Результаты расчета эмпирических весовых коэффициентов *

Анализ величин, представленных в табл. 3, свидетельствуе о неоднородности значений весовых коэффициентов. Этот разбро объясняется тем, что в основу каждого уравнения, для которого получены коэффициенты, положены различные физические пред положения и поэтому вклад того или иного параметра различен

В итоге были получены четыре прогностические эмпирически формулы вида

$$V_{\max} = 1,20 \,\overline{V} + 0,71 \,\Delta \overline{V_1} + 0,01 \,\overline{T}; \tag{32}$$

 $V_{\max} = 1,11 \overline{V} + 0,52 \Delta \overline{V}_2 + 0,01 \overline{T};$ (33)

$$V_{\rm max} = -0.01 \,\overline{V} - 0.57 \,\Delta \overline{V_1} + 1.12 \,V_{\rm max_i} \,; \qquad (34)$$

$$V_{\rm max} = 0.54 \,\overline{V} - 0.10 \,\Delta \,\overline{V}_2 + 0.59 \,V_{\rm max}. \tag{35}$$

Отметим, что в формулах (34) и (35) для расчета прогностиче ской величины максимальной скорости ветра привлекаются све дения о максимальной скорости, наблюдаемой в данный момен времени.

Для проверки прогностических формул были использовань многочисленные материалы структурных измерений, выполненны кафедрой экспериментальной физики атмосферы ЛГМИ, на метео площадке института, в аэропорту Шоссейная и на полевой баз в дер. Даймище.

* Для формул (28) и (29) в табл. 3 представлены коэффициенты с. 148 Проверка производилась для зависимого и независимого видов трогноза. Зависимый прогноз скорости ветра позволил сравнить хему прогноза по реализации, по которой были вычислены весозые коэффициенты. Сущность независимого прогноза — расчет трогностических величин на новом (независимом) текущем материале.

В табл. 4 приведены результаты зависимого прогноза скорости зетра с помощью формул (32)—(35).

Сравнивая фактические и прогностические величины скорости зетра и используя критерий ICAO, дадим оценку оправдываемости ірогноза ветра с помощью формулы (2). В результате расчетов эказывается, что прогноз по формулам (34) и (35) дает одинакозую оправдываемость около 82%, наименьшую оправдываемость ірогноза обеспечивает выражение (32) — 73%, а соотношение (33) обеспечивает Q = 80%. Таким образом, с точки зрения ірогнозирования на зависимом материале наиболее удачными ледует признать прогнозы скорости ветра, вычисленные с помощью формул (34) и (35).

Наибольший интерес в исследуемом случае представляет прогноз ветра на независимом материале. В табл. 5 приведен пример подобного прогноза. Предварительный просмотр данных габл. 5 показывает, что в данном случае прогностические величины зетра, рассчитанные по формулам (33), (34) и (35), дают близсие результаты и наиболее неудачные прогнозы связаны с использованием соотношения (32).

К этим же выводам можно прийти, анализируя рис. 1, где призедены результаты прогноза скорости ветра с помощью формул (32) и (34) для одной и той же совокупности ветровых наблюдений. Однако эти предварительные выводы не согласуются с окончательной оценкой при прогнозе данного вида для всей созокупности исходного материала, использованного в настоящей работе. Всего было произведено около 100 единичных прогнозов цля десятиминутного интервала времени.

В табл. 6 приведены результаты расчета коэффициента оправываемости прогноза скорости ветра с учетом требований к поцобным прогнозам. Приводимые здесь коэффициенты оправдызаемости являются осредненными для трех групп. Критерием для целения исходного материала на группы явилась скорость возцушного потока. В первую группу вошли случаи, у которых максимальная скорость ветра была более 10 *м/сек*, во вторую группу — 3 пределах от 8 до 10 *м/сек*, в третью — менее 8 *м/сек*.

При анализе данных табл. 6 привлекают внимание два обстоягельства: первое — высокая оправдываемость прогноза ветра иля первой группы формул (33) и (34) и второе — сравнительно низкая оправдываемость для второй и третьей групп. Перчое из них, возможно, объясняется частично тем, что при расчете зесовых коэффициентов эмпирических формул были использованы лучаи с максимальной скоростью ветра значительно более

Тавлица 4

Результаты расчета максимальной скорости ветра с помощью эмпирических формул (зависимый прогноз) 24 апреля 1967 г.

Факти-	$\overline{\Lambda V}$	$\overline{\Lambda V}_{0}$		Пр о гно рас	стическая ссчитанная	V _{max} (1 и по фор	в <i>м/сек</i>), муле
V _{max} , м/сек	м/сек	м/сек	<u>Т</u> 1, сек	32	33	34	35
10,6	2,3	0,19	85	10,1	11,7	10,2	10,7
.11,1	2,9	0,22	85	10,2	10,4	10,5	10,7
12,5	3,8	0,32	75	10,2	10,7	11,0	12,1
12,3	2,3	- 0,50	150	10,8	11,7	11,7	12,0
10,6	2,5	0,22	60	13,1	12,7	12,3	12,7
1+,5	3,1	0,22	75	10,0	10,4	10,5	10,7
10,9	2,6	0,37	60	10,4	10,9	11,0	11,3
13,1	3,7	-1,01	150	10,4	10,7	10,6	10,9
10,6	2,5	0,22	60 '	12,2	12,4	12,6	12,7
11,9	2,1	0,50	85	12,9	!3,1	13,1	13,5
12,0	1,9	0,04	85	12,3	12,0	12,0	12,2
13,0	3,4	0,36	120	12,3	12,2	11,2	12,4
10,1	1,7	- 0,34	75	11,8	12,6	12,5	12,3
10,7	1,9	0,26	66	10,0	10,2	10,2	10,5
11,2	2,3	0,58	75	10,9	10,8	10,8	11,0
10,7	1,9	0,07	75	11,2	11,2	11,2	11,3
10,7	1,8	0,08	- 75	10,7	10,7	10,7	11,1
14,0	3,1	0,50	120	10,9	10,7	10,7	11,0
13,8	1,9	0,38	120	13,5	13,7	13,8	14,2
14,0	3,3	0,30	75	14,7	14,2	14,3	14,5
12,1	1,8	0,40	60	13,1	13,7	13,6	14,1
12.8	2,3	0.23	66	12,8	12,3	12,4	12,6
13,0	2,6	- 0,16	66	12,9	12,9	12,6	13,3
14,1	2,6	0,51	66	12,5	12,7	13,0	13,4
14,1	3,2	1,06	100	14,4	14,1	14,3	14,3
14,3	2,3	0,18	100	.14,0	13,9	14,0	14,1
16,0	3,0	0,88	85	14,7	14,4	14,6	14,7
15,1	3,3	0,40	150	16,1	16,1	16,0	16,3
15.6	3,3	0,65	55	14,5	14,8	14,9	15,2
15.9	4,0	1,16	75	15,9	15,4	15,5	15,7
15.2	3,5	0,68	120	152	15,5	15,5	15,8
16.1	4.3	0.65	200	14,6	15,6	14,9	15,4
17.5	5,0	1,32	85	15,0	16,1	16,5	15,8
16.8	4.8	1.21	100	16,9	17,5	16,8	17,3
15,1	2,6	0,03	85 -	16,4	16,7	16,1	16,5
							t in the second s

150

1.0

Таблица 5

and the second second	e de la contra						
Фактиче- ская V _{max} ,	$\Delta \overline{V}_1$,	$\Delta \overline{V}_{2};$ м/сен	Т. сек	Прогностическ <i>ая V_{max} (в м/сек)</i> рассчитанная по формуле			
м сек	<i>м сек</i>			32	33	34	35
81	1.8	0.50	66			,	·
7.6	1.4	0.40	55	8,2	7,9	7,9	8.1
7.8	1,6	0,27	.55	8,3	7,6	7,6	7.8
8,3	2,1	0,45	46	7,9	7,7	7,8	7,9
8,0	, 1,6	0,2 6	120	8,5 ,	8,0	7,8	8,2
8,1	1,5	0,10	85	9,0	7,9	7,9	8,2
7,3	1,2	0,08	50	8,8	7,8	7,8	8,3
7,9	1,3	0, 21	6 6	7,9	8,1	7,5	7,6
8,7	2,0	0,59	75	8,7	7,4	8,1	8,2
8,8	1,9	0,25	85	9,1	8,0	8,5	8,7
8,3	1,7	0,16	85	9,3	8,5	8,3	8,9
8,6	1,8	0,01	100	8,9	8,5	8,4	8,5
8,1	1,6	0,15	85	9,1	8,2	8,5	8,7
8,6	1,8	0,01	66	8,8	8,0	8,1	8,3
9,7	2,7	0,72	120	8,8	8,5	8,5	8,7
8,3	1,8	0,44	75	9,9	9,2	9,2	9,5
8,3	1,3	0,59	85	8,9	8,2	8,2	8,4
7,7	1,2	. 0,13	75	11,1	8,4	8,4	8,7
8,0	1,4	0,22	75	10,1	7,8	7,8	8,0
8,8	2,1	0,77	55	9,7	8,1	8,1	8,3
		F 1			1		6

Результаты расчета максимальной скорости ветра с помощью эмпирических формул (независимый прогноз) 7 мая 1967 г.

10 *м/сек* (см. табл. 4), поэтому эмпирические соотношения в данном случае полнее отражают структуру воздушного потока при больших скоростях ветра и хуже — при относительно более слабом ветре. С другой стороны, воздушные потоки с малыми скоростями более устойчивы, так как они меньше флуктуируют, следовательно, предложенная в работе схема формирования максимального порыва ветра для подобных потоков непригодна.

Таблица б

	Коэффициент оправдываемости, %						
№ формул		Независи	имый прогноз дл	я групп №			
	Зависимыи прогноз	1	2	3			
32	73	65	47	34			
33	80	80	67	56			
34	82	85	75	67			
35	82	63	63	56			

Результаты расчета среднего коэффициента оправдываемости прогноза скорости ветра с помощью эмпирических соотношений (32)—(35)

Таким образом, наиболее оптимальными соотношениями для прогноза ветра следует признать формулы (33) и (34). По-видимому, в этих соотношениях наиболее полно отражено формирование максимального порыва ветра.

В заключение следует отметить, что целью настоящей статьи является не получение конкретного эмпирического соотношения для прогноза скорости ветра, а определение оптимального пути в направлении решения подобных задач. Действительно, весовые коэффициенты, полученные в работе, возможно характерны лишь для определенного географического района, в данном случае — Ленинградской области, однако методика их получения может быть применена в любом конкретном районе. Естественно, что величины весовых коэффициентов будут в этом случае другими.

В то же время не исключен другой подход к вопросу формирования максимальных порывов ветра, что составляет будущее подобных исследований. Но методика определения весовых коэффициентов останется, очевидно, прежней.

ЛИТЕРАТУРА

- 1. Алехин Ю. М., Кондратович К. В., Гвоздева В. Г. Динамикостатистический метод прогноза гидрометеорологических процессов и опыт его практического применения. Материалы рыбохозяйственных исследований Северного бассейна. Труды ТТИНРО, вып. XII, Мурманск, 1968.
- 2. Длин А. М. Математическая статистика в технике. Изд-во «Советская наука», Л., 1949.
- 3 Качурин Л. Г. Электрические измерения аэрофизических величин. Изд-во «Высшая школа», М., 1967.
- 4. Монин А. С. О структуре полей скорости ветра и температуры в приземном слое воздуха. Труды Института физики атмосферы АН СССР, № 4. 1962.
- 5. Руководство по краткосрочным прогнозам погоды, часть II. Гидрометеоиздат, Л., 1965.
- 6. Пановский Г. А., Брайер Г. В. Статистические методы в метеорологии. Гидрометеоиздат, Л., 1967.
- 7. Яковлев К. Н. Математическая обработка результатов измерений. Гостехтеориздат, М., 1953.

Г. Ф. Попов (ЛГМИ)

О ВЫБОРЕ ОПТИМАЛЬНОГО ПЕРИОДА ОСРЕДНЕНИЯ ПРИ ИЗМЕРЕНИЯХ ВЕТРА

Выбор оптимального периода осреднения при измерениях ветра является непременным условием получения репрезентативного результата. Наблюдения показывают, что при сравнительно устойчивых погодных условиях, когда периодические изменения (суточный ход) внутри рассматриваемых отрезков времени не оказывают существенного влияния, когда рельеф местности довольно ровный и подстилающая поверхность однородна, установление размера оптимального периода осреднения не представляет большого труда.

При неустойчивой же атмосфере, в условиях частой смены погодных условий, при выраженном суточном ходе, в случае неровного рельефа и неоднородной подстилающей поверхности определение оптимального периода осреднения значительно затруднено.

В общих чертах период осреднения Топт должен отвечать следующим требованиям. Он должен быть, с одной стороны, достаточным по размеру, чтобы охватить собой наблюдающийся спектр колебаний (пульсаций) ветра. С другой стороны, период осреднения должен быть ограничен по размеру с тем, чтобы имелась возможность вскрыть изменение во времени самой средней величины. Следовательно, период осреднения должен быть таким. чтобы установленное среднее значение не было функцией его размера. Укажем сразу, что однозначное решение такой задачи в атмосфере почти исключается. Имея в виду разнообразие физических условий, принципиально не имеют большого смысла поиск и обоснование периода осреднения, одинаково оптимального для всех случаев. Можно и нужно устанавливать лишь его целесообразные границы для интервалов времени и удалений, на которые распространяется полученное среднее значение, учитывая при этом допустимые ошибки измерений.

Изложим некоторые соображения практического характера по выбору оптимального периода T_{ont} опытным путем.

Принципиально период осреднения, как время, необходимое для получения корректного значения средней скорости ветра, определяется видом спектральной функции плотности распределения пульсаций функции C(t). Справедливость этого положения не нуждается в подтверждении. В качестве меры оценки разброса средней величины обычно используют дисперсию. Приведем косинус-преобразование Фурье, связывающее автокорреляционную функцию и спектральную плотность

$$\boldsymbol{R}(\tau)_{c} = \int_{0}^{\infty} S(\varphi) \cdot \cos \varphi \tau \, d\varphi.$$
(1)

При $\tau = 0, R(o)_c = \sigma^2(c)_\infty$ — полная дисперсия функции. Тогда

$$\sigma^{2}(c)_{\infty} = \int_{0}^{\infty} S(\varphi) \, d\varphi.$$
 (2)

Площадь, ограниченная кривой $S(\varphi)d\varphi$, равна полной дисперсии случайной функции. Для дальнейших рассуждений используем зависимость, существующую между частной и полной дисперсиями

$$\sigma^{2}(c)_{T_{i}} = \sigma^{2}(c)_{\infty} \int_{0}^{\infty} S(\varphi) \left[1 - \frac{\sin^{2} \frac{\varphi T_{i}}{2}}{\left(\frac{\varphi T_{i}}{2}\right)^{2}} \right] d\varphi, \qquad (3)$$

где T_i — некоторый частный период осреднения. Очевидно, условием, удовлетворяющим наиболее оптимальному осреднению во кремени для конкретного случая и заданного интервала времени, будет положение, при котором кривая $\sigma^2(c) = f(T_i)$, построенная для экспериментально выбранных T_i , получит «насыщение». При этом становится справедливым следующее приближенное равенство:

$$\sigma^2(\boldsymbol{c})_{T_{\text{OHT}}} \simeq \sigma^2(\boldsymbol{c})_{\infty}. \tag{4}$$

Значение T_i , соответствующее начальной части участка «насыщения», практически может достаточно надежно характеризовать оптимальную величину периода осреднения. Построением кривых $\sigma^2(c) = f(T_i)$ для разных условий и состояний устойчивости атмосферы и в дальнейшем их осреднением можно получить необходимые данные для рекомендаций о размере $T_{\text{опт}}$. Осреднение этих кривых целесообразно осуществить на основе безразмерного аргу-

MEHTA
$$\int \frac{T_i \cdot \overline{C}(z_i)}{z_i}$$

Об оптимальном размере периода осреднения внутри конкретного отрезка времени t_i можно судить непосредственно по ошибкам, полученным при измерениях с периодами осреднения $T_i < t_i$.

В таком случае по экспериментальным данным следует получить средние квадраты относительных отклонений от средней скорости ветра за время t_i аналогично расчетам, выполненным в работе [1]:

$$\beta_{T_i}^{i} = \overline{\left[\frac{\sigma(C)_{T_i}}{\overline{C}(t)_{t_i}}\right]^2}, \qquad (5)$$

где
$$\sigma^2(\mathcal{C})_{i_i} = \overline{[\overline{C}(t)_{i_i} - \overline{C}(t)_{i_i}]^2} \left(\text{ осреднение по числу } n = \frac{t_i}{T_i} \right).$$

Целесообразно средние квадраты $\beta_{T_i}^2$ первоначально определить для отдельных групп (градаций) средней скорости ветра $\overline{C}(t)_{t_i}$, параметры шероховатости z_0 , а затем осреднить. При построении графика зависимости в полулогарифмических координатах $\beta_{T_i}^2 = f(\ln n)$ последняя надежно аппроксимируется прямой линией вида

$$\beta_{T_i}^2 = \beta_0^2 + k \ln n, \qquad (6)$$

где β_0^2 — средний квадрат некоторой систематической ошибки. Имея значения $\beta_{T_i}^2$, не представляет труда перейти к ошибкам определения ветра, в частности к срединным ошибкам скорости ветра, возникающим за счет неоптимальности T_i ,

$$E_{\overline{C}(t)T_i} = 0,674 \ \sqrt{\beta_{T_i}^2}. \tag{7}$$

С другой стороны, задавшись допустимыми величинами ошибок для интервалов времени t_i , нетрудно получить разумные границы оптимального периода осреднения $T_{\text{опт}}$.

Оба способа, изложенные выше, послужили методической основой для оценки размеров оптимального периода осреднения непосредственно по данным фактических измерений. Последние представляли из себя специальные измерения горизонтальной составляющей скорости ветра с помощью малоинерционной аппаратуры, выполнявшиеся в виде серий при различных состояниях атмосферы, на высотах до 100 *м* в условиях равнинной местности. В выполненном исследовании предпочтение было отдано установлению закономерностей изменения оптимального периода осреднения внутри малых отрезков времени (до 10—30 мин). В свою очередь, имеющиеся данные [1, 2] показывают, что при осреднении за 10 мин величина вероятной ошибки в средней скорости ветра, в случае экстраполяции последней на ближайшие 40—60 мин, составляет 8—10%.

На рис. 1 приведены кривые дисперсий $\sigma^2 \left[\frac{T_i \cdot \overline{C}(t)}{z_0} \right]$, полученные осреднением отдельно для высот 25 и 100 м и трех групп состояния стратификации атмосферы: устойчивая ($R_{i_{2-100}} \ge 0,050$), равновесная ($-0,50 < R_{i_{2-100}} < 0,50$), неустойчивая ($R_{i_{2-100}} < -0,050$). Кривые достаточно четко воспроизводят основные закономерности изменения периода осреднения внутри 10-минутного интервала и позволяют сделать следующие выводы.

Размер оптимального периода осреднения (на рис. 1 пунктир, соответствующий $\left[\frac{T_i \cdot \overline{C}(t)}{z_0}\right]_{\text{насыщ}}$ возрастает на обоих рассмотренных высотах измерений по мере роста неустойчивости атмосферы.

С увеличением высоты измерений от 25 до 100 *м* размер оптимального периода осреднения обычно возрастает на 20—30% при неустойчивый стратификации, несущественно изменяется при равновесной и сокращается на 15—20% при устойчивой стратификации в слое измерений.

Начало участков «насыщения» кривых σ^2 для нижнего 100-метрового слоя чаще всего приходится на дисперсии, соответствующие периодам осреднения: 250—500 сек — неустойчивая стратификация; 200—350 сек — равновесная стратификация; 150— 200 сек — устойчивая стратификация.

Для целей аналитической аппроксимации кривых дисперсий, приведенных на рис. 1, может быть применена степенная зависимость вида

$$\sigma^{2}\left[\frac{T_{i}\overline{C}(t)}{z_{0}}\right] = \sum_{i}^{N} \mathcal{B}_{i}^{2}\left[\frac{T_{i}\overline{C}(t)}{z_{0}}\right]^{\eta_{i}}, \qquad (8)$$

где \mathcal{B}_i^3 и η_i — показатели, зависящие от состояния стратификации атмосферы. Значения \mathcal{B}_i^2 , η_i для разных состояний стратификации атмосферы приведены в табл. 1.

Таблица 1

Состояние	\mathcal{B}_1^2		\mathcal{B}_{2}^{2}		η_1		η_2	
стратификации	25 м	100 м	25 м	100 м	25 м	100 м	25 м	100 м
Неустойчивое	0,229	0,820		25,85	0,320	0,154		0,961
Равновесное	0,091	1,320		13,10	0,367	0,104		0,643
Устойчивое	0 ,0 16	0,500	- -	37,80	0,447	0,144		0,880

Величины ${\cal B}_1^2$, ${\cal B}_2^2$, η_1 , η_2

Рассмотрим результаты расчетов средних квадратов относительных отклонений, согласно выражений (5), (6). Последние были определены отдельно для характерных интервалов времени 10, 5, 2,5 и 1 *мин.* Внутри указанных интервалов времени рассчитывались средние величины скорости за период времени 5—10— 15—30—60—100—300—600 сек. На рис. 2 даны графики зависимостей средних квадратов $\beta_{T_i}^2$ от числа $n = \frac{t_i}{T_i}$ (в полулогарифмических координатах). Величину среднего квадрата примем в качестве относительной меры репрезентативности данных о ветре, полученных с различным осреднением T_i . Из графиков видно, что 158 с уменьшением рассматриваемого периода осреднения T_i и с увеличением t_i средние квадраты $\beta_{T_i}^2$ возрастают, а с увеличением высоты измерений, при всех других равных условиях, величины $\beta_{T_i}^2$ уменьшаются.

$$\beta_{T_*}^2 = \beta_0^2 + k \ln n.$$

1, 2, 3, 4-соответственно для высот измерений 6, 25, 50 и 100 м

Обратимся непосредственно к ошибкам определения средней корости ветра, возникающим за счет неоптимальности T_i . Из даных табл. 2 следует, что если приемлемую величину срединной шибки $E_{\overline{C}(t)} T_i$ установить равной 5—7%, то соответствующий іериод осреднения $T_{\text{опт}}$ в среднем примерно оказывается равным $1,5 t_i$. Так, при измерениях ветра внутри $t_i = 10 \text{ мин } T_{\text{опт}} \simeq 300 \text{ сек}$, іри $t_i = 5 \text{ мин } T_{\text{опт}} \simeq 150 \text{ сек и т. д.}$ Указанные положения сохраняют свою силу при измерения на высотах до 30-50 м включительно. Для высоты измерений 100 м отношение $\frac{T_i}{t_i}$ колеблется в зависимости от t_i , но в среднем размер оптимального периода составляет $T_{ont} = 0.25 t_i$. Учитывая изменение характера атмосферных образований с высотой (их упо рядочение), а также то, что в данном случае не оценивается влия ние стратификации атмосферы, полученный результат является вполне закономерным.

Более строгая выборка границ периода осреднения T_{ont} для разных интервалов времени t_i , при заданной относительной ошибке $E_{\overline{C}(t)}$, равной 5% и 10%, дала результаты, представлен ные в табл. 3.

Таблица 🗄

	· · · · ·			· .						
Высота	Ті, сек									
измерений, м	300		100		30		10			
			. 1	$t_i = 10 Mu$	н					
25	5,0	1	9,0	1	13,0		15,0			
50	5,0		9,0		1 2, 0		14,0			
100	3,0		6,0]	8,0		9,0			
	150	100	60	30	20	10	5			
				t _i = 5 [°] мин	,					
6	7,1	9,3	10,9	1 2, 5	13,9	15,2	16,			
2 5	7,1	7,7	9,8	12,0	13,8	14,5	15,8			
50	6,4	7,4	9,5	11,7	13,5	14,0	15,0			
100	4,8	5,7	7,1	8,2	9,1	9,6	10,0			
1	100				1					
	!00	30)	15	10		5			
				t _i =2,5 мин	ı					
6	4,2	10	,2	11,7	13,5		15,1			
35	4,3	10	,0	12,3	13,2		14,5			
50	4,3	10	,0	11,8	12,6		14 ,2			
100	2,6	6	,8	8,0	8,3		9,0			

Величины срединных ошибок $E_{\overline{C}(t)_T}$ для разных t_i (в процентах)

Таблица З

		υu	INOKA LC	(<i>t</i>) _{<i>T</i>_{<i>i</i>}}	диме резу			
	Выс о та	6 м	Высота	25 м	Высота	50 M	Высота	а 100 м
t _і , мин				$E_{\overline{C}(t)}$) _{T_i} , %			
	5	10	5	10	5	10	5	10
							2	
10			390-400	100-110	300	70-75	200	10-15
5	160-170	7090	140—150	3540	180 - 200	50-55	130140	5-10
2,5	80-90	30—35	80-85	3 0	75	30	5055	5-7
1	30-40	13—15	35-40	12-15	35—40	11-14	20-25	4-5

Размеры периода осреднения $T_{\text{опт}}$ (в *сек*) при заданных величинах ошибки $E_{\overline{C(t)}T_{t}}$ (средние результаты)

Данные табл. 2—3 показывают, что размер периода осреднеия T_{onr} существенно сокращается при переходе от ошибки $\Xi_{\overline{C}(t)T_{i}} = 5\%$ к более грубым измерениям $E_{\overline{C}(t)T_{i}} = 10\%$. Причем, это особенно заметно для высоты измерений более 50 м. Имевшийся статистический материал, полученный при $z_{0} = 0.03-0.10$ м, нозволил установить следующие эмпирические формулы для опрецеления T_{onr} на высотах измерения 6—100 м в зависимости от интервала времени t_{i} (в сек):

 $\begin{cases} T_{\text{onr}}^{6 \ \text{\tiny M}} = M \ [3,50 + 0,0058 \ t_i], \\ lg \ T_{\text{onr}}^{25 \ \text{\tiny M}} = M \ [4,05 + 0,0032 \ t_i], \\ lg \ T_{\text{onr}}^{100 \ \text{\tiny M}} = M \ [3,40 + 0,0037 \ t_i], \end{cases}$

'де $M = \lg e = 0.4343$.

Размер T_{onr} , установленный по приведенным формулам, позвоіяет определить среднюю скорость ветра внутри $t_i = 1 - 10$ мин з среднем с ошибкой $E_{\overline{C}(t)}_{T_i} = 5 - 7\%$ в основном в условиях устойивой и равновесной стратификации атмосферы в слое измеусний.

Если рассматривать интервал времени $t_i = 30$ мин, то основые закономерности изменения оптимального периода осреднеия, изложенные для $t_i \leq 10$ мин, сохраняют свою силу. Так, для юлучения устойчивого среднего значения скорости ветра на выотах измерений до 30—50 м в среднем $T_{onr} = 10-15$ мин, а на ысотах до 100 м $T_{onr} = 8-12$ мин.

1 3ak. 243

161

(9)

Изложенные возможности и характеристики определения репре зентативности средних значений скорости ветра внутри малых ин тервалов времени представляют интерес при изучении структурь полей метеоэлементов и при оценках влияния атмосферы на быстро протекающие процессы. Однако нужно помнить, что полу ченные результаты основаны на измерениях, выполненных с по мощью малоинерционной аппаратуры, позволившей иметь непре рывную регистрацию реального воздушного потока. Очевидно, при пользовании результатами измерений ветра инерционными прибо рами необходимо дополнительно учитывать, главным образом для малых t_i , что выполненное такими приборами сглаживание тур булентных пульсаций нельзя считать полностью равносильным осреднению во времени при измерениях безынерционной аппара турой [3].

Соотношение между «постоянной» времени применяемого при бора и его временной характеристикой осреднения (сглаживания) зависит от состояния потока, конкретного вида корреляционной функции пульсаций ветра и др.

ЛИТЕРАТУРА

- Андреев И. Д. Выбор оптимального интервала осреднения скорости ветра Труды ГГО, вып. 83, 1958.
- 2. Каулин Н. Я. Об измерениях скорости ветра. Труды ГГО, вып. 108, 1960
- 3. Я глом А. М. Об учете инерции метеорологических приборов при измере ниях в турбулентной атмосфере. Труды Геофизич. института АН СССР № 24, 1954.

Л. Г. Качурин (ЛГМИ), Л. А. Салтыкова (Норильский индустр. ин-т)

О ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СКОРОСТИ САМОДИФФУЗИИ ЖИДКОСТИ

Зависимость коэффициента самодиффузии D от температуры T принято аппроксимировать выражением вида [1]

$$D \sim \exp\left[-\frac{w}{kT}\right],$$
 (1)

где k — постоянная Больцмана; ω — так называемая энергия активации, подлежащая определению по результатам измерения скорости самодиффузии при различных температурах.

В последние годы было проведено большое количество измерений скорости самодиффузии веществ, в том числе воды и расплавленных металлов. В связи с этим появилась возможность проверить предложенную в [2, 3] формулу для температурной зависимости скорости самодиффузии жидкостей, в которой определяющим параметром является не энергия активации, а энтропия жидкости. Эта формула записывается так:

$$D \sim \exp\left[\frac{\Delta S}{k}\right],$$
 (2)

где ΔS — изменение энтропии жидкости, обусловленное изменением ее теплосодержания. При неизменном давлении запишем:

$$\Delta S = \int_{T_0}^{T} \frac{c_p \, dT}{T}, \qquad (3)$$

где c_p — теплоемкость при постоянном давлении.

Введем D_0 , соответствующее T_0 . Тогда

$$\frac{D}{D_0} = \exp\left[\frac{1}{k} \int_{T_0}^{T} \frac{c_p \, dT}{T}\right]. \tag{4}$$

163

11*

Если для сравнительно небольшого интервала температур использовать среднее (по температуре) значение c_n , то

$$\frac{D}{D_0} = \exp\left[\frac{c_p}{k} \ln \frac{T}{T_0}\right] = \left(\frac{T}{T_0}\right)^{\frac{p}{k}}.$$
 (5)

Недавно в работе [4] формулы вида (2)—(3) были использованы для определения структурных характеристик металлов. Полученные в работе [4] результаты также говорят о возможности использования формул (2)—(5).

По формуле (5) нами были рассчитаны коэффициенты самодиффузии для воды и девяти жидких металлов.

Рис. 1. Температурная зависимость коэффициента самодиффузии воды. 1-теоретическая кривая по уравнению (5); 2-аппроксимирующая кривая из работы [7]; 3, 4, 5, 6, 7, 8-экспериментальные точки соответственно из работ [9], [10], [7], [8], [11], [23]

Величина D_0 рассчитывалась на основании экспериментальных данных по формуле (5) следующим образом: для каждого значения экспериментально полученной величины коэффициента самодиффузии D при соответствующей температуре T и при фиксированной температуре T_0 посредине интервала температур, при которых проводился опыт, вычисляли значение D_0 . Затем значения D_0 осреднялись. Полученная величина и использовалась при расчете температурной зависимости скорости самодиффузии. Средние отклонения от осредненной величины D_0 колебались от 1 до 7,5% для различных веществ. В расчетах были использованы средние значения теплоемкости c_p , взятые из таблиц [5, 6]. Предварительно для ряда веществ (Zn, Sn, Hg) были проведены параллельные расчеты с учетом и без учета температурной зависимости c_p . Расчеты показали, что учет температурной зависимости c_p не меняет существенно результатов вычислений.

化氨基苯乙基乙基基苯乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基

Были построены теоретические кривые зависимости $\lg D$ от $\frac{1}{T}$ для каждого вещества и проведено сравнение с эксперимен-

тальными данными. Примеры таких сравнений приведены на рис. 1, 2. На рис. 1, кроме теоре-

тической кривой І и эксперименгальных точек, нанесена аппрокэкспериментальные симирующая цанные кривая 2, полученная в работе [7]. Нетрудно заметить, что кривые 1 и 2 примерно одинаково расположены по отношению к экстериментальным точкам, несмотря на то, что наклон кривой 1 определялся теоретически, в то время как наклон кривой 2 определяется экспериментальными данными. теми самыми, с которыми сравниваются кривые.

Аппроксимирующая эксперименгальные данные кривая 3 на рис. 2, гостроенная по уравнению из работы [17]

 $D = 1.2 \cdot 10^{-3} \exp \left[-5600/RT\right],$ (6)

согласуется с экспериментом не лучше, чем теоретическая кризая (5).

Рис. 2. Температурная зависимость коэффициента самодиффузии цинка.

1-экспериментальные точки из работы [17]; 2, 3-кривые по уравнениям (5) и (6)

На рис. З для семи веществ дан сводный график зависимости $\frac{k}{c_p} \lg \frac{D_s}{D_0}$ от $\lg \frac{T}{T_0}$, где D_s —экспериментальное значение коэф-фициента самодиффузии.

График показывает, что экспериментальные данные для всех семи веществ удовлетворительно согласуются с теоретическим расчетом, хотя и хуже в среднем, чем для Zn и H₂O.

Несколько хуже согласуется формула (5) с экспериментальными данными для Zn, Hg, In (рис. 4). В связи с небольшим количеством опытов, сведения о которых удалось обнаружить в литературе, нельзя сделать окончательный вывод о причинах расхождений. Для индия, например, теплоемкость известна только для температуры плавления.

Рис. 4. Сравнение теории и экспериментальных данных: *I*-для Sn [18, 19]; 2-для In [19, 20]; 3-для Hg [21, 22, 23, 24]

Таким образом, для воды и ряда расплавленных металлов температурная зависимость коэффициента самодиффузии по уравнению (5) дает удовлетворительное согласие с опытом, что может быть использовано для экстраполяции коэффициента самодиффузии за пределы температурного диапазона, в котором выполнены измерения самодиффузии, а также для приближенной оценки температурной зависимости скорости самодиффузии неисследованных расплавов.

В работе [26] формула (1) проверялась для процессов диффузии примесных атомов Ag и Tl в жидком олове. Построенные по экспериментальным данным зависимости коэффициента диффузии от температуры на графике с осями $\lg D$ и $\lg T$ оказались существенно нелинейными.

Построенные нами по тем же экспериментальным данным те же зависимости на графике с осями $\lg D$ и $\lg T$ (в соответствии с формулой (5)) оказались значительно более линейными. Это говорит о разумности использования формулы (5) для расчета диффузии примесей в расплавах.

ЛИТЕРАТУРА

- 1. Френкель Я. И. Собрание избранных трудов. Том III. Кинетическая теория жидкостей. Изд-во АН СССР, 1959.
- 2. Качурин Л. Г. Некоторые вопросы кинетической теории образования зародышей стабильной фазы в метастабильной. Труды ЛГМИ, вып. 3, 1954.
- Качурин Л. Г. Сравнение различных уравнений замерзания переохлаж-денных водных аэрозолей. Изв. АН СССР, сер. геофиз., 1, 1959.
 Павлинов Л. В. Красчету параметров диффузии. Физика металлов и ме-
- талловедение, т. 20, вып. 3, 1965.
- 5. Теплофизические свойства веществ. Справочник под ред. Н. Б. Варгафтика, 1956.
- 6. Справочник химика, часть 1. Госхимиздат, 1962.
- 7. Андреев Г. А. Диффузия в системе H₂O—HDO. Журнал физической хи-мии, 37, 2, 1963.
- 8. Longsworth L. I. The mutual diffusion of light and heavy water. J. Phys. Chem. 64, 1914, 1960.
- ^b 9. Wang J. H., Robinson S. V., Edelman J S. Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H², H³ and O¹⁸ as tracer. J. Am. Chem. Soc., 75, 466, 1953.
- Partington J. R., Hudson R. F., Bagnal K. W. Self-diffusion of Aliphatic Alcohols. Nature, 196, 583, 1952.
 Graupner K., Winter E. R. S. Some measurement of the self-diffusion
- coefficients of liquids. J. Chem. Soc., 1145, 1952.
- 12. Petit J., Nachtrieb N. H. Self-diffusion of liquidgallium, J. Chem. Phys., 24, 1027, 1956.
- 13. Jang L., Kado S., Derge I. Self-diffusion of silver in molten silver. Trans. Amer. Inst. Min. (Metall) Engrs, 212, 628, 1958.
- 14. Henderson J., Jang L. Self-diffusion of Copper in molten copper. Trans. Amer. Inst. Min. (Metall) Engrs, 221, 72, 1961.
- 15. Rothman S. J., Hall L. D. Diffussion in liquid lead. J. Metals, 8, 199, 1956.
- 16. Meyer R. E., Nachtrieb N. H. Self-diffusion of liquid sodium. J. Chem. Phys., 23, 1851, 1955.

- Lange W., Pippel W., Bendel F. Die selbst-diffusion in flüssigem zink. Zs. Physik. Chem., 212, 238, 1959.
 Ma C. H., Swalin R. A. Self-diffusion in liquid tin. J. Chem. Phys., 36,
- 3014, 1962.
- 19. Carriri I., Paoletti A., Vicentini M. Further experiments on liquid indium and tin self-diffusion. Nuovo Chimento, 10, 1088, 1958.
- 20. Lodding A. Selbst-diffusion in geschmolzenem indiummetall. Z. Naturf., 11 Å, 200, 1956.
- 21. Meyer R. E. Self-diffusion of liquid mercury. J. Phys. Chem., 65, 567, 1931.
- 22. Hoffman R. E. Self-diffusion of liquid mercury. J. Chem. Phys., 20, 1567, 1962.
- 23. Nachtrieb N. H., Petit J. Self-diffusion of liquid mercury, J. Chem. Phys., 24, 746, 1956.
- 24. Brown D. S., Tuck D. J. New method for studying self-diffusion in liquids: self-diffusion in liquid mercury. Trans. Faradey Soc., 60, 7, 1964.
- 25. Simpson J., Carr H. Diffusion and nuclear spin relaxation in water. Phys. Rev., III, 1201, 1958.
- 26. Харьков Е. И., Звягинцев А. Л., Оноприенко Г. И. Диффузия примесных атомов серебра и таллия в жидком олове. УФЖ, 15, № 10, 1733, 1970.

Л. И. Дивинский (ЛГМИ)

О ВЫДЕЛЕНИИ РАДИОЛОКАЦИОННОГО СИГНАЛА, ОТРАЖЕННОГО ОТ МОЛНИИ

المدامي ورابيتك الم

В настоящее время известен ряд работ [1], [3], [4], [5], в которых сообщается о радиолокационных характеристиках сигнала, отраженного от молнии. В этих работах отмечается, что возникновение молнии приводит к кратковременному значительному увеличению уровня отраженного сигнала. Увеличение уровня сигнала связано с изменением величины эффективной отражающей поверхности области пространства, в котором возникает молния, так как сильноточный разряд сопровождается появлением в облаках ионизированных участков с большой концентрацией свободных электронов, хорошо отражающих радиоволны.

Разработка радиолокационной аппаратуры, предназначенной для определения координат сильноточных разрядов в облаках гребует выявления количественных характеристик сигналов на выходе приемника РЛС, позволяющих выделить отражения от облаков при возникновении в них молний.

Рассмотрим явления, происходящие при отражении от облаков при отсутствии молнии. Используя закон распределения Релея при рассмотрении отражения радиоволн от облаков, получаем среднее значение мощности на входе приемника, отраженной от области пространства, удаленного на расстояние *R* от РЛС при отсутствии молнии

$$P_{np}^{\bullet} = \frac{P_{nep}\lambda^{2}c\tau}{2(4\pi)^{8}R^{2}}\int_{\theta=0}^{\frac{\pi}{2}}\int_{\varphi=0}^{2\pi}\eta(R,\,\theta,\,\varphi)\left[\frac{4\pi F(\theta,\,\varphi)}{\int_{\theta=0}^{\frac{\pi}{2}}\int_{\varphi=0}^{2\pi}F(\theta,\,\varphi)d\theta,\,d\varphi}\right]^{2}d\theta\,d\varphi,\,(1)$$

где P_{nep} — мощность излучения передатчика; λ — длина волны РЛС; c — скорость распространения электромагнитных волн; r — длительность импульса излучения передатчика; R — расстояние до цели; $\eta(R, \theta, \varphi)$ — эффективная площадь рассеивания, приходящаяся на единицу объема цели; $F(\theta, \varphi)$ — нормированная функция диаграммы направленности по мощности антенной системы РЛС.

Возникновение молнии приводит к появлению на входе приемника дополнительной мощности P_{np}^{M} . Если дополнительная мощность P_{np}^{M} в m^2 раз превосходит среднюю мощность P_{np}° , то плотность вероятности распределения мощности на входе приемника [6], [7]

$$W_{m}(P_{np}) = \frac{1}{P_{np}^{\circ}} \exp\left(-\frac{P_{np}}{P_{np}^{\circ}} - m^{2}\right) I_{0}\left(2m \sqrt{\frac{P_{np}}{P_{np}^{\circ}}}\right), \qquad (2)$$

где I_0 — модифицированная функция Бесселя первого рода, нулевого порядка.

Соотношение (2) при m = 0 определяет плотность вероятности распределения мощности P_{np} при отсутствии молнии.

Предполагая, что приемник является нешумящим, безынерционным, нелинейным преобразователем, осуществляющим преобразование мощности $P_{\rm пp}$ в напряжение на выходе приемника $U_{\rm вых}$ в соответствии с зависимостью

$$U_{\rm BMX} = \varphi \ (P_{\rm np}), \tag{3}$$

плотность вероятности распределения напряжения U_{вых} запишется так:

$$W_{m}(U_{\text{BMX}}) = \frac{1}{P_{\text{пp}}^{\circ}} \exp\left[-\frac{\psi(U_{\text{BMX}})}{P_{\text{пp}}^{\circ}} - m^{2}\right] \times I_{0}\left[2m\sqrt{\frac{\psi(U_{\text{BMX}})}{P_{\text{пp}}^{\circ}}}\right] \times \left|\frac{d\psi(U_{\text{BMX}})}{dU_{\text{BMX}}}\right|, \qquad (4)$$

где $\psi(U_{\text{вых}})$ — функция обратная $\varphi(P_{np})$.

Если амплитудная характеристика приемника (3) логарифмическая, описываемая выражением

$$U_{\rm Bbix} = U_0 \ln \frac{P_{\rm up} + P_{\rm ut}}{P_0}, \qquad (5)$$

где U_0 , $P_{\rm III}$ и P_0 —постоянные коэффициенты, то $W_m(U_{\rm BMX})$ определяется как:

$$W_{m}\left(U_{\text{BMX}}\right) = \frac{P_{0}}{P_{\pi p}^{\circ} U_{0}} \exp\left[\frac{U_{\text{BMX}}}{U_{0}} m^{2} - \frac{1}{P_{\pi p}^{\circ}} \left(P_{0} \exp\frac{U_{\text{BMX}}}{U_{0}} + P_{\text{III}}\right)\right] \times \\ \times I_{0} \left[2m \sqrt{\frac{1}{P_{\pi p}^{\circ}} \left(P_{0} \exp\frac{U_{\text{BMX}}}{U_{0}} + P_{\text{III}}\right)}\right].$$
(6)

Предположим, что функция диаграммы направленности антенны РЛС равна:

$$F(\theta, \varphi) = \begin{cases} 1, \text{ при } 0 < \theta < \theta_0 & \text{и } 0 < \varphi < \alpha \\ 0, \text{ при } \theta_0 < \theta < \frac{\pi}{2} & \text{и } \alpha < \varphi < 2\pi - \alpha \end{cases}$$
(7)

Если реальная антенная система РЛС имеет ширину диаграммы направленности в горизонтальной и вертикальной плоскостях соответственно α и θ_0 , то замена реальной диаграммы направленюсти, описываемой, как правило, сложным аналитическим выракением, зависимостью (7) незначительно снижает точность раснетов, так как у современных антенн за пределы указанного секгора обычно излучается менее 10% от общего потока мощности. С учетом (7) получаем

$$\frac{4\pi F(\theta, \varphi)}{\int\limits_{\lambda=0}^{\frac{\pi}{2}} \int\limits_{\varphi=0}^{2\pi} F(\theta, \varphi) d\theta, d\varphi} = \begin{cases} G_0 = \frac{4\pi}{\alpha \theta_0} \text{ при } 0 < \theta < \theta_0, \ 0 < \varphi < \alpha \\ 0 \text{ при } \theta_0 < \theta < \frac{\pi}{2} \alpha < \varphi < 2\pi - \alpha \end{cases}$$
(8)

-де G₀ — коэффициент направленного действия антенны.

Если эффективная площадь рассеивания $\eta(R, \theta, \phi)$, приходящаяся на единицу объема постоянна и равна η_0 для высот, меньших H и равна нулю при высотах больших H, т. е. определяется зыражением:

$$\eta(R, \theta, \varphi) = \begin{cases} \eta_0 \text{ при } R < H \\ \eta_0 \text{ при } R > H \text{ и } \theta < \arcsin \frac{H}{R} \\ 0 \text{ при } R > H \text{ и } \theta > \arcsin \frac{H}{R} \end{cases}$$

где H — максимальная высота существования гидрометеоров, то, учитывая (8), среднее значение мощности P_{np}° (1) запишется как:

$$P_{np}^{\circ} = \begin{cases} \frac{P_{nep} \lambda^2 c\tau G_0^2 \eta_0 \alpha \theta_0}{2 (4\pi)^3 R^2} & \text{при } R < \frac{H}{\sin \theta_0} \\ \frac{P_{nep} \lambda^2 \cdot c \cdot \tau G_0^2 \eta_0 \alpha}{2 (4\pi)^3 \cdot R^2} & \text{arc} \sin \frac{H}{R} & \text{при } R > \frac{H}{\sin \theta_0} \end{cases}$$
(9)

Полученные соотношения (6) и (9) позволяют, задаваясь каким-либо критерием, обоснованно произвести выбор оптимального порогового напряжения U_{nop} , превышение которого выходным напряжением приемника свидетельствует о наличии молнии в пространстве обзора. В качестве критерия выбирается такое

значение U_{пор}, для которого вероятность ложного обнаружения молнии равна вероятности пропуска цели

$$\int_{U_{\text{nop}}}^{\infty} W_0(U_{\text{Bbix}}) dU_{\text{Bbix}} = \int_0^{U_{\text{nop}}} W_m(U_{\text{Bbix}}) dU_{\text{Bbix}}.$$
(10)

После преобразования выражения (10) получено уравнение, из которого численными методами определено U_{пор}:

* *

$$\int_{0}^{U_{\text{nop}}} \frac{P_0}{P_{\text{np}}^\circ U_0} \left\{ \exp\left[\frac{U_{\text{Bbix}}}{U_0} - \frac{1}{P_{\text{np}}^\circ} \left(P_0 \exp\left[\frac{U_{\text{Bbix}}}{U_0} + P_{\text{in}}\right]\right] \right\} \times \left\{ e^{-m^2} I_0 \left[2m \sqrt{\frac{1}{P_{\text{np}}^\circ} \left(P_0 \exp\left[\frac{U_{\text{Bbix}}}{U_0} + P_{\text{in}}\right]\right] + 1} \right\} dU_{\text{Bbix}} = 1. (11)$$

Из (11) следует зависимость $U_{\text{пор}}$ от расстояния до цели R и от интенсивности отраженного от молнин сигнала, оцениваемой величиной m.

Учитывая, что интенсивность сигнала, отраженного от молнии, является случайной величиной, и, полагая, что f(m) есть функция плотности вероятности распределения m, получаем

$$U_{\text{nop}}(R) = \int_{0}^{\infty} U_{\text{nop}}(m, R) f(m) dm, \qquad (12)$$

где $U_{\text{пор}}$ (*m*, *R*) — величина $U_{\text{пор}}$, определяемая из соотношения (11) для различных расстояний *R* и величин *m*.

Предполагая, что при $U_{\text{вых}}(R) > U_{\text{пор}}(R)$ в пространстве обзора есть молния, имеем вероятность ее обнаружения

$$P_{\text{off}} = \int_{0}^{\infty} \left[\int_{U_{\text{nop}}(R)}^{\infty} W_{m}(U_{\text{BMX}}) dU_{\text{BMX}} \right] f(m) dm.$$
(13)

Вероятность ложного обнаружения цели равна

$$P_{\text{ложн}} = \int_{U_{\text{пор}}(R)}^{\infty} W_0(U_{\text{вых}}) d U_{\text{вых}}.$$
 (14)

Полученные выражения использованы для определения величины вероятности обнаружения молнии и вероятности ложного обнаружения ее радиолокационной станцией, обладающей следующими техническими характеристиками: $P_{\text{пер}} = 250 \text{ квт}, \lambda = 17 \text{ см}, \theta_0 = 0.9 \text{ радиан}, \alpha = 0.14 \text{ радиан}, \tau = 0.8 \text{ мксек}, U_0 = 0.434 \text{ в}, P_0 = P_m = 10^{-12} \text{ вт}.$

Величина удельной эффективной площади рассеяния объемнораспределенной цели, согласно [6], принята равной $\eta_0 = 10^{-3} \ m^2/m^3$, 172 . то соответствует наиболее типичному случаю — возникновению молнии в сильно дождящих облаках. Максимальная высота гидрометеоров предположена равной 14 км.

Результаты расчета плотности вероятности распределения нагряжения $U_{\text{вых}}$ на выходе приемника для различных расстояний до отражающего объема при отсутствии молнии (m = 0) и при ее заличии ($m \neq 0$) приведены на рис. 1.

Рис. 1. Результаты расчета плотности вероятности распределения напряжения $U_{\rm вых}$ па выходе приемника для различных расстояний до отражающего объема.

а, б, s, г, ∂ -значення R, равные соответственно 10, 25, 40, 55, 70 км; l-m=0; 2-m=1; 3-m=2; 4-m=3; 5-m=4; 6-m=5

Имеющиеся качественные данные [1], [3], [4], [8] свидетельтвуют, что возникновение молнии значительно увеличивает урозень сигнала и часто приводит к насыщению приемного устройства РЛС. Это означает, что при возникновении разряда набліє дается многократное увеличение напряженности отраженного элек тромагнитного поля.

В расчетах предположено, что напряженность поля, образован ного отражением от молнии, равна или превосходит не более, чем в 5 раз напряженность поля, образованного отражением о объемно-распределенных целей, т. е. возможные значения *m* огра ничены небольшими величинами.

Вычисления проведены для двух различных законов распреде ления f(m). Предположено, что f(m) является случайной величи ной, подчиняющейся либо закону распределения с равномерной плотностью, либо закону распределения Симпсона в интервале значений $1 \ll m \ll 5$. В результате расчетов определено оптималь ное, с точки зрения выбранного критерия, значение порогового на пряжения $U_{\text{пор}}(R)$ для различных дальностей R. На рис. 2 изобра жена зависимость напряжения $U_{\text{пор}}(R)$ от расстояния. Поскольку отраженные с расстояния R сигналы повторяются с частотой за пуска передатчика РЛС, напряжение $U_{\text{пор}}(R)$ также является периодической функцией времени.

Рис. 2. Зависимость порогового напряжения от расстояния.

Анализ соотношений (13) и (14), проведенный применительно к оговоренным ранее техническим характеристикам радиолокационной станции и параметрам цели, дает вероятность ложногс обнаружения молнии таким методом, равную $P_{\rm ложн} = 0.02 \div 0.04$ в зависимости от расстояния до цели; вероятность обнаружения молнии, равную $P_{\rm обн} = 0.73 - 0.78$ (в случае, если закон распределения *m* равновероятностный) и $P_{\rm c6H} = 0.81 - 0.88$ (в случае, если *m* распределено по закону Симпсона).

Выводы

1. При любой величине порогового напряжения $U_{\text{пор}}(R)$ для заданного расстояния существует конечная вероятность того, что при отсутствии молнии напряжение на выходе приемного устройства превысит $U_{\text{пор}}(R)$ и будет принято решение о наличии ее в пространстве. Вероятность ложного обнаружения цели уменьшается с увеличением $U_{\text{пор}}(R)$.

2. При любой величине порогового напряжения существует конечная вероятность пропуска цели, которая увеличивается с увеличением $U_{nop}(R)$. Увеличение интенсивности отраженного от молнии сигнала уменьшает вероятность пропуска цели.

3. Выбор $U_{\text{пор}}$ (R) по соотношениям (11) и (12) обеспечивает достаточно высокую вероятность обнаружения сигнала, отраженного от молнии (0,73—0,88), при малой вероятности обнаружения ложной цели (0.02—0,04), если параметр *m*, оценивающий интенсивность отражения от молнии, имеет математическое ожидание $M(m) \ge 3$.

4. При увеличении расстояния величина $U_{nop}(R)$ снижается. Полученные соотношения справедливы, если $U_{nop} \gg U_{m}$, где U_{m} напряжение шумов на выходе приемника. При больших расстояниях, когда U_{nop} , определенное по соотношениям (11 и (12), становится сравнимым с уровнем собственных шумов приемника, использование $U_{nop}(R)$ в качестве критерия для определения наличия молнии в пространстве повышает вероятность ложного обнаружения цели. Уменьшение вероятности ложного обнаружения цели достигается повышением U_{nop} . Однако при этом происходит снижение вероятности обнаружения молний, интенсивность которых мала (малое значение m).

5. Приведенные соотношения могут быть использованы при разработке аппаратуры, предназначенной для обнаружения сильноточных разрядов в облаках.

ЛИТЕРАТУРА

- 1. Атлас Д. Успехи радарной метеорологии. Гидрометеоиздат., Л., 1967.
- 2. Бартон Д. Радиолокационные системы. Воениздат, М., 1967.
- 3. Баттан Л. Дж. Радиолокационная метеорология. Гидрометеоиздат, Л., 1962.
- 4. Мейсон Б. Дж. Физика облаков. Гидрометеоиздат, Л., 1931.
- 5. Скольник М. Введение в технику радиолокационных систем. Изд-во «Мир», М., 1965.
- 6. Современная радиолокация. Перевод с англ. под ред. Ю. Б. Кобзарева. Изд-во «Советское радио», М., 1969.
- 7. Распространение ультракоротких волн. Перевод с англ. под ред. Б. А. Шиллерова. Изд-во «Советское радио», М., 1954.
- 8. Ligda, Myron G. H. The radar observations of Lightning. J. of atmosph. terr. phys., 9, 329-346, 1956.

содержание

Бекряев В. И., Качирин Л. Г., Псаломшиков В. Ф. Электризация тел	P.
в потоке аэрозоля.	ŧ
Качурин Л Г., Розенталь О. М. К построению теории электрического	
заряжения тел в потоке аэрозоля	19
Качурин Л. Г., Кармов М. И., Медалиев Х. Х. О радиоизлучении об-	
лаков в предгрозовой стадии	2 ŧ
Качурин Л. Г., Розенталь О. М., Четин Ф. Е. Флюктуации электриче-	•
ского поля в грозовом облаке	38
Гвелесиани А. И. Некоторые вопросы таяния ледяных сфер	42
Бейтуганов М. Н. Дробление капель водных растворов в электриче-	
ском поле	49
Качурин Л. Г., Степаненко С. Р. Перестройка структуры тумана и из-	
менение дальности видимости при нагревании	51
Бекряев В. И. Турбулентная неизотермическая струя в стратифици-	65
	D∡
Декряев В. И., Бухман Н. 3., Степаненко О. А. Бысокоскоростная турбувантная струд создараемая розитирным присатовом. Срарнонно тоо-	
рии и эксперимента	78
Качирин Л. Г., Лыдина Г. Л. О рассеянии облаков и туманов нисхо-	
дящими струями вертолета	77
Быкова Н. Д. Некоторые особенности искусственного просветления	
туманов с помощью реагентов, интенсифицирующих конденсационные	
процессы	87
Воробьев Б. М. Қ расчету замерзания капель в кучевых облаках.	93
Воробьев Б. М. К расчету процессов, протекающих в искусственно	
кристаллизующемся мощном кучевом облаке)8
Гашин Л. И., Шарапов А. В. Об оценке интенсивности обледенения	
морских судов	17
Герман М. А., Хацкевич К. Г. К исследованию динамического воздей-	
ствия атмосферной турбулентности на радиально-вантовое покрытие	07
дворца спорта «Юбилейный»	21
тервал времени 15	30
понов г. ч. О высоре оптимального периода осреднения при изме-	54
Канирия Л Г Салыкова Л А О температурной зарисимости ско-	
рости самодифоузии жидкости	63
Пивинский Л. И. О выделении радиолокационного сигнала. отражен-	*
ного от молнии	69

Труды ЛГМИ, вып. 45

Film

вопросы экспериментальной физики атмосферы

Редакторы З. Б. Ваксенбург и Ю. П. Андрейков

Contraction of the local data and the local data an	The second se	and the second	
Сдано в набор 20/V	1971 г. Подписа	ано к печати 16/II	1972 г. Зак. 243
Бумага 60×90 1/16	Объем 11,75 и	печ. л. Тираж	x 500 M-08057
Типография ВОК			Цена 1 р. 14 к.
			177