ГЛАВНОЕ УПРАВЛЕНИЕ ГИДРОМЕТЕОРОЛОГИЧЕСКОЙ СЛУЖБЫ ПРИ СОВЕТЕ МИНИСТРОВ СССР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А. И. ВОЕЙКОВА

ТРУДЫ

ВЫПУСК ЗЗ8

ФИЗИЧЕСКАЯ КЛИМАТОЛОГИЯ

Под редакцией чл.-корр. АН СССР М. И. БУДЫКО

280819

ГИДРОМЕТЕОИЗДАТ ЛЕНИНГРАД • 1975 Сборник включает статьи, посвященные разработке методики косвенных расчетов составляющих теплового баланса, результаты исследования режима облачности на земном шаре, тепло- и влагообмена.

Рассчитан на широкий круг специалистов, работающих в области метеорологии.

СОДЕРЖАНИЕ

V	Т. Г. Берлянд, Л. А. Строкина. Режим облачности на земном	
, [*]	шаре	3
\mathbf{V}	Г. В. Циценко. О точности вычисления среднего месячногс количес	Т-
¥	ва облаков	21
	З. И. Пивоварова. К вопросу о получении средних для террито-	
	рии величин суммарной ралиации по наблюдениям за облачностью	
	на метеорологической сети	26
	З И Пивоварова Вековой ход прямой солнечной радиации	39
		00
	b	61
\mathbf{V}	$\mathbf{W} = \mathbf{W} = \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + $	01
	H. M. Deeba, I. D. Kapatinoba, st. A. Cipokana. Melodaka	
	учета влияния облачности на суммарную радиацию над океаном	69
	При климатологических расчетах	00
	и. в. морозова. Суточный ход облачности над Северной Атлан-	72
		10
	и. и. Борзенкова. Бозможные изменения температурного режи-	02
	ма в северном полушарии под влиянием деятельности человека	ο _Ο
	Е. Е. Сибир. Об изменчивости суммарного испарения в условиях	00
	тропического климата	90
	В. В. Стадник. Распределение прямои солнечной радиации, посту-	0.4
	пающей на южные стены зданий, по территории СССР	94
	Р. Л. Каган, Л. П. Клягина. К методике расчета потоков корот-	104
	коволновой радиации на отдельно стоящее здание	104
	Р. Л. Каган, Л. П. Клягина. Упрощенный способ вычисления	
	потоков суммарной радиации на отдельно стоящее здание	119

ТРУДЫ ГГО, вып. 338

Физическая климатология

Редактор М. М. Ясногородская. Техн. редактор Г. В. Ивкова Корректор Т. Н. Черненко

Сдано в набор 7/V 1974 г. Подписано к печати 18/XII 1974 г. М-06622. Формат 60×901/16, бумага тип. № 1. Печ. л. 8,5 Уч.-изд. л. 9,09 Тираж 550 экз. Индекс МЛ-323. Заказ 416. Цена 64 коп.

Гидрометеоиздат, 199053. Ленинград, 2-я линия, д. 23.

Сортавальская книжная типография Управления по делам издательств, полиграфии и книжной торговли Совета Министров Карельской АССР, Сортавала, Карельская, 42

 $\Phi = \frac{20807 - 010}{069(02) - 75}$ 28-74(2)

С Главная геофизическая обсерватория им. А. И. Воейкова (ГГО), 1974 г.

Т. Г. БЕРЛЯНД, Л. А. СТРОКИНА

РЕЖИМ ОБЛАЧНОСТИ НА ЗЕМНОМ ШАРЕ

Общеизвестна необходимость в климатической характеристике режима облачного покрова при изучении общей циркуляции атмосферы, энергетического баланса земного шара, разработке долгосрочных прогнозов погоды и мн. др. Имеющиеся результаты исследований облачности еще недостаточно удовлетворяют требованиям к данному виду информации.

Первая попытка картографического обобщения этого важного метеорологического элемента в пределах земного шара принадлежит Тейссерану де Бору, составившему еще в конце XIX в. месячные карты средней облачности [37].

В 1921 г. К. Бруксом были подготовлены новые мировые карты (опубликованные в монографии Непир Шоу в 1936 г. [34]), на которых в развитие предшествующей серии карт дается распределение облачности и для некоторых районов полярных широт.

Принимая во внимание то обстоятельство, что регулярные наблюдения за облаками начали производиться только во второй половине XIX в., когда сеть станций была редка и неравномерна, указанные серии карт позволяли получить весьма схематическое представление о характере распределения облачности на земном шаре.

По мере усовершенствования методов наблюдения за облаками и обработки наблюдений, расширения мировой метеорологической сети, накопления исходной информации выполнялись работы, направленные на углубленное изучение основных закономерностей режима облачности на более или менее обширных пространствах Земли.

Обзор исследований, посвященных данному вопросу, представлен в монографии Т. Г. Берлянд [1], он включает основные работы, опубликованные до 1961 г. Л. С. Дубровина и В. Д. Верзунова продолжили обзор и рассмотрели исследования облачности по данным наземных, самолетных и радиолокационных наблюдений за период с 1965 по 1969 г. [2]. В аналогичном обобщении В. Я. Лобановой и Ю. В. Спиридоновой проанализированы

результаты работ, основанных на использовании спутниковой информации об облачности [7].

Ознакомление с результатами исследований, в которых пространственно-временные характеристики облачности представлены в виде соответствующих карт [5, 6, 9 и др.], показало, что они по той или иной причине (ограниченности освещаемой территории, времени года, периода наблюдений) не всегда отвечают требованиям, предъявляемым к ним при рещении отдельных научных и практических задач. Так, при изучении закономерности распределения солнечной радиации на земном шаре для проведения массовых косвенных расчетов этой величины необходимы уточнение и детализация режима облачности для целого ряда районов земного шара.

За последние 10—15 лет, особенно после проведения Международного геофизического года и Года спокойного солнца, когда расширилась наземная метеорологическая сеть в малоосвещенных районах, в том числе в тропических и экваториальных областях, и были запущены метеорологические спутники Земли, произошли существенные сдвиги по расширению объема информации по облачности. Исходя из этого, авторы нашли возможным сделать попытку обобщения накопленного материала наблюдений на суше и океанах и на этой основе уточнить и углубить представления о режиме облачности на земном шаре.

Для построения месячных карт средней облачности на континентах были использованы материалы 3400 пунктов, из них 900 пунктов расположено в Европе, 1150—Азии, 440—Африке, 300— Северной Америке, 190—Центральной Америке, 270—Южной Америке, 140—Австралии и Океании.

Периоды наблюдений охватывали преимущественно три предшествующих 10-летия. Для многих станций Европы, Северной Америки, северной части азиатского континента они превосходили 30 лет, а для станций тропических и экваториальных стран колебались в пределах 10—15 лет.

Источниками данных по облачности служили справочники, монографии и многочисленные ежегодники, публикуемые метеорологическими службами различных стран [8, 10, 13—31, 33]. Привлекались также материалы спутниковых наблюдений за облачностью [25, 32].

Для получения необходимой информации по ряду пустынных районов Земли, по которым нет данных по количеству облаков, но имеются данные о числе ясных, полуясных и пасмурных дней, использовалась достаточно тесная корреляционная зависимость, приведенная на рис. 1.

Распределение облачности над океанами получено в основном по материалам, помещенным в Морском климатическом атласе [29], где приведены данные обеспеченности общего количества облаков для отдельных районов, характеризующих основные климатические области океанов. Пересчет обеспеченности общего количества облаков в средний балл производился путем снятия зна-

Рис. 1. Зависимость среднего месячного количества облаков (по 10-балльной системе) от числа ясных дней.

чений обеспеченности каждого балла облачности с соответствующего графика. Затем из значения обеспеченности последующего балла вычиталась обеспеченность предыдущего. Таким образом была получена повторяемость каждого балла. На основании этих данных определялись средние взвешенные значения среднего количества облаков.

Для акватории северной части Атлантического океана исходные данные приведены для 35 районов, северной части Тихого океана — 49, Индийского океана — 48, южной части Атлантического океана — 58, южной части Тихого океана — 62. Наряду с материалами упомянутого атласа [29] при построении карт распределения облачности над океанами были использованы такие данные из ряда других источников [27, 38].

Для континентов использовались бланки с гипсометрической основной в масштабе от $1:10\cdot10^6$ до $1:25\cdot10^6$, для океанов — мировые бланки в масштабе $1:40\cdot10^6$ по параллели 45°. Месячные карты распределения облачности, построенные для отдельных континентов, были положены в основу составления мировых карт указанного масштаба (рис. 2—7).

Эти карты характеризуют особенности распределения облачности в основном в светлое время суток, поскольку в подавляющем большинстве стран сроки наблюдения относятся к указанному периоду. Для обеспечения однородности исходного материала данные за ночной срок исключались по тем немногим странам, по которым эти данные наблюдений имелись. Изолинии на картах

проведены через один балл, что соответствует точности определения среднего месячного количества облаков [12].

В процессе работы уточнены и частично детализированы такие области Земли, как экваториальные районы Южной Америки, юго-восточной Африки, территория передней Азии, районы Индонезии и Океании, а также области высоких широт северного и южного полушарий.

Режим облачности обусловливается главным образом распределением потоков тепла и влаги, циркуляцией атмосферы и характером подстилающей поверхности. В одной и той же широтной зоне над океанами количество облаков, как правило, значительно больше, чем над равнинными областями материков. Этому способствует более интенсивное испарение с поверхности океанов.

На всех картах зоны с относительно малой облачностью расположены в поясе высокого давления. В районах, где наблюдается большая повторяемость циклонов, облачность существенно больше.

Горы, возвышенные побережья и другие неровности рельефа вызывают значительное увеличение вертикальных движений воздуха и способствуют образованию облачности. Там, где относительная высота препятствия достаточно велика, на наветренной стороне наблюдается большее количество облаков. Например, если на атлантическом побережье Скандинавского полуострова, на возвышенном западном берегу Норвегии отмечается значительная облачность, то на подветренном склоне преобладает малооблачная погода.

Наибольшая облачность в течение года наблюдается в экваториальной зоне, а также в океанических областях умеренных и субполярных широт обоих полушарий. На экваторе это связано со значительными восходящими течениями, возникающими при наличии огромных запасов водяного пара. К северу и югу от экватора облачность убывает. Значительная облачность над этими районами океанов вызвана повышенной циклонической деятельностью на полярном фронте в течение года.

К пасмурным областям Земли следует отнести районы исландского и алеутского минимума, тихоокеанское побережье Канады, северо-западное побережье Европы, бассейны Амазонки и Конго, Новую Гвинею и прилегающую к ней акваторию, Огненную Землю, Антарктический полуостров и субантарктику.

Наименьшая облачность наблюдается главным образом в континентальных районах субтропических и тропических широт. В некоторых из них облака покрывают не более 0,1—0,2 небосвода. Это относится к северо-восточной территории Сахары, Аравийского полуострова, юго-западу Северной Америки, пустыни Калахари. Внутренние области Антарктиды также характеризуются малооблачной погодой. На океанах минимальная облачность отмечается в тропических широтах обоих полушарий.

Существуют значительные области Земли и в более высоких широтах, где в отдельные сезоны преобладает ясное небо; к ним

1999

относятся Монголия, Восточная Сибирь, Канадский архипелаг, Гренландия, центральная часть Антарктиды.

Не останавливаясь на анализе всех представленных мировых карт, отметим основные особенности в распределении облачного покрова для двух месяцев (января и июля), выявляющих в определенной мере характерные черты зимнего и летнего режима рассматриваемого элемента.

Для января характерно наличие в северном полушарии огромной зоны с преобладанием ясного неба. Эта зона охватывает всю область Сахары, Аравии, Индостана и простирается на северовосток азиатского континента, находящегося в сфере действия азиатского антициклона. Невелика облачность также в районе Канадского архипелага. В южном полушарии в это время года к наименее облачным районам относится больщая австралийская пустыня и засушливые области Южной Америки.

На океанах наименьшая облачность наблюдается в северном и южном полушариях в районах, примыкающих к малооблачным областям континентов. Особенно это относится к той части Индийского океана, которая расположена между Аравийским полуостровом и Индостаном. Подобные районы находятся в поясе высокого давления.

В январе весьма пасмурные районы Земли находятся в тех частях океанов, которые расположены в умеренных широтах и в прибрежных областях континентов, находящихся под усиленным действием циклонической циркуляции.

В июле в северном полушарии самое малое количество облаков (менее одного балла) отмечается в восточной части Сахары, центральной Аравии, южном Иране и на юго-западе Северной Америки, наиболее пасмурное состояние неба — в областях действия летнего муссона (юго-восточная часть азиатского континента и др.). В южном полушарии малооблачная погода наблюдается во внутренних районах южной Африки, северной части Австралии, центральных областях Бразилии.

На океанах распределение облачности в июле незначительно отличается от ее распределения в январе. Однако в умеренных широтах северного полушария общее количество облаков в июле несколько больше, чем в январе, причем области максимальной облачности смещаются к востоку, в центральные районы Атлантического и Тихого океанов, что связано с изменением путей движения циклонов. Заметное увеличение облачности происходит также в областях действия летнего муссона в северо-восточной части Индийского океана.

В пределах земного шара можно различить два основных типа годового хода облачности: первый — годовой ход облачности совпадает с годовым ходом осадков, второй — годовой ход облачности и осадков противоположны друг другу. Первый тип иногда называют динамическим, второй — статическим [36].

При динамическом типе годовой ход количества облаков, а также ход количества осадков обусловлен интенсивным переносом.

•

•

. .

v. Wickey,

and the second second

Рнс. 7. Распределение среднего количества облаков (баллы) над поверхностью земного шара. Ноябрь.

į į

ļ

воздушных масс над данной подстилающей поверхностью и изменениями в них, вызванными воздействием горных преград и пр.

При статическом типе максимум облаков вызывается развитием таких форм, которые не дают осадков или дают в небольшом количестве. Подобные условия наблюдаются часто зимой, например в Восточной и Западной Сибири. В теплое полугодие над этими территориями развиваются облака главным образом восходящих токов, в частности ливневые, обусловливающие меньшую облачность, но сопровождающиеся большим количеством осадков.

Годовой ход облаков и осадков, типичных для отдельных климатических областей Земли, приведен в табл. 1. Как видно из данных таблицы и отмечалось ранее, экваториальной зоне присуща бо́льшая облачность (6—8 баллов) в течение всего года.

Амплитуда годового хода здесь незначительна — составляет около 2 баллов (бассейн Конго, Амазонки и др.). Наблюдающийся максимум облачности приходится на время наивысшего полуденного стояния Солнца, а минимум — наинизшего. Максимум чаще всего совпадает с периодами весеннего и осеннего равноденствия, когда Солнце бывает в зените и днем развиваются большие вертикальные токи, способствующие образованию мощных облаков ливневого характера. Годовой ход облачности и количества осадков параллельны.

Чрезвычайно четко выделяется характерный для муссонного климата годовой ход облачности. Он наблюдается в областях экваториальных муссонов, муссонных районах субтропиков и умеренных широт (восточное побережье азиатского материка, Индостан и др.). Здесь амплитуда годового хода самая большая. Так, например, в Бомбее она достигает 6 баллов. На океанах, где амплитуда годового хода облачности вообще невелика, в муссонных районах она может превышать 2 балла (о. Уэйк). Наибольшее количество облаков приурочено к периоду муссонных дождей.

В тропических областях Земли наблюдается незначительная облачность в течение почти всего года, что особенно хорошо видно по данным пункта Вади-Хальфа.

Субтропикам (Малая Азия, Средняя Азия, юго-запад Северной Америки и т. д.) свойствен тип годового хода облачности, наиболее четко выраженный в районе Средиземноморского бассейна. Он характеризуется заметным максимумом зимой и минимумом летом. Здесь так же, как и в условиях муссонного климата, наблюдается подобие годового хода осадков и облачности, обусловленное активизацией циклонической деятельности в зимнее время.

Океанические области в умеренных и высоких широтах характеризуются большой облачностью во все месяцы и соответственнонебольшой годовой амплитудой (см. табл. 1— Корабль погоды В, Дисепшен). Значительная облачность отмечается и над морями высоких широт, свободными ото льда, причем зимой она несколькоменьше, чем летом (например, над островами Северной Атлантики).

Таблица 1

Годовой ход облачности (баллы, 1-я строка) и осадков (мм, 2-я строка) в основных климатических зонах земного шара

628 6,4 6,4 8,5 8,5 8,5 365 365 7,6 3,5 1,7 2,23,8 8,7 6,8 4,7 0,1 6,4235 578 736 806 936 34 406 Год 59 5,1 25 32 32 31 31 8.8 4,2 2,0 7,0 7,7 7,3 8,0 1,4 3,7 218 3 46 0 ~ 37 45 101 XII 30^{+} 2, 2,8 7,3 8,7 7,4 7,8 6, 3,9 4,4 78 13 က 24 96 50 C 41 Х 66 7.9 8,6 8,6 45 8,6 41 5,3 1,8 2,8 6,5 8,4 7,6 3,8 7,0 1,1 2 14 46 65 34 0 × 14 64 <u>ر</u> . ດີ ດີ 8,4 $^{87}_{1.4}$ 6,9 5,6 5,6 1,6 1,3 6,1 XI 40 264133 0 0 48 34 93 6,8 8,2 8,2 37 37 37 lΠV 2,5 5,8 8,4 7,0 6,0 1,2 1,1 5.66,1 0 340 180 0 34 0 61 6 IIV 8,4 2,55,8 5.5 6,47,3 1,1 1,1 6,1 26 5160 0 0 70 17 56 8,0 27 8,6 25 5,6 8,6 0,7 6,1 6,9 6,5 4,4 1,1 5,6 N 0 55 40 48 0 2 <u></u> 484 III 43 7,8 3,0 4,7 1.6 1,8 3,4 5,68,6 $^{23,5}_{20,8,6}$ 7,9 7,01 \geq 5249 41 17 0 Ξ 140 220 162 $\begin{array}{c} 32\\6,8\\1,6\\21\\2,7,6\\21\\21\end{array}$ 6,0 8.5 4,0 1,4 4,4 8,7 1,7 7,5 2,1 က 2643 219 47 0 \geq 9,0 $\begin{array}{c} 28 \\ 6,3 \\ 26 \\ 8,8 \\ 8,8 \\ 7,7 \\ 28 \\ 28 \end{array}$ 2,6 5,3 6,6 с 9,0 1,3 7.5 8°. 2,1 0,1 40 37 37 4 Ξ 161 221 7,2 9,0 3,5 8,4 1,3 4,0 1,7 6,1 7,5 ŝ 36 34 212 2 31 0 147 Π 32 5,5 8,9 33,6 33 33 33 6,7 7,3 9,1 8'3 1,3 4,3 1,7 7,3 4,1 29. 0 6 44 6 213 4 [58 Ļ 35 3106 ω 14 (W) 28 33 00 _ 48 4 320 ч ñ ε 57B З В က В က 43 53 8 42 5 15°18'B 19 80 17 49 0 51 00 16 \sim 2 31 119 13 166 31 60 22 Q C υ 4°17/10 49 8 03 05 59 31 55 55 31 8 9-80 20 74 19 30 36 47 62 22 8 21 က В Вади-Халь-Браззавиль Медвежий Днсеншен Зоннблик погоды Корабль o фресно Пункт Манаос Берлнн Бомбей Уэйк, Каир фа Субтропичемуссонов Умеренная Cy6nonsp-Экватори-Экватори-Полярная альных Тропичеальная Зона ская ская ная

В умеренных широтах, где отмечается не резко континентальный климат (например, Восточная Европа), наблюдается отчетливо выраженный тип годового хода облачности прямо противоположный годовому ходу осадков. Здесь максимум обачности совпадает с минимумом осадков в зимний период. Летом минимальная облачность совпадает с максимумом осадков, преобладает облачность с просветами (наблюдаются кучевые и кучево-дождевые формы), осадки имеют бо́льшую интенсивность. Зимой преобладают сплошные низкие облака слоистых форм, из которых выпадают преимущественно обложные осадки.

Особенности годового хода облачности в высокогорных районах в некотором отношении примерно такие же, как и в муссонных областях: максимум облачности отмечается летом, минимум зимой, имеется связь годового хода облачности и осадков (см. табл. 1— Зоннблик).

В горах максимум облачности в теплую половину года обычно связан с вынужденным подъемом потоков воздуха, который сильно увеличивает облачность и вызывает осадки.

У Зимний минимум объясняется тем, что в это время года образуются преимущественно слоистые облака, не достигающие вершин гор (Альпы, Аппенины и др.)

Из табл. 2, где представлено распределение облачности над океанами, сушей и поверхностью Земли в целом, следует, что во все сезоны года над океанами и сушей характерно увеличение облачности вблизи экватора и в умеренной зоне обоих полушарий, тогда как в тропических и субтропических широтах наблюдается заметное уменьшение количества облаков, связанное с преобладанием здесь антициклонической деятельности.

Существенно отметить понижение облачности над Антарктидой по сравнению с окружающей ее акваторией, а также резко выраженное увеличение облачности от тропических широт к экваториальным над сушей, которое менее отчетливо проявляется над океанами. При этом максимум в приэваториальных широтах над сушей отмечается на широтах 0—10° к северу и югу от экватора летом соответствующего полушария. В переходные сезоны значительная облачность над сушей приурочена к широтной зоне, расположенной в пределах от 10° с. ш. до 10° ю. ш. Здесь количество облаков больше, чем в тех же широтах над океанами, в связи с развитием интенсивной термической конвекции над сушей. В остальных широтных зонах более значительная облачность преобладает над океанами, особенно в субантарктике.

Различия между распределением облачности над сушей и океанами видны также из данных, осредненных по полушариям и земному шару. Среднее количество облаков над океанами примерно на один балл превышает среднее количество облаков над сушей. Такое соотношение сохраняется в северном и южном полушариях. В целом для земного шара в каждый из рассматриваемых месяцев отмечается практически постоянное количество облаков.

all and the second

Таблица 2

Широтное распределение среднего месячного количества облаков для четырех месяцев, отражающих его сезонное распределение

		C	Экеаны			. C	уша		Пог	верхно	сть Зем	ли
Широта	I	IV	VII	x	I	IV	VII	x	I	IV	VII	x
9080°C	5,4	5,8	8,7	8,0					5,4	5,8	8,7	8,0
8070	6,0	6,0	8,2	8,0	5,6	5,7	7,3	7,4	5,9	5,8	7,8	7,8
70—60	7,0	5,8	7,5	7,8	6,3	6,2	7,0	7,8	6,5	6,1	7,2	7,8
60—50	7,7	7,7	8,3	7,6	6,3	6,5	6,6	7,1	6,8	7,0	7,2	7,3
50—40	7,4	7,4	7,5	6,9	5,7	6,1	5,0	5,1	6,5	6,6	6 ,2	5,9
40—30	6,4	6,4	5,8	5,9	5,1	5,5	4,2	3,5	5,9	6,0	5,2	5,5
30-20	5,5	5,5	5,8	5,5	3,7	3,6	4,0	3,0	4,7	4,7	5,0	4,5
20—10	5,1	5,4	6,2	5,6	3,5	4,0	6 ,0	4,2	4,7	5,0	6,1	5,2
10—0	5,8	6,0	5,9	5,8	5,4	6,6	6,8	6,0	5,7	6,1	6,2	5,8
7 0—10 Ю	5,9	5,8	5,4	5,7	7,2	6,8	4,8	6,2	6,2	6 ,0	5,3	5,8
10-20	5,3	5,4	5,4	5,7	6,6	5,4	3,5	5,2	6,1	5,4	5,0	5,3
2030	5,6	5 ,5	5,8	6,0	4,5	3,5	3,0	3,9	5,4	5,0	5,0	5,5
³⁰⁻⁴⁰	6,0	6,1	6,2	6,5	3,9	3,9	4,8	4,2	5,7	5,8	6,0	6,2
40—50	7,0	7,0	6,8	7,2	4,9	5,4	5,8	5,3	6,9	7,0	6,8	7,1
50-60	8,4	8,0	7,9	8,0					8,4	8,0	7,9	8,0
60—70	8,8	8,2	7,8	8,3					8,8	8,2	7,8	8,3
70—80					6,2	5,7	5,0	6,2	6,2	5,7	5,0	6,2
80—90					5,4	4,5	3,9	5,0	5,4	4,5	3,9	5,0
Северное полу-												
шарие	6,0	6,1	6,5	6,2	5,2	5,5	5,6	5,3	5,4	5,8	6,1	5,9
Южное полу- шарие	6,5	6,4	6,3	6,6	5,8	5,1	4,1	5,2	6,5	6,1	5,9	6,3
Земля в целом	6,3	6,3	6,4	6,4	5,4	5,4	5,1	5,2	5,9	6 ,0	6,0	6,1

При оценке полученного вывода о величине среднего количества облаков на земном шаре следует иметь в виду, что полученная величина может быть несколько завышенной.

Поскольку использованный материал наблюдений за облачностью относится к дневному времени суток, а в ночное время количество облаков обычно меньше, чем в дневное, среднее суточное значение должно быть несколько меньше величин, относящихся к светлой части суток. Кроме того, визуальные наблюдения за облачностью часто содержат систематическую ошибку, которая приводит к некоторому преувеличению фактического количества

2 416

Лечинградотий Гидроматеоронога ий ин-т

облаков. Оценки этой ошибки даются в работах Н. Н. Калитина [3], В. Околовича и В. Ленарта [10] и др.

Изложенное позволяет сделать заключение о том, что истинная величина среднего количества облаков для земного шара может быть меньше 6 баллов и находится в интервале от 5 до 6 баллов.

В табл. З приведено среднее месячное количество облаков, характерное для отдельных континентов и океанов. По данным табл. З, наиболее пасмурный континент — Европа, а малооблачные — Африка и Австралия.

Таблица З

dur oncounds it is				
	I	IV	VII	x
Океаны			-	
Ледовитый	6,0	6,0	8,1	8,1
Атлантический	6,1	6,0	5,8	6,2
Тихий	6,5	6,5	6,5	6,4
Индийский	6,4	6,1	6,4	6,3
Континенты		1		
Европа	7,2	6,4	5,5	6,9
Азия	5,0	5,7	5,6	4,9
Африка	4,4	4,4	4,2	4,2
Северная Америка	5,8	5,5	6,0	6,1
Южная Америка	6,4	6,2	5,0	5,9
Австралия	4,7	4,1	4,2	4,1

Среднее месячное значение количества облаков (баллы) для океанов и континентов

Поскольку на океанах условия образования облачности более однородны, чем на континентах, количество облаков над отдельными океанами идентично, за исключением бассейна Северного Ледовитого океана, где количество облаков в летний и осенний месяцы существенно больше, чем в зимний и весенний.

Представленные в статье материалы, содержащие сведения о режиме облачности на земном шаре, могут найти применение при решении ряда научных и прикладных задач, связанных с исследованием энергетики атмосферы, разработкой прогнозов погоды, обеспечением нужд наземного и воздущного транспорта, а также в других отраслях народного хозяйства.

При выполнении настоящей работы существенную помощь в сборе и обобщении большого объема исходных данных авторам оказали инженеры И. М. Беева, Е. М. Полынская и Н. И. Смирнова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Берлянд Т. Г. Распределение солнечной радиации на континентах. Л., Гидрометеоиздат, 1961, 227 с.
- 2. Дуброви на Л. С., Верзунова В. Д. Современное состояние исследований облачности по данным наземных, самолетных и радиолокационных наблюдений (Обзор). Обнинск, ОГМЦ. 1970. 63 с.
- 3. Калитин Н. Н. О точности отсчета облачности.—«Изв. ГГО», 1933, № 1— 4. c. 3-7.
- 4. Климатический справочник Африки. Под ред. А. Н. Лебедева, ч. II. Л. Гидрометеоиздат, 1967, 259 с.
- 5. Кравцова Л. М. Некоторые особенности облачного покрова над земным шаром.—«Тр. НИИАК», 1970, вып. 66. с. 87—96.
- 6. Лобанова В. Я. Особенности географического распределения облачности над северным полушарием.—«Тр. НИИАК», 1967, вып. 44, с. 55—65.
- 7. Лобанова В. Я., Спиридонова Ю. В. Современное состояние и перспективы режимного использования спутниковой информации об облачности (обзор). Обнинск. Гидрометцентр, ОНТИ 1970. 42 с.
- 8. Метеорологический режим зарубежной Арктики. Под ред. И. М. Долгина. Л., Гидрометеоиздат, 1971, 227 с. 9. Мусаелян Т. А. Климатические данные об облачном покрове Земли
- и перспективы их использования при решении задач спутниковой метеорологии.—«Тр. ГМЦ», 1968, вып. 30, с. 68—92.
- 10. Околович В., Ленарт В. Об оценке количества облаков по разным методам — "Jdojaras", 1972, v. 76, No. 1—2, с. 46—50.
- 11. Строкина Л. А., Беева И. М. К вопросу о распределении облачности над океанами.—«Тр. ГГО», 1974, вып. 307, с. 94—103.
- 12. Циценко Г. В. О точности вычисления среднего месячного количества облаков (см. наст. сб.).
- 13. Бадарч Н. Монгол орны уур амьсгаа. Улаанбаатор хот. 1971 он. 205 с 14. Annuaire meteorolog. et geoph. Sahara, Alger, 1939—1951.
- 15. Annual Climatological Report. Saudi Arabia, 1959-1960.
- 16. Annual Meteorological Report, 1950—1963. Sudan Met. Serv. Khartoum, 1955—1970.
- 17. Anuario climatologico de Portugal. Pt. 2, Territorios ultramarinos 1957-1969, Lisboa, 1958—1970.
- 18. Climatic atlas of the United States, Washington. 1968.
- 19. Climatological Data for antarctic station. No. 1-8. 1957-1965. Washington. 1962—1966.
- 20. Climatological Normals for Iraq. Bagdad, 1965, No 14. 21. Climatological Statistics for East Africa and Seychel Isles. Nairobi, Part 1, 2, 3, 1964.
- 22. Climatological Tables of observatories in India. Bombay, 1953.
- 23. Climatological table for the world. Pressure, temperature, humidity, precipitation. Published by the Japan. Meteorological Agency, Tokyo, 1967.
- 24. Estadisticas climatologicas 1901-1950. Publ. B. N. 1. Buenos Aires, 1958.
- 25. Godshall F. A. Intertropical convergence zone and mean cloud amount in the tropical Pactific ocean.— "Monthly Weather Review," 1968, v. 96, No. 3.
- 26. Meteorology of the Antarctic. Ed. M. P. van Rooy. Weather Bureau. Pretoria South Africa. 1957. p. 240.
- 27. Meteorology of the Southern Hemisphere. Edited by Chester W. Newton.--"Meteorological Monographs", 1972, v. 13, No. 35, 263 p. 28. Monthly Weather Summary for synoptic stations of Iran. 1958–1969.
- 29. Marine Climatic Atlas of the World, U. S. Navy. Washington, v. 1-5, 7, 1955-59, 1965.
- 30. Normals climatologicas (1931-1960), Rio de Janeiro, v. 1-4, 1968.
- 31. Publication especial servicio de Meteorologia y communicaciones Venezuela. Caracas, 1965, N 3.
- 32. Sadler J. C. Average Cloudiness in the Tropics from Satellite Observations. Honolulu, East-West Center Press, 1969. 2. p. and maps.

- 33. Schwertfeger W., L. M. de la Canal, J. Scholten. Meteorologia descriptiva del sector Antarctico Sudamericano. Inst. Antarct. Argentino. Buenos Aires. 1959, Publ. N. 7. p. 425.
- 34. Shaw N. Manual of Meteorology, Cambridge, v. 2, 1936. 35. Summary of observations for Malaya, Singapore, Sabah and Sarawak, 1930— 1965 (1931-1966) (Met. Service Malaya and Singapore).
- 36. Süring R. Die Wolken. Leipzig. 1950.
- 37. Teisseranc L. de Bort. Etude sur la distribution moyenne de la nebulisite a la surface du globe .- In: Ann. Bur. Centr. Met. de France, 4, 1884.
- 38. Z i 11 m a n J. M. The surface radiation balance in high Southern latitudes. In: Polar meteorology. Technical Note, 1967, No. 87, WMO N 211 TPIII. p. 142-171.

Г. В. ЦИЦЕНКО

О ТОЧНОСТИ ВЫЧИСЛЕНИЯ СРЕДНЕГО МЕСЯЧНОГО КОЛИЧЕСТВА ОБЛАКОВ

При построении карт распределения среднего месячного количества облаков в различных географических районах необходимо было дать оценку точности вычисления среднего месячного количества облаков, зависящую от точности исходных данных. Ошибки метеорологических данных складываются из ошибок, вызванных нарушением однородности периода наблюдений и недостаточной его продолжительности. Поэтому прежде всего рассмотрим влияние случайных и систематических ошибок наблюдений на величину среднего месячного количества облаков.

Оценка точности вычисления среднего месячного количества облаков в данной работе выполнялась по материалам наблюдений общей облачности большой продолжительности. Наименьший период наблюдений, имевшийся в нашем распоряжении, составляет около 30 лет на африканских станциях.

Принятый на практике визуальный метод наблюдений не позволяет точно оценивать облачность. Вместе с тем, как показала проверка исходного материала, при числе наблюдений в месяц более 100 случайные ошибки отдельных наблюдений практически не оказывают влияния на величину средних месячных значений облачности. Однако это относится к случаю отсутствия связности в рядах наблюдений. В действительности случайная ошибка может быть значительной. Например, по данным Е. И. Абрамовой и Л. М. Сонечкина, величина ошибок наземных наблюдений облачности составляет 1-2 балла [1, 3]. В работе [5] величина этой ошибки оценена равной 25% от среднего количества облаков. Проведенный в работе [5] анализ данных оценок общей облачности дал результаты, указывающие на имеющуюся тенденцию к завышению количества облаков наблюдателями. При этом наибольшие ошибки оценок облачности получены для градации 6-10 баллов.

В настоящей статье сделана попытка оценить точность расче-

Среднее квадратическое отклонение (о) и точность расчета среднего ме

Климатически	le		Число	Я	Інварь	
пояс	область	Станция	блюде- ний		σ	δ
Умеренных ши-	Морская	Ленинград	60	1,3	0,3	0,3
рот.	Континен- тальная	Куйбышев, Якутск, Олекминск, Ир- кутск, Миниапо- лис	3 0 —50	0,7—1,3	0,1—02,	0,2
Субтропиче-	Континентальная	Ташкент	60	1,1	0,1	
ских широт	Атлантико-конти- нентальная	Литл-Рок	49	1,0	0,1	0,1
	Муссонная Даль- него Востока	Владивосток	60	1,3	0,2	
Тропических широт север-	Морская	Гонолулу, Хило, Уэйк	20—40	0,9—1,2	0,3—0,4	0,3
ного полу- шария	Континентальная	Финикс, Юма, Ко- ломб-Бехар,Лагаут	24-50	0,51,4	0,1—0,4	0,2
	Атлантическая	Суон-Айленд, Сан- Хуан	1150	0,6 - 0,8	0,1—02	0,2
Тропических	Атлантическая	Луанда	20	1,0	0,1	0,2
широт юж- ного полу- шария	Индийская	Лоуренс-Маркиш	27	0,7	0,3	0,2
Экваториаль- ных муссонов северного по-	Атлантическая	Бафата, Биссау, Балама, Бискра	15—25	0,6—1,1	0,1-0,4	0,3
Экваториаль- ных муссонов южного по- лушария		Дили, Макау	22—30	1,0—1,8	0,2—0,5	0,4

та среднего количества облаков по данным наземных наблюдений.

При анализе исходных данных среднего месячного количества облаков принимались во внимание материалы одновременных наблюдений температуры воздуха и продолжительности солнечного сияния. В работе использован также метод интегрально разностных кривых, позволяющий по резким переломам в ходе кривых обнаружить неоднородность, пропущенную при климатологической обработке наблюдений [2]. В результате проведенного анализа исходных данных явной неоднородности в рядах среднего месячного количества облаков не было выявлено.

Для определения точности вычисления среднего месячного количества облаков за период наблюдений использовалась средняя

Таблица 1

сячного количества облаков (д) в различных климатических поясах (баллы)

Апрель σ			И	[юль		Октябрь				
		σ.	δ		7	δ		σ	δ	
	0,9	0,2	0,2	0,2 1,0 0,5		0,2	0,8	0,2	0,2	
	0,9—1,0	0,2	0,2	0,7—0,9	0,1—0,3	0,1	0,8	0,2	0,2	
	0,9	0,1	0,1	0,9	0,1	0,2	1,2	0,2	0,2	
	0,7	0,1	0,1	1,2	0,2	0,2	1,2	0,2	0,2	
	0,7	0,1	0,1	0,7	0,2	0,2	1,1	0,2	0,2	
							-			
		—	—	0,7	0,1-0,3	0,2	—	—	—	
	0,7 1,0	l 1,3 0,3	0,2	0,9	0,2	0,2	0,8—1,6	0,2—0,3	0,3	
	—		—	0,9	0,2	0,2	_	·	—	
		_	. —	0,7	0,1	0,2	—	-	_	
A	0,8—1,1	0,2—0,5	0,2	0,8	0,3	0,2	0,4—0,8	0,20,3	• 0,3	
	0,8—1,1	0,2—0,5	0,2—0,5	0,4—1,1	0,1—0,2	0,2	0,4—0,8	0,2—0,3	0,1—0,4	
	0,8—1,4	0,1—0,6	0,1—0,6	0,8—1,1	0,1—0,5	0,3	1,0—1,2	0,1—0,4	0,1—0,4	
		1	l	i i		l		1 1		

квадратическая ошибка, величина которой вычислялась по следующей формуле:

$$\sigma_n = \frac{\sigma}{\sqrt{N-1}},\tag{1}$$

где $\sigma_{\overline{n}}$ — средняя квадратическая ошибка определения среднего многолетнего количества облаков \overline{n} , σ — среднее квадратическое отклонение ежегодных значений месячной облачности, N — число лет наблюдений облачности, использованное для определения ее среднего значения.

Результаты расчетов средней точности от исходных данных

сопоставлялись с другой характеристикой, расчет которой производился по выражению

$$\delta = \sqrt{\frac{c_v \cdot 10^4}{N-1}},$$

(2)

где δ — точность расчета среднего многолетнего количества облаков, выраженная в процентах (или в баллах), c_v — относительная величина изменчивости месячных значений облачности.

Поскольку значения σ_n и δ , вычисленные по формулам (1) и (2), оказались близкими, величину δ примем за основную характеристику точности расчета средней месячной облачности. Для вычисления δ были использованы значения средних квадратических отклонений σ , c_v средней месячной облачности, подсчитанные для января, апреля, июля и октября по данным наблюдений 26 станций, расположенных в шести климатических зонах северного и южного полушарий за период 20—80 лет.

Из данных, приведенных в табл. 1, следует, что наибольшая погрешность расчета среднего количества облаков в январе, равная 0,4 балла, и большие значения о получены для тех станций, на которых имеется короткий период наблюдений за облачностью. Эти станции расположены в климатическом поясе экваториальных муссонов. Наименьшая ошибка определения средней месячной облачности, составляющая 0,1 балла, получена для станций, расположенных в субтропическом климатическом поясе северного полушария и в области муссонов Дальнего Востока.

Для июля, когда изменчивость средней месячной облачности всюду меньше, чем в январе, величина точности расчетов средней месячной облачности на всех рассмотренных станциях составляет 0,2—0,3 балла.

На всех станциях значение δ , рассчитанное для апреля, изменяется от 0,1— до 0,2 балла, для октября— от 0,2 до 0,3 балла.

Приведенные величины погрешности определения средних значений месячной облачности рассчитаны в предположении, что использованные ряды данных наблюдений облачности случайные, несвязанные. Однако из работы [4] известно, что ряды данных по облачности имеют часто связанный характер. Это зависит от различных причин, обусловливающих неодинаковые многолетние колебания средних величин. В связи с этим была определена точность вычисления средних значений месячной облачности с учетом влияния связности рядов на величину характеристик изменчивости о.

Выполненные расчеты показали, что на станциях, где отмечаются наибольшие многолетние колебания месячного количества облачности, средняя точность вычисления средних величин облачности не превышает 0,5 балла.

Заметных многолетних изменений средней месячной облачности не удалось выявить только по данным станций, расположенных в зоне экваториальных муссонов северного и южного полу-

шарий. Например, на ст. Юма, расположенной в субтропическом поясе Северной Америки, по данным наблюдений за 50 лет прослеживается систематический рост облачности. В связи с этим величина среднего квадратического отклонения среднего месячного количества облаков примерно в 2-3 раза превышает значение о, опрелеленное по формулам математической статистики без учета связанности ряда. В этом случае значение средней точности б. определенное для января, увеличится от 4 до 11%, или от 0,1 до 0,3 балла.

Таким образом, точность вычисления среднего месячного количества облаков не превысила 0.5 балла, для всех сезонов года в различных климатических областях.

Из изложенного следует, что присущее при составлении карт распределения месячного количества облаков проведение изолиний через 1,0 балл вполне оправдано.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абрамова Е. И О допусках, принятых при обработке наблюдений над осадками, высотой снежного покрова и облачностью.—«Тр. ГГО», 1952, вып. 34 (96), с. 58-68.
- 2. Дроздов О. А. Некоторые вопросы получения норм осадков методом интегрально-разностных кривых. — «Тр. ГГО», 1968, вып. 227, с. 110—116.
- 3. Сонечкин Д. М. Метеорологическое дешифрирование космических снимков Земли (количественные методы).— «Тр. ГМЦ», 1972, вып. 98, с. 63—73. 4. Циценко Г. В. Об изменчивости средней месячной облачности по данным
- наземных наблюдений.—«Тр. ГГО», 1971, вып. 287, с. 28.....35.
- 5. Murray J. Joung. Variability im estimating total cloud cover from sattelite pictures.— "J. Appl. Meteorol.", 1967, v. 6, N 3, p. 76-86.

З. И. ПИВОВАРОВА

К ВОПРОСУ О ПОЛУЧЕНИИ СРЕДНИХ ДЛЯ ТЕРРИТОРИИ ВЕЛИЧИН СУММАРНОЙ РАДИАЦИИ ПО НАБЛЮДЕНИЯМ ЗА ОБЛАЧНОСТЬЮ НА МЕТЕОРОЛОГИЧЕСКОЙ СЕТИ

При решении многих теоретических и прикладных задач необходимо знать потоки и суммы радиации не только в пункте наблюдения, но и для территории. Особенно эта потребность возникает при привязке спутниковых измерений. Однако информация, получаемая с сети актинометрических станций (срочные наблюдения), не может удовлетворить эти запросы вследствие малого радиуса действия станций. Согласно исследованиям структуры поля радиации [9], оптимальное расстояние между станциями, при котором линейной интерполяцией можно получить значение радиации с такой же точностью, как и при измерении в пункте наблюдений, составляет около 100 км. Причем такое расстояние должно быть при измерениях на равнинной территории для получения осредненных характеристик — сумм радиации и средней месячной интенсивности (плотности потока радиации).

Для ежедневных потоков радиации расстояние, по-видимому, будет еще меньшим вследствие ее очень большой изменчивости, а в связи с этим и весьма низкой точности ее определения в пункте наблюдений. Так, погрешность σ_0 интенсивности радиационного баланса *B* и суммарной радиации *Q* в полуденный срок (12 ч 30 мин) в районе Ленинграда составляет 0,20—0,30 кал/(мин·см²) в июле и 0,02—0,03 кал/.мин·см²) в январе, т. е. 0,7—0,8 σ , где σ — временная изменчивость (табл. 1). Оценка σ_0 сделана по данным невязок (среднее квадратическое отклонение разности) наблюдений близлежащих станций Воейково— Колтуши— Ленинград.

Относительная погрешность интенсивности σ_0 , выраженная в процентах к средней величине (\overline{Q} и \overline{B}), достигает 30—50%, а для радиационного баланса зимой превышает 200%. Основную долю погрешности следует отнести за счет естественной изменчивости радиации, поскольку погрешность метода можно считать на порядок меньшей. Бо́льшая изменчивость интенсивности радиации ото д́ня ко дню влияет и на точность величин в месячном осреднении (табл. 1). Причем по данным приведенных станций погрешность средней месячной интенсивности суммарной радиации в июле значительно выше, чем в целом для Европейской территории СССР (ЕТС) [9], что можно объяснить большей неустойчивостью облачного покрова в районе северо-запада ЕТС.

Таблица 1

Статистические характеристики	интенсивности р	адиации ((кал/мин•см²)
по ежедневным и по с	средним месячным	значения	м

		Q		В				
Значения	Q	σ	σο	B	σ	σο		
	Янв	арь						
Ежедневные	0,10	0,06	0,03	0,01	0,03	0,02		
Средние месячные	0,10	0,02	0,01	0,01	0,01	0,01		
	И	оль						
Ежедневные	0,70	0,40	0,29	0,46	0,28	0,22		
Средние месячные	0,70	0 ,0 8	0,07	0,46	0,06	0,06		

В связи с необходимостью получения осредненных по территории характеристик суммарной радиации, учитывая ее большую пространственную изменчивость, возникает вопрос о возможности использования наблюдений за облачностью на метеорологической сети, густота которой в несколько раз превышает густоту актинометрической сети. В связи с этим необходимо рассмотреть результаты обобщения зависимости интенсивности суммарной радиации от высоты солнца при различном сочетании облаков.

Интенсивность суммарной радиации при различном состоянии солнечного диска и облачности. По данным [1, 2, 3, 8] можно считать, что интенсивность суммарной радиации определяется не только количеством и формой облаков, но в большей мере состоянием солнечного диска. Согласно Руководству [10], состояние диска солнца отмечается следующими знаками:

⊙² — на солнечном диске и в зоне 5° вокруг него незаметно следов облаков, тумана или клубов дыма, пыли;

⊙¹— солнце просвечивает сквозь облако, туман или клубы дыма, тени от предметов различимы;

⊙⁰ — солнце слабо просвечивает сквозь слой плотных облаков, тени от предметов неразличимы;

🗇 — солнечного диска не видно сквозь плотные облака.

В работе автора совместно с В. А. Манюгиной [8] рассмотрена зависимость интенсивности суммарной радиации Q от высоты солнца $h \odot$ при облачности разных ярусов и отметках солнечного диска ⊙². ⊙ в пунктах, расположенных в различных климатических районах: ЕТС. Западная и Восточная Сибирь (45-62° с. ш.). Оказалось, что при одинаковой $h \odot и$ прочих равных условиях Гсостояние диска солнца, количество и форма облаков, альбедо полстилающей поверхности) в-интенсивности суммарной радиации во всех пунктах не обнаруживается существенного различия и можно принять общую среднюю зависимость. Это свидетельствует о том. что радиационные свойства облаков одной и той же формы в пределах большой территории близки (рассматривался теплый период года). Также выяснилось, что при отметках солнца $()^2$ и ··· интенсивность Q различается мало, так как ослабление пря-Мой солнечной радиации в случае 🕥 компенсируется возросшей рассеянной радиацией. Поэтому для установления зависимости суммарной радиации от высоты солнца, наблюдения при 🖓 ² и 🔿 были объединены. В работе [8] не рассматривалось отлельно влияние количества облаков на интенсивность суммарной радиации. поскольку объем экспериментального материала был не настолько велик, чтобы обеспечить статистическую надежность более детальных выволов.

Подробное исследование по влиянию формы и количества облаков и состояния солнечного диска на интенсивность суммарной радиации в районах ЕТС, Дальнего Востока, Средней Азии проведено Б. М. Гальперин и Л. П. Серяковой [2, 3]. Полученные ими результаты подтверждают вывод автора о небольшом различии суммарной радиации при отметках диска солнца \odot^2 , \odot и возможном распространении кривых зависимости Q от $h \odot$ на большие территории, а также позволяют уточнить эти кривые с учетом количества облаков.

На рис. 1 приведены средние значения и диапазон колебаний *Q* для зоны умеренных широт из [8] и интенсивность *Q* при различном количестве облаков на северо-западе ЕТС из [2]. При облаках верхнего яруса (рис. 1 *a*) и отметке диска солнца ⊙² величина суммарной радиации из [2] совпадает со средней кривой в [8]. При этом не заметно увеличения *Q* с ростом количества облаков, кроме случая 8—9 баллов при больших высотах солнца. Точки, соответствующие интенсивности *Q*, при ⊙ группируются | ниже средней кривой, особенно при облачности 7—8 баллов. Здесь, по-видимому, в какой-то мере сказывается большая плотность облаков, характерная, как отмечено в [3], при значительной облачности верхнего яруса в районе северо-запада ЕТС вследствие частой повторяемости атмосферных фронтов.

Сравнение суммарной радиации при облаках среднего яруса оказалось невозможным сделать полностью, так как в [2] рассмотрена только форма облаков Ас или Ас в сочетании с Sc. При Ас (рис. 1 б) влияние количества облаков на Q заметно проявляется для условий \odot ², большой высоты солнца и облачности 8— 9 баллов. Соответствующие точки лежат намного выше линии средней зависимости Q от h_{\odot} , полученной по данным автора, и даже выходят за пределы максимальных отклонений Q. Поэтому

 $3-0^2$ 6-7, $4-0^2$ 8-9, 5-0 2-3, 6-04-5, в теплый период года. Диск солнца и количество облаков (в баллах): I-O² 2-3, 2-O² 4-5, ()

7-0 6-7, 8-0 8-9.

Рис. 2. Типовые кривые зависимости интенсивности суммарной радиации от высоты солнца при разных состояниях диска солнца: ⊙ ² и ⊙ (*a*), ⊙⁰(*б*), □ (*в*)

1

Суммарная (1) и рассеянная (2) радиации при безоблачном небе.

Характер	истика ко	личества	форм облаков и состо	яния солнечного	диска для	типовых	кривых рис. 2
1	Диск		Облачность	:	Диск		Облачность
Гриван	солнца	балл	форма	Кривая	солнца	балл	форма
Ι	6	6-8 8	Ас и Sc; Cu и Cu, Cb	IIA	°O	67	Си и Си, Сb
) 00	89 47	Ac u Sc			89	Cb c Cu n Sc ANTH +C
$h_{\odot} > 30^{\circ}$	S⊙	4 - 5	AC N SC	IIIA	õ	45	Си; Ас и Sc И, С.
	О ² и О	4 - 5 7	Cu C	XI	E	45	Си; Sc и Ac И, С
\sim	0 ² 0	47	AC N SC	X	Ľ	2—3	Sc; =
$h_{\odot} \leqslant 30^{\circ}$	0	45	AC N Sc	IX	C	10	As
	⊙ ² и о0 0000000000000000000000000000000000	4 - 5 6-7	Си 🧞 🖉 Си Си Ср	XII	С	89	Ас; Ас, Сии Ас, Sc
Все высоты) ¦⊙)	67	AC N SC 24			89	Sc;
солнца	О ² и О	2 - 3	Cu Cu				Sc, Cu H Sc, Ac
	02	2—9	Сі и Сі, Сs 🟹			10	Ac; Sc
111	0	2-9	CINCI, CS			01	Sc. Cu a Sc. Ac
	⊙ ² и ⊙	2_{3}	Аси Sc				Ac Ac Sc H Ac Cu
	0	8—9	Ас и Sc		E	67	Ar u Sc
IVa	0	10	СіиСі, Cs; Ac и Scort	mv	•		
$h_{\odot} > 40^{\circ}$							СьсСи или Sc
ΛI	0	10	СіиСі, Cs; Ac и Sc b	<u>୧</u>	-	2	
$h_{\odot} < 40^{\circ}$						01	Си преобладают
БСЕ ВЫСОТЫ СОЛНИА	0	10	CS N CS, CI &			10	Sc, Cu n Sc, Ac
	õõ	10 6—9	Ас;_Ас, Си. 9, 24 И Ас и Sc	AIX	[67	Cb c Cu nan Sc
e	້	8-10	Сі и Сі, Cs	XV	[00	Ср преобладают; St
	õ	10	Cb c Cu n Sc M, H	INX 5	E	99	NS Hummild arve ocalieu
	° -	10	SC N SC, UN C, M.			n i	ПИЖНИИ АРУС, ОСАДАН

Таблица 2

Таблица З

Относительная величина суммарной радиации (в % суммарной радиации при безоблачном небе)

Кривая на рис.						h ₀ °					
2	5	10	15	20	25	30	35	40	45	50	55
· · I		118	117	116	116	115	115	118	120	120	120
II	88	106	100	100	9 9	99	99	101	100	102	102
IIa		·			····	· <u> </u>	104	107	108		109
III	75	94	90	91	91	92	- 94	96.	9 7	98	101
IV	75	94	90	88	88	88	89	91	88	85	82
IVa		—	-	—	`		_	—	93	94	91
V	-			44	50	54	56	59	5 9	61	
VI	50	59	50	47	46	46	48	49	49	50	50
VII		71	53	47	- 43	41	40	41	41	41	41
VIII	—		43	39	38	35	35	34	35	35	36
IX ·	38	41	37	33	30	29	28	28	- 28	27	26
X	38	29	27	26	23	25	. <u> </u>	·		·	
XI	38	29	20	19	18	20	23	27	32	. —	·
XII	25	41	37	35	36	36	37	39	39	41	43
XIII	3 8	35	30	30	30	30	31	32	32	32	-31
XIV	38	29	30	28	29	28	27	27	27	26	26
XV	25	29	23	21	20	19	19	19	19	18	19
XVI	13	18	17	14	14	13	13	16	14	15	15
XVII Toaceq net	13	12	10	9	- 11	10	11	14	13	14	14

зависимость Q от $h \odot$ при облачности Ac 8—9 баллов и \odot^2 следует выделить. Различие в величинах суммарной радиации для других количеств облаков при \odot^2 и \odot не выходит за пределы ±0,05 кал/(мин · см²).

При облаках вертикального развития и низких высотах солнца (до 25°) не заметно влияние количества облаков на интенсивность суммарной радиации (рис. 1 в). При бо́льших высотах солнца Q растет с увеличением количества облаков. Максимальные величины суммарной радиации характерны для облачности 8—9 баллов, ⊙² и ⊙, что совпадает с результатами, полученными автором. Однако средняя зависимость Q от h₂, по данным автора, занижена и соответствует Q при ⊙² и ⊙и облачности до 7 баллов. Поэтому в дополнение к средней кривой для облаков вертикального развития следует выделить кривую при облачности 8—9 баллов.

Кривые, характеризующие зависимость Q от h_{\odot} , в среднем для яруса могут быть применены в случае, когда наблюдения над об-

лачностью не включают информацию непосредственно о форме облаков, но дают возможность определить ярус.

Для решения задачи при наличии подробных сведений об облачности на метеорологических станциях автором использованы также ланные, систематизированные Б. М. Гальперин и Л. П. Серяковой [2]. Из 60 вариантов зависимости от высоты солнца средних величин суммарной радиации, относяшихся к заданным метеорологическим условиям (отметка диска солнца, количество облаков, форма облаков или наиболее часто встречающееся сочетание их) по отметкам диска солнца были сгруппированы 17 типовых кривых (рис. 2 и табл. 2). Кривые названы типовыми, поскольку они несут в себе уплотненную информацию о суммарной радиации и являются характерными для разных климатических-районов. При объединении в одну кривую средних величин Q для различных форм и количества облаков расхождения между ними не превышали 3-5%. Кривая XVII получена дополнительно обобщением наблюдений над радиацией при сплошной облачности нижнего яруса и осадках. Для построения кривых IV и IV а в величину О при сплошной облачности верхнего яруса введена поправка 10-12% из [3] для перехода от района северо-запад ЕТС к территории всей умеренной зоны.

Зависимость Q от h_{\odot} для безоблачного неба, показанная на рис. 2*а* знаком *1*, при средней прозрачности атмосферы близка к кривой *II*. Значения суммарной радиации каждой кривой рис. 2 приведены в табл. 3. Обращает на себя внимание устойчивость относительной величины Q в большом диапазоне высот солнца, исключая пизкие ($h_{\odot} < 10^{\circ}$) и отдельные случаи для больших высот солнца — сплошная облачность верхнего (отметка \odot) или среднего яруса (Ac \odot°).

При наличии солнца (отметки ⊙² и ⊙) и любом сочетании количества и форм облаков приход суммарной радиации составляет не менее 85% радиации безоблачного неба.

Кривая / отражает условия максимального прихода суммарной радиации на земную поверхность — о<u>ткрытый диск</u> солнца при облачности 8—9 баллов Ас и Си или Ас в сочетании с волнистыми Sc, создающими большую рассеянную радиацию (до 50% прямой радиации на горизонтальную поверхность). Превышение этих величин над суммарной радиацией безоблачного неба составляет 15—20%.

При экранировании солнечного диска более плотными облаками (отметка ⊙⁰) и количестве их свыше 4 баллов интенсивность суммарной радиации колеблется в пределах 35—60% радиации безоблачного неба.

Минимальные значения радиации наблюдаются при сплошной облачности нижнего яруса (кривые XV—XVII), наименьшие из них — при наличии осадков (кривая XVII). Средние величины радиации для этих условий составляют 10—20% радиации безоблачного неба. Соизмеримой с ними является интенсивность рассеянной радиации безоблачного неба, отмеченная на рис. 2 в знаком 2.

 $\frac{1}{2}$ 3 416

Типовые кривые зависимости Q от $h \odot$ могут быть применимы для определения суммарной радиации по наблюдениям за облачностью на метеорологических станциях. Важнейшая характеристика при этом — отметка о состоянии солнечного диска, что определяет необходимость наблюдений за ним на сети станций и изучения его закономерностей.

Оценки повторяемости отметок солнечного диска [4, 8], которые носят предварительный характер, показали, что, несмотря на погрешность визуальных наблюдений за этим элементом, результаты, полученные в разных климатических районах, согласуются между собой. В работе Б. М. Гальперин [5] сделана попытка совместного исследования повторяемости отметок диска солнца и зависимости Q от h_{\odot} для определения средних значений сумарной радиации при различной облачности. Такой подход может быть применен и в климатологических целях для получения средней многолетней величины Q по месяцам и за год в конкретных пунктах и по площади, если использовать типовые кривые зависимости Q от h_{\odot} в комплексе с повторяемостью отметки диска солнца, форм облаков с их средним количеством.

Определение суммарной радиации по наблюдениям над облачностью на сети метеорологических станций. В настоящей работе рассмотрена возможность использования типовых кривых для определения величин суммарной радиации по облачности в отдельные дни при заданных реальных метеорологических условиях на примере данных Северо-Западного УГМС. Применение средней, зависимости Q от h_{\odot} к наблюдениям в отдельные дни оправдано тем, что отклонение экстремальных величин Q от средней зависимости (см. рис. 1) не выходит за пределы точности определения интенсивности суммарной радиации в срок (30—50% по табл. 1) на актинометрических станциях при существующей методике наблюдений.

На территории Северо-Западного УГМС был выбран участок с 33 метеорологическими станциями в пределах $61-56,5^{\circ}$ с. ш. и 28,2—33,8° в. д., площадь которого составляла около 140 тыс. км². Расстояние между станциями (75—80 км) близко к оптимальному для средних радиационных характеристик. Размеры участка по долготе выбирались с учетом того, чтобы отклонения в сроках наблюдений по истинному солнечному времени составляли не более ± 10 мин от времени среднего меридиана выбранной территории.

На каждой метеорологической станции в сроки наблюдений, приходящиеся на дневную часть суток, для трех дней августа за период 1966—1972 гг. по облачности и отметке диска солнца определялась интенсивность суммарной радиации. Предварительно была вычислена высота солнца, при этом время наблюдения за состоянием диска солнца относилось к началу срока. Использовались типовые кривые зависимости Q от высоты солнца (рис. 2) с небольшим видоизменением кривой IV, взятой по первоначальным данным из [2] без введения поправки.

Таблица 4

Средняя величина суммарной радиации Q, полученная по наблюдениям за облачностью на 33 метеорологических станциях. Август

]	Истинно	20	50	Продолжи- тельность				
Год	Чис- ло	4 ч 50 мин	7 ч 50 мин	10 ч 50 ми	113 ч 50 мин	16 ч 50 мин	∠ ∨ _B	[∠] ∨ _п	солнечного сияния	
			10ª	• кал/(мин•с	M ²)	·	кал/(су	T·CM ²)	(11 ст.), ча- сы	
1966	14	4	36	79	76	23	383		6,2	
	15	3	37	75	62	21	354		7,1	
	16	4	45	84	75	38	449		10,7	
1967	14	4	32	82	86	40	441		9,1	
	15	4	34	65	46	19	304		5,6	
	16	3	18	36	32	15	187		2,0	
1968	14	4	49	104	86	41	519	1.	12,6	
1	15	5	49	85	73	33	445		9,4	
	16	4	47	93	78	26	452		9,4	
1969	14	4	45	74	65	29	390	397	7,8	
	15	4	54	94	88	41	506	483	13,5	
	16	6	60	100	90	41	552	523	14,0	
1970	14	3	28	65	78	30	362	322	8,8	
	15	4	38	72	73	35	394	362	8,6	
	16	5	. 44	81	73	36	431	425	10,4	
1971	14	3	31	71	61	34	367	371	6,8	
	15	3	33	65	51	15	[:] 304	332	5,9	
	16	4	24	50	64	33	316	328	7,6	
197 2	14	5	47	79	76	41	450	419	11,3	
	15	5	57	78	71	26	463	462	10,1	
	16	2	37	72	59	31	383	375	8,5	
·		·	Mo	осковское де	кретное врем	1я, часы			· · · · · · · · · · · · · · · · · · ·	
	6	· 9	12	15	18					

Всего было обработано 4450 наблюдений, из них 3450 в метеорологические сроки, остальные в актинометрические сроки на станциях, где ведутся измерения радиации. Среди выбранных трех дней августа за 7-летний период встретились разнообразные погодные условия с различными сочетаниями форм и количества облаков и состоянием солнечного диска. Поэтому были апробированы все типовые кривые, в том числе и для безоблачного неба при разном состоянии прозрачности.

По полученным интенсивностям Q 33 метеорологическими станциями для каждого срока метеорологических наблюдений была вычислена средняя величина \overline{Q} , по которой были построены кри-

Таблица

Средняя величина суммарной радиации Q по данным девяти актинометрических станций, измеренная (1) и вычисченная (2) по облачности. Август

					Истин	ное со	лнечно	е врем	я			ΣQ_{Π}	Σ0_
Гол	Чис-	6ч3	80 мин	9ч3	0 мин	12 ч	3 0 мин	(сроч- ные)	₩ [™] B				
- 04	ло				10	²• кал	/(мин•с	М²)				кал/((сут.см ²)
	:	1	2	1	2	1	2	1	2	1	2	1	2
1966	14	20	17	50	50	90	87	48	46	4	6	375	365
,	15	12	16	53	59	44	46	27	31	12	10	258	283
	16	16	18	77	74	70	65	42	42	10	11	379	36 9
1967	14	14	15	49	44	77	80	66	66	11	14	383	385
	15	18	21	54	61	47	58	32	33	5	6	275	314
	16	12	14	25	34	39	52	19	20	4	6	173	220
1968	14	18	19	72	65	89	93	62	60	12	-13	445	440
	15	21	23	65	72	55	54	34	35	12	10	331	340
	16	22	23	71	72	79	79	27	32	6	6	360	377
1969	14	18	20	55	55	67	68	59	60	10	11	367	375
	15	26	27	75	70	102	100	70	68	13	14	503	490
	16	29	31	73	77	103	103	69	70	12	13	503	515
19 70	14	15	16	51	56	73	63	57	64	8	12	359	401
	15	13	13	64	68	70	78	50	54	9	11	368	395
	16	28	24	81	76	87	93	56	56	12	10	462	455
1971	14	19	19	60	59	65	73	45	46	8	- 11	347	364
	15	22	21	43	51	72	80	28	37	3	5	297	342
	16	21	19	37	33	57	62	51	43	12	11	310	. 292
1972	14	25	21	60	54	67	66	52	52	14	14	378	362
	15	32	32	79	78	100	99	44	50	6	7	459	487
	16	14	14	48	55	58	64	42	42	10	10	301	325

вые суточного хода и определены суммы для часовых интервалов и за сутки (табл. 4).

Оценка величины расхождения интенсивности Q, вычисленной по облачности $(Q_{\rm B})$ в срок для конкретных метеорологических условий и измеренной прибором $(Q_{\rm m})$, произведена по данным девяти актинометрических станций. Оказалось, что в 70% случаев $Q_{\rm m}-Q_{\rm B}$ составляет не более 20% и только в 14%, когда в основном наблюдения производились при меняющемся состоянии диска солнца, $Q_{\rm m}-Q_{\rm B}$ составляла более 40%.

Расхождение средних по девяти станциям \overline{Q}_{π} и \overline{Q}_{B} не превышает в большинстве случаев 10%, а для суточных сумм, вычислен-

36
ных по срочным наблюдениям, еще меньще, поскольку добавилось временное осреднение по срокам (табл. 5).

При большом пространственном осреднении (например, таком, как в рассматриваемом случае — 33 станции) расхождения между интенсивностью $\overline{Q}_{\rm B}$ и $Q_{\rm II}$, по-видимому, будут еще меньше.

Насколько вычисленные средние суммы $\Sigma Q_{\rm B}$ по 33 станциям характерны для территории, можно судить по результатам сравнения их с суммами, измеренными за те же дни самописцами и интеграторами. Для этой цели использовались данные регистрации суточных сумм радиации на семи станциях Северо-Западного УГМС, четырех станций соседних УГМС, а также на двух станциях Финляндии [11]. Для получения средней взвешенной сумы по самописцам на выбранной территории в ряде промежуточных пунктов применена линейная интерполяция, поскольку расстояния между станциями с регистрацией (160—240 км) позволяли это сделать с приемлемой точностью.

Как следует из табл. 4, разница между средними для территории суммами $\Sigma Q_{\rm B}$, вычисленными по облачности на 33 станциях, и суммами, полученными по самописцам $\Sigma Q_{\rm II}$, не превышает 8— 12%, т. е. находится в пределах погрешности сумм, измеренных прибором [12, 13]. Имеется тенденция к сохранению положительного знака отклонения $\Sigma Q_{\rm II}$. Завышение сумм, вычисленных по облачности, может происходить потому, что, согласно Наставлению [6, 7], при меняющемся состоянии диска солнца во время наблюдения отметка ставится с большей интенсивностью.

На основании изложенного можно сделать следующие выводы:

1. Погрешность наблюдений величины интенсивности суммарной радиации в срок на актинометрических станциях в условиях реальной облачности составляет по предварительной оценке на Северо-Западе ЕТС 30—50%. Причиной такой значительной погрешности является большая пространственная изменчивость интенсивности суммарной радиации, определяемая условиями облачности в момент наблюдений.

2. Отметка состояния солнечного диска во время наблюдения является важным показателем интенсивности суммарной радиации. Она была учтена при построении типовых кривых зависимости суммарной радиации от высоты солнца при разной облачности.

3. Информацию о средней величине интенсивности и суточном количестве суммарной радиации для площади с погрешностью не более 8—12% можно получить по наблюдениям за облачностью на сети метеорологических станций. Пока этот вывод получен на примере наблюдений на сети станций Северо-Западного УГМС в летний месяц и нуждается в уточнении для других сезонов года и физико-географических районов. Подобные исследования имеют важное значение, поскольку открывают возможность использования суммарной радиации для оперативного обслуживания.

- Барашкова Е. П. Связь составляющих радиационного баланса с метеорологическими условиями. — Автореф. дисс., Л., ЛГМИ, 1960, 16 с.
 Гальперин Б. М., Серякова Л. П. Рассеянная и суммарная солнеч-
- Гальперин Б. М., Серякова Л. П. Рассеянная и суммарная солнечная радиация при различных условиях.—«Тр. ГГО», 1964, вып. 152, с. 96—109.
- Гальперин Б. М., Серякова Л. П. Основные закономерности коротковолновой радиации и дневного радиационного баланса при различной облачности.—«Тр. ЛГМИ», 1964, вып. 22, с. 11—34.
- 4. Гальперин Б. М. Вероятность прямой сопнечной радиации при различной облачности. В кн.: Тр. 5-го Межвед. совещ. по актинометрии и оптике атмосферы М. «Наука». 1964, с. 306—311.
- 5. Гальперин Б. М. Средние значения суммарной солнечной радиации при различной облачности. «Тр. ГГО», 1972, вып. 279, с. 55—58.
- 6. Наставление гидрометеорологическим станциям и постам, вып. 3, ч. 1. Л., Гидрометеоиздат, 1969, 307 с.
- 7. Наставление гидрометеорологическим станциям и постам, вып. 3, ч. 2. Л., Гидрометеоиздат, 1969, 115 с.
- 8. Пивоварова З. И., Манюгина В. А. О применении механизации при обработке актинометрических наблюдений.—«Тр. ГГО», вып. 129, 1962, с. 31.—39.
- 9. Пивоварова З. И. Исследование временных рядов и структуры поля радиации. В кн.: Применение статистических методов в метеорологии. Л., Гидрометеоиздат, 1971, с. 208—224.
- Руководство гидрометеорологическим станциям по актинометрическим наблюдениям. Л., Гидрометеоиздат, 1971, 220 с.
- 11. Солнечная радиация и радиационный баланс (мировая сеть). Август 1968— 1972. Л., Ротопринт, ГГО, 1969—1973.
- Фатеева К. А., Янишевский Ю. Д. Точность интегрирования радиации по регистрациям с разными интервалами.—«Тр. ГГО», 1973, вып. 312, с. 157—160.
- Янишевский Ю. Д. О точности подсчета сумм радиации по регистрациям с различными интервалами. — «Тр. НИУ ГУГМС», 1946, сер. 3, вып. 2, с. 67—73.

З. И. ПИВОВАРОВА

ВЕКОВОЙ ХОД ПРЯМОЙ СОЛНЕЧНОЙ РАДИАЦИИ

Исследования многолетнего хода интенсивности (плотности интегрального потока) прямой солнечной радиации необходимы для оценки прозрачности атмосферы при изучении колебаний климата. Особенно важное значение они приобретают в решении современной проблемы охраны воздушного бассейна от загрязнения, которой в последние годы уделяется большое внимание [1, 9, 12, 15, 25, 26]. В работах автора [12, 26] для характеристики многолетнего изменения прямой радиации и прозрачности атмосферы использовались данные наземных актинометрических измерений при отметке солнечного диска $(\cdot)^2$.

Изменение прямой солнечной радиации, измеренной у земной поверхности при неизменной солнечной постоянной, может происходить по следующим причинам:

1) флуктуация, обусловленная метеорологическими процессами;

2) влияние деятельности человека, вследствие которого могут быть сугубо местные, локальные изменения и изменения глобального характера;

3) влияние вулканических извержений.

Говоря о солнечной постоянной, мы имеем в виду астрономическую величину ее, на неизменность которой указывается в исследованиях Ангстрема [33].

При анализе наземных измерений прямой радиации следует установить, с какими изменениями мы имеем дело — локальными или глобальными. Для изучения этого вопроса в [26] были использованы материалы наблюдений в 12 пунктах в широтном поясе 40—62° с непрерывным рядом измерений прямой радиации до 1965 г. В настоящей работе ряды продлены до 1972 г. и привлечен дополнительный материал наблюдений. Восемь из 12 станций расположены на территории СССР, причем наиболее длинный ряд из них для станции в районе Ленинграда превышает 70 лет. Остальные четыре станции, расположенные в США, имеют ряд наблюдений длительностью: в Мадисоне 60 лет, в Линкольне

Рис. 1. Многолетнее изменение интенсивности прямой солнечной радиации (в % от нормы).

а — Якутск, б — Павловск – Воейково, в — Высокая Дубрава, г — Иркутск, д — Карадаг, е — Владивосток — Сад.-Город, ж — Тбиляси, з — Ташкент, и — Самарканд, к — Мадисон, л — Линкольн, м — Блу-Хилл, н — Вашингтон;
 1 — средняя годовая, 2 — средняя годовая из скользящих пятилетий.

50 лет и в Вашингтоне и Блу-Хилле более короткие периоды. Большинство этих станций находится в крупных городах или вблизи них, что не может не повлиять на однородность наблюдений, а также затрудняет исследование влияния глобальных процессов. Описание местоположения станций, применяемых приборов и методики наблюдений подробно изложено в [26].

Для анализа многолетних колебаний использовалась средняя годовая интенсивность (рис. 1).

Наряду со средней годовой интенсивностью прямой радиации исследовалось изменение во времени максимальных величин радиации. Эта характеристика соответствует высокой прозрачности атмосферы, т. е. условиям, когда в значительной степени исключаются влияния локальных факторов. С этой целью отбирались ежемесячные максимумы из таблиц наблюдений или опубликованных данных [2-8, 13, 18-21, 29-32, 36, 44-49, 54]. При этом выбранная величина тшательно анализировалась, сопоставлялась с радиацией в другие сроки наблюдений этого дня и в соседние даты. По данным ежемесячных максимумов, приведенных к одной и той же массе атмосферы (m=2), вычислялась средняя величина для каждого года (рис. 2).

Из анализа кривых многолетнего изменения радиации, построенных для каждой станции (рис. 1), следует, что за период с 1912 г. (после сильного извержения вулкана Катмай на Аляске) до 1963 г. в вековом ходе радиации, а следовательно, и прозрачности атмосферы не отмечается сколько-нибудь больших аномалий. Отклонения средних годовых величин интенсивности от нормы в отдельные годы не выходят за пределы нескольких процентов. В последние 10-летия отмечается на всех станциях заметное систематическое уменьшение прямой радиации (что, по-видимому, является результатом влияния деятельности человека), а также однородный ход радиации на расположенных вблизи крупных промышленных центров и удаленных от городов станциях (что показывает перерост локального влияния хозяйственной деятельности в процесс более крупного масштаба).

На фоне уменьшения радиации почти во всех рассматриваемых пунктах имеется подъем кривой векового хода радиации в конце 50-х— начале 60-х годов). Он был прерван оптической аномалией, наступившей после извержения вулкана Агунг (Индонезия) в 1963 г. После этого наблюдается вторичный подъем интенсивности радиации с конца 60-х годов, в результате которого величина радиации к 1970 г. приближается к уровню начала 60-х годов.

Последнее обстоятельство свидетельствует о том, что наряду с влиянием антропогенного фактора происходят естественные флуктуации радиации, которые, по-видимому, имеют глобальный характер. На тех участках кривой векового хода, где знаки этих двух процессов совпадают, выделить влияние естественных колебаний затруднительно. На участках кривой, соответствующих росту прямой радиации, отчетливо видна роль естественных флуктуаций прозрачности в вековом ходе прямой радиации.

Рис. 2. Многолетнее изменение максимума прямой солнечной радиации при оптической массе 2 (в кал/мин · см²).

а — Павловск — Воейково, б — Москва, в — Якутск, г — Высокая Дубрава, ∂ — Иркутск, е — Моннелье, ж — Владивосток — Сад-Город, з — Карадат, и — Тбилиси, к — Ташкент, л — Самарканд, м — Линкольн, н — Мадисон, о — Блу-Хилл, п — Вашинттон; I — средний из 12 месяцев максимум, 2 средний максимум из скользящих пятилетий, 3 — числа Вольфа из скользящих пятилетий. Можно полагать, что естественные флуктуации прямой радиации, измеренной у земной поверхности, существенно зависят от концентрации стратосферного аэрозоля [11].

Для построения обобщенной кривой векового хода прямой радиации произведено осреднение данных наблюдений 13 станций СССР и США, перечисленных в подписи к рис. 1, а также более ранних наблюдений станций Франции (Монпелье и Париж [38, 53]), Англии (Кью-обсерватория [62]), Швейцарии (Лозанна [46]), Польши (Варшава [41, 57]), Индии (Симла [42]), США (Маунт-Везе [46]) и Санта Фе [54]). Для получения однородного материала для кривой векового хода наблюдения перечисленных

Рис. 3. Многолетнее изменение прямой солнечной радиации (в % ог нормы) по данным станций северного полушария

a — средняя годовая интенсивность, δ — средняя интенсивность по полугодиям; I — ежегодные данные, 2 — 5-летние скользящие, 3 — 10-летние скользящие, 4 — ежегодные данные за теплое полугодие, 5 — ежегодные данные за холодное полугодие.

станций были обработаны по одному и тому же способу. Таким образом, кривая 1 векового хода, приведенная на рис. 3, охватывает 90-летний период (1883—1972 гг.) и характеризует зону умеренных широт северного полушария. Кривая отражает ряд следующих крупных вулканических извержений взрывного характера: Кракатау (1883 г.), Бандайсан (1888 г.), Богослов (1890 г.), Эвоу (1892 г.), Мон-Пеле, Санта-Мария, Сауфриер (1902 г.), Катмай (1912 г.), Агунг (1963 г.). Она дает возможность сопоставить величину и длительность аномалии ослабления прямой радиации в атмосфере после этих извержений, что весьма существенно при оценке последующих изменений климата. Нужно иметь в виду

меньшую статистическую надежность начального участка кривой, поскольку число станций, использованных для ее построения, было неодинаково (до 1892 г. — 1, с 1893 г. — 2, с 1896 г. — 3, с 1906 г. — 4, с 1908 г. — 5—7, с 1931 г. — 9—10, с 1935 г. — 12).

Сравнение начального участка кривой 1 (до 1923 г.) с кривой векового хода, построенной по тем же станциям Кимбаллом [50, 51], дает несущественные отличия. Они связаны с тем, что Кимбалл применял сглаживание с учетом данных предыдущего и последующего годов.

Из рис. З следует, что после 1920 г. в течение 25 лет прямая солнечная радиация не испытывала больших колебаний и была выше среднего уровня на 2—3%. Характерно, что период длительной положительной аномалии прямой радиации совпадает с известным периодом повышения температуры в умеренных и особенно в высоких широтах северного полушария, а также со временем изменения в преобладающих типах циркуляции атмосферы. Переход от положительных отклонений прямой радиации к отрицательным относится к середине 1940-х годов. Очевидно, что полного совпадения времени изменения знака отклонений радиации от средней на всех станциях не может быть в силу влияния местных условий, однако на станциях США, как это видно из рис. 1 и 2, изменение произошло раньше, чем на станциях СССР. Возможно, что это связано с более ранним проявлением влияния промышленного загрязнения атмосферы в США.

С середины 1940-х годов прямая радиация уменьшалась, отрицательные отклонения составляли 2%. В конце 50-х годов — начале 60-х годов и затем в конце 60-х годов наблюдается рост прямой радиации. Отметим, что этот подъем в кривой векового хода радиации совпал с циклом 19 повышенной солнечной активности. По результатам измерений концентрации аэрозольных частиц в стратосфере [55, 56] можно предположить, что в этот период интенсивного уменьшения прямой радиации влияние глобального фактора и хозяйственной деятельности человека было одинаковым по знаку. В следующие периоды глобальный механизм способствовал росту радиации, в связи с чем произошло повышение прямой радиации, отраженное на кривой векового хода.

В дополнении к кривой 1 (рис. 3) приведены две сглаженные кривые векового хода радиации по скользящим пятилетиям и десятилетиям (2 и 3). В таком осреднении прямая радиация использована для сопоставления с вековым ходом других климатических характеристик, например, температурой, индексами циркуляции.

Кривые 4 и 5 (рис. 3) представляют отклонения средней величины прямой радиации за теплую (апрель — сентябрь) и холодную (октябрь — март) часть года. Из сравнения этих кривых следует, что знак отклонения от нормы зимой и летом согласуется на тех участках векового хода, где имеют место аномалии радиации после крупных вулканических извержений и долгопериодные колебания. После извержения вулканов отрицательные аномалии радиации в зимний период глубже на 3—8% (увеличиваясь ко второму году после извержения), чем в летний, что свидетельствует о наличии замутняющих (аэрозольных) слоев в атмосфере.

На участке векового хода в 1930-е и 40-е годы, где устойчивые положительные отклонения прямой радиации от нормы являются показателем высокой прозрачности атмосферы (при принятом допущении неизменности солнечной постоянной в астрономическом понятии), величина зимних отклонений также оказалась больше, чем летних. Возможно, что такое соотношение их связано с особенностями атмосферной циркуляции в данный период, но этот вопрос нуждается в дальнейшем изучении.

С конца 40-х годов, когда наблюдается направленное уменьшение прямой радиации, отрицательные отклонения ее от нормы в холодную и теплую части года одинаковы по величине. Однако с 1963 г., после извержения вулкана Агунг, зимние аномалии прямой радиации на протяжении 6 лет остаются более глубокими, чем летние. Это указывает на большую устойчивость замутняющих слоев в атмосфере в настоящее время, когда сильно сказывается влияние антропогенного фактора, по сравнению с концом XIX. и началом XX столетия. Не исключено, как отмечает в своих исследованиях Фольц [60, 61], что помутнение атмосферы, вызванное извержением вулкана Агунг, поддерживалось в дальнейшем за счет других извержений в тропиках.

По данным Кимбалла [50], полное восстановление нормальной величины прямой радиации после извержения вулкана Кракатау наблюдалось по истечении 34 месяцев, вулкана Мон-Пеле — 17 месяцев, вулкана Катмай — 21 месяца. Примерно такое же соотношение периодов депрессий прямой радиации можно видеть на рис. 3. Приведенные цифры не могут претендовать на точность, так как они зависят не только от того, по какому числу станций сделана оценка, но и не менее значительно от района расположения их и особенностей циркуляции.

В табл. 1 приведены средние значения прямой радиации, которые дают представление о величине аномалии и ее продолжительности в разных пунктах северного полушария, вызванной резким ухудшением прозрачности атмосферы.

Об уменьшении прямой солнечной радиации после извержения вулкана Кракатау (26—27 августа 1883 г., вблизи о. Ява) можно судить по наблюдениям ст. Монпелье (φ =41°3′ с. ш.), расположенной на юге Франции. Снижение радиации началось с декабря 1883 г., низкие величины наблюдались в течение трех лет. В 1885— 1886 гг. отмечается несколько извержений других вулканов [52]. Наибольшие отрицательные аномалии отмечались в 1885 г. в отдельные месяцы радиация была ниже нормы на 23—27%, в среднем за год — на 11%. Можно полагать, что в табл. 1 отрицательные отклонения для Монпелье преуменьшены (соответственно положительные преувеличены), поскольку средняя многолетняя величина вычислена из сравнительно короткого ряда наблюдений (1883—1900 гг.), в течение которого неоднократно происходили крупные вулканические извержения. Таблица 1

Относитёльная величина ослабления прямой солнечной радиации (в % нормы) в период до и носле извержения вулканов

	Среднее		104	93	89	96	105	101	66	96	94	26	104		103	90	97,4		95,3	85,2	93,6	
	IIX		68	81	98	108	107	93	103	81	101	100	103		ł	68	06		83	68	94	
	XI		113	81	60	98	104	96	101	93	88	98	108		94	96	47		68		66	
	x		105	86	77	82	66	94		94	96	6 3	104		106	16	97		89	85	93	
	IX		102	06	73	80	101	95		98	91	98	103		100	92	103		101	87	66	
•	IIIV		102	85	73	86	87	95	66	97	67	1	102		104	96	66		67	89	96	_
•	ΝI	нелье	101	86	98	95	92	94 .	92	103	105	103	103	BJOBCK	105	95	98	ршава	100	88	95	
	IA	Moi	89	101	96	93	94	101]	100	96	100	107	Па	104	96	101	Ba	92	46	06	
:	^		103	96	88	98	115	66	9 6	92	93	88	109		106	93	97		61	81	95	
	IV		109	102	81	96	104	120	103	06	93	88	98		107	84	98		98	85	86	
	III		101	91	91	93	103	101	105	98	82	94	102	• . _	107	98	100		103	85	86	
	II		101	84	101	89	119	105	68	95	86	100	97	-	113	62	88		98	81	17	
	I		100	0 6	03	98	119	105	94	66	88	94	94	-		74	78	• 	100	85	62	
	Год		1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893		1902	1903	1904	•	1902	1903	1904	

46

•

	69,2	89,0	98,2			83,5	91,5	96,5		94,2	98,0	104,0		93,9	93,2	I			93,4	93,6	100
	52	74	126			56	ſ	83		76	101	108		77	82	1			78	1	86
	48	82	111			63		73		75	91	106		93	ļ	I			96	1	114
	61	96	66			62	88	9 <mark>8</mark>		76	100	66	`	86	94	1			16	ļ	109
	44	88	93			62	89	86		74	102	104		82	66	1			71		96
	44	33	101			99	56	102		81	100	104		78	66	1		(1	82		16
зловск	54	96	62		OCKBA	67	J	101	ршава	68	101	108	Париж	17	78	l		юдноП)	76	88	107
Па	68	94	95		W	85	93	106	Bé	103	98	110		101	98			Кью	105	94	107
	103	06	98			102	91	102		96	66	104		96	68	i			103	106	104
	102	86	95			102	89	101		110	94	101		66	91	102			104	92	92
	1	6	94			88	98	96		101	96	66		103	88	ļ			118	98	103
	ł	80	68	-		103	84	104		109	95	67		100	102	104			96	98	69
		74	84	-		113	94	87		112	91	85	-	109	68	1	-		91	85	
	1912	1913	1914			1912	1913	1914		1912	1913	1914		1912	1913	1914			1912	1913	1914

-

Среднее		0 '96	93,0	103,0		6'06	93,0	98,3		Ì	96,4	100,7		97,2	6'16	102,1
		87	. 95	105	-	75	1]	-	. 96	100	103		95	96	100
XIX		68	95	106		86	1	104	_	06	67	105		92	67	101
x		87	93	100	-	88	95	107	-	63	102	1	-	92	97	8 6
IX		62	102	110	-		101	38	_		93	1	-	94	66	102
IIIA		19	104	06	-		61	86	_		67	101	-		1	1
ΛII	адисон	88	95	108	нчгож	1	06	.	нта фе		95	1	имла	1	103	
IV	Μ	101	94	102	Лиг		I	I	Ca		1	105	- 0	96	104	16
>	 	112	67	104	_	87	98	l			6	66	-	100	98	100
IV		103	06	110		95	93	98	-]	103	-	101		101
		110	89	101	-		}	92	-)	101	-	66		67
ш		112	86	96	-	98	92	95	_		100	93	_	104	06	100
			•	1	-	[106]	78	96	_		16	98			16	96
Год		1912	1913	1914		1912	1913	1914		1912	1913	1914		1912	1913	1914

Снижение интенсивности прямой радиации после извержений вулканов Бандайсан, Япония (Bandaisan, 1888); Богослов, Алеутские острова (Bogoslof, 1890) и Эвоу, Индонезия (Awu, 1892), отнесенных к крупным извержениям [52], по наблюдениям в Монпелье, продолжалось 3 года, отклонение от нормы в среднем составило 5—6%.

Другая большая оптическая аномалия, вызванная извержением вулканов в 1902 г. Мон-Пеле, о. Мартиника (8 мая), Сауфриер, Сен-Винсент (17 мая) и Санта Мария, Гватемала (24 октября), видна по наблюдениям прямой радиации на ст. Павловск и Варшава. Отрицательное отклонение средней годовой величины прямой радиации в 1903 г. составляло 10% в Павловске и 15% в Варшаве. Большое отклонение радиации от нормы в Варшаве повлияло и на среднюю величину (определенную по двум станциям) аномалии — 87,5%, в результате чего на рис. З аномалия выглядит наиболее глубокой из всех остальных.

Оценка уменьшения прихода к земной поверхности прямой радиации после извержения вулкана Катмай (6 июня 1912 г., Аляска) может быть произведена по большему числу станций (10 пунктов). Даже средняя годовая величина радиации в 1912 и 1913 гг. на станциях, расположенных в умеренных широтах, составляет 91—93% нормы. Если принять во внимание только вторую половину года, то аномалия окажется значительно сильнее.

В более северных пунктах прямая радиация в 1912 г. в течение полугода была ниже нормы на 35—40% и в среднем за год составила 69% нормы в Павловске и 83% нормы в Москве.

В Павловске снижение радиации на 15—20% наступило на 10-й день после извержения и более сильное (на 60—70%)—с 25 июня.

По данным наблюдений в Варшаве, Париже и в Кью (Лондон) [41, 53, 57, 62] резкое снижение прямой радиации отмечается в первых числах июля. Нужно иметь в виду, что дата начала уменьшения количества радиации в данном пункте по актинометрическим наблюдениям может быть установлена точно только в случае постоянного наличия благоприятных условий — отсутствия облачности, экранирующей солнечный диск.

Из табл. 1 следует, что восстановление нормального уровня прямой радиации после извержения вулкана Катмай произошло через 1,5—2 года. Обращает на себя внимание заметно меньшие отклонения радиации на ст. Симла (φ =31,6° с. ш., *H*=2433 м, северо-восток Индии). В среднем за 1912 г. аномалия составляет всего 3% и даже в месяцы наибольшего ослабления радиации (осенью) не превосходит 7—8%. Возможно, это объясняется условиями циркуляции и воздухообмена между стратосферой и тропосферой в данном районе субтропических широт.

К наиболее мощным вулканическим извержениям в северном полушарии после 1912 г. в [25] отнесены извержения вулканов Маунт-Спурр (9 июля 1953 г., Аляска), сопки Безымянной (март, 1956 г., Камчатка) и Агунг, влияние которого на ослабление прямой радиации освещено во многих работах [12, 17, 27, 35, 37, 39, 58, 59] и отчетливо видно на рис. 1—3. Но извержение двух предыдущих вулканов не нашло заметного отражения на кривой векового хода радиации.

После извержения вулкана Маунт-Спурр мощные слои пыли в стратосфере наблюдались в конце июля 1953 г. над Англией [43]. Количественная оценка влияния извержения Маунт-Спурр на солнечную радиацию произведена Фрицем по данным станций США [40]. Уменьшение прямой радиации на станциях было зарегистрировано только с сентября 1953 г., т. е. на третий месяц после извержения; оно продолжалось в течение полугода. В Блухилле и Линкольне снижение радиации при массе атмосферы *m*=3 составляло 5—10%, на обсерватории Тейбл Маунтин (Калифорния). при *m*=2 не превосходило 3%.

Извержение вулкана сопки Безымянная подробно описано Г. С. Горшковым [14] и приравнено по энергии взрыва и тепловой энергии к крупнейшим извержениям Кракатау, Мон-Пеле. Катмай. Однако величина уменьшения прямой радиации и длительность действия замутняющих слоев в атмосфере по актинометрическим наблюдениям на станциях СССР не соизмеримы с тем, что наблюдалось после извержения вулкана Катмай. Начало извержения сопки Безымянная (первый мощный взрыв — 22 октября 1955 г.) совпало с сезоном значительной облачности и практически полным отсутствием измерений прямой радиации. После второго гигантского взрыва 30 марта 1956 г. огромное количество пепла было вынесено мошным высотным течением к северу через полюс к Гренландии и затем через Атлантику. Над Англией слои пыли наблюдались визуально на высоте 15 км 3 и 4 апреля [34]. На территории СССР в апреле часто наблюдались низкие значения прямой радиации — на 15—30% ниже нормы, особенно при низких высотах солнца (Украина, Кольский полуостров, п-ов Мангышлак, западные районы Средней Азии).

Большая аномалия облачности в апреле, снизившая на ЕТС продолжительность солнечного сияния на 40—60%, не дает возможность проследить детально изменение радиации ото дня ко дню, как это удалось сделать после извержения вулкана Катмай в [19]. Но интересно заметить, что ни на Камчатке, ни в соседних с ней территориях отрицательных аномалий интенсивности солнечной радиации не наблюдалось. Даже на ст. Ключи, в 45 км от сопки Безымянной, прямая радиация только 2 апреля была ниже нормы на 20%; в остальные дни отрицательных отклонений не отмечалось. В то же время в Верхоянске и Якутске в первую декаду апреля прямая радиация была ниже средней на 10—12%, при рекордно возросшей рассеянной радиации — на 20—30%, а в отдельных случаях и до 40%.

Оптическая аномалия атмосферы на территории СССР после извержения вулкана на Камчатке была кратковременной в силу условий циркуляции и сказалась на уменьшении солнечной радиации только в отдельных районах. Безусловно, продукты извержения увеличили общую мутность атмосферы. При применении скользящего осреднения, которое является одним из способов погашения кратковременных колебаний, в сглаженных рядах прямой солнечной радиации появились волны (см. рис. 1, 2 и 3).

Среди критериев оценки реальности возникших волн в отличие от волн, представляющих имитацию колебаний, обусловленных сложением случайных причин, чувствительными к некоторым метеорологическим элементам, как показали О. А. Дроздов и Т. В. Покровская [16, 28], являются критерии Вейнберга, основанные на сравнении числа экстремумов в исходном и случайном ряду или на соотношении числа повышений и понижений. Первый критерий позволяет оценить длительность характерных циклов, второй --обнаружить систематические изменения уровня ряда (в целом или на отдельных участках). Применим упомянутые критерии к ряду максимальных величин прямой радиации в Павловске — Воейково (длина ряда 70 лет). Испытание отличия числа экстремумов у от случайного ряда (где у соответствует примерно ²/₃ членов) проведено для несглаженного ряда и для скользящего сглаживания по 5 и 10 лет. Из табл. 2 (верхняя часть) следует, что в несглаженном ряду и в сглаженных рядах число экстремумов оказалось намного меньше случайного, причем уровень значимости отличия у, как случайного явления, очень низкий (десятые доли процента и менее). Однако этот критерий при примененном 5 и 10-летнем осреднении не позволяет оценить длительность характерных циклов. Более длительные периоды сглаживания чем 10 лет не испытывались ввиду коротких рядов наблюдений. Кроме того, при таком осреднении ряд соседних членов оказывается в пределах точности одинаковым и определение числа экстремумов на плоских участках становится затруднительным.

Результаты применения второго критерия на отличие ряда от случайного (где сохраняется приближенно равенство числа повышений и понижений) приведены в нижней части табл. 2. В несглаженном ряду числа повышений и понижений m_+ и m_- мало различаются. Но при периоде осреднения 5 и 10 лет замечается более четко превышение чисел понижений над числами повышений, составляющее около 1,55 $\sigma_{m_+}-m_-$.

Уровень значимости таких отклонений, как случайных, хотя и равен 11—12%, но для категорического заключения о реальности изменений в ходе прямой радиации недостаточен — для этого элемента требуются более чувствительные критерии.

Рассмотрим критерии, разработанные О. А. Дроздовым с использованием последовательного анализа [28] и основанные на количественном учете особенностей ряда, в частности на учете повышения и понижения его уровня.

Исходные ряды максимальных величин прямой радиации были преобразованы в разностные ряды соседних равноудаленных по времени членов ряда (разности двух лет) и суммированных последовательных разностей с интервалом k=5 лет. Из сравнения

Таблиша

Критерий Вейнберга для определения отличия колебаний прямой солнечной радиации от ожидаемых в случайном ряду

Период сгла- живания <i>п</i>	N-n+1 v		удля с. Ного	тучай- ряда	Δ σ _ν	<u>Δ</u> σ _ν	Уровень зна- чимости
	Испы	тание	числа э	кстремум	овувря	дах	
1*	70	3 2	47	′	15 3,5	4,3	2.10-5
5	66	20	33	.	13 4,5	2,9	0,0037
10	61	17	30	ı	13 4,2	3,1	<0,0020
Период сгла- живания	N-n+1	<i>m</i> +	m	m ₊ - m_	$\sigma_{m_+}-m$	$-\left \frac{m_{+}}{\sigma_{m_{+}}}\right $	- <i>т</i> Уровень - <i>т</i> Уровень значи- мости
Испы	тание разн	юсти ч	исел п	овышений	і и пониж	ений в ря	ıдах
1*	70	32	36	4	4,9	0	0,82 0,417
5	66	26	34	8	5,1	_1	,57 0,113
10	61	21	29	8	5.2	-1	.54 0.127

Примечание. Звездочкой (*) отмечены данные несглаженного ряда.

дисперсий ряда разностей σ_d^2 и исходного ряда σ_r^2 можно еще раз убедиться в наличии связности в рядах прямой солнечной радиации. Как видно из данных, приведенных в табл. 3, условие бессвязности, характерное для случайного ряда $\sigma_d^2 = 2\sigma_r^2$, не выполняется во всех рассматриваемых пунктах.

установления значимости систематических тенденций Для в ряду по сравнению с их естественной изменчивостью оценивался ряд отношений накопленных разностей D_k к среднему квадратическому отклонению σ_d (табл. 3). Выход отношения $\frac{D_k}{\sigma_d}$ в течение какого-то периода за пределы, допустимые для случайного ряда, и возвращение вновь к относительно малым величинам свидетельствуют о наличии циклических процессов.

Если изменчивость элемента x в исходном ряду будет очень большой, что относится и к прямой радиации в некоторых районах, то критерий $\frac{D_k}{\sigma_d}$ может оказаться недостаточно чувствительным. Для усиления чувствительности критерия можно брать разности не последовательных членов ряда, а средних из последовательных *п*-летий. В рассматриваемом случае брались разности средних из 5-летий максимальных величин прямой радиации и соответственно оценивался ряд отношений $\frac{D_k^{(5)}}{\sigma^{(5)}}$, где $\sigma_D = \frac{\sigma_d}{\sqrt{n}}$ (5)

Таблица З

Период	$\frac{D_k^{(5)}}{\sigma_d^{(5)}}$	Уровень зна- чимости	Период	$\frac{\frac{D^{(5)}_{k}}{\sigma_{x}^{(5)}}}{\frac{\sigma_{x}^{(5)}}{\sigma_{x}^{(5)}}}$	Уровень значимости
Пав	ловск — Во	ейково			
1901—05	-3,50	$ < 5 \cdot 10^{-4}$	1956-60	-2,36	0,017
1906-10	-1,14	0,257	1961-65	-2,78	0,005
1911—15	—4,6o	<10 ⁻⁶	1966—70	2,86	0,004
1916-20	0,86	0,390	σ_x^2	0,0049	
1921 - 25	2,18	0,028	σ ²	0.0040	
192630	—0,10	0,920	d d	0,0040	
1931—35	0,57	0,560			ı
1936—40	0,95	0,338		карадаг	
1941—45	2,28	0,020	1936—40	—0,75	0,457
1946—50	2,00	0,046	1941—45	—1,13	0,260
1951—55	2,76	0,006	194650	—4,14	$< 6 \cdot 10^{-5}$
1956—60	0,74	0,460	195155	-4,51	<10 ⁻⁶
196165	4,56	$< 10^{-5}$	1956—60	4,51	<10 ⁻⁶
1966—70	4,38	$< 10^{-5}$	1961—65	-6,32	<10 ⁻⁶
σ_r^2	0,0023		1966—70	6,39	<10 ⁻⁶
~2	0 0099		σ_x^2	0,0040	
° d	0,0022		σ ²	0,0008	
Вы	сокая Дубр	ава	u		
1941-45	0,69	0.49		Тбилис	И
1946—50	0,10	0,92	1931—35	-1.32	0.188
1951-55	-1,00	0,317	1936—40	0.26	0,780
1956—60	-1,85	0,067	1941-45	0,79	0,430
1961-65	-4,10	$< 6 \cdot 10^{-5}$	1946—50	-1,85	0,067
1966—70		$< 6 \cdot 10^{-5}$	1951—55	-1,59	0,113
σ ²	0.0039		1956-60	2,91	<0,003
2	0.0004		1961-65	—5,56	$< 10^{-6}$
σd	0,0034		1966—70	—3,34	$< 10^{-3}$
I		L	σ_x^2	0,0031	
1000	Иркутск		°2	0.0014	
1936—40	1,36	0,173	a	-,	
1941—45	3,50	< 5.10-4		Ташкент	
1946-50	0,64	0,517	192630	0,28	0,763
1071	· - ·)		

Критерий для оценки достоверности колебаний прямой солнечной радиации

Период	$\frac{D_k^{(5)}}{\sigma_d^{(5)}}$	Уровень значимости	Период	$\frac{D_k^{(5)}}{\sigma_d^{(5)}}$	Уровень значимости
	Ташкент			Мадисон	I
1936-40	-1,14	0,257	1911—15	—1,47	0,138
194145	0,10	0,920	1916—20	—1,18	0,240
1946—50	—1,14	0,257	1921-25	-0,59	0,547
1951-55	-1,14	0,257	1926—30	-0,59	0,547
1956—60	-2,00	0,046	1931—35	0,59	0,547
1961—65	2,56	0,0 09	1936-40	0,29	0,770
1966—70	3,12	<0,002	1941—45	—1,47	0,138
σ^2	0,0018		1946—50	-2,35	0,017
л 2	0.0010		1951 — 55	0,29	0,770
σd	0,0012		1956—60	1,18	0,240
•			19 61 —65	—2,64	0 ,0 08
			σ_x^2	0,0020	
			σ_d^2	0,0012	

Из табл. З следует, что на участках кривых многолетнего хода прямой радиации в последние 15-20 лет отмечаются систематические тенденции понижения уровня, в результате чего показатель $D_{k}^{(5)}$ выходит за пределы нескольких единиц и надежно характеσ⁽⁵⁾ ризует низкий процент случайного явления. По данным станции в районе Ленинграда, имеющей наиболее длинный ряд наблюдесоответствует комбинации эволюции уровний, ход значений ня со случайными циклами. В соответствии с этим, хотя указанные отношения уменьшались со временем в первые два десятилетия и увеличиваются с середины 1920-х годов, в их ходе имеются колебания. Понижение уровня значимости до 0.047% и менее в пятилетия 1901—1905 и 1911—1915 гг. объясняется крупными оптическими аномалиями. В последующие пятилетия, 1926—1930 и 1931—1935 гг., в связи с увеличением прозрачности атмосферы накопленные разности $D_{h}^{(5)}$ имеют положительный знак, а затем опять принимают отрицательные значения и выходят за пределы нескольких о. Уровень значимости понижается до 0,3% в пятилетие 1951—1955 гг. и практически доходит до нуля в 1960-х годах. Как отмечает О. А. Дроздов [28], ход величин D_k и $D_k^{(5)}$ в точ-

ности воспроизводит колебания величины x в соответствующем

эсреднении, только изменения отсчитываются не от средней за зесь период, а от начального уровня ряда. Эти критерии наиболее іувствительны в тех случаях, когда значения начального уровня залеко до среднего, что не всегда характерно для прямой радиации. Значительные отличия начального уровня от среднего наблюдались в рядах Тбилиси, Ташкента, Карадага (0,08— 0,09 кал/(мин см²). Для этих станций накопленные разности D_k , не говоря уже о $D_k^{(5)}$, выходят за пределы нескольких о, поэтому

з табл. З для них указан критерий $\frac{D_k}{\sigma_d}$.

Интересно сопоставить колебания в многолетнем ходе прямой радиации с показателем солнечной активности и прежде всего классической характеристикой, имеющей длинные ряды наблюцений — числами Вольфа.

Анализ рис. 1 позволяет заметить, что в разных районах в многолетнем ходе прямой радиации наблюдается согласование экстремумов в отдельные годы. Во многих пунктах отмечается уменьшение радиации в 1938 г. (1939 г.) или увеличение в 1944 г. (1945 г.) и в 1958 г. (1959 г.). Характерно, что эти периоды приходятся на годы вблизи максимума или минимума солнечных пятен. Более отчетливо это видно на рис. 2 при сопоставлении с кривой 3 (числа Вольфа) хода сглаженных максимальных величин (кривая 2), в которых наиболее полно исключено влияние на прозрачность атмосферы местных факторов и случайных короткопериодных колебаний.

Из рис. 2 следует, что в ходе прямой радиации проявляется тенденция к цикличности, но со сдвигом по сравнению с циклами солнечной активности. Причем максимум радиации может приходиться и на ветвь спада, а в отдельные периоды на некоторых станциях и на минимум солнечной активности. В какой-то мере это можно рассматривать как подтверждение геоактивности не только фазы максимума, но и фазы минимума (или близкой к минимуму) 11-летнего цикла. При сопоставлении абсолютного в году максимума прямой радиации с числами Вольфа в конкретные дни отмечается некоторый перевес случаев в сторону значений чисел Вольфа, меньших среднего месячного (табл. 4). Приурочивание абсолютного максимума радиации к дням, когда число Вольфа не максимально в данном месяце, может служить подтверждением непрямолинейной зависимости между числами Вольфа и солнечной постоянной, полученной А. Ангстремом, а позднее К. Я. Кондратьевым и Г. А. Никольским [22]. Здесь имеется в виду метеорологическое понятие солнечной постоянной, поэтому изменения максимальных величин прямой радиацией могут отражать ее вариации.

В табл. 4 также указана и дата абсолютного максимума радиации (при массе 2) за весь период наблюдений и средняя величина из ежегодных максимумов. Наивысшие значения прямой радиации, наблюдаемые у земной поверхности при массе 2, достигают 1,45—

Таблица 4

Число случаев в рядах абсолютного (в году) максимума прямой радиации при числах Вольфа, бо́льших, меньших или равных среднему месячному значению

Станция	Числ числа ме	ю случаев х Вольфа с. значени	при к ср. ю	S _{абс. макс} кал/(мин.	Дата абс. макс.	Sабс. макс кал/(мин.
·	бо́льших	меньших	равных	·CM ²)		·CM ²)
Якутск	13	17	7	1,52	6 XI 1933	1,41
Павловск-Воейково	18	25	13	1,52	6 XII 1934	1,39
Высокая Дубрава	19	19	2	1,48	3 II 1945	1,40
Иркутск	18	35	9	1,56	6 IV 1937 1 III 1943	1,38
Владивосток	23	23	6	1,52	17 X11 1944 6 I 1945	1,38
Карадаг	7	17	7	1,45	1 I 1935	1,37
Тбилиси	26	31	5	1,47	4 X II 1933	1,36
Ташкент	27	32	6	1,48	24 XII 1954	1,39
Мадисон	20	25	5	1,50	18 V 1945	1,40
Линкольн	15	19	1	1,51	30 I 1936	1,43
Вашингтон	13	15	3	1,54	9 II 1934	1,37
Блу-Хилл	14	13	4	1,55	21 XII 1962	1,41

1,55 кал/(мин см²). Эти значения соответствуют условиям, когда ослабление солнечной радиации в атмосфере аэрозолями практически можно считать нулевым.

Несмотря на отмеченную тенденцию к цикличности в ходе прямой солнечной радиации (см. рис. 2), даже качественно трудно судить о согласовании с кривой 3, так как не во все циклы оно проявляется, например, отсутствует в циклах 17 и 18. Можно предполагать, что снижение интенсивности радиации, которое началось с 1940-х годов, замаскировало проявление цикличности в ходе радиации на протяжении циклов 17 и 18. Только резкое усиление солнечной активности в цикле 19 привело к отчетливой волне подъема солнечной радиации, проявившейся во всех рассматриваемых пунктах. Отметим, что тенденция к цикличности лучше проявляется в те периоды солнечной активности, на которые приходятся вулканические извержения (циклы 13, 14, 15 и 19). Возможно, что это не простое совпадение и существует связь между солнечной активностью и вулканизмом, а соответственно и с изменениями прозрачности атмосферы.

Сделаем попытку применить критерий Вейнберга, основанный на соотношении числа повышений и понижений в рядах, для того, чтобы установить, насколько реальна намечающаяся связь в ходе прямой радиации и числами Вольфа. Для этого были взяты сглаженные по 5-летиям ряды прямой радиации средней годовой по 12 станциям (см. рис. 3) и средней годовой максимальной по данным Павловск — Воейково (см. рис. 2*a*) и подсчитано число повышений и понижений отдельно для ветвей роста и спада солнечной активности. Подобно приему, примененному для связи уровня озер с солнечными пятнами [16], отождествлялись 5-летние периоды радиации с полуциклами солнечной активности и пренебрегалась корреляция между разностями в пределах каждой восходящей и нисходящей ветви.

Таблица 5

		Ветвь солнеч	чной активности	
	роста	спада	роста	спада
	По кривой	2 (рис. 3)	По данным Па	вловск—Воей- ово
m_+	21	17	16	10
<i>m</i>	13	34	11	23
Δ	8	—17	5	—13
σ _{ΣS}	2,92	3,57	2,60	2,90
σ _{ES}	2,47	4,76	1,92	4 ,48
Уровень значимости	0,014	<10 ⁻⁵	0,055	<6.10 ⁻⁵

Повышения и понижения в рядах прямой радиации на ветвях роста и спада солнечной активности

При таком допущении среднее квадратическое отклонение для суммы всех повыщений в рядах восходящей ветви (или соответствие суммы понижений в рядах нисходящей ветви) оценивалось как $\sigma_{\Sigma S} = 0.5 \sqrt{\sum(m_+ - m_-)}$, где $\sum (m_+ - m_-)$ – число случаев на восходящей (или на нисходящей) ветви.

В соответствии с полученным уровнем значимости, как следует из табл. 5, в которой приведены результаты расчета, для ветви спада солнечной активности реальность зависимости прямой радиации от чисел Вольфа очевидна, в то время как для ветви роста случайность связи имеет более высокий уровень значимости (особенно для ряда Павловск — Воейково). В какойто мере это может быть объяснено тем, что связь между солнечной активностью и интегральным потоком прямой радиации на ветвях роста затушевывается, а на ветвях спада усиливается наложением тренда — направленного изменения прямой радиации, вызванного деятельностью человека.¹ Отчасти расхождения в веро-

¹ Это замечание не относится к участку векового хода прямой радиации до 1930-х годов, когда наблюдался рост радиации.

ятности осуществления распределения радиации на ветвях роста и спада связано с допущением о равенстве длины восходящей и нисходящей ветвей 5-летнему ряду.

Сопоставление прямой радиации с другими показателями солнечной активности рассмотрено в [24].

СПИСОК ЛИТЕРАТУРЫ

- 1. Асланикашвили Н.А. Вековой ход интенсивности прямой солнечной радиации в Тбилиси —«Тр. 7-го междуведомственного совещания по ак-тинометрии и оптике атмосферы». Л. Гидрометеоиздат. 1969, с. 169—172.
 Актинометрический ежемесячник. Л., Изд. СЗ УГМС, 1961—1970, № 1—12.
 Актинометрический справочник, вып. І. Под ред. И. Н. Ярославцева. Таш-
- кент, 1953. 136 с.
- 4. Актиномический справочник по Тбилиси. ТбилНИГМИ, 1963, 283 с.
- 5. Батыгина А. И. Прозрачность земной атмосферы для Слуцка (б. Павловска) в 1923, 1924 годах и первой половине 1925 года.—«Журнал геофизики и метеорологии». 1926, т. 3, с. 151-158.
- 6. Батыгина А. И. Прозрачность земной атмосферы для Слуцка (б. Павловска) по наблюдениям за 21 год (1906-26). «Геофиз. сб-к», 1927, т. 6, вып. 1, с. 22-33.
- 7. Батыгина А. И. Прозрачность земной атмосферы для Слуцка в 1927-1931 годах.—«Изв. ГГО», 1933, № 4, с. 14—24. 8. Борисов П. П. Результаты измерений лучистой энергии солнца в Петров-
- ско-Разумовском (под Москвой).---«Тр. метеорол. обсерв. им. В. А. Михельсона», М., 1928, вып. I, 166 с.
- 9. Будыко М. И. Изменение климата.—«Метеорология и гидрология», 1967, № 11, c. 18—27.
- 10. Будыко М. И. Климат и жизнь. Л. Гидрометеоиздат. 1971, 472 с.
- 11. Будыко М. И., Винников К. Я. Современные изменения климата.—«Ме-теорология и гидрология», 1973, № 9, с. 3—13. 12. Будыко М. И., Пивоварова З. И. Влияние вулканических изверже-
- ний на приходящую к поверхности земли солнечную радиацию. «Метеорология и гидрология», 1967, № 10, с. 3-7.
- 13. Бюллетень постоянной актинометрической комиссии. 1925—36, № 1—35.
- 14. Горшков Г. П. Необычайное извержение на Камчатке.—«Природа», 1958, № 1, c. 61—68.
- 15. Давитая Ф. Ф. О возможном влиянии запыленности атмосферы на уменьшение ледников и потепление климата.—«Изв. АН СССР, сер. геогр.», 1965, № 2, c. 3-22.
- 16. Дроздов О. А., Покровская Т. В. Анализ статистических гелиоклиматических связей.—«Тр. Всесоюзн. научн. метеорол. совещания», т. 4, Л., Гидрометеоиздат, 1962, с. 259-271.
- 17. Зверева С. В. Об ослаблении солнечной радиации в полярных районах.-«Труды ААНИИ», 1969, вып. 287, с. 171—187.
- 18. Калитин Н. Н. Прозрачность земной атмосферы по наблюдениям в Слуцке (б. Павловске).—«Геофиз. сб.-к», 1925, т. 4, вып. 3, с. 49—73. 19. Калитин Н. Н. К вопросу о времени наступления оптической аномалии
- в 1912 году.—«Изв. Главн. физ. обсерв.», 1920, № 1, с. 11—20. 20. Калитин Н. Н. Солнечная постоянная по наблюдениям в Павловске.—
- «Изв. Главн. физ. обсерв.», 1920, № 2, с. 3—20.
- 21. Калитин Н. Н. Напряжение солнечной радиации по наблюдениям в Слуцке (б. Павловске).—«Геофиз. сб-к», 1927, т. 6, вып. 1, с. 7—21. 22. Кондратьев К. Я., Ник ольский Г. А. Вариации солнечной постоян-
- ной по аэростатным исследованиям в 1962—1968 гг.—«Изв. АН СССР. Физика атмосферы и океана», т. 6, 1970, № 3, с. 227—238.
- 23. Летописи Глав. физ. обсерв. 1893—1914 гг., ч. 1, СПб., Л., 1894—1933.

- 24. Логинов В. Ф. Пивоварова З. И. К вопросу о связи прямой солнечной радиации с индексами солнечной активности. (см. стр. 61).
- 25. Митчелл Дж. М. мл. Современные вековые колебания температуры земного шара.— В кн.: «Солнечная активность и изменение климата». Л. Гидрометеоиздат, 1966, с. 87-105.
- 26. Пивоварова З. И. Многолетнее изменение интенсивности прямой солнечной радиации по наблюдению актинометрических станций.-«Труды ГГО», 1968, вып. 233, с. 17—37.
- 27. Пивоварова З. И. Солнечная радиация на земной поверхности в год спокойного Солнца.—«Метеорологические исследования», № 17. Результаты исследований по международным геофизическим проектам. М., «Наука», 1970, с. 10—22.
- 28. Рубинштейн Е. С., Полозова Л. Г. Современное изменение климата. Л. Гидрометеоиздат, 1966, 268 с.
- 29. Савинов С. И. Наибольшие величины напряжения солнечной радиации по наблюдениям в Павловске с 1892 года. Ослабление радиации во вторую половину 1912 года.—«Изв. АН СССР», 1913, сер. 6, т. 7, № 12—18, c. 707—720.
- 30. Савинов С. И. Напряжение прямой и рассеянной солнечной радиации и земное излучение.—«Геофиз. бюллетень», 1918—1921, т. I, выш. 1—5, за -1918, Πr, c. 8—12.
- 31. Савинов С. И. Актинометрические данные за апрель сентябрь 1923. «Тр. аэролог. обсерв. в Павловске за 1923», т. 4, с. 12-17.
- 32. Щукевич И. Б. (Shukewitsch I.) Actinometrische Beobachtungen in Konstantinow'sehen Observatorium zu Pawlowsk.— "Repertorium f. Meteorologie". 1894, Bd. 17, Nr. 5, St. 1-2, p. 1-60.
- 33. Angström A. Apparent solar constant variatons and their relation to the variability of atmospheric transmission .-- "Tellus", 1970, v. 22, No. 2, p. 205—218.
- 34. Bull G. A., James D. C. Dust in the stratosphere over western Britain on April 3 and 4., Met. Mag.," 1956, v. 85(1012), p. 293-297.
- 35. Burdeski F. Phenomena after volcanic eruptions.— "Weather," 1964, v. 19, No. 4, p. 113—114.
- 36. Climatological Data, 1950–1969. National Summary. Asheville (U. S. Department of Commerce, Weather Bureau).
- 37. Dye'r A. J., Hicks B. B. Stratospheric transport of volcanic dust inferred from solar radiation measurements. Nature, 1965, v. 208, No. 5006, p. 131-133.
- 38. E o n A. J. Intensités calorifiques de la radiation solaire et duree de l'insolation a'Montpellier.— Bulletin météorologique du Department de l'Herault," Montpellier, 1901, année 1900, p. 133-146.
- 39. Flowers E. C., Viebrock H. J. Solar radiation: on anomalous decrease of direct solar radiation.— "Science", 1965, v. 148, No. 3669, p. 493—494.
 40. Fritz S. Opacity of the atmosphere after July 1953.— "Met. Mag.," 1956,
- v. 85(1006), p. 110—112.
- 41. Gorczynski L. Valuers pyrhéliométriques sommes d'insolation à Varsovie pendant la periode: 1901-1913. Materyaly zebrany w. r. 1911 na stacyach Sieci Meteorologicznej Warszawskiej Warszawa. 1913, p. 1-36.
- 42. India weather review 1906—1915. Simla, Calcutta. 1908—1915.
- 43. Jacobs L. Dust clouds in the stratosphere.— "Met. Mag.," 1954, v. 83, No. 982, p. 115—118.
- 44. Kimball H. Solar radiation, atmospheric absorption, and sky polarization, at Washington, D. C.-, "Bulletin of the mount weather Observatory," 1910, v. 3, P. 2, p. 85–96.
- 45. Kimball H. Solar radiation intensities at Madison, Wiskonsin.— "Bulletin of the Mount Weather Observatory," 1912, v. 5, p. 173-183.
- 46. Kimball H. The effect of the atmospheric turbidity of 1912 on solar radiation intensities and skylight polarization.- "Bulletin of the Mount Weather Observatory", 1913, v. 5, part 5, p. 295—312. 47. K i m b a 1 1 H. Solar radiation intensities at Washington D. C., during Oktober,
- November and December 1914.— "Month. Weather Rev.," 1915, v. 43, No. 12, 112 p.

- 48. Kimball H. Solar radiation measurements at Madison, Wis. 1913–1915.-
- 40. K im b a 11 H. Solar radiation measurements at Madison, wis. 1913–1910. "Mounth. Weather Rev.", 1916, v. 44, No. 1, p. 3, 9–12.
 49. K im b a 11 H. Solar radiation measurement at Lincoln, Nebr. 1911–1915. "Mounth. Weather Rev.," 1916, v. 44, No. 1, p. 4–8.
 50. K im b a 11 H. Volcanic eruption and solar radiation intensities.— Mounth.
- Weather Rev., 1918, v. 46, No. 8, p. 355-356.
- 51. Kimball H. Variation in solar radiation intensities measured at the surface of the Earth.— "Mounth. Weather Rev.," 1924, v. 52, No. 11, p. 527—529. 52. Lamb H. H. Volcanic dust in the atmosphere. Phylosoph. transactions of the
- R. Soc. of London. ,, A. Mathem. and physic. sciences," 1970, v. 266, No. 1178, p. 425-533.
- 53. La Nature (Paris), Supplément, années 35-42, 1908-1914.
- 54. Monthly Weather Review, v. 40, 1912-v. 77, 1949.
- 55. SCEP. Man's Impact on the Global Environment. The MIT Press, 1970. 319 p.
- 56. SMIC. Inadvertent Climate Modification. The MIT Press, 1971. 308 p.
- 57. Stenz E. Natezenie promieniowania slonecznego i insolacia w Warszawie wed lug pomiarow w okresie 1913—1918. Rocznik Panstwowego instytutu meteorologicznego w Warszawie. Rok 1919. Warszawa 1922. p. 14—38.
 58. V i e b r o c k H. J., F l o w e r s E. C. Comments on the recent decreace in solar radiation at the South Pala.
- radiation at the South Pole .-. "Tellus", 1968, v. 20, No. 3, p. 400-411.
- 59. Volz F. E. Note on the global variation of stratospheric furbidity since the eruption of Agung volcano. ,, Tellus" 1965, 17, No. 4, p. 513-515.
- 60. Volz F. E. On dust in the tropical and Midlatitude Stratosphere from Recent Twilight Measurements.— "J. Geophys. Rec.", 1970, 75, p. 1641—1646. 61. Volz F. E. Return of normal stratospheric turbidity and a new short dust
- event during october 1971. Proceedings of the International radiation symposium Sendae, Japan, 1972, 191 p.
- 62. Watson R. E. Pyrheliometer comparisons at Kew observatory, Richmond.-"Geophys. Memoirs," 1923, v. 3, No. 21, p. 3-17.

В. Ф. ЛОГИНОВ, З. И. ПИВОВАРОВА

К ВОПРОСУ О СВЯЗИ ПРЯМОЙ СОЛНЕЧНОЙ РАДИАЦИИ С ИНДЕКСАМИ СОЛНЕЧНОЙ АКТИВНОСТИ

В ряде работ проводилось сопоставление интенсивности прямой радиации (плотности интегрального потока) с индексами солнечной активности [1, 3, 7, 8]. В большинстве этих исследований авторы указывали на нелинейную связь сопоставляемых характеристик. Следует отметить, что исследование вопроса о характере и тесноте связи индексов солнечной активности с интенсивностью прямой солнечной радиации связано с определенными трудностями. На колебания солнечной радиации, измеренной у земной поверхности, оказывают влияние другие, причем более сильные факторы — вулканизм, увеличивающий содержание естественного аэрозоля в атмосфере, и антропогенный аэрозоль, концентрация которого заметно возросла в последние 10-летия. Исключение влияния этих факторов при оценке связи прямой радиации с солнечной активностью в настоящее время очень затруднительно, вследствие сравнительно коротких рядов наблюдений. Наиболее полный материал имеется с конца 1920-х и начала 30-х годов.

Сопоставление прямой радиации в разных районах северного полушария с относительными числами Вольфа, как показано в [5], свидетельствует о том, что уменьшение (увеличение) интенсивности прямой радиации приходится на различные фазы 11-летнего цикла солнечной активности. Некоторая тенденция к 11-летней цикличности в прямой радиации проявляется в те периоды, когда наблюдались вулканические извержения, которые неслучайно фазированы в 11-летнем солнечном цикле [3].

Из других показателей солнечной активности, характеризующих волновое излучение Солнца, в настоящей работе с прямой радиацией сопоставлены площади факелов, приведенные в работе [6].

Оказалось, что колебания средних величин прямой радиации для 12 станций северного полушария хорошо согласуются с изменением площади факелов за последние 80 лет (рис. 1).

Другой возможный возмущающий нижнюю атмосферу фактор — заряженные частицы. Характеризует приток в верхнюю атмосферу Земли низкоэнергетических частиц планетарный ин декс геомагнитной возмущенности ΣK_p . Значения этого индекса с 1884 по 1969 г. приведены в работе [4]. Сопоставление многолетнего хода средней годовой прямой радиации и индекса ΣK_p показало идентичность хода сравниваемых величин только для станций, расположенных в полярных и субполярных широтах (Диксон, Якутск, Павловск — Воейково), что может быть объяснено вторжением заряженных частиц в основном в высокие широты

Рис. 1. Средняя по 11-летним циклам интенсивность прямой радиации S в % к норме (1) и площади факелов (Пл. ф.) в м. д. п. (2). На рис. 2 представлен ход средних годовых зна чений сглаженных по 5 летиям интенсивности прямой радиации в рай оне Ленинграда (станция Павловск—Воейково) сопоставлении с индексом ΣK_p . Кроме интенсивности прямой радиации, при безоблачном небе на рис. 2 приведен ход годовых сумм прямой радиации, поступающей на перпендикулярную поверхность при реальной облачности. Максимум и минимум сопоставляемых величин В большинстве случаев совпадают. Наряду с согласованностью во

времени мезоритмов, макроритмы не сходятся, поскольку в разные отрезки времени характер связи их различен. Так, с конца XIX века до конца 1930 годов прямая радиация растет, а уровень ΣK_p почти не меняется, затем до конца 50-х годов радиация уменьшается при повышении уровня ΣK_p . На последнем участке кривых связь прямая, так как уровень 5-летних скользящих ΣK_p и прямой радиации имеют одинаковую тенденцию к понижению.

Проведенное здесь качественное сопоставление интенсивности прямой радиации с некоторыми индексами солнечной и геомагнитной активности не может служить бесспорным аргументам в пользу солнечной обусловленности колебаний в прямой радиации.

С целью дальнейшего развития этого вопроса целесообразно провести вычисление корреляции солнечной и геомагнитной активности с интенсивностью прямой радиации.

К сожалению, авторы располагали только одним сравнительно длинным рядом наблюдений прямой радиации в Павловске—Воейкове. Расчет связи интенсивности прямой радиации по ст. Павловск — Воейково с индексом ΣK_p при различных сдвигах прямой радиации относительно ΣK_p указывает на увеличение связи через каждые 10—11 лет (рис. 3), что может свидетельствовать о тен-

денции к подобной цикличности в многолетнем изменении прямой радиации. Однако максимальные коэффициенты корреляции составляют 0,35 и 0,32 для интенсивности и сумм радиации соответственно. Эти величины лежат в пределах ошибки определения коэффициента корреляции, если учесть внутрирядную связь.

Поскольку выявление вариаций излучения Солнца, связанных с солнечной активностью, на фоне значительных помех, присущих земной атмосфере (запыленность, неучтенная облачность и др.),

Рис. 2. Прямая солнечная радиация и планетарный геомагнитный индекс ΣK_p (среднее по скользящим 5-летиям)

I — средняя годовая максимальная интенсивность прямой радиации S при безоблачном небе в кал/(мин-см²), 2 — годовая сумма прямой радиации при реальной облачности $\Sigma_{\Gamma}S$ в ккал/см², по данным ст. Павловск — Воейково, 3 — индекс ΣK_{D} .

представляет весьма трудную задачу, с целью уменьшения «шумовых» эффектов следует провести осреднение большого количества измеренией прямой радиации. Амплитуда шумовых эффектов в этом случае уменьшается в \sqrt{n} раз (n — число наблюдений). Кроме того, поскольку характер солнечно-атмосферных связей зависит от сезона года и района, целесообразно рассмотреть интенсивность прямой радиации отдельно по сезонам и районам северного полушария.

В соответствии с географическим положением станций, имеющих близкие по периоду наблюдений ряды прямой радиации и сходные черты в режиме прозрачности атмосферы, были выделены районы I—III по станциям СССР и США:

І — Тбилиси, Ташкент, Самарканд, Қарадаг;

II — Якутск, Иркутск, Высокая Дубрава;

III — Мадисон, Линкольн, Вашингтон, Блухилл.

Из характеристик прямой радиации рассматривались средняя месячная и максимальная за месяц интенсивность прямой радиа-

ции при оптической массе атмосферы m=2. Причем для станций районов I и II (СССР) к массе 2 приведены значения прямой радиации, наблюдаемые в полуденный срок, для станций района III (США) использовались наблюдения при m=2.

На станциях районов I и II ряды наблюдений охватывали период от начала 1930 до 1972 г., на станциях района III — от 1910 до конца 1960-х годов.

Рис. 3. Корреляционные функции прямой солнечной радиации (ряд Павловск — Воейково 81 год) и планетарного геомагнитного индекса ΣK_p .

Автокорреляционная функция: 1 -средней годовой максимальной йнтенсивности прямой радиации при безоблачном небе $S_{\text{макс}}$. 2 -годовых сумм прямой радиации при реальной радиации облачности $\Sigma_{\Gamma}S$; 3 -индекса ΣK_p . Взаимная корреляционная функция: $4 - S_{\text{макс}}$ и ΣK_p , $5 - \Sigma_{\Gamma}S$ и ΣK_p .

Для уравнивания веса значений радиации каждого месяца года производилось осреднение нормированных величин максимальной и средней за месяц интенсивности прямой радиации для каждой станции и месяца года.

На машине БЭСМ-4 было проведено вычисление взаимных корреляционных функций прямой радиации средней (S_{cp}) и максимальной (S_{makc}) с такими показателями: а) относительными числами Вольфа W; б) геомагнитной возмущенностью ΣK_p ; в) индексом, описывающим приток в атмосферу Земли космических лучей галактического происхождения S_k , являющимся функцией площади пятен и широты пятен [3]; г) волновым индексом S_b , предложенным одним из авторов в [2]. Индекс S_в является функцией площади пятен, факелов и светлых колец, а также соотнощения их яркости. Кроме волновой радиации, он описывает еще и спорадическую корпускулярную.

Максимальный сдвиг S_{ср} и S_{макс} относительно индексов солнечной активности т был определен равным 10 годам, учитывая сравнительно небольшую длительность актинометрических рядов, Значимыми коэффициентами корреляции¹ принимались такие, ко-

торые превыщают 2
$$\sigma_z$$
, где $\sigma_z = \sqrt{rac{1}{n-3}}$.

Величина г определена как

$$z = \frac{1}{2} \ln \frac{1 + r(\tau)}{1 - r(\tau)},$$

где *г*(т) — значения взаимной корреляционной функции, *n* — число. членов ряда.

Анализ 72 взаимных корреляционных функций S_{cp} и S_{makc} с W, ΣK_p и S_k показал, что значимые коэффициенты корреляции при сдвиге 0—10 лет оказались отрицательными. Положительные коэффициенты корреляции не превышают $2\sigma_z$ во всех рассмотренных случаях. Наиболее тесная корреляция наблюдается при сдвиге интенсивности прямой радиации относительно индексов на 5—10 лет.

Полученный вид взаимной корреляционной функции говорит о том, что отмеченная корреляция осуществляется на низкой частоте. Трудно найти физическое объяснение полученному времени запаздывания прямой радиации относительно солнечных индексов.

Характер связи между волновым индексом $S_{\rm B}$ и прямой радиацией приведен на рис. 4; значимые коэффициенты корреляции показаны точками. Из рис. 4 следует, что значения взаимных корреляционных функций для районов I и II в большинстве случаев лежат выше нуля при сдвиге 0—10 лет. Это указывает на прямую связь коррелируемых величин на низкой частоте. Наряду с этиместь функции другого типа (наиболее отчетливо проявляющиеся в районе III), которые показывают, что связь сопоставляемых характеристик осуществляется не только на низкой частоте, т. е. обусловлена не только трендом.

Более тесная корреляция индекса $S_{\rm B}$ с прямой радиацией $S_{\rm CP}$ и $S_{\rm макс}$ отмечается в районе III, по-видимому, за счет того, что на станциях США коррелировались величины радиации, непосредственно наблюденные при массе m=2, а не полученные путем приведения от другой высоты Солнца, как в районах I и II. Возможно также, эта особенность связана и с тем обстоятельством, что геомагнитный полюс наклонен в сторону западного полушария и вторжение заряженных частиц в районе III при прочих равных условиях облегчено. Отметим, что связь прямой радиации с другими индексами, упомянутыми выше, также оказывалась теснее для станций района III.

¹ Внутрирядная связь не учитывалась.

В сезонном ходе характер и теснота связи $S_{\rm B}$ с $S_{\rm cp}$ и $S_{\rm marc}$ также меняется. В среднем связь индекса $S_{\rm B}$ с прямой радиацией теснее зимой и весной; наблюдается сходство зимнего с весенним сезоном и летнего с осенним. Последнее может свидетельствовать о не полностью исключенном вкладе циркуляционных факторов в колебания потока прямой солнечной радиации. Об этом говорит и вид взаимной корреляционной функции: связи $S_{\rm B}$ с $S_{\rm cp}$ и $S_{\rm marc}$ различаются по характеру в разных районах.

Более тесную связь индекса $S_{\rm B}$ с радиацией в зимний и весенний сезоны можно отнести за счет высокой прозрачности атмосферы, а следовательно, меньшего влияния «шума». Возможно, данное обстоятельство связано с тем, что Земля в это время года проекцируется на южное полушарие Солнца, которое было в последние 40 лет менее активным. Более высокая активность северного полушария Солнца за последние 40 лет и связанный с нею наклон межпланетного магнитного поля к югу от гелиоэкватора определяет больший приток заряженных частиц в атмосферу Земли в периоды, не всегда совпадающие с периодами наибольшего влияния волновой радиации и затушевывающих связь индекса $S_{\rm B}$ с величиной интегрального потока солнечной радиации.

Таким образом, солнечная активность может определять некоторые черты поведения прямой радиации, о чем говорят значимые в ряде случаев коэффициенты корреляции S_в с S_{ср} и S_{макс} и сов-

падающие вековые тенденции сопоставляемых величин. Большие амплитулы изменений интенсивности прямой радиации в вековом ходе можно, вероятно, объяснить, если допустить, что солнечная активность молулирует изменение поглощающих и рассеивающих компонентов в стратосфере и мезосфере (вариации газового состава, облачности верхнего яруса, а также облачности в стратосфере и мезосфере, вулканической, метеорной пыли и других аэрозолей). Только в этом случае можно понять тенденцию к сушествованию 11-летнего колебания в прямой радиации и намечающиеся фазовые и амплитудные соотношения его с 11-летним пиклом солнечной активности.

Приведенные в статье оценки не отражают в чистом виде связь солнечной активности с прямой радиацией. поскольку в колебаниях последней не исключено влияние вулканических извержений и тренда, обусловленного хозяйственной деятельностью человека. В связи с этим рассмотренный вопрос нуждается в дальнейшем изучении.

СПИСОК ЛИТЕРАТУРЫ

- Кондратьев К. Я., Никольский Г. А. Вариации солнечной постоян-ной по аэростатным исследованиям в 1962—1968 гг.—«Изв. АН СССР. Физика амосферы и океана», 1970, т. 6, № 3, с. 227—238.
- 2. Логинов В. Ф. Новый индекс солнечной активности. --- «Исслед. по геомагн. аэрономии и физике Солнца». Иркутск, СибИЗМИР СО АН СССР, 1972, вып. 21. с. 141—151.
- З. Логинов В. Ф. Характер солнечно-тропосферных связей. Л. Гидрометеоиздат, 1973, 47 с.
- 4. Одь А. И. Индексы возмущенности магнитного поля Земли и их гелиогеофизическое значение.—«Тр. ААНИИ», 1969, т. 289, с. 5-23.
- 5. Пивоварова З. И. Вековой ход прямой солнечной радиации (см. наст. сб.).
- 6. Сазонов Б. И., Логинов В. Ф. Солнечная постоянная, циркуляция и тем-
- пература Земли. «Тр. ГГО», 1971, вып. 274, с. 35—48. 7. Эйгенсон М. С. Солнце, погода и климат. Л. Гидрометеоиздат, 1963, 275 с. 8. Воззоlазсо М. е. а. Solar constant and sunspots. "Pure and Applied Geophys.", v. 62, 1965, No. 2, p. 207—214.

И. М. БЕЕВА, Т. В. КИРИЛЛОВА, Л. А. СТРОКИНА

МЕТОДИКА УЧЕТА ВЛИЯНИЯ ОБЛАЧНОСТИ НА СУММАРНУЮ РАДИАЦИЮ НАД ОКЕАНОМ ПРИ КЛИМАТИЧЕСКИХ РАСЧЕТАХ

Суммарная радиация Q при наличии облаков определяется через произведение

$$Q = Q_0 f(n),$$

где Q_0 — суммарная радиация при безоблачном небе (возможная радиация), f(n) — функция, определяемая зависимостью суммарной радиации от облачности.

Функция f(n) в любых конкретных условиях определяет долю дошедшей до поверхности океана радиации в долях (или %) от возможной.

Таблица 1

(1)

Зависимость отношения $\frac{Q}{Q_0}$ от полуденной высоты солнца $h_{\text{пд}}$ и среднего количества облаков $n_{\text{ср}}$

h					n	ср балль	Ы			-	
"пд	0	1	2	3	4	5	6	7	8	9	10
10	1,00	1,02	1,02	0,99	0,96	0,92	0,86	0,78	0,69	0,56	0,37
20	1,00	1,02	1,02	0,99	0,96	0,92	0,86	0,78	0,67	0,54	0,35
30	1,00	1,01	1,00	0,99	0,96	0,92	0,87	0,79	.0,69	0,56	0,37
40	1,00	1,00	1,00	0,98	0,96	0,93	0,88	0,81	0,71	0,58	0,40
50	1,00	1,00	0,99	0,97	0,95	0,93	0,89	0,82	0,73	0,61	0,42
60	1,00	1,00	0,99	0,97	0,95	0,93	0,89	0,84	0,75	0,62	0,44
70	1,00	0,99	0,98	0,97	0,95	0,93	0,90	0,85	0,76	0,63	0,46
80	1,00	0,98	0,97	0,96	0,95	0,94	0,90	0,85	0,78	0,65	0,48
90	1,00	0 ,96	0,96	0,96	0,96	0,95	0,92	0,87	0,80	0,68	0 ,50
								1			1

Обработка данных наблюдений на актинометрических станциях суши показала, что наиболее простое предположение о линейном характере f(n) следует заменить многочленом второй степени, что лучше отражает фактический характер зависимости Q(n)[1]. Н. А. Тимофеев при обработке данных наблюдений суммарной радиации в рейсах научно-исследовательских судов принял также квадратичную зависимость [3].

По разработанной в Главной геофизической обсерватории методике расчета составляющих радиационного баланса поверх-

ности океана, основанной на обобщении данных наблюдений на научно-исследовательских судах, отношения суточных сумм $\frac{Q}{Q_0}$ определялись как функция высоты солнца в срок наблюдений h_{\odot} и балла общей облачности n, а затем пересчитывались для отношения суточных сумм в зависимости от полуденной высоты солнца [2].

В табл. 1 приведены уточненные данные зависимости отношения $\frac{Q}{Q_0}$ от полуденной высоты солнца и среднего количества облаков, а на рис. 1 представлены кривая $\frac{Q}{Q_0}(n)$ в среднем для

Рис. 1. Зависимость $\frac{Q}{Q_0} = f(n)$ от количества облаков.

всех полуденных высот солнца (кривая 1) и приведена аналогичная кривая 2, полученная Лаевасту [4] по обобщенным эпизодическим наблюдениям и аппроксимируемая многочленом третьей степени. Характер кривых (рис. 1) указывает, что при увеличении степени облачности до 5 баллов отношение $\frac{Q}{Q_0}$ меняется незначительно, а затем скорость убывания нарастает при увеличении облачности до сплошной.

Поскольку обе кривые получены из эпизодических наблюдений, где каждому значению $\frac{Q}{Q_0}$ соответствует определенное значение общей облачности (балл), их использование при климатологических расчетах суммарной солнечной радиации сопряжено с ошибкой, так как балл общей облачности, средний за месяц и за ряд лет, складывается из различных баллов облаков. Однако, если использовать данные по повторяемости каждого балла облачности, то с помощью табл. 1 можно определять $\frac{Q}{Q_0}(n)$ по формуле

$$\frac{Q}{Q_0}(n) = \sum_{i=0}^{i=10} \left(\frac{Q}{Q_0}\right)_i \cdot p_i,$$
(2)

где $\left(rac{Q}{Q_0}
ight)_i$ — значение $rac{Q}{Q_0}$ при балле *i*, p_i — повторяемость *i*-того балла. При этом $n=\sum_{i=1}^{10}p_i$ n_i .

В массовых расчетах суммарной солнечной радиации на океанах такой подсчет затруднителен, так как акватории океанов слабо освещены данными по повторяемости количества облаков. Нередко единственно возможными данными являются средние баллы облачности. В связи с этим для практического применения в климатологических расчетах радиации было бы удобней пользоваться

таблицей, аналогичной табл. 1, содержащей значения $\frac{Q}{Q}$ в зави-

Рис. 2. Повторяемость р % общей облачности в экваториальной (1), тропической (2) и умеренной (3) зонах океанов.

симости от среднего количества общей облачности (в баллах), полученной с учетом данных по повторяемости каждого балла общего количества облаков.

Для этой цели авторы использовали материалы Американского морского климатологического атласа [5], в котором приведены данные по обеспеченности каждого балла общей облачности в восьмибалльной системе для 252 квадратов Атлантического, Индийского и Тихого океанов. Обработка этих данных показала неодинаковые значения повторяемости отдельных баллов общей об-

лачности в различных климатических зонах океанов. Из рис. 2 видно, что в экваториальной зоне повторяемость всех баллов облаков примерно одинакова, в тропических щиротах распределение повторяемости баллов облачности асимметрично. Здесь преобладают значения 2—3 балла и практически не наблюдаются условия сплошной облачности. В противоположность этому в умеренной зоне чаще всего отмечается значительная облачность и очень мала повторяемость небольшой облачности. Отсюда следует, что при климатологических расчетах суммарной солнечной радиации для умеренных и отчасти экваториальных широт с учетом данных по повторяемости каждого балла облаков величины отношения $\frac{Q}{\Omega_0}(n)$ должны быть меньше, чем в табл. 1.

Соответствующие этим условиям значения отношения $\frac{Q}{Q_0}$ были вычислены по формуле (2) при использовании данных табл. 1 и данных по повторяемости каждого балла общей облачности для 252 квадратов во все месяцы года. При этом значения $\frac{Q}{Q_0} = f'(n)$ были разбиты на группы в зависимости от балла об-70

лачности по 10 градациям. Внутри каждой градации проводилось осреднение по 5-градусным интервалам полуденных высот солнца. Сопоставление полученных результатов с данными табл. 1 показало, что значения f'(n) отличаются от f(n). Средние для всех полуденных высот солнца разности $\Delta = f'(n) - f(n)$ имеют следующие значения:

n.		. 0	1 ·	2	3	4	5	6	7	8	9	10
∇ .		. 0,00	0,00	-0,01	-0,02	0,04	0,08	-0,10	-0,11	—0,11	—0,07	0,0 0 ,

Как следует из приведенных данных разности Δ не сохраняются неизменными. Они малы при облачности до 4 баллов, максимальны при 7—8 баллах и обращаются в нуль при сплошной облачности.

Таблица 2

Зависимость отношения $\frac{Q}{Q_0}$ от полуденной высоты солнца $h_{n\pi}$ и среднего количества облаков n_{cp} (с учетом повторяемости)

h		n _{ср} баллы														
"пд	0	1	2	3	4	5	6	7	8	9	10					
10	1,00	1,02	1,01	0,97	0,92	0,84	0,76	0,67	0,58	0,49	0,37					
20	1,00	1,02	1,01	0,97	0,92	0,84	0,76	<u></u> 0,67	0,56	0,47	0,35					
30	1,00	1,01	0,99	0,97	0,92	0,84	0,77	0,68	0,58	0,49	0,37					
40	1,00	1,00	0,99	0,96	0,92	0,85	0,78	0,70	0,60	0,51	0,40					
50	1,00	1,00	0,98	0,95	0,93	0,85	0,79	0.71	0,62	0,54	0,42					
6 0	1,00	1,00	0,98	0,95	0,93	0,85	0,79	0,73	0,64	0,55	0,44					
70	1,00	0,99	0,97	0,95	0,93	0,85	0,80	0,74	0,65	0,56	0,46					
80	1,00	0,98	0,96	0,94	0,93	0,86	0,80	0,74	0,67	0,58	0,48					
90	1,00	0,96	0,95	0,94	0,92	0,87	0,82	0,76	0,6 9	0,61	0,50					
											1					

На основании этих результатов авторами составлена табл. 2, позволяющая производить учет влияния облачности на суммарную радиацию при климатологических расчетах. Учет повторяемости баллов облаков существенно меняет значения отношений

<u>у</u>при облачности от 5 до 9 баллов.

Для расчетов суммарной радиации, поступающей к поверхности океанов, рекомендуется использовать табл. 2 в тех случаях, когда нет сведений по повторяемости каждого балла облачности. В тех же случаях, когда такие сведения имеются, следует использовать табл. 1 и формулу (2).

- Берлянд Т. Г. Распределение солнечной радиации на континентах. Л. Гидрометеоиздат, 1961, 227 с.
- Гирдюк Г. В., Егоров Б. Н., Кириллова Т. В., Несина Л. В Влияние облачности на суммарную радиацию, поступающую на поверхность океана. — «Тр. ГГО», 1973, вып. 297, с. 109—117.
 Тимофеев Н. А. и др. Метод расчета режимных значений составляющих
- 3. Тимофеев Н. А. и др. Метод расчета режимных значений составляющих радиационного баланса морей и океанов.—«Гидрофизические и гидрохимические исследования», Киев. «Наукова думка», 1969, т. 42, с. 88—112.
- Laevastu T. Factors affecting the temperature of the surface layer of the sea.—, "Scientiarum Fennica", Comentativens Physko — Matemat. 1960, v. 25(1), 136 p.
- 5. Navy U. S. Marine Climatic Atlas of the World. Washington, 1955-59, 1965, v. I-V, VII.
И. В. МОРОЗОВА

СУТОЧНЫЙ ХОД ОБЛАЧНОСТИ НАД СЕВЕРНОЙ АТЛАНТИКОЙ

Результаты исследования суточного хода облачности испольуются при изучении климатических условий местности и прогноировании, для нужд ряда отраслей народного хозяйства, в том исле наземного и воздушного траспорта, сельскохозяйственного производства и мн. др.

Анализу суточного хода облачности над сушей в ряде региональных и общих исследований по климату уделяется значительное внимание.

Однако внутрисуточное изменение облачности над водной позерхностью еще недостаточно изучено, что в основном связано ограниченным объемом данных наблюдений над акваториями. Этому вопросу была посвящена небольшая работа В. Кёппена, публикованная в 1938 г. [8], который располагал крайне ограниенными материалами: метеорологическими наблюдениями двух кораблей погоды, произведенными вблизи берега в северо-западном районе умеренной зоны Северной Атлантики. Поэтому он мог дать только качественные выводы. Г. Риль в своей монографии [6] из-за скудности данных наблюдений уделяет суточному ходу облачности на океанах буквально несколько строк.

Более подробная характеристика суточного хода облачности дана в работе Л. М. Кравцовой и Н. М. Муравьевой [5], где приведены карты амплитуд (в процентах) суточных колебаний повгоряемости пасмурного неба над северным полушарием для января и июля и сделана попытка районирования его территории по гипам суточного хода. В качестве основного критерия типизации использовано время наступления экстремальных значений повторяемости пасмурного состояния неба с дополнительным привлечением сведений об амплитудах.

Было установлено, что над океанами, в частности над тропическими широтами и западными районами умеренных широт Атлантики, наиболее распространен пятый тип суточного хода облачности (внутрисуточная изменчивость почти отсутствует). Наряду с пятым типом для Атлантического океана северного полушария в июле характерен третий тип с утренним максимумом пасмурной погоды, а в январе — первый тип, отличающийся дневным макси мумом.

В работе [5] были использованы данные четырехсрочных на блюдений по общей облачности (00, 06, 12, 18 ч по Гринвичскому времени) только за период МГГ и МГС, поэтому карты райониро вания северного полушария по преобладающим типам суточного хода следует рассматривать как ориентировочные. Они требуют дальнейшего уточнения по данным учащенных и более продолжи тельного периода наблюдений за облачностью.

Л. А. Строкина и И. М. Беева по материалам экспедиционных наблюдений выявили некоторые особенности суточного хода об лачности в Тихом океане [1]. Они рассчитывали по широтным зонам (0—10, 10—30, 30—50°) среднее значение (в баллах) общего количества облаков и облаков нижнего яруса за дневные и отдельно за ночные сроки. Основываясь на результатах расчета, был сделан вывод о том, что в рассматриваемых широтных зонах среднее количество облаков за дневное время суток несколько больше ночного.

Таким образом, можно считать, что суточный ход облачности над океанами изучен недостаточно, поскольку установлен только тот факт, что над океанами он выражен не так резко, как над сушей.

Суточная периодичность облачности определяется характером процессов, приводящих к образованию, эволюции или распаду облачных элементов, а также общим состоянием атмосферы. Суточный ход облачности тесно связан с изменением в течение суток влагосодержания воздуха, а также температуры подстилающей поверхности и нижних слоев атмосферы.

Амплитуда суточных колебаний температуры и влажности воздуха над океанами невелика. Как показывают данные измерений температуры, в среднем она составляет несколько десятых долей градуса для воды и 2—3°С для воздуха, а над сушей значительно превосходит указанные величины.

Над сушей существенное влияние на суточную изменчивость облачности оказывают рельеф, растительность, свойства подстилающей поверхности. На морях и океанах подстилающая поверхность ровна и однородна. Некоторые нарушения однородности фона возникают в местах встречи теплых и холодных вод, а также над островами.

В настоящей работе на основании материалов кораблей погоды С, Д, Е, К, ведущих наблюдения в северной Атлантике [9], был рассмотрен характер суточного хода общей и нижней облачности для ряда климатических областей данной акватории. Период наблюдений включал 5 лет (1967—1971). Были использованы данные ежедневных наблюдений, которые проводятся на кораблях погоды через каждые три часа (00, 03, 06, 09, 12, 15, 18, 21 час по Гринвичскому времени).

Исследования суточного хода было бы желательно проводить на базе данных ежечасных наблюдений за облачностью. К сожа лению, с таким интервалом времени наблюдения на океанах не проводятся.

О. Д. Кодрау [2] и Б. И. Костинская [3, 4] показали, что для условий суши использование восьмисрочных наблюдений позволя ет достаточно хорошо характеризовать суточную изменчивостн общей и нижней облачности. Отклонения средних суточных зна чений от средних, рассчитанных по данным ежечасных наблюде

Таблица I

2	Ko-	Коорд	инаты	Облач-	Суточная	амплиту	да облач	ности за
Зона	рабль погоды	φ	λ	ность	февраль	май	август	ноябры
Умеренная	С	52,7 C	35,5 3	n _o	0,9	0,8	0,5	0,8
				$n_{ m H}$	0,9	1,2	1,6	0,6
Субтропическая	К	45,0	16,0	n_0	1,1	1,2	0,8	0,9
				$n_{\rm H}$	1,0	1,3	1,2	0,4
Субтропическая	Д	44,0	41,0	n_0	0,4	0,7	1,2	1,1
i				$n_{ m H}$	0,8	0,7	1,1	0,7
Тропическая	Е	35,0	48,0	n_0	1,8	1,0	1,7	1,7
				n _H	1,2	1,0	1,3	0,8
Субэкваториальная	М	2,5	22,5	n_0			2,5	
				$n_{ m H}$			2,1	

Суточная амплитуда общей (*n*₀) и нижней (*n*_н) облачности в различных климатических зонах Северной Атлантики (баллы)

ний, составляют $\pm 0,1$ балла для всех сезонов года [2, 4]. Погрешность в определении суточной амплитуды находится в пределах 0,3—0,4 балла [4]. Отклонение максимальных значений общего количества и облаков нижнего яруса во все сезоны года составляет $\pm 0,2$ балла.

Учитывая, что точность визуальных наблюдений за облачностью составляет $\pm 0.5, \pm 0.8$ балла, можно считать, что данные за восемь сроков наблюдений являются достаточными для характеристики внутрисуточной изменчивости облачности как на суше, так и на океанах.

В работе [2] на примере данных ст. Иркутск убедительно показано, что суточный ход среднего количества облаков, рассчитанный по ежечасным наблюдениям трехлетнего периода, незначительно отличается от суточного хода, рассчитанного по ежечасным наблюдениям за 10 лет. Сделан вывод о том, что пятилетний период достаточен для расчета такой устойчивой характеристики, как ход внутрисуточных колебаний облачности.

Эти выводы, очевидно, можно распространить и для морских словий, поскольку облачный покров над океанами более однороцен по сравнению с материками.

Для характеристики суточного хода общей и нижней облачности в экваториальном районе были использованы материалы наблюдений одного года, поэтому полученные выводы в дальнейшем должны быть подтверждены дополнительными данными.

Анализ внутрисуточной изменчивости облачности по материадам наблюдений на акватории Северной Атлантики позволил прийти к следующим выводам.

Как видно из рис. 1, суточный ход количества облаков над океанами выражен не очень отчетливо, особенно в умеренных широгах зимой. Максимум общего количества облаков и облаков нижнего яруса в зимнее и осеннее время наблюдается в основном в предполуденные часы.

Амплитуда колебаний количества этих облаков в течение суток незначительна (табл. 1).

В северных районах тропической зоны Атлантики зимой максимум в суточном ходе количества облаков приходится на послеполуденное время, что связано с увеличением в это время повторяемости слоистых облаков нижнего яруса и облаков среднего и верхнего ярусов (табл. 2).

Наибольшая суточная амплитуда в тропических широтах акватории океана зимой отмечается зимой, когда она достигает по общей облачности 1,8 балла, по нижней — 1,2 балла (табл. 1). Амплитуда суточных колебаний общей облачности в тропиках в это время года почти в 2 раза превышает амплитуду нижней облачности. Из этого следует, что здесь облачный покров нижнего яруса зимой и осенью довольно устойчив в течение суток.

В умеренной зоне Атлантики во все сезоны года общее количество облаков мало меняется в течение суток (амплитуда 0,5— 0,8 балла), количество же облаков нижнего яруса довольно изменчиво. Это свидетельствует о том, что количество облаков верхнего и среднего ярусов также обладает большой изменчивостью.

В теплое полугодие, особенно летом, в суточном ходе облачности выявляются, хотя и не очень четко, 2 максимума, из которых один приходится на утренние часы, другой — на вечерние. В экваториальной зоне Атлантики эта особенность выражена гораздо отчетливее как для облаков нижнего яруса, так и общего количества облаков. Первый максимум образуется в результате большой повторяемости облаков слоистых форм (Sc), второй кучевых (Cu) и перистых (Ci), как показывают данные суточного хода повторяемости основных форм облаков.

Летом и весной в тропических и экваториальных широтах Северной Атлантики наблюдаются почти одинаковые суточные амплитуды общей и нижней облачности, следовательно, внутрисуточные колебания количества облаков в основном определяются облаками нижнего яруса.

Таблица

Суточный ход повторяемости (в %) форм облаков в различных климатических зонах Северной Атлантики

			-		Часы наб	людений			
Облака	Месяц	0		6	.9	12	15	18	21
-			Умерен	ная зон	a. Kopa	бль С			-
Sc	I II	38	38	37	38	36	41	34	39
	VIII	57	57	63	55	-52	51	54	58
St	II	25	20	18	18	18	14	21	24
	VIII	31	27	2 8	33	30	25	33	32
Cu	II · ·		35	39	-36	35	31	31	32
	VIII	6	7	5	6	13	12	4	5
Ac	11	12	8	13	16	28	29	24	21
	VIII	17	10	6	18	19	21	21	20
Ci	II	1	0	3.	2	13	12	16	10
	· VIII	, .9	-6	4	6	11	14	9	10
		C	Субтропи	ческая з	вона. Кој	рабль К			. •
Sc	II	56	50	58	49	44	45	5 0 - 1	52
	VIII	74	71	74	64	65	55	64	67
St	п	7	15	9	9	14	13	8	10
	VIII	5	9	6	9	11	12	6	8
Cu	II	7	12	10	9	17	16	11	6
	VIII	9	- 10	15	. 16	18	24	25	19
Ac	II	18	10	11	30	33	32	44	16
	VIII	14	14	24	31	34	33	40	24
Ci	II	7	6	6	23	36	25	31	13
	VIII	10	11	24	20	30	31	32	23
-		C	убтропи	ческая з	она. Кој	рабль Д			
Sc	II	41	52	46	44	38	32	38	39
-	VIII	47	46	54	59	37	42	38	41
St		18	13	17	17	24	24	29	29
	VIII	17	10	13	16	17	15	11	12
Cu	II	31	21	25	28	28	34	29	30
	VIII	14	25	20	16	34	30	34	28
Ac	II	16	18	18	18	19	21	20	23
	VIII	32	27	23	29	33	37	29	33
Ci	II	6	6	2	7	14	14	12	13
-	VIII	15	7	4	18	29	23	27	25

					Часы наб	людений			
Облака	Месяц	0	3	6	9.,	12	15	. 18	21
		-	Тропиче	ская зон	на. Кора	бль Е			
Sc	III	33	29	. 36	42	34	28	35	42
	VIII	4	7	8	10	10	13	10	12
St	п	11	9	6	5	9	5	10	8
	VIII	0	0	1	4	0	0	0	0
Cu	II	40	42	41	41	47	54	46	34
	VIII	79	72	75	74	75	76	81	79
Ac	II	22	19	18	13	38	28	40	39
	VIII	25	22	8	32	40	32	36	35
Ci	II	9	3	10	7	26	26	28	19
	VIII	27	18	13	25	28	28	40	34
		Су	бэквато	риальная	зона. К	орабль І	M		
Sc	VIII	38	17	50	65	23	16	23	38
St	VIII	0	0	0	0	0	0	0	0
Cu	VIII	88	79	62	73	100	88	100	92
Ac	VIII	6	33	35	.35	42	24	15	19
Ci	VIII	12	4	8	15	31	36	12	4

Суточная амплитуда общего количества облаков летом достигает 2,5 баллов в приэкваториальных широтах, где также отмечается максимальная амплитуда для облаков нижнего яруса.

В работе Л. А. Строкиной и И. М. Беевой [1] отмечено, что облака нижнего яруса преобладают над акваторией океана. Это обстоятельство подтверждается и данными, полученными автором. В любое время суток любого времени года преобладают облака нижнего яруса над облаками среднего и верхнего ярусов. Внутрисуточная изменчивость общего количества облаков в основном также определяется изменением в течение суток количества облаков нижнего яруса, что подтверждает анализ данных табл. 3.

Наблюдения за облачным покровом со спутников Земли производятся один раз в сутки. Спутники системы ЭССА запускаются таким образом, что пересекают широтные круги и ведут съем информации в момент времени, близкий к местному полудню.

Для выяснения возможных расхождений в оценках средних месячных значений общего количества облаков по спутниковым и наземным данным по материалам наблюдений кораблей погоды, расположенных в Северной Атлантике (корабли С, Д, Е, К), проведено сравнение среднего месячного количества облаков, вычислен-

Таблица

Суточный ход (%) отнощения между количеством нижней и общей облачности в различных климатических зонах Северной Атлантики

	Часы наблюдений											
месяц	0	3	6	9	12	15	18	21				
		Ум	еренная	зона. К	орабль (2						
II	89	89	87	87	84	81	90	89				
V	83	88	91	88	84	78	82	84				
VIII	91	90	93	98	94	87	87	86				
XI	92	91	92	89	86	82	85	87				
		Субтр	опическ	ая зона.	Корабл	ьК	,	•				
II	88	91	94	88	76	81	90	83				
V	8 8	90	87	88	80	80	77	82				
VIII	94	88	86	92	93	93	96	82				
XI	9 0	92	93	84	81	82	84	89				
		Субтр	опическ	ая зона.	Кораблі	ьд		•				
11	100	100	91	94	93	93	86	92				
V	79	83	80	81	76	77	76	76				
VIII	72	74	64 ·	72	70	71	70	66				
XI	82	85	88	82	78	83	78	82				
		Tpor	ическая	зона. К	орабль 1	Ē	-					
II	90	92	83	72	69	70	76	76				
v	62	74	77	76	67	71	59	65				
VIII	72	92	77	71	70	84	73	53				
XI	76	78	78	78	62	62	64	68				
		Субэква	аториаль	ная зона	а. Кораб	ль М						
VIII	94	68	73	81	68	67	89	80				

ного с использованием данных восьмисрочных наблюдений (\overline{N}_8) , со средними месячными величинами, рассчитанными по данным одного полуденного срока (\overline{N}_{ng}) , а также по наблюдениям в ночные (\overline{N}_{H}) и дневные (\overline{N}_{nh}) сроки (табл. 4).

К ночным были отнесены сроки, приходящиеся на время от захода до восхода солнца, т. е. для зимы и осени 18, 21, 0, 3, 6 ч по Гринвичскому времени, для лета и весны 21, 0, 3 ч; дневные сроки соответственно 9, 12, 15 ч и 6, 9, 12, 15, 18 ч.

Анализ суточного хода облачности показал, что расхождения между указанными величинами не могут быть значительными, так как изменчивость количества облаков в течение суток мала,

Средние месячные значения общего количества облаков, полученные по данным за разное количество сроков (баллы) и отклонения их от среднего из восьмисрочных наблюдений (%)

Месяц	$\overline{N_8}$	 N пд	N дн	-N _H	$\frac{\overline{N}_{\Pi \sharp} - \overline{N}_8}{\overline{N}_8}$	$\frac{\overline{N}_{\rm JH}-\overline{N}_8}{\overline{N}_8}$	$\left \begin{array}{c} \overline{N}_{\rm H} - \overline{N}_{\rm S} \\ \overline{\overline{N}}_{\rm S} \end{array} \right $
	• • ·	Умер	енная зон	а. Корабл	ть С		
II	8,2	8,5	8,4	8,1	4.	l	1
V	8,6	8,8	8,8	8,3	· · 2	2	3
VIII	8,9	8,6	8,9	8,9	3	2	0.
XI	8,3	8,8	8,6	8,3	6	4	0,
	1	Субтро	пическая	зона. К о р	абль К	•	
II	7,2	7,6	7,5	7,0	6	4	-3
v	7,5	7,5	7,6	7,0	0	- 1	7
VIII	7,1	7,0	7,2	6,8	—1	1	4
XI	7,3	7,8	7,6	7,2	7	4	1
	•	Субтроп	ическая	зона. К о р	абль Д	· · · ·	. '
	8,2	8,4	8,2	8,2	2	0	0
V	7,8	8,1	8,0	7,8	4	2	0
VIII	7,3	7,4	7,4	7,0	1	1	4
XI	8,0	8,3	8,2	7,9	4	2	1
		Тропи	ческая зо	на. Кораб	бль Е		
II	7,1	7,4	7,1	7,1	4	0	0
v	6,7	7,0	6,8	6,5	4	2	3
VIII	4,7	5,0	4,9	4,3	6	4	8
XI	6,5	7,2	6,9	6,3	11	6	3
		1		· ·			

причем это относится как к общей, так и к нижней облачности. Действительно, в среднем для рассмотренных месяцев, характеризующих основные сезоны года, по всей акватории средние месячные значения общего количества облаков, рассчитанные по данным полуденного срока, отличаются от средней месячной величины, полученной по восьмисрочным наблюдениям, на 3—4%, причем отклонения колеблются в пределах от 0 до 10%. Оказалось, что в 88% случаев $\overline{N}_{n\pi}$ превышает \overline{N}_8 в переходные сезоны и зимой это превышение отмечается в 100% случаев.

Различия между средними месячными значениями количества облаков, полученными для всех сезонов по данным полуденного срока и по данным за светлое время суток, в среднем составляют 1%. Таким образом, данные спутниковых наблюдений отражают дневное распределение облачности над океаном.

Полученные результаты свидетельствуют о том, что суточный ход общего количества облаков и облаков нижнего яруса незначителен во всех климатических зонах Северной Атлантики.

Внутрисуточная изменчивость облачности во все сезоны года определяется в основном колебаниями в течение суток количества облаков нижнего яруса.

Использование данных одного полуденного срока для расчетов среднего месячного количества облаков над акваторией океана приводит в основном к незначительному завышению (в среднем на 4%) по сравнению со средней месячной величиной, рассчитанной с использованием восьмисрочных наблюдений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Беева И. М., Строкина Л. А. К вопросу о распределении облачности
- над океанами. «Тр. ГГО», 1971, вып. 287, с. 20—27. 2. Кодрау О. Д. К вопросу о суточном ходе облачности на территории СССР. «Тр. ГГО», 1963, вып. 142, с. 22—31. 3. Костинская Б. И. Характеристика дневной и ночной облачности по
- наблюдениям в синоптические сроки.—«Тр. НИИАК», 1968, вып. 52, с.
- 4. Костинская Б. И. К вопросу о влиянии сроков наблюдений на расчетные характеристики суточного хода облачности.—«Тр. НИИАК», 1970,
- вып. 65, с. 93—114. 5. Кравцова Л. М., Муравьева Н. М. Некоторые характеристики суточного хода облачности над северным полушарием.-«Тр. НИИАК», 1967, вып. 44, с. 66—75.
- 6. Риль Г. Тропическая метеорология. М., ИЛ., 1963, 365 с.
- Соркина А. И. Опыт климатического районирования Мирового океана по циркуляционным признакам. «Тр. ГОИН», 1949, вып. 12(24), 162 с.
 К öppen W. Wie ist der tägliche Cang der Bewölkung auf Meer?— "Annal, der Hydrogr.", 1938, Bd. 66, s.
- 9. Täglicher Wetterbericht. Offenbach/Main, 1966-1971.

И. И. БОРЗЕНКОВА

ВОЗМОЖНЫЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА В СЕВЕРНОМ ПОЛУШАРИИ ПОД ВЛИЯНИЕМ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Приход солнечной радиации на внешнюю границу атмосферы и строение подстилающей поверхности являются основными климатообразующими факторами. Как показали исследования последних лет, современный климат можно рассматривать как систему, сильно реагирующую на незначительные колебания приходящей солнечной радиации.

Изменения приходящей солнечной радиации могут составлять доли процента от величины метеорологической солнечной постоянной, которая определяет все метеорологические процессы в нижележащих слоях атмосферы и на земной поверхности.

Так называемое «тепловое загрязнение атмосферы», или дополнительный приток тепла за счет производственной деятельности человека, в настоящее время составляет некоторую добавку к величине приходящей солнечной радиации, которая с ростом промышленной деятельности человека в недалеком будущем составит значительную часть от величины радиационного баланса и может превратиться в один из климатообразующих факторов, определяющий состояние климата планеты в целом.

Зная величины потребления энергии в различных странах, можно представить, насколько изменится температурный режим в этих районах под влиянием этих дополнительных притоков тепла.

В табл. 1 и 2 приводятся обобщенные данные о величинах потребления энергии в настоящее время в различных странах [3, 4, 5].

По данным распределения суши и моря в каждой широтной зоне на 1970 г. автором получено распределение дополнительных притоков тепла за счет промышленных тепловых выбросов, приведенное в табл. 3.

Таблица

I	роизводство	тепловой	энергии
---	-------------	----------	---------

Район	Производ- ство энер- гии, 10 ⁶ МВт	Предполагае- мый ежегодный прирост энер- гии, %	Площадь, 10 ³ км ²	Производ- ство энер- гии, ккал/год
США	2,0	4	9363	15,0
Канада	0,183	7	9974	1,4
Центральная Америка	0,12	6	2033	0,9
Южная Америка	0,09	6	18200	0,7
Западная Европа	1,08	4	1557	8,1
Западная Азия	0,05	10		0,1
Дальний Восток	0,44	10	366	3,3
Океания	0,069	8	8600	0,5
Австралия	0,06	8		
Африка	0,1	6	30000	0,4
Восточная Европа	1,37	7		
СССР	0,98	8	22400	0,73
Страны Бенилюкс ¹	_	—	73	0,92
Англия	—	-	242	2,204
Франция	—	<u> </u>	573	1,411
Италия		_	299	1,198
ГДР		_	108	1,130
ΦΡΓ	_	_	246	2,532
Япония	_		366	1,966
Средняя и Западная Европа	—	-	1557	8,481

¹ Данные приведены из работы Флона за 1967 г.

При наличии дополнительного притока тепла исходные данные уравнения теплового баланса атмосферы будут иметь следующий вид:

$$Q_{\rm r}(1 - a_{\rm r}) - I_{\rm r} + M_{\rm 1} = C_{\rm r} + B;$$

$$Q_{\rm x}(1 - a_{\rm x}) - I_{\rm x} + M_{\rm 2} = C_{\rm x} - B,$$
(1)

где $Q_{\rm T}$, $Q_{\rm x}$ — радиация, приходящаяся на верхнюю границу атмосферы за теплое и холодное полугодия соответственно, $I_{\rm T}$, $I_{\rm x}$ уходящее излучение, $\alpha_{\rm T}$, $\alpha_{\rm x}$ — альбедо системы земля — атмосфера, $C_{\rm T}$, $C_{\rm x}$ — горизонтальный перенос тепла в атмосфере и гидросфере, B — приход или расход тепла из-за охлаждения или нагревания системы земля — атмосфера, M_1 и M_2 — приток тепла за счет деятельности человека за теплое и холодное полугодия.

Таблица 2

Производство энергии

Страны	Энергия в ккал/ (год.см ²)	Страны	Энергия в ккал/ (год.см²)
СССР	0,033	Франция	0,25
США	0,120	Италия	0,40
Канада	0,014	ГЛР	0.10
Центральная Америка	0,044	Бенилокс	1.26
Южная Америка	0,004	Denumore	1,20
Западная Европа	0,52	$ \Phi P \Gamma \dots \dots$	1,00
Япония	0,91	Океания и Австралия	0,005
Англия	0,90	Африка	0,0023

Таблица З

Дополнительный приток тепла (в ккал/(год.см²) для различных широтных зон северного и южного полушарий (по данным 1970 г.)

		Широта, град.								
Полушарие	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	
Северное	0,003 0,030	0,003 0,030	0,007 0,040	0,110 0,040	0,130 0,000	0,027 0,000	0,020 0,000	0,000 0,000	0,000 0, 00 0	

Примечание. Дополнительный приток тепла в целом для северного полушария составляет 0,019 ккал/(год см²), для южного 0,001 ккал/(год см²), для земного шара в целом 0,01 ккал/(год см²).

Если $M_1 = M_2$, то, следуя схеме М. И. Будыко и М. А. Васищевой [1], уравнения расчета средних широтных температур теплого и холодного полугодий будут иметь следующий вид:

$$T_{\rm T} = \frac{Q_{\rm T}(1-a_{\rm T}) + M_1 - a + a_1n_{\rm T} + \beta_{\rm T}T_{p_1} - A(R_{w_{\rm T}} - R_{w_{\rm X}} - \beta' T_{p_2})}{B_1 + Ac - \frac{A(\beta' - c)B_1}{B_2}} - \frac{A(\beta' - c)\left[\frac{Q_{\rm T}(1-a_{\rm T}) + Q_{\rm X}(1-a_{\rm X}) + M_1 + M_2 - 2a + a_1n_{\rm T} + a_1n_{\rm X} + \beta_{\rm T}T_{p_1} + \beta_{\rm X}T_{p_2}}{B_2}\right]}{B_1 + Ac - A\frac{B_1}{B_2}(\beta' - c)};$$

$$T_{\rm X} = \frac{Q_{\rm X}(1-a_{\rm X}) + M_2 - a + a_1n_{\rm X} + \beta_{\rm X}T_{p_2} + A(R_{w\rm T} - R_{w\rm X} - \beta' T_{p_2})}{B_2 + A(c - \beta') + Ac\frac{B_2}{B_1}} + \frac{A(\beta' - c)}{B_2} + \frac{B_2}{B_2} + A(c - \beta') + Ac\frac{B_2}{B_1}}$$

$$+\frac{Ac\left[\frac{Q_{T}(1-\alpha_{T})+Q_{X}(1-\alpha_{X})+M_{1}+M_{2}-2a+a_{1}n_{X}+a_{1}n_{T}+\beta_{T}T_{p_{1}}+\beta_{X}T_{p_{2}}\right]}{B_{1}}{B_{2}+A(c-\beta')+Ac\frac{B_{2}}{B_{1}}},$$

$$A = \frac{\gamma S}{f + c + 2\gamma}, \quad B_1 = b - b_1 n_{\rm T} + \beta_{\rm T}, \quad B_2 = b - b_1 n_{\rm x} + \beta_{\rm x}, \quad (2)$$

где $T_{\rm T}$ и $T_{\rm x}$ — температура теплого и холодного полугодий соответственно, $R_{w\rm T}$, $R_{w\rm x}$ — радиационный баланс океана в соответствующей широтной зоне для теплого и холодного полугодий, $n_{\rm T}$, $n_{\rm x}$ — средний балл облачности, T_{p1} , T_{p2} — планетарная температура для теплого и холодного полугодий, S — соотношение площади суши и океана, a, a_1 , $\beta_{\rm T}$, $\beta_{\rm x}$, b, b_1 , β' , c, γ , t — постоянные, определяемые по схеме М. И. Будыко и М. А. Васищевой [1].

Если считать, что в среднем для планеты прирост энергии составляет 6% в год, тогда к 2000 году дополнительный приток тепла составит 0,057 ккал/(год см²), а распределение его по широтным зонам северного полушария будет следующим:

Δ φ° 0--10 10-20 20-30 30--40 40-50 50-60 60 -70 70-80 80-90 Мккал/(год см²) . . 0,0058 0,0058 0,0144 0,276 0,390 0,086 0,805 0,000 0,000

В этом случае средняя планетарная температура за год изменится на 0,04°, тогда распределение температуры по широтам будет таким:

Δ	φ°·			•	•		0-10	1020	20-30	30 - 40	4050	50 - 60	6070	70 - 80	80-90
Δ	Τ _T °C						0,03	0,04	0,04	0,10	0,07	0,05	0,05	0,00	0,00
Δ	$T_{\mathbf{x}}^{\circ}\mathbf{C}$	•	•	•	•	•	0,03	0,04	0,03	0,10	0,08	0,05	0,04	0,00	0,00

где $\Delta T_{\rm T}$ — изменение температуры воздуха теплого полугодия северного полушария, $\Delta T_{\rm x}$ — изменение температуры воздуха холодного полугодия к 2000 году.

Наибольшие изменения следует ожидать в широтном поясе от 30—50 до 0,10°, где приток тепла за счет хозяйственной деятельности может достичь сравнительно высокого уровня. Эти незначительные изменения в температурном режиме в целом для планеты становятся ощутимее, когда вступает в действие второй фактор, определяющий глобальный температурный режим — изменение количества углекислого газа в атмосфере.

Исследования последних лет [4], работы Дж. и Л. Махта [3] показали, что концентрация углокислого газа в атмосфере увеличивается со скоростью 0,2% в год. Расчеты Манабе по данным Дж. Махта, Л. Махта и Дж. Олсона показали, что к 2000 году следует ожидать изменение планетарной температуры за счет изменения концентрации СО₂ на 0,5°C [3]. Концентрация СО₂ по

одели Дж. и Л. Махта будет составлять 380 ppm вместо 120 ppm з настоящее время, т. е. изменится на 20% его современного знаения.

Изменение концентрации CO₂ должно оказать значительное злияние на величину уходящего длинноволнового излучения, что экажется на изменении температуры.

Уходящее длинноволновое излучение можно аппроксимировать, формулой типа

$$I = a + bT - (a_1 + b_1T)n,$$

где T — температура воздуха в °C, n — средний балл облачности, a, b, a_1 и b_1 — постоянные коэффициенты [1].

Учитывая связь между температурой воздуха и концентрацией углекислого газа, можно составить следующую систему уравнений:

где Δc — изменение концентрации углекислого газа, ΔT — изменение температуры за счет изменения концентрации CO₂, γ и β — коэффициенты пропорциональности.

Если принять, что величина концентрации СО₂ к 2000 году изменится на 20%, а средняя планетарная температура по Манабе на 0,5°С, уравнения (3) можно представить в следующем виде:

$$\begin{array}{c} \frac{\Delta c}{c} = 0,2\\ \Delta T = 0,5 \end{array}$$

$$(4)$$

Концентрация CO₂ в настоящее время составляет около 317 ppm, тогда к 2000 году эта величина достигнет 380 ppm, а ее изменение $\Delta c = 380 - 317 = 63$ ppm составит $63 \cdot 10^{-6}$ атм $= 63 \cdot 10^{-6}$ кг/см².

Используя зависимость между T и I, найдем $\gamma = 0,09$, а из уравнения (3) — величину $\beta = 0,73 \cdot 10^3$.

Таким образом, при изменении концентрации углекислого газа на величину Δc уходящее излучение будет изменяться на величину $\beta \cdot \Delta c$.

Пользуясь изложенной схемой, можно оценить возможное влияние на температурный режим двух факторов: дополнительного притока тепла за счет тепловых выбросов и изменения концентрации углекислого газа. В этом случае можно ожидать изменения средней годовой планетарной температуры к 2000 году примерно на 0,54° С.

Однако в последних исследованиях М. И. Будыко [2], Манабе [4] и других получено, что существует определенная зависимость между площадью полярных льдов и изменением внешних факторов, в частности прихода солнечной радиации на верхнюю границу атмосферы. В работе М. И. Будыко [2] связь между площадью полярных льдов и изменением планетарной солнечной радиации выражается следующей зависимостью:

$$\frac{\Delta P}{P} = \mu \frac{\Delta Q_{\rm p}}{Q_{\rm p}},\tag{5}$$

где $\frac{\Delta P}{P}$ — изменение площади, занимаемой полярными льдами. в долях процентов от общей площади оледенения, $\frac{\Delta Q_p}{Q_p}$ — изменение приходящей радиации, в целом для планеты, μ — коэффициент пропорциональности.

Изменение площади полярных льдов прежде всего влияет на изменение величины планетарного альбедо, что в свою очередь изменяет величину планетарной температуры.

Если считать, что к 2000 году дополнительный приток тепла за счет хозяйственной деятельности человека составит 0,057 ккал/(год.см), а величина уходящего излучения изменится на 0,046 ккал/(мес.см²) в среднем за год, граница полярных льдов может переместиться к северу на величину порядка одного градуса широты, а средняя планетарная температура в этом случае изменится на 0,8°C.

Если представить, что темп роста производства энергии до 2000 года сохранится таким же, как в настоящее время, т. е. будет составлять 6% в год, то дополнительный приток тепла за счет хозяйственной деятельности человека составит к 2000 году 1,04 ккал/(год.см²), средняя планетарная температура изменится на 0,95° С без учета обратной связи со льдами и на 1,3° С при учете изменения планетарного альбедо. Приведем возможное широтное распределение температуры воздуха за теплое и холодное полугодия в северном полушарии при учете только дополнительного притока тепла за счет деятельности человека (изменение концентрации углекислого газа в расчет не принималось):

$\Delta\phi^\circ$		٠	•		1-10	10-20	20—30	30-40	40 - 50	50—60	60—70	70—80	80—9 0
$\Delta T_{\rm T}^{\circ} C$				•	1,00	1,00	1,00	2,2	2,7	2,5	1,4	2,3	0,9
$\Delta T_{\mathbf{x}}^{\circ} C$			•	•	1,00	1,00	1,00	2,2	2,7	2,5	1,4	2,3	0,9

Граница полярных льдов в этом случае смещается к северу на 1,6°.

В настоящее время довольно трудно оценить возможные изменения концентрации углекислого газа от 2000 к 2050 году. Однако, если представить, что поступление углекислого газа в атмосферу несколько уменьшится (за счет уменьшения количества промышленных предприятий, выбрасывающих в атмосферу продукты сжигания нефти и каменного угля) и сохранится не экспоненциальная, а линейная зависимость, тогда концентрация СО₂ может составить

.88

80 ppm. Используя полученную зависимость между изменением онцентрации углекислого газа и уходящим длинноволновым изучением, получим, что только за счет одного этого фактора плаетарная температура может увеличиться на 1,4°С. Если учесть лияние дополнительного притока тепла за счет «тепловых выброов», то величина планетарной температуры в среднем за год ворастет на 2,7°С, а граница полярных льдов переместится к севеу на 4—5° широты.

Такие изменения величины планетарной температуры и границы колярных льдов могут существенно повлиять на климат планеты целом и оказать огромное влияние на хозяйственную деятелькость человека.

СПИСОК ЛИТЕРАТУРЫ

- . Будыко М. И., Васищева М. А. Влияние астрономических факторов на четвертичные оледенения.—«Метеорология и гидрология», 1971, № 6, с. 37—47.
- . Будыко М. И. Влияние человека на климат. Л., Гидрометеоиздат, 1972, 46 с.
- Inadvertent Climate Modification. 1971. (SMIC). The MIT Press, Cambridge, Massachusetts and London. 308 p.

I. Man's impact on the global environment. SCEP, 1970, 319 p.

5. Flohn H. Produzieren wir unser eigenes Klima?— "Met. Rundschau", Nov.-Dez. St. H. 6, 1970, p. 161—164

Е. Е СИБИР

ОБ ИЗМЕНЧИВОСТИ СУММАРНОГО ИСПАРЕНИЯ В УСЛОВИЯХ ТРОПИЧЕСКОГО КЛИМАТА

Данные об испарении с поверхности сущи находят все большее применение как в научных исследованиях, так и в практической деятельности. В настоящее время, вследствие недостатка данных непосредственных измерений, широко используются расчетные методы определения испарения. Один из таких способов расчета месячных величин испарения предложен М. И. Будыко [3—5]. Этот способ основан на совместном решении уравнений теплового и водного балансов.

Основные расчетные формулы имеют вид:

$$E = E_0 \frac{w}{w_0} \text{ при } w < w_0 T; \tag{1}$$

$$E = E_0$$
 при $w \ge w_0$, (2)

где E — испарение, E_0 — испаряемость, w — средняя для рассматриваемого периода продуктивная влажность верхнего слоя почвы, равная

$$w = \frac{w_1 + w_2}{2},\tag{3}$$

(w_1 и w_2 — влажность верхнего слоя почвы в начале и конце рассматриваемого периода соответственно, w_0 — критическое значение продуктивной влажности).

Вычисление суммарного стока производится по формулам:

f = 2wab при $r \ge E_0 T;$ (4)

$$f = 2 \alpha w a$$
 при $r < E_0$, (5)

где $\alpha = \frac{r}{w_k}, \quad b = \sqrt{\alpha^2 \left[1 - \left(1 - \frac{E_0}{r}\right)^2\right] + \left(1 - \frac{E_0}{r}\right)^2} (r - \text{осадки, } w_k - \text{наибольший запас продуктивной влаги, который может удерживаться в верхних слоях почвы при отсутствии связи с грунтовыми водами, <math>\alpha$ - безразмерный коэффициент пропорциональности, зависящий от интенсивности осадков).

При г≥Е₀

$$w_2 = \frac{r - w_1(c + ab - 1)}{c + ab + 1}$$
 при $0 < w < w_0;$ (6)

$$w_2 = \frac{r - E_0 + w_1(1 - ab)}{1 + ab}$$
 при $w \ge w_0.$ (7)

При *r*<*E*₀

$$w_2 = \frac{r - w_1(c + a a - 1)}{c + a a + 1}$$
 при $0 < w < w_0;$ (8)

$$w_2 = \frac{r - E_0 - w_1(\alpha a - 1)}{\alpha a + 1}$$
 при $w \ge w_0$, (9)

$$c = \frac{E_0}{2w_0}$$

При расчете применяется метод последовательных приближе-ий.

Применение способа Будыко позволило рассчитать средние ноголетние годовые и месячные величины суммарного испарения построить карты испарения с суши земного шара [2]. Показано, то таким методом можно рассчитывать испарение за отдельные оды [6, 7].

Выполненные расчеты испарения за отдельные годы позволили пределить изменчивость суммарного испарения для основных гандшафтно-климатических зон умеренных широт северного полуиария [6—8]. Однако для тропических широт данные об изменивости суммарного испарения практически отсутствуют.

Для оценки изменчивости испарения и испаряемости в тропической зоне были выбраны три пункта, расположенные в Африке: з условиях жестколистных вечнозеленых лесов и кустарников (Кейптаун, ЮАР), типичных саванн (Претория, ЮАР) и опустыненных саванн (Виндхук, Намибия).

Необходимые для расчета испарения и испаряемости материапы метеорологических наблюдений взяты из справочников [10]. Данные о радиационном балансе получены по измеренным велииинам суммарной радиации, опубликованным в [1, 9], и по рассчиганным значениям эффективного излучения.

Расчеты испарения проводились на ЭВМ. В результате были получены месячные и годовые величины испаряемости и испарения для пунктов Кейптаун и Претория за период 15 лет и для пункта Виндхук за 13 лет. Эти материалы использовались для определения средних квадратических отклонений о и коэффициентов вариации с_v месячных и годовых величин испаряемости и испарения.

На рис. 1, *I* видно, что для Кейптауна наибольшие отклонения о месячных величин испарения наблюдаются в переходные периоды, характеризующиеся большими колебаниями осадков от года к году, а для Претории и Виндхука — летом в период максимального испарения. Месячные величины коэффициентов вариации для Кейптуна (жестоколистные вечнозеленые леса и кустарники) к леблются от 0,2 зимой до 0,8 в конце лета при малых величина испарения. В Претории и Виндхуке с летним максимумом испар ния наибольшие величины c_v наблюдаются в конце зимнего сезон когда испарение мало. Величины коэффициентов вариации внутр года для Претории (типичные саванны) изменяются от 0,3 лето

Рис. 1. Годовой ход средних квадратических отклонений (σ см/мес, 1) и коэффициентов вариации (c_v , 2) месячных величин испарения (I) и испаряемости (II) для Кейптауна (a), Претории (б) и Виндхука (g).

до 0,8 зимой, для Виндхука (опустыненные саванны)— от 0,3 летом до 1,3 в конце зимы.

На рис. 1, II видно, что годовой ход средних квадратических отклонений испаряемости аналогичен годовому ходу σ испарения, годовой ход коэффициентов вариации значительно отличается от внутригодового распределения c_v испарения. Коэффициенты вариации испаряемости более равномерно распределяются внутри года. Месячные величины c_v изменяются от 0,1 до 0,2 и только для Кейптауна зимой c_v достигает 0,3, т. е. изменчивость месячных величин испаряемости в несколько раз меньше изменчивости испарения.

Изменчивость годовых величин испарения и испаряемости знаательно меньше, чем месячных. Коэффициенты вариации годовых личин испарения для Кейптауна и Претории равны соответстнно 0,15 и 0,14, для Виндхука, отличающегося большей сухоью, величина c_v равна 36%. Для годовых величин испаряемости личины c_v равны 0,05 для Кейптауна и Претории и 0,08 для Виндка. Приведенные значения показывают, что изменчивость годоых величин испаряемости для Кейптауна и Претории в 3 раза, для Виндхука — почти в 4 раза меньше изменчивости годовых еличин испарения.

СПИСОК ЛИТЕРАТУРЫ

Актинометрический справочник. Зарубежные страны. Под ред. Т. Г. Берлянд. Л., Гидрометеоиздат, 1964, 264 с.

- Атлас теплового баланса земного шара. Под ред. М. И. Будыко. Межвед. геофиз. комитет, М., 1963, 69 с.
- Будыко М. И. Тепловой баланс земной поверхности. Л., Гидрометеоиздат, 1956, 255 с.

Будыко М. И. Климат и жизнь. Л., Гидрометеоиздат, 1971, 472 с.

Будыко М. И., Зубенок Л. И. Определение испарения с поверхности суши. — «Изв. АН СССР, сер географ.» № 6, 1961, с. 3—17.

- Зубенок Л. И. Об определении суммарного испарения. «Тр. ГГО», 1968, вып. 233, с. 101—109.
- Зубенок Л. И. Об изменчивости суммарного испарения. «Тр. ГГО», 1970, вып. 263, с. 99—104.
- Зубенок Л. И. Дефицит испарения и характер увлажнения территории Советского Союза за отдельные годы.—«Тр. ГГО», 1971, вып. 287, с. 76—83.

Солнечная радиация и радиационный баланс (мировая сеть). 1964— 1968 г. Под ред. Т. Г. Берлянд. Л., Гидрометеоиздат, 1970, 600 с.

 Verslag vir die Jaar 1949—1969 (Unie van suid — Afrika. Department van Vervoer. Weerburo). Pretoria, 1951—1971.

В. В. СТАДИИ

РАСПРЕДЕЛЕНИЕ ПРЯМОЙ СОЛНЕЧНОЙ РАДИАЦИИ, ПОСТУПАЮЩЕЙ НА ЮЖНЫЕ СТЕНЫ ЗДАНИЙ, ПО ТЕРРИТОРИИ СССР

В настоящее время имеется достаточное количество информа ции для того, чтобы получить данные о суммах радиации, посту пающей на вертикальные поверхности любой ориентации, не толи ко для отдельных пунктов, как это было сделано в [1], но и дл всей территории Советского Союза.

При этом используется формула

$$\Sigma \overline{S}_{\rm B} = K \Sigma \overline{S}',$$

где $S_{\rm B}$ — прямая радиация, поступающая на вертикальную поверх ность; K — коэффициент пропорциональности для пересчета радиа ции с горизонтальной поверхности на вертикальную; S' — прямая радиация, поступающая на горизонтальную поверхность.

В статье рассматривается приход прямой солнечной радиации при реальных условиях облачности к вертикальным поверхностям (стенам) южной ориентации и межгодовая изменчивость этой величины. Приводятся карты распределения этих характеристик по территории СССР, которые могут быть использованы при строительно-климатическом районировании территории. Карты построены для месяцев, характеризующих различные сезоны года: января, апреля, июля и октября.

Для характеристики межгодовой изменчивости было вычислено среднее квадратическое отклонение $\sigma_{S_{10}}$, относительная величина которого, т. е. коэффициент вариации ($c_v = \frac{\sigma}{S} \cdot 100\%$), для территории ЕТС, Западной Сибири и Средней Азии приведена на картах (изолинии). Поле распределения средних суточных сумм, прямой радиации (в кал/(сут · см²) показано штриховкой.

Вычисление производилось по материалам 100 станций, из которых большинство имело ряды наблюдений 15—18 лет и 8 станций —40 лет и более. Исследования [3] показали, что среднее квадэатическое отклонение сумм радиации, поступающей на стены ожной ориентации о_{бю}, может быть получено довольно просто по значениям о для суммы радиации, приходящей к горизонтальной поверхности с учетом коэффициента пропорциональности для южной ориентации K_ю, величина которого практически постоянна.

Совмещение системы изолиний коэффициента вариации с полем распределения средних суточных сумм радиации наглядно показывает, как изменяется данная характеристика во времени и пространстве, и дает возможность оценить среднее квадратическое отклонение для любого района рассматриваемой территории.

При использовании этих данных в практических расчетах нужно принимать во внимание, во-первых, что все вычисления производились в предположении открыто стоящего здания (т. е. без затенения его соседними постройками), как это сделано в [1], во-вторых, то, что они характеризуют в основном фон загородной и сельской местности и относятся к территории, не превышающей 600 м над уровнем моря.

Приход прямой радиации в промышленных городах уменьшен в связи с большим загрязнением атмосферы. Насколько существенно это снижение, было показано в [3].

Рассмотрим изменение по территории средних суточных сумм прямой радиации, поступающей на южные стены в различные сезоны года.

В зимний период (рис. 1 *а*) выделяются два района с максимальными средними суточными суммами 200—300 кал/см²: южные Дальнего Востока и центральные Средней Азии. Для районов Дальнего Востока суммы радиации, отмечаемые в зимнее время, являются максимальными в году, так как совпадают с периодом преобладания малооблачной погоды в результате влияния зимнего муссона. На остальной территории Советского Союза суточные суммы радиации составляют 50—150 кал/(сут см²), а на значительной части Европейской территории СССР (ЕТС) они ниже 50. Это происходит ввиду преобладания здесь облачной погоды, обусловленной сильным влиянием влажных атлантических масс воздуха.

Неустойчивость облачного режима на большей части территории ЕТС приводит к большой межгодовой изменчивости сумм прямой радиации S_{10} . Коэффициент вариации здесь 50—60%. На крайнем юге и востоке ЕТС, в Западной Сибири и Средней Азии, где повторяемость ясных дней больше, изменчивость суточных сумм S_{10} уменьшается до 20—30%.

В апреле (рис. 1 б) наибольшее количество радиации (более 200 кал) наблюдается в северных районах страны (на северо-востоке даже более 300 кал). Для этих районов в апреле отмечается максимальный в году приход радиации, что обусловлено очень высокой прозрачностью атмосферы, большой ясностью неба, длиной дня и высотой солнца. В этих районах такое большое количество

a.

а) июль, б) октябрь.

радиации, поступающей от солнца, должно учитываться при проектировании и эксплуатации жилых зданий как дополнительный источник тепла. На ЕТС в апреле суточные суммы, по-прежнему, невелики (100—150 кал/см²), а в районах центрально-черноземных областей они менее 100 кал/см², что, по-видимому, можно объяснить пониженной прозрачностью атмосферы в весенне-летний период.

Рис. 3. Суточная сумма прямой солнечной радиации с обеспеченностью а) 1 — январь, 2 — июль;

На юге Дальнего Востока и Средней Азии, где в январе наблюдались максимальные суммы, в апреле приход радиации уменьшился почти вдвое. На Дальнем Востоке это связано с увеличением облачности, а в Средней Азии — с астрономическим фактором: большие высоты солнца и, следовательно, малые углы падения солнечных лучей на стены южной ориентации.

Изменчивость солнечной радиации от года к году на ЕТС в апреле в 1,5—2 раза меньше, чем в январе (коэффициент вариации 30%), а в Западной Сибири и Средней Азии она почти такая же. В июле (рис. 2 *a*) поле радиации довольно однородно. На большей части территории страны южные стены получают 100— 150 кал/(сут \cdot см²), а в некоторых районах менее 100. Наибольшие суточные суммы S_{10} наблюдаются в поясе 70—60° с. ш., однако и они не превышают 180 кал/см². В июне—июле на всей территории Советского Союза отмечаются самые низкие в году суммы радиа-

5%, поступающей на южные стены. 6) 1 — октябрь, 2 — апрель.

ции, поступающей на южные стены. Если сравнить распределение средних суточных сумм S_{10} при реальных условиях облачности, показанное на рис. 2*a*, с распределением S_{10} при безоблачном небе, приведенным в [3], то можно увидеть, что на крайнем севере, где для безоблачного неба суточные суммы бывают 400—450 кал/см², облачность снижает приход радиации в 4—5 раз, а на ЕТС и Дальнем Востоке — в 1,5—2 раза. Этот пример наглядно показывает, что использование в расчетах при проектировании сумм прямой радиации безоблачного неба может привести в ряде районов,

и особенно в северной зоне, где количество ясных дней в течение месяца невелико, к переоценке солнечной радиации как естественного источника тепла.

Коэффициент вариации средних суточных сумм S_{10} в летнее время остается высоким на севере — около 30%, в районах средней полосы — 20%, а центральных областях Средней Азии — <10%.

В октябре (рис. 2 б) средние суточные суммы радиации, поступающей на стены южной ориентации, значительно меняются по территории, возрастая с севера на юг от 50 до 300 кал. В целом распределение радиации в октябре близко к распределению в январе. Средняя Азия и юг Дальнего Востока так же, как в январе представляют собой районы с наибольшим количеством прямой радиации, получаемом южной стеной за сутки, причем для Средней Азии величины, наблюдаемые в октябре, являются максимальными в году. Южные районы ЕТС имеют лучшие условия облучения в октябре по сравнению с январем и другими месяцами года (максимум здесь приходится на сентябрь).

Для октября характерна большая межгодовая изменчивость суточных сумм S₁₀ для всей территории, исключая Среднюю Азию. Особенно велика изменчивость в северо-восточных районах ЕТС и в Западной Сибири (50—60%).

В настоящей статье, кроме средних величин для ЕТС, Западной Сибири и Средней Азии, приводятся суммы радиации с обеспеченностью 5%, т. е. суммы, равные и выше которых могут встречаться один раз в 20 лет. Для оценки сумм радиации различной обеспеченности, поступающей на южные стены, можно использовать нормальный закон распределения, поскольку в [2] показана применимость его к месячным суммам или средним суточным величинам (в месячном осреднении), поступающим на горизонтальную поверхность.

На рис. З приведено распределение сумм с обеспеченностью 5% для указанной территории. Эти данные при современном планировании представляют значительный практический интерес.

Из рисунка видно, что на севере страны, где режим облачности неустойчив, во все времена года суммы радиации с обеспеченностью 5% превышают в 1,5—2 раза средние многолетние суммы. Зимой такое соотношение между суммами радиации характерно для всей территории Советского Союза, за исключением Приморья, где разница между указанными величинами составляет 25—30%.

В летний период при продвижении с севера на юг разница между средними суммами радиации и суммами с обеспеченностью 5% уменьшается от 60—100% до 15—20%, а в некоторых районах Средней Азии эти значения практически совпадают. В Приморском крае вследствие влияния летнего муссона в июле преобладает облачная погода и средние многолетние суммы радиации, поступающей на южные стены, почти в 1,5 раза ниже тех сумм, которые могут встречаться один раз в 20 лет.

В октябре в северных и умеренных широтах рассматриваемой территории суммы с обеспеченностью 5% почти на 100% выше

редних многолетних сумм, в апреле эта разница несколько ниже 50-60%). На крайнем юге и юго-востоке ЕТС, а также в Казахгане и Средней Азии в октябре еще сохраняется больщая повтояемость ясных дней и разница между средними многолетними уммами и суммами с обеспеченностью 5% небольщая (15—20%), то время как в весенний период она составляет около 30%.

Приведенные данные свидетельствуют о необходимости учета ариации прямой радиации в отдельные годы. Было бы ошибочым при оценке климатических воздействий на здания и сооружеия опираться только на средние многолетние суммы или же на уммы при безоблачном небе, т. е. максимально возможные, коорые до сих пор помещаются в СНиПе как единственная харакеристика радиационного режима вертикальных поверхностей.

СПИСОК ЛИТЕРАТУРЫ

. Пивоварова З. И. Прямая солнечная радиация, поступающая на стены

зданий. — «Тр. ГГО», 1967, вып. 193, с. 73—118. 2. Пивоварова З. И. О временной структуре рядов сумм солнечной радиа-ции разного масштаба осреднения.—«Тр. ГГО», 1974, вып. 307, с. 3—19. 3. Пивоварова З. И., Стадник В. В. Об изменчивости прямой радиации, поступающей из вертикальные поверхности южной ориентации.---«Тр. ГГО», 1974, вып. 307, с. 80—93.

Р. Л. КАГАН, Л. П. КЛЯГИНА

К МЕТОДИКЕ РАСЧЕТА ПОТОКОВ КОРОТКОВОЛНОВОЙ РАДИАЦИИ НА ОТДЕЛЬНО СТОЯЩЕЕ ЗДАНИЕ

1. При планировании городской застройки и разработке проектов зданий очень важно учитывать радиационный режим конкретной географической зоны, в которой предполагается строительство. В частности, необходимо иметь данные о потоках коротковолновой радиации, поступающих как на горизонтальные поверхности, так и на различно ориентированные вертикальные стены. В последнее время расчетам средних климатических значений таких потоков уделялось большое внимание.

По-видимому, наиболее полные расчеты для различных территорий СССР, разных месяцев года и для стен различной ориентации выполнены З. И. Пивоваровой [5, 6]. Разумеется, при этих расчетах пришлось прибегнуть к некоторой стилизации потоков поступающей коротковолновой радиации. Именно, было использовано допущение, что поток поступающей на стену диффузной радиации равен полусумме потоков рассеянной радиации неба и раотраженной от подстилающей поверхности. диации. Хорошо известно (см. например [1]), что такая модель соответствует изотропности рассеянной радиации по небосводу и изотропному отражению радиации подстилающей поверхностью. Оба эти допущения, строго говоря, не являются справедливыми, что может привести к существенным расхождениям расчетных потоков с фактическими. Как показано в работах К. Я. Кондратьева и М. П. Маноловой [2, 3], расхождения за счет анизотропности отражения могут для определенных направлений достигать больших величин. Хотя, как указывает З. И. Пивоварова [5], возможные погрешности расчета существенно сглаживаются при осреднении потоков во времени, целесообразность в дальнейшем учитывать фактор анизотропности представляется несомненной. Поэтому необходима работа по накоплению экспериментальных данных об угловом распределении поступающей с неба рассеянной коротковолновой радиации и особенно о характере отражения радиации в разных направлениях реальными поверхностями.

В работе [5] используется также предположение, что отраженый от подстилающей поверхности поток радиации может считатья совпадающим с потоком радиации, отраженным от незатененной оризонтальной поверхности. Иными словами, считается, что налиие здания никак не сказывается на радиационном режиме подтилающей поверхности. При этом пренебрегается эффектом затения подстилающей поверхности зданием, равно как и влиянием погократного отражения радиации между зданием и подстилающей поверхностью. Количественных оценок влияния этого эффекта за радиационный режим вертикальных стен, насколько нам изнестно, до сих пор не делалось.

В настоящей статье делается попытка выполнить такие оценки. Гервоначально задача о поступлении радиации на стену формулиуется при самых общих предположениях о распределении дифрузной радиации и об отражательной способности стены и подтилающей поверхности. Как частный случай общей задачи полунаются формулы для изотропного варианта. Задача сводится к репению интегральных уравнений для потоков радиации, которое находится численно.

В заключение статьи приводятся примеры расчета поступаюцих на стены потоков коротковолновой радиации с учетом радиационного взаимодействия стен с подстилающей поверхностью и делаются некоторые выводы об условиях, при которых необхоцим учет этого эффекта.

2. Будем полагать, что здания расположены на большом расстоянии, так что они практически не влияют друг на друга. В этом случае достаточно рассмотреть отдельно стоящее здание. Будем считать также, что длина здания значительно больше его высоты, так что изменениями потоков в продольном направлении можно пренебречь. Очевидно, что при этом потоки радиации на различные участки стены будут зависеть лишь от высоты этих участков, а потоки радиации на участки подстилающей поверхности будут зависеть лишь от удаления от стены.

Пусть $I_c^{\downarrow}(z, r)$ — интенсивность радиации, падающей на участки стены, находящиеся на высоте z, с направления r, $I_n^{\downarrow}(l, r)$ интенсивность радиации, падающей с направления r на участки подстилающей поверхности, находящиеся на расстоянии l от стены. Аналогично $I_c^{\uparrow}(z, r)$ и $I^{\uparrow}(l, r)$ — интенсивность радиации, отраженной в направлении r стеной и подстилающей поверхностью соответственно.

Обозначим также $A_c \frac{\alpha_c(r, r')}{\pi}$ и $A_{\pi} \frac{\alpha_{\pi}(r, r')}{\pi}$ отражательную способность стены и подстилающей поверхности в направлении *r* по отношению к радиации, упавшей на них с направления *r'*. A_c и A_{π} — соответственно интегральные альбедо для потоков диффузной радиации, а α_c и α_{π} характеризуют неизотропность отражения.

Будем определять направление в пространстве *r* двумя углами: углом возвышения (высотой) *h*, отсчитываемым от горизонтали вверх, и азимутом ψ , отсчитываемым от нормали к поверхност стены по часовой стрелке (рис. 1).

При введенных обозначениях отраженная радиация связан с падающей следующими соотношениями:

$$I_{c}^{\dagger}(z, r) = \frac{A_{c}}{\pi} \int_{\Sigma_{c}} I_{c}^{\downarrow}(z, r_{1}) \alpha_{c}(r, r_{1}) \cos(n, r_{1}) d\omega_{1};$$

$$I_{n}^{\dagger}(l, r) = \frac{A_{n}}{\pi} \int_{\Sigma_{n}} I_{n}^{\downarrow}(l, r_{1}) \alpha_{n}(r, r_{1}) \cos(z, r_{1}) d\omega_{1}, \qquad (1)$$

где Ω_c и Ω_m — телесный угол, из которого поступает радиация на элемент стены или подстилающей поверхности соответственно

Рис. 1. Система координат, принятая при расчетах.

 $d\omega_1$ — элемент телесного угла, $\cos(n, r_1)$ и $\cos(z, r_1)$ представляют собой косинусы углов между направлением r_1 и направлением нормали к стене и к подстилающей поверхности (вертикалью) соответственно

 $d \omega_1 = \cos h_1 dh_1 d \varphi_1; \cos (n, r_1) = \cos h_1 \cos \psi_1; \cos (z, r_1) = \sin h_1.$ (2)

Каждый из телесных углов представляет собой полусферу. Разобьем угол Ω_c на два телесных угла. В пределах угла Ω_1 соблюдается условие $0 \ll \hbar \ll \frac{\pi}{2}$, т. е. радиация поступает на стену с неба. В пределах угла Ω_2 радиация на стену поступает с подстилающей

оверхности и $-\frac{\pi}{2} \ll h \ll 0$. Аналогично угол $\Omega_{\rm II}$ также делим на два элесных угла: угол Ω_3 (l, z), под которым из данного участка эдстилающей поверхности виден небесный свод, и угол Ω_4 (l, z), в которого на подстилающую поверхность поступает радиация стеы. Оба эти угла зависят от степени закрытости небосвода, опреэляющейся как высотой здания Z, так и удалением его от расматриваемого участка подстилающей поверхности.

Из рис. 1 видно, что возвышение направления визирования частка стены на высоте z из участка подстилающей поверхности, асположенного на расстоянии l от стены, определяется формулой

$$tg h = \frac{z}{\sqrt{l^2 + x_2}} = \frac{z}{(-l/\cos\psi)} = -\frac{z}{l}\cos\psi.$$
 (3)

Отсюда следует, в частности, что максимальное возвыщение тены в направлении азимута ф для участков поверхности, лежацих на расстоянии *l*, дается формулой

$$h_{\max} = \operatorname{arctg}\left(-\frac{Z}{l}\cos\psi\right).$$
 (4)

Будем пренебрегать ослаблением отраженной коротковолновой адиации атмосферой, что, по-видимому, не должно привести существенным погрешностям. Тогда поступающая из телесного гла Ω_2 на стену радиация полностью определяется радиацией, траженной от подстилающей поверхности в телесный угол Ω_4 , наоборот. Поступающая же из телесного угла Ω_1 на стену и из елесного угла Ω_3 на подстилающую поверхность радиация при том не будет зависеть от их радиационных свойств, так что

$$I_{c}^{\dagger}(z, r) = I_{1}(r) + \frac{A_{c}}{\pi} \int_{\psi_{1}=-\pi/2}^{\pi/2} \int_{h_{1}=-\pi/2}^{0} I_{c}^{\downarrow}(z, r_{1}) \alpha_{c}(r, r_{1}) \cos^{2}h_{1} \cos\psi_{1} d\psi_{1} dh$$

$$I_{n}^{\dagger}(l, r) = I_{2}(l, r) + \frac{A_{n}}{\pi} \int_{\psi_{1}=-3/2\pi}^{-\pi/2} \int_{h_{1}=0}^{h_{max}} I_{n}^{\downarrow}(l, r_{1}) \alpha_{n}(r, r_{1}) \cos h_{1} \sin h_{1} d\psi_{1} dh_{1}.$$
(5)

Здесь

$$I_{1}(r) = \frac{A_{c}}{\pi} \int_{\psi_{1}=-\pi/2}^{\pi/2} \int_{h_{1}=0}^{\pi/2} I_{c}^{\downarrow}(z, r_{1}) \alpha_{c}(r, r_{1}) \cos^{2} h_{1} \cos \psi_{1} d \psi_{1} dh_{1} \qquad (6)$$

—отраженная стеной радиация неба.

$$I_{2}(l, r) = \frac{A_{\pi}}{\pi} \int_{\psi_{1}=-3/2\pi}^{-\pi/2} \int_{h_{1}=h_{\max}}^{\pi/2} I_{\pi}^{\downarrow}(l, r_{1}) \alpha_{\pi}(r, r_{1}) \cos h_{1} \sin h_{1} d\psi_{1} dh_{1} + \frac{A_{\pi}}{\pi} \int_{\psi_{1}=-\pi/2}^{\pi/2} \int_{h_{1}=0}^{\pi/2} I_{\pi}^{\downarrow}(l, r_{1}) \alpha_{\pi}(r, r_{1}) \cos h_{1} \sin h_{1} d\psi_{1} dh_{1}$$
(7)

- отраженная подстилающей поверхностью радиация неба.

Эти величины зависят лишь от геометрических факторов и с отражательной способности стены и подстилающей поверхност соответственно и не зависят друг от друга. Вторые же члены ура нений (5) характеризуют радиационное взаимодействие стен и подстилающей поверхности. Пренебрегая ослаблением радиаци в воздухе, получаем из простых геометрических соображений (ст рис. 1 и формулу (3))

$$I_{\rm c}^{\downarrow}(z, h, \psi) = I_{\rm n}^{\dagger} \left(-z \frac{\cos \psi}{\operatorname{tg} h}, -h, \psi + \pi \right);$$

$$I_{\rm n}^{\downarrow}(l, h, \psi) = I_{\rm c}^{\dagger} \left(-l \frac{\operatorname{tg} h}{\cos \psi}, -h, \psi - \pi \right). \tag{6}$$

Уравнения (5) с учетом (6)—(8) представляют собой систем интегральных уравнений, решение которой при заданном поток коротковолновой радиации с небосвода и при известной отража тельной способности стены и подстилающей поверхности полносты определяет распределение интенсивности отраженной радиации Естественно, что при этом однозначно определяется и поглощенна радиация, представляющая собой разность между потоками пада ющей и отраженной радиации.

3. Решение системы (5) может быть получено разными спо собами. С физической точки зрения нагляден метод последователь ных приближений, позволяющий выделить, например, при изуче нии облучения стены, влияние однократного, двукратного и т. д отражения от подстилающей поверхности. С вычислительной точка зрения определенные преимущества имеет приближенное сведения системы интегральных уравнений к системе линейных алгебраи ческих уравнений, решение которой па ЭВМ не представляет тру да. Поскольку в настоящее время данных об угловом распреде лении радиации и особенно о реальной отражательной способно сти различных поверхностей имеется очень мало, рассмотрим этог способ расчета на примере изотропной рассеянной радиации неба и изотропного отражения радиации стеной и подстилающей по верхностью.

При этих предположениях имеем:

$$\alpha_{\rm c}(r, r') \equiv \alpha_{\rm n}(r, r') \equiv 1; \qquad (9)$$

$$I_{\rm H}^{\downarrow}(r) = I_{\rm p}^{\downarrow} + \pi S \,\delta(r - r_{\odot}), \qquad (10)$$

где $I_{\rm H}^{\downarrow}(z)$ — интенсивность поступающей с неба коротковолновой радиации, $I_{\rm p}^{\downarrow}$ — интенсивность рассеянной радиации, πS — поток прямой солнечной радиации на перпендикулярную поверхность. r_{\odot} — направление на Солнце, а $\delta(r-r_{\odot})$ — дельта-функция.

Подстановка (9) и (10) в (5)—(7) дает

$$I_{1} = A_{c} \left[\frac{1}{2} I_{p}^{\downarrow} + C_{1} S \cos h_{\odot} \cos \psi_{\odot} \right]; \qquad (11)$$
(12)

$$\begin{split} I_{2}(l) &= A_{\pi} \left[\frac{1}{2} \left(1 + \frac{l}{\sqrt{Z^{2} + l^{2}}} \right) I_{p}^{\downarrow} + C_{2} S \sin h_{\odot} \right]; \\ C_{1} &= \begin{cases} 1 \ \text{при} - \frac{\pi}{2} < |\psi_{\odot}| \leqslant \frac{\pi}{2} \\ 0 \ \text{при} - \frac{3}{2} \pi < |\psi_{\odot}| \leqslant -\frac{\pi}{2} \end{cases}; \\ C_{2} &= \begin{cases} 1 \ \text{при} \ \text{tg} h_{\odot} \geqslant - \frac{Z}{l} \cos \psi_{\odot}; \\ 0 \ \text{при} \ \text{tg} h_{\odot} < -\frac{Z}{l} \cos \psi_{\odot} \end{cases} \end{split}$$

редставляют собой множители, характеризующие освещенность олнцем или затененность стены и подстилающей поверхности оответственно.

Во входящих в (5) двойных интегралах удобно заменить интерирование но направлениям h и ψ интегрированием по декартоым координатам. В этом случае

$$I_{3}(z) = \int_{\psi_{1}=-\pi/2}^{\pi/2} \int_{h_{1}=-\pi/2}^{0} I_{c}^{\downarrow}(z, r) \cos^{2} h_{1} \cos \psi_{1} d \psi_{1} dh_{1} =$$

=
$$\int_{l=0}^{\infty} \int_{x=-\infty}^{\infty} \frac{zl}{(x^{2}+l^{2}+z^{2})^{2}} I_{\pi}^{\uparrow}(l) dx dl, \qquad (13)$$

или, после интегрирования по х,

$$I_{3}(z) = \int_{0}^{\infty} I_{\pi}^{\dagger}(l) \, \frac{\pi}{2} \, \frac{zl}{(z^{2}+l^{2})^{3/2}} \, dl. \tag{14}$$

Аналогично

$$I_{4}(z) = \int_{\psi_{1}=-3/2\pi}^{-\pi/2} \int_{h_{1}=0}^{h_{\max}(\psi_{1})} I_{\pi}^{\downarrow}(l, r) \sin h_{1} \cos h_{1} d\psi_{1} dh_{1} =$$
$$= \int_{z=0}^{Z} \int_{x=-\infty}^{\infty} \frac{zl}{(x^{2}+l^{2}+z^{2})^{2}} I_{c}^{\uparrow}(z) dz dx = \int_{0}^{Z} I_{c}^{\uparrow}(z) \frac{\pi}{2} \frac{zl}{(z^{2}+l^{2})^{3/2}} dz.$$
(15)

Учитывая (11)—(15) и переходя к потокам излучения $F_{\rm c}^{\dagger}(z) = \pi I_{\rm c}^{\dagger}(z); \ F_{\rm n}^{\dagger}(l) = \pi I_{\rm n}^{\dagger}; \ F_{\rm H} = \pi I_{\rm p},$ (16)

имеем систему уравнений:

$$F_{c}^{\dagger}(z) = A_{c}F_{cH} + \frac{A_{c}}{2} \int_{0}^{\infty} F_{n}^{\dagger}(l) \frac{zl}{(z^{2}+l^{2})^{3/2}} dl;$$

$$F_{n}^{\dagger}(l) = A_{n}F_{nH} + \frac{A_{n}}{2} \int_{0}^{z} F_{c}^{\dagger}(z) \frac{zl}{(z^{2}+l^{2})^{3/2}} dz.$$
 (17)

Здесь

$$F_{\rm ch} = \frac{1}{2} F_{\rm h} + C_1 \pi S \cos h_{\odot} \cos \psi_{\odot};$$

$$F_{\rm nH} = \frac{1}{2} \left(1 + \frac{l}{\sqrt{Z^2 + l^2}} \right) F_{\rm H} + C_2 \pi S \sin h_{\odot}$$
(18)

представляют собой потоки суммарной радиации, поступающе с неба на стену и на подстилающую поверхность соответственно Они могут быть рассчитаны независимо от решения нашей задачи потому будем их считать известными.

Решение системы (17) позволяет найти распределение по вы соте здания поступающей на его стены радиации и одновременн потоки радиации, поступающие на различно удаленные от здани участки подстилающей поверхности. Для этого достаточно учесть что

$$F_{\rm c}^{\dagger}(z) = A_{\rm c} F^{\downarrow}(z); \quad F_{\rm n}^{\dagger}(l) = A_{\rm n} F^{\downarrow}(l). \tag{19}$$

Для приближенного решения системы (17) следует входящие в нее интегралы заменить суммами. Для этой цели разделим зда ние по высоте z и подстилающую поверхность по поперечному се чению l на n_c и n_{π} участков соответственно. В пределах каждого из участков радиация считается постоянной и равной радиации в некоторой промежуточной точке. Тогда, например,

$$\int_{0}^{Z} F_{c}^{\dagger}(z) \frac{zl}{(z^{2}+l^{2})^{3/2}} dz = \sum_{i=1}^{n_{c}} \int_{a_{i}}^{b_{i}} F_{c}^{\dagger}(z_{i}) \frac{zl}{(z^{2}+l^{2})^{3/2}} dz \cong$$
$$\cong \sum_{i=1}^{n_{c}} F_{c}^{\dagger}(z_{i}) \int_{a_{i}}^{b_{i}} \frac{zl}{(z^{2}+l^{2})^{3/2}} dz = \sum_{i=1}^{n_{c}} F_{c}^{\dagger}(z_{i}) \left\{ \frac{l}{\sqrt{a_{i}^{2}+l^{2}}} - \frac{l}{\sqrt{b_{i}^{2}+l^{2}}} \right\}.$$
(20)

Здесь a_i и b_i — начало и конец *i*-того участка, z_i — средняя точка его.

Аналогично для подстилающей поверхности получаем

$$\int_{0}^{\infty} F_{\pi}^{\uparrow}(l) = \frac{zl}{(z^{2}+l^{2})^{3/2}} dl \simeq \sum_{i=1}^{n_{\pi}} F_{\pi}^{\uparrow}(l_{i}) \left\{ \frac{z}{\sqrt{c_{i}^{2}+z^{2}}} - \frac{z}{\sqrt{d_{i}^{2}+z^{2}}} \right\}, \quad (21)$$

где c^i , d_i и l_i аналогичны параметрам a_i , b_i и z_i .

Стены естественно делить на участки равной высоты, соответствующие, например, высоте этажа, так что

$$\Delta z = \frac{Z}{n_c}; \ a_{i+1} = b_i = i \Delta z; \ z_i = \left(i - \frac{1}{2}\right) \Delta z.$$
(22)

Подстилающую поверхность приходится делить на неравные участки, возрастающие по длине по мере удаления от стены. Нами

ри расчетах было принято такое деление, которое обеспечивало ы равное приращение в пределах участка величины

$$\frac{Z}{\sqrt{Z^2+l^2}} = \frac{1}{\sqrt{1+(l/Z^2)}}.$$

При этом

$$l_{i} = Z \sqrt{\left(\frac{n_{\pi}}{n_{\pi} - i + \frac{1}{2}}\right)^{2} - 1}$$

$$a_{i+1} = b_{i} = Z \sqrt{\left(\frac{n_{\pi}}{n_{\pi} - i}\right)^{2} - 1}, \quad (i = 1, 2, ..., n_{\pi} - 1) \quad (23)$$

$$b_{n_{\pi}} = 100Z.$$

Граничное значение $b_{n_{\Pi}}$ в (23) задается условным большим ислом 100Z, чтобы предотвратить возникновение особенностей при расчетах.

 \sqrt{y} читывая (19)—(23), получаем систему $n_c + n_{\pi}$ алгебраических уравнений, связывающих потоки радиации, отраженной от $n_c + n_{\pi}$ участков стены и подстилающей поверхности:

$$F_{c}^{\dagger}(z_{i}) - \sum_{j=1}^{n_{c}} \frac{A_{c}}{2} B_{c_{ij}} F_{n}^{\dagger}(l_{j}) = A_{c} F_{cH}; \qquad (i = 1, 2, ..., n_{c})$$

$$F_{n}^{\dagger}(l_{i}) - \sum_{j=1}^{n_{c}} \frac{A_{n}}{2} B_{n_{ij}} F_{c}^{\dagger}(z_{j}) = A_{n} F_{nH}(l_{i}); \qquad (i = 1, 2, ..., n_{n}). \quad (24)$$

где

$$B_{c \, ij} = \frac{1}{\sqrt{\left(\frac{n_c}{i-\frac{1}{2}}\right)^2 \left[\left(\frac{n_n}{n_n-j}\right)^2 - 1\right] + 1}} - \frac{1}{\sqrt{\left(\frac{n_c}{i-\frac{1}{2}}\right)^2 \left[\left(\frac{n_n}{n_n-j}\right)^2 - 1\right] + 1}};$$

$$B_{n \, ij} = \frac{1}{\sqrt{\frac{(jn_n)^2}{n_c^2 \left[\left(\frac{n_n}{n_n-i+\frac{1}{2}}\right)^2 - n_n^2\right]^{-1}}} \sqrt{\frac{(j-1)^2 n_n^2}{n_c^2 \left[\left(n_n-i+\frac{1}{2}\right)^2 - n_n^2\right]^{-1}}}}$$
(25)

характеризуют долю радиации, рассеянной *с j*-того участка подстилающей поверхности (стены), которая поступает на участок *i* сте-'ны (соответственно — подстилающей поверхности).

Решение системы (24) существенных трудностей не представляет. В силу линейности этой системы оно может быть найдено как для конкретных сроков, так и для сумм радиации за различные интервалы, в том числе и для сумм за сутки. Это зависит от спо соба задания потоков излучения с небосвода F_{ch} и F_{nh} . Подстановк их в соответствии с формулами (18) дает потоки радиации для определенного положения Солнца, т. е. определенного срока на блюдений. Используя эти формулы и данные о суточном ходе ра диации Солнца πS и потока рассеянной радиации с неба F_{h} , можно путем решения системы (24) получить потоки радиации на стену и на подстилающую поверхность для каждого срока в отдельности Некоторые оценки такого рода приведены нами в [4]. Во многих случаях, однако, наиболее важно знать не потоки за отдельные сроки, а их суточные суммы. В этих условиях целесообразнее

Рис. 2. Изменение суммарной радиации с высотой для стен северной (С), южной (Ю) и западной (З) ориентаций.

использовать в качестве величин F_{cH} и F_{IIH} соответствующие суточные суммы прямой и рассеянной радиации, данные о которых могут быть предварительно рассчитаны.

Точность, с которой система (24) аппроксимирует точную систему интегральных уравнений (17), зависит от выбранного числа участков n_c и n_n . При малом числе участков могут быть допущены существенные погрешности в расчетах. Деление же стены и подстилающей поверхности на большое число участков повышает точность расчетов, однако при этом заметно увеличивается потребное машинное время. Очевидно, что при массовых расчетах целесообразен выбор некоторого оптимального числа участков.

4. Описанный выше алгоритм расчета потоков коротковолноой радиации реализован на ЭВМ М-220. Поскольку для расчета ребуются данные потоков радиации на подстилающую поверхость и на стену заданной ориентации, была составлена програма, обеспечивающая их вычисление. При этом по часовым сумам радиации, поступающей на перпендикулярную солнечным луам поверхность (эти данные имеются в Справочнике по климату ССР [7]) с учетом астрономических (широта и склонение солна) и геометрических (высота и ориентация здания) факторов выисляются средние месячные суммы радиации за сутки. Расчет

Таблица 1

А	z/Z								
	0,0	0,1	0,3	0,5	0,7	0,9	1,0		
0,0	251	251	251	251	251	251	251		
0,2	283	284	285	286	286	286	286		
0,4	322	3 23	323	323	32 3	322	322		
0,6	371	368	365	364	362	361	361		
0,8	434	424	414	409	406	404	403		
1,0	518	494	473	462	455	450	448		

Суммарная радиация (кал/(сутки см²) на участки вертикальной поверхности южной ориентации при разных значениях альбедо стены и подстилающей поверхности (ГМС Сал-Город, сентябрь, $A_c = A_n = A$)

по указанным программам для одного месяца при заданных входных параметрах требует нескольких минут машинного времени.

Выполненные к настоящему времени расчеты показали практическую применимость изложенной методики и позволили выяснить некоторые закономерности инсоляции отдельно стоящего здания.

Приведем в качестве примера результаты расчета для ГМС Сад-Город (Владивосток) для сентября. На рис. 2 приводятся значения потоков суммарной радиации, приходящихся на стены различной ориентации для случая $A_c = A_{\pi} = 0,5$. Из рис. 2 видно, что изменение радиации с высотой существенно зависит от ориентации. Если для южной ориентации поток радиации на стену практически не зависит от высоты, то для стен западной и особенно северной ориентации эта зависимость существенна. Для западной ориентации изменение потока составляет около 10%, а для северной около 30% средних значений сумм на стену соответствующей ориентации. Это связано с тем, что стена южной ориентации в сентябре практически не затенена. Стена же северной ориентации освещена солнцем лишь небольшие интервалы времени утром и вечером, а поступление радиации от подстилающей поверхности в дневное время мало из-за ее затененности.

Таблица

Зависимость средних месячных потоков радиации (кал/(сутки см²) на стену от альбедо подстилающей поверхности и стены (ГМС Сад-Город, сентябрь, радиация осреднена по высоте здания)

A	A _n											
A C	0,0	0,2	0,4	0,6	0,8	1,0						
	Северная ориентация											
0.0	60	00	110	100	1.55	170						
0,0	69 69	90	112	133	155	1/0						
0,2	69	91	113	135	157	180						
0,4	69	91	114	136	160	183						
0,6	69	92	115	138	162	187						
0,8	6 9	92	116	140	165	192						
1,0 ~	69	92	117	142	168	196						
F_{c}^{\downarrow}	69	105	141	177	213	249						
Южная ориентация												
0,0	251	284	317	350	383	416						
0,2	251	285	320	355	390	425						
0,4	251	286	323	359	397	435						
0,6	251	288	326	364	404	445						
0,8	251	289	328	369	412	456						
1,0	251	290	331	374	420	467						
$\widetilde{F}_{c}^{\downarrow}$	251	287	323	359	395	431						
1	I	I	і і Западная (і ориентация	ł							
0,0	179	207	235	263	291	319						
0,2	179	208	237	267	296	326						
0,4	179	209	239	270	302	334						
0,6	179	210	241	274	307	341						
0,8	179	211	244	277	313	349						
1,0	179	212	246	281	319	358						
$\widetilde{F}_{c}^{\downarrow}$	179	215	251	287	3 23	359						

Заметим, что в случае больших значений альбедо стены и подстилающей поверхности вследствие многократного отражения между ними суммы радиации значительно увеличиваются на нижних участках стены. Особенно отчетливо это проявляется для стен южной ориентации, суммы радиации для которых при разных альбедо приведены в табл. 1. Из табл. 1 видно, что при больших значениях альбедо ($A_c = A_n \ge 0,5$) потоки радиации с высотой убывают в отличие от возрастания их для других ориентаций.

Основные расчеты были выполнены нами при выборе числа частков $n_c = n_{\pi} = n = 20$. С целью выяснения возможного уменьцения их количества расчеты параллельно выполнялись и для n = 10 и n = 5. Сравнение результатов показало, что различия погоков радиации при уменьшении числа участков, находятся в прецелах 1% сумм радиации и не превышают нескольких процентов всей изменчивости радиации по высоте. Насколько малы эти различия, видно, например, на рис. 2, где нанесены результаты расчегов с разными значениями n.

Более детально зависимость потоков от альбедо подстилающей поверхности и стен приводится в табл. 2 для значений радиации, осредненных по всей стене. Из табл. 2 видно, что альбедо стены сравнительно мало сказывается на потоках радиации на стену. Зависимость же этих потоков от альбедо подстилающей поверхности велика. Средние потоки при больших $A_{\rm m}$ в 1,5—2 раза превышают потоки при малых $A_{\rm m}$.

В табл. 2 приводятся также значения

$$\widetilde{F}_{c}^{\downarrow} = \pi S_{1} + \frac{1}{2} F_{H} + \frac{1}{2} A_{\Pi} Q, \qquad (26)$$

где πS_1 — поток прямой радиации на стену, $F_{\rm H}$ — рассеянная радиация неба, Q — суммарная радиация на горизонтальную поверхность.

Формула (26) соответствует использованной З. И. Пивоваровой [5] методике расчета суммарной радиации на вертикальную поверхность. Сравнение этой величины с рассчитанными при учете затенения и многократного отражения показало, что различия их сравнительно невелики при малых значениях $A_{\rm II}$. В частности при принятых в [5] значениях $A_{\rm II}$ =0,2, эти различия составляют для южной ориентации менее 1%, а для западной —3%. Исключение составляет северная ориентация, для которой влияние указанных эффектов велико и различие достигает 15%. Поэтому представляется, что использование предложенной в [5] методики является в большинстве случаев оправданным. Однако в условиях больших альбедо подстилающей поверхности, характерных, например, для зимнего периода, использование формулы (26) приводит к значительным ошибкам в потоках радиации. В таких условиях целесообразно расчеты вести по предложенной выше методике.

Разумеется, с точки зрения планирования городской застройки наиболее важно знать потоки радиации, поступающей на здание. Однако практический интерес представляет оценка потоков и на подстилающую поверхность, которая при расчетах по указанной методике производится попутно. На рис. З видно, что наличие здания по-разному сказывается на потоках радиации, поступающих на подстилающую поверхность с различных сторон его.

Перед стеной северной ориентации сильно сказывается эффект затенения зданием. Соответственно радиация на горизонтальную поверхность сильно возрастает по мере удаления от здания. Перед стеной западной ориентации этот эффект, естественно, сказывается в меньшей мере. Что касается подстилающей поверхности перед стеной южной ориентации, то она практически зданием не затеняется. В силу этого здесь проявляется почти в чистом виде эффект многократного отражения между стеной и подстилающей поверхностью. В связи с этим подстилающая поверхность вблизи южной стены получает радиации больше, чем на удалении от нее.

Влияние здания прослеживается до расстояний в несколько раз больших, чем его высота. Заметим, что для дачного месяца подстилающая поверхность перед зданием северной ориентации

Рис. 3. Изменение суммарной радиации на подстилающей поверхности с удалением от стен северной (C), южной (Ю) и западной (3) ориентаций. (ГМС Сад-Город, сентябрь, $A_c = A_{it} = 0,5$.)

уже при l=Z получает практически полную сумму радиации. Это связано со сравнительно малой длиной тени в околополуденные часы.

В табл. З приводятся значения потоков радиации на участок подстилающей поверхности, для которого l=0,39Z при разных значениях A_c и A_{π} . Из табл. З видно, что в отличие от потоков на стену потоки на подстилающую поверхность сравнительно мало зависят от ее альбедо, но заметно зависят от альбедо стены.

Таким образом, предложенная методика позволяет уже в настоящее время рассчитывать потоки коротковолновой радиации на отдельно стоящее здание с учетом затенения подстилающей по-

Таблица З

Зависимость средних месячных потоков суммарной радиации (кал/(сутки см²) для подстилающей поверхности от A_c и A_{Π} (ГМС Сад-Город, сентябрь, l = 0.39 Z)

4		А _п								
°с	0,0	0,2	0,4	0,6	0,8	1,0				
		(Северная ор	иентация						
0,0	95	95	95	95	95	95				
0,2	100	101	102	104	105	106				
0,4	104	107	110	112	115	118				
0,6	108	113	117	121	126	130				
0,8	113	118	124	130	137	143				
1,0	117	124	132	140	148	157				
	. 1	L		· · ·	I					
			Южная ор	иентация						
0,0	318	318	318	318	318	318				
0,2	334	336	338	340	343	345				
0,4	350	354	359	363	368	373				
0,6	36 6	373	380	387	395	403				
0,8	382	391	401	412	422	434				
1,0	398	410	423	437	451	466				
	1	· ·	1	. 1						
		3	ападная о р	иентация		ų.				
0,0	245	245	245	245	245	245				
0,2	256	258	260	262	264	266				
0,4	268	272	276	279	283	287				
0,6	279	285	291	297	304	310				
0,8	291	299	307	316	324	334				
1,0	302	312	323	334	346	358				
	1	1								

верхности и многократного отражения между стеной и подстилающей поверхностью. В результате оказывается возможным получение зависимости потоков радиации от высоты здания, а также более корректный расчет для больших альбедо подстилающей поверхности.

Эта методика практически реализована для случая изотропности диффузной радиации. Однако при наличии данных о распределении радиации по небосводу и об отражательной способности стен и подстилающей поверхности она может быть обобщена и на случай отсутствия изотропности.

- 1. Айзенштат Б. А. Метод расчета составляющих радиационного баланс горной долины. — «Тр. САНИГМИ», 1964, вып. 18(33), с. 3-47.
- 2. Кондратьев К. Я., Манолова М. П. К вопросу о приходе рассеянной и суммарной радиации на поверхности склона. — «Метеорология и гид рология», 1955, № 6, с. 31—34.
- 2. Кондратьев К. Я., Манолова М. П. Дневной ход и дневные суммы рассеянной и суммарной радиации на различно ориентированных скло нах. — «Вестн. Л́ГУ», 1958, № 4, с. 5—16.
- 4. Қаган Р. Л., Клягина Л. П. Упрощенный способ вычисления потоков суммарной радиации на отдельно стоящее здание. (см. в наст. сб.).
- 5. Пивоварова 3. И. Оценка суммарного прихода коротковолновой радиа ции на стены зданий. «Тр. ГГО», 1967, вып. 209, с. 22—43.
- 6. Пивоварова З. И. Облучение стен зданий солнечной радиацией в различных географических районах. — «Тр. ГГО», 1969, вып. 250, с. 23—49. 7. Справочник по климату СССР. Ч. 1, вып. 26. Л., Гидрометеоиздат, 1966.

Р. Л. КАГАН, Л. П. КЛЯГИНА

УПРОЩЕННЫЙ СПОСОБ ВЫЧИСЛЕНИЯ ПОТОКОВ СУММАРНОЙ РАДИАЦИИ НА ОТДЕЛЬНО СТОЯЩЕЕ ЗДАНИЕ

1. Как показано в [1], расчет потоков коротковолновой радиации на стену отдельно стоящего здания F_{c}^{\downarrow} и на горизонтальную подстилающую поверхность перед ним F_{n}^{\downarrow} сводится для случая изотропности диффузной радиации к решению системы интегральных уравнений:

$$F_{c}^{\downarrow}(z) = F_{cH} + \frac{A_{\Pi}}{2} \int_{0}^{\infty} F_{\Pi}^{\downarrow}(l) \frac{zl}{(z^{2} + l^{2})^{3/2}} dl;$$

$$F_{\Pi}^{\downarrow}(l) = F_{\Pi H}(l) + \frac{A_{c}}{2} \int_{0}^{Z} F_{c}^{\downarrow}(z) \frac{zl}{(z^{2} + l^{2})^{3/2}} dz.$$
 (1)

Здесь A_c и A_n — альбедо стены и подстилающей поверхности, z — высота участка стены, Z — полная высота здания, l — расстояние участка подстилающей поверхности от здания, F_{ch} и $F_{nh}(l)$ — потоки суммарной радиации, поступающие с неба на стену и на подстилающую поверхность. Они определяются формулами:

$$F_{cH} = \frac{1}{2} F_{H} + F_{c_{\Theta}};$$

$$F_{\pi H}(l) = \frac{1}{2} \left(1 + \frac{l}{\sqrt{Z^{2} + l^{2}}} \right) F_{H} + F_{\pi_{\Theta}}(l), \qquad (2)$$

где $F_{\rm H}$ обозначает поток рассеянной радиации с неба (приближенно считается, что он не зависит от свойств подстилающей поверхности); $F_{\rm c}$ и $F_{\rm n}$ — потоки прямой радиации:

$$F_{c\odot} = \begin{cases} \pi S \cos h_{\odot} \cos \psi & \text{при } \cos \psi > 0; \\ 0 & \text{при } \cos \psi < 0; \end{cases}$$
(3)

$$F_{\pi_{\odot}} = \begin{cases} \pi S \sin h_{\odot} & \text{при tg } h_{\odot} \geqslant -\frac{Z}{l} \cos \psi; \\ 0 & \text{при tg } h_{\odot} < -\frac{Z}{l} \cos \psi; \end{cases}$$

 h_{\odot} — высота Солнца; $\psi = \psi_{\odot} - \psi_n$, где ψ_{\odot} — азимут Солнц, а ψ_n — азимут нормали к стене; πS представляет собой пото прямой радиации Солнца на перпендикулярную поверхность.

Система (1) может решаться при произвольном задании вхо дящих в нее параметров h_{\odot} , ψ_{\odot} , πS , $F_{\rm H}$, $A_{\rm c}$ и $A_{\rm n}$. Решение за дачи, однако, может быть упрощено, если учесть, что эта систем линейна относительно потоков радиации. Следовательно, если раз делить последнюю на радиацию рассеянную, прямую радиацию н стену и прямую радиацию на подстилающую поверхность, можн рассматривать общее решение системы (1) как сумму решений полученных для каждой из этих трех составляющих в отдель ности.

Таким образом:

$$F_{c}^{\downarrow} = F_{\pi} \varphi_{c}^{I} + F_{c\odot} \varphi_{c}^{II} + \pi S \cos \hbar_{\odot} \varphi_{c}^{II};$$

$$F_{\pi}^{\downarrow} = F_{\pi} \varphi_{\pi}^{I} + F_{c\odot} \varphi_{\pi}^{II} + \pi S \sin \hbar_{\odot} \varphi_{\pi}^{III}.$$
(5)

$$\begin{split} \varphi_{\rm c}^{\rm I} & {\rm i} \quad \varphi_{\rm n}^{\rm I} - {\rm pethehue} \quad {\rm системы} \quad (1) \quad {\rm при} \quad F_{\rm H} = 1; \quad F_{\rm c} \odot = F_{\rm n} \odot = 0; \\ \varphi_{\rm c}^{\rm II} & {\rm i} \quad \varphi_{\rm n}^{\rm II} - {\rm pethehue} \quad {\rm ee} \quad {\rm при} \quad F_{\rm H} = 0; \quad F_{\rm c} \odot = 1; \quad F_{\rm n} \odot = 0; \\ \varphi_{\rm c}^{\rm III} & {\rm i} \quad \varphi_{\rm n}^{\rm III} - {\rm прu} \quad F_{\rm H} \odot = F_{\rm c} \odot = 0; \quad F_{\rm n} \odot = \begin{cases} 1 \quad {\rm прu} \quad {\rm tg} \quad h \odot \gg \frac{Z}{l} \cos \varphi; \\ 0 \quad {\rm пpu} \quad {\rm tg} \quad h \odot < -\frac{Z}{l} \cos \varphi. \end{cases} \end{split}$$

Для заданных значений альбедо A_c и A_{π} задача сводится к трехкратному решению системы (1), после чего для любых h_{\odot} , $\psi \pi S$ и F_{π} решение получается как линейная комбинация трех частных решений.

Настоящая статья посвящена реализации указанного подхода. При этом для решения системы интегральных уравнений (1) используется описанный в [1] приближенный метод, сводящийся к замене ее системой алгебраических уравнений. Как показано в [1], обеспечиваемая при этом точность является удовлетворительной даже при делении каждой из областей интегрирования в (1) на 5 интервалов. Авторами при расчете использовалось по 20 интервалов интегрирования, что обеспечиваемо получение искомой величины с погрешностью, не превышающей доли процента. Полученные частные решения $\varphi_c(z)$ и $\varphi_{\rm m}(l)$ анализируются с целью выяснения их зависимости от аргументов и альбедо стены и подстилающей поверхности. Делается попытка графического и аналитического представления этих решений.

2. Наиболее простой является структура функций ϕ_{c}^{l} и ϕ_{π}^{l} , характеризующих потоки на стену и подстилающую поверхность

120

j

Таблица 1

^A c									
	0,0	0,1	0,3	0,5	0,7	0,9	1,0		
0,0	0,50	0,54	0,62	0,69	0,77	0,85	0,89		
0,1	0,50	0,54	0,62	0,70	0,78	0,86	0,90		
0,3	0,50	0,54	0,62	0,71	0,79	0,88	0,92		
0,5	0,50	0,54	0,63	0,71	0,80	0,89	0,94		
0,7	0,50	0,54	0,63	0,72	0,82	0,91	0,96		
0 ,9	0,50	0,54	0,64	0,73	0,83	0,93	0,99		
1,0	0,50	0,54	0,64	0,73	0,84	0,94	1,00		

Зависимость от альбедо средних по стене значений функции $\varphi_{L}^{l}(z)$

а счет рассеянной радиации неба. Рассмотрение функции ф^с показывает, что она зависит как от альбедо стены и подстилающей коверхности, так и от высоты рас-

матриваемого участка стены. В касстве примера в табл. 1 приводятосредненные по высоте стены ŚЯ начения этой функции при различных сочетаниях альбедо (Ас и Ап). Из табл. 1 видно, что ф¹ при фиксированном значении A_c практиіески линейно зависит от A_п. При риксированных значениях A_п завиимость ϕ_c^1 от Ас также линейна, хотя диапазон изменения потока рациации на стену оказывается в несколько раз меньше, чем при изиенениях Ac. Подобная линейная зависимость потока от альбедо отдля стены мечается не толыко з среднем, но и для каждого из ее участков. При этом влияние альбето оказывается минимальным на нижней части и максимальным на верхней части стены. Рассмотрение радиации зависимости потока OT высоты показывает, ЧТО потоки высотой на стену С возрас-

Рис. 1. Изменение φ_{c}^{I} с высотой, рассчитанное по формулам: I - (6), 2 - (7), 3 - (8). Кривая $I - A_{\pi} = 1, A_{c} = 0, II - A_{c} = 0, 5$.

тают. Это происходит вследствие уменьшения влияния затененности подстилаюшей поверхности по мере удаления от нее. В качестве примера на рис. 1 приводится зависимость φ_c^I от высоты для различных сочетаний альбедо. Как видно из рис. 1, зависимость $\varphi_c^{I}(z)$ существенно нелинейна. Однако оказывается вс можным приближенно описать эту зависимость полиномом вторс степени. В частности, при $A_n = 1$, $A_c = 0$ удовлетворительные р зультаты дает формула

$$\Phi_{\rm c}^{\rm I}(z)|_{\substack{A_{\rm c}=0\\A_{\rm n}=1}} = 0,76 + 0,38\left(\frac{z}{Z}\right) - 0,20\left(\frac{z}{Z}\right)^2. \tag{1}$$

Соответствующие этой формуле значения представлены н рис. 1 линией 1. Там же нанесена и зависимость вида

$$\varphi_{c}^{I}(z)|_{A_{c}=0,5} = 0,68 + 0,10 \left(\frac{z}{Z}\right) - 0,05 \left(\frac{z}{Z}\right)^{2}.$$
 (

Учитывая эти зависимости, а также упомянутую выше зависимость от альбедо, оказывается возможным построение общей формулы вида

$$\phi_{\rm c}^{\rm I}(z) = 0.5 + A_{\rm n}[\lambda(z) + A_{\rm c}[0.5 - \lambda(z)]], \qquad (8)$$

где

$$\lambda(z) = 0.26 + 0.38 \left(\frac{z}{Z}\right) - 0.20 \left(\frac{z}{Z}\right)^2,$$

которая численно описывает влияние разных факторов на освещенность стены за счет рассеянной радиации неба. Очевидно, что в условиях облачного неба эта формула, в рамках нашего приближения, полностью описывает потоки коротковолновой радиации на стену в долях от радиации неба $F_{\rm H}$. Сравнение оценок по формуле (8) с точными значениями величины $\psi_{\rm I}^{\rm I}$ показывает, что разлиия между ними не превышают 0,03 для нижних участков стены, в большинстве случаев находятся в пределах 0,01.

Пользуясь формулой (8), нетрудно соответствующие зависиости изобразить графически. На рис. 2 представлена номограмма, оторая может быть использована для расчета φ_c^I . Поясним ользование этой номограммой на примере расчета для значений ходных параметров z=0,25 Z, $A_c=0,4$, $A_n=0,6$. Первоначально а левой части номограммы определяется точка M, соответствуюцая заданной высоте (отсчитывается по нижней шкале) и альбедо гены. В этой части номограммы нанесены изолинии, соответствую-

Таблица 2

л —										
A c	0,0	0,1	0,3	0,5	0,7	0,9	1,0			
0,0	0,81	0,81	0,81	0,81	0 ,81	0,81	0,81			
0,1	0,82	0,82	0,82	0,83	0,83	0,83	0,84			
0,3	0,84	0,84	0,85	0,85	0,86	0,86	0,87			
0,5	0,86	0,86	0,87	0,88	0,89	0,90	0,91			
0,7	0,88	0,88	0,90	0,91	0,92	0,93	0,94			
0,9	0,90	0,90	0,92	0,94	0,95	0,97	0,98			
1,0	0,91	0,91	0,93	0,95	0,97	0,99	1,00			
		1	1	1						

Зависимость от альбедо значений $\varphi_n^{I}(0,8Z)$

цие фиксированным значениям A_c . Из точки M проводится линия, параллельная оси абсцисс. Далее на этой линии определяется точка N, соответствующая выбранному значению альбедо подстипающей поверхности (правая нижняя шкала). Значение ψ_c^I отсчитывается путем интерполяции между изолиниями φ_c^I , нанесенными в этой части номограммы. В нашем случае φ_c^I составляет 0.74.

Рассмотрение φ_n^I показывает, что зависимость ее от A_c и A_{π} гакже почти линейна. Это хорошо видно, например, по данным габл. 2, в которой приводятся значения этой функции для участка подстилающей поверхности, расположенного на удалении l=0,8 Z от стены. На рис. 3 представлена зависимость φ_n^I от расстояния l для различных сочетаний A_c и A_{π} . Из рис. 3 видно, что поток на подстилающую поверхность увеличивается по мере удаления от стены и на расстоянии в 3 раза большем высоты здания практически равен потоку рассеянной радиации неба ($\varphi_n^I = 1$).

Для случая отсутствия отражения от стены и подстилающей поверхности ($A_c = A_{\pi} = 0$) нетрудно получить формулу

$$\varphi_{\pi}^{I}(l)\Big|_{\substack{A_{c} = 0 \\ A_{\pi} = 0}} = 0.5 \left(1 + \frac{l/Z}{\sqrt{1 + (l/Z)^{2}}}\right), \tag{9}$$

Входящая в формулу (9) величина

собой косинус угла закрытости горизонта зданием для рассматри ваемого участка подстилающей поверхности. Оказывается, что до полнительный вклад отражения от стен (а также многократног отражения от стены и подстилающей поверхности) приблизители

представля

Рис. 3. Изменение функции φ_{Π}^{I} с удалением от стены. Кривая $I - A_{c} = A_{\Pi} = 0; II - A_{c} = 1; A_{\Pi} = 0; III - A_{c} = 1.0; A_{\Pi} = 0.5.$ I -расчет по формулам (9) - (11), 2 - точное решение для случая III.

но пропорционален дополнению этой величины до единицы. В ча стности, при $A_c=1$, $A_{\pi}=0$ имеем

$$\Phi_{\mathbf{n}}^{\mathbf{I}}(l)\Big|_{\substack{A_{\mathbf{c}}=1,0\\A_{\mathbf{n}}=0,0}} = \Phi_{\mathbf{n}}^{\mathbf{I}}(l)\Big|_{\substack{A_{\mathbf{c}}=0\\A_{\mathbf{n}}=0}} + \frac{1}{4}\left(1 - \frac{l/Z}{\sqrt{1+(l/Z)^2}}\right).$$
(10)

Соответствующие этой формуле значения φ_{π}^{I} даны на рис. линией I. Там же представлены линии, соответствующие значениям. $\varphi_{\pi}^{I}(l)$ при $A_{c} = I$ и $A_{\pi} = 0.5$, а также приближенной формуле

$$\varphi_{\pi}^{I}(l)\Big|_{\substack{A_{c}=1,0\\A_{\pi}=0,5}} = \varphi_{\pi}^{I}(l)\Big|_{\substack{A_{c}=0\\A_{\pi}=0}} + \frac{3}{8}\left(1 - \frac{l/Z}{\sqrt{1 + (l/Z)^{2}}}\right).$$
(11)

Учитывая формулы (9—11) и линейную зависимость от $A_{\rm c}$ и $A_{\rm m}$ можно построить аппроксимационную формулу вида

$$\varphi_{n}^{I}(l) = 0.5 \left(1 + \frac{l/Z}{\sqrt{1 + (l/Z)^{2}}} \right) + 0.25A_{c}(1 + A_{n}) \left(1 - \frac{l/Z}{\sqrt{1 + (l/Z)^{2}}} \right).$$
(12)

Из этой формулы видно, что изменение альбедо стены оказывает более существенное влияние на потоки радиации на подстилающую поверхность, чем изменение альбедо самой подстилаю-

цей поверхности. Так, например, при увеличении A_c от 0,1 до 0,3 горой член формулы увеличивается в 3 раза, а при таком же увеичении A_{π} этот член увеличивается лишь на 20%.

Расчеты по этой формуле показали, что погрешность ее также аходится в пределах 0,01. Такие расчеты могут быть выполнены помощью представленной номограммы (рис. 4). Для определеия величины потока радиации в долях от F_н нужно задать вход-

ные параметры. Для примера зададим следующие значения параметров: $A_c=0,4$, $A_{\pi}=0,6$, l=0,8 Z. Из соответствующей A_c точки на оси абсцисс проведем перпендикуляр до пересечения в точке M с линией соответствующей заданному значению A_{π} , а затем параллельно оси абсцисс проводим прямую до точки N, находящейся на пересечении с перпендикуляром, проведенным из точки нижней шкалы, соответствующей рассматриваемому участку подстилающей поверхности. Значения потока φ_n^1 находятся путем интерполяции между изолиниями. В нашем случае оно равно 0,87.

3. Анализ функций ϕ_c^{II} и ϕ_n^{II} показывает, что они также с удовлетворительной точностью могут быть аппроксимированы простыми формулами вида

$$\Phi_{\rm c}^{\rm II}(z) = 1 + \left[0,28 - 0,48 \left(\frac{z}{Z}\right) + 0,26 \left(\frac{z}{Z}\right)^2\right] A_{\rm c} A_{\rm m},\tag{13}$$

$$A_{\rm c}' = A_{\rm c} \left[1 - \frac{l/Z}{\sqrt{1 + (l/Z)^2}} \right].$$

Из этих формул видно, что потоки на стену возрастают за сче поступления на нее повторно отраженной от подстилающей по

радиации. Этот эđ верхности естественно. фект. проявляетс сильнее всего на нижних уча стках стены и уменьшается п мере удаления от подстилающе поверхности. Практически превы φ^{II} над единицей дости шение гает заметных величин лишь пр больших значениях альбедо сте ны и подстилающей поверхност и при обычно использующихс значениях Ас=Ап<0,5 не превы шает 6%. Это хорошо видно и н рис. 5, на котором представлен зависимость $\varphi_c^{\hat{\Pi}}$ от альбедо дл крайних участков стены и ее се редины.

(14

На рис. 6 представлены ана логичные зависимости от альбе φ^{II}, характеризу до величины ющей поступление на различные vчастки подстилающей поверх ности, отраженной OT стень радиации (кривые 1). Ha

рис. 6 приведены также кривые 2, соответствующие случаю $A_{\rm n}=0$, характеризующие вклад радиации, первично отраженной от стены. Поступление на подстилающую поверхность отраженной от стены радиации быстро уменьшается по мере удаления от последней и уже на расстоянии l=1,5 Z даже при максимальных значениях альбедо не превышают 10% потока на стену. При обычно встречающихся значениях альбедо $\psi_{\rm n}^{\rm H}$ на таких расстояния ливерсион мала.

Расчет величин φ_c^{II} и φ_n^{II} может быть выполнен графически с помощью номограмм (рис. 7, 8), аналогичных рассмотренным выше, на которых для пояснения способа их использования дан пример, соответствующий случаю $A_c = 0.4$, $A_{\pi} = 0.6$, z = 0.25 Z, l = 0.8 Z. Для приведенного примера $\varphi_c^{II} = 1.04$ (рис. 7), $\varphi_n^{II} = 0.07$ (рис. 8).

Наибольшие трудности представляет аналитическая аппроксимация ψ_c^{III} и ψ_n^{III} , характеризующих потоки на стену и на подстилающую поверхность за счет облучения последней. Эти

рудности связаны с тем, что, вообще говоря, подстилающая поерхность может быть освещена не вся вследствие затенения стеюй части ее. В зависимости от высоты Солнца и его азимута длита тени может быть различной, что, конечно, сказывается на поюках радиации. Именно, чем больше длина тени, тем меньше

Рис. 6. Зависимость φ_{Π}^{II} от альбедо на разном удалении *I* от стены. $I - \operatorname{при} A_{C} = A_{\Pi} = A; 2 - \operatorname{прu} A_{\Pi} = 0$.

влияние подстилающей поверхности на освещение стены, а такж дополнительное освещение подстилающей поверхности за сче повторного отражения. Сравнительно простые формулы получа ются лишь для случая отсутствия затененности подстилающей по

верхности, что бывает при |φ⊙-φ_п|< $\frac{\pi}{2}$. В этом случае

$$\Phi_{\rm c}^{\rm III}(z) = 0.5 A_{\rm n} \left[1 + A_{\rm c} A_{\rm n} \Delta \left(\frac{z}{Z} \right) \right],$$

$$\Delta \left(\frac{z}{Z} \right) = 0.30 - 0.48 \left(\frac{z}{Z} \right) + 0.24 \left(\frac{z}{Z} \right)^2;$$

$$(15)$$

гле

$$\varphi_{\pi}^{\text{III}}(l) = 1 + 0.30 \left[1 - \frac{(l/Z)}{\sqrt{1 + (l/Z)^2}} \right] A_{\text{c}} A_{\pi}.$$
(16)

Из этих формул видно, что если зависимость φ_c^{III} от A_c носит линейный характер и сравнительно слабая, то зависимость от $A_{\rm m}$ характеризуется полиномом второй степени. Наиболее существенно влияет подстилающая поверхность на стену при больших A_c и $A_{\rm m}$, когда для нижних участков стен ψ_c^{III} достигает 30% поступающей на подстилающую поверхность радиации. Однако для более высоких участков стены значения φ_c^{III} быстро убывают и для верхней половины стены не превышают нескольких процентов. Аналогично дополнительное облучение подстилающей поверхности, которое вблизи стены при $A_c = A_{\rm m} = 1$ составляет около 30%, на расстоянии, равном Z, уменьшается примерно в 4 раза. В случае, когда $|\phi_{\odot} - \phi_{\pi}| > \frac{\pi}{2}$, часть дороги затенена. Обозначим о расстояние от стены, на котором оканчивается тень. Очевидно,

$$l_0 = -Z \frac{\cos \psi}{\operatorname{tg} h_{\odot}}.$$
 (17)

Зависимость от величины l_0 потоков на стену и на подстилаюцую поверхность, образующихся за счет отражения, может быть эписана формулами такой структуры:

$$\varphi_{\rm c}^{\rm III}(z, \ l_0) = 0.5 A_{\rm n} [1 + A_{\rm n} A_{\rm c} f_{\rm c}(z, \ l_0)]; \qquad (18)$$

$$\varphi_{\pi}^{\text{III}}(l, l_0) = \begin{cases} 1 + A_c A_n f_{\pi}(l, l_0) & \text{при } l_0 \leq l; \\ A_n A_c f_{\pi}(l, l_0) & \text{при } l_0 > l, \end{cases}$$
(19).

где f_c и f_{π} характеризуют дополнительное освещение стены и дороги соответственно за счет отражения при $A_{\pi} = A_c = 1$. Зависимость этих величин от их аргументов представлена на рис. 9, 10.

Рис. 9. Номограмма для определения fc-

4. Приведенные частные рещения задачи позволяют оценивать. потоки радиации для случая открыто стоящего здания при любом сочетании входных параметров.

В качестве примера найдем потоки радиации, поступающие на стены зданий северной и южной ориентации в сентябре во Владивостоке для 12 ч 30 мин среднего солнечного времени. Для этой цели воспользуемся приведенными в Справочнике по климату СССР [2] данными для ГМС Сад-Город, из которых следует, что интенсивность радиации в этот срок на перпендикулярную поверхность πS равна 0,70 кал/(мин·см²), поток радиации с неба $F_{\rm H}$ =0,29 кал/(мин·см)², а высота Солнца на 15-е число для этого срока составляет h_{\odot} =48,9°. Азимут Солнца (отсчитываемый по

129.

часовой стрелке от южного направления) определяется по известной формуле

$$\psi_{\odot} = \arcsin\left(\frac{\cos\delta\sin\theta}{\cos h_{\odot}}\right),\tag{20}$$

где δ — склонение Солнца, а θ — часовой угол Солнца, отсчитывε емый от момента истинного полудня.

В нашем случае $\psi_{\odot} = 13,1^{\circ}$, следовательно, стена южной ориен тации и подстилающая поверхность перед ней полностью освещени Солнцем, т. е. $l_0 = 0$. Стена северной ориентации и часть подсти

Рис. 10. Номограмма для нахождения $f_{\rm II}$.

лающей поверхности перед ней затенены. В соответствии с формулой (17)

$$l_0 = -Z \frac{\cos(13,1^\circ - 180^\circ)}{\text{tg (48,9^\circ)}} = 0,85Z.$$

Для южной ориентации потоки прямой радиации в соответстствии с формулами (3), (4) составляют:

$$F_{c\odot} = 0,70 \cos (48,9^\circ) \cos (13,1^\circ) = 0,45 \ \text{кал/(мин \cdot см}^2);$$

 $F_{\pi\odot} = 0,70 \sin (48,9^\circ) = 0,52 \ \text{кал/(мин \cdot см}^2).$

Для северной ориентации $F_{c} \odot = 0$ и $F_{n} \odot$ при l < 0.85 Z также равна нулю. При $l \ge 0.85 Z$ поток $F_{n} \odot = 0.52$ кал/(мин·см²).

Опишем детально последовательность расчета потока радиации для стены на высоте z=0,25Z и для подстилающей поверхности на

расстоянии l=0,8Z от стены при $A_c=0,4$, $A_{\pi}=0,6$. При этом учтем, іто, как было показано выше, $\varphi_c^{I}=0,74$ (см. рис. 3), $\varphi_{\pi}^{I}=0,87$ (см. рис. 4), $\varphi_c^{II}=1.04$ (см. рис. 7), $\varphi_{\pi}^{II}=0,07$ (см. рис. 8). Пользуясь рис. 9, 10 и формулами (18), (19), оценим также φ_c^{III} и φ_{π}^{III} . Гак, из рис. 9 получаем для стены южной ориентации ($l_0=0$) при z=0,25Z:

$$f_{n}(0,25Z; 0) = 0,15;$$

 $\varphi_{c (\text{tor})}^{\text{III}} = 0,5 \cdot 0,6(1+0,6 \cdot 0,4 \cdot 0,15) = 0,311.$

Соответственно из рис. 10 имеем:

$$f_{\rm n}(0,8Z; 0) = 0,10,$$

 $\varphi_{\rm n\,(\rm for)}^{\rm III} = 1 + 0,4 \cdot 0,6 \cdot 0,10 = 1,024.$

Аналогично для стены северной ориентации:

$$f_{\rm c}(0,25Z; 0,85) = 0,07;$$

 $\varphi_{\rm c\,(ceBeD)}^{\rm III} = 0,5\cdot0,6(1+0,4\cdot0,6\cdot0,07) = 0,305,$

для подстилающей поверхности перед ней:

$$f_{\pi}(0,8Z; 0,85) = 0,06,$$

 $f_{\pi}^{III}_{(CEBEP)} = 0,6 \cdot 0,4 \cdot 0.06 = 0,014.$

В итоге получим для южной ориентации в соответствии с формулой (5):

$$\begin{split} F^{\downarrow}_{\rm c}(0,25Z) &= 0,29 \cdot 0,74 + 0,45 \cdot 1,04 + 0,52 \cdot 0,31 = 0,84 \quad \text{кал/(мин \cdot см^2)},\\ F^{\downarrow}_{\rm n}(0,8Z) &= 0,29 \cdot 0,87 + 0,45 \cdot 0,07 + 0,52 \cdot 1,02 = 0,81 \quad \text{кал/(мин \cdot см^2)}. \end{split}$$

Таблица З.

Средние потоки коротковолновой радиации на стену и подстилающую поверхность ГМС Сад-Город (Владивосток), на 12 ч 30 мин 15 сентября $A_c = 0.4$, $A_n = 0.6$

z	<i>F</i> [↓] _c при	ориентации	ı	F_{Π}^{\downarrow} при ориентации		
Z	южной	северной	Ż	южной	северной	
0,05	0,83	0,36	0,4	0,83	0,24	
0,25	0,84	0,37	0,8	0,82	0,26	
0,50	0,84	0,38	1,2	0,81	0,79	
0,75	0.84	0,38	1,6	0,81	0,80	
0,95	0,84	0,38	∞	0,81	0,81	
\widetilde{F}	0,83	0,38		0,81	0,81	
	1	1	1	1		

Для северной ориентации:

$$F_{c}^{\downarrow}(0,25Z) = 0,29 \cdot 0,74 + 0,52 \cdot 0,305 = 0,37$$
 кал/(мин см²),
 $F_{c}^{\downarrow}(0,8Z) = 0,29 \cdot 0,87 + 0,52 \cdot 0,014 = 0,26$ кал/(мин см²).

Аналогично могут быть выполнены расчеты и для других зна чении Z и l. Некоторые результаты их приводятся в табл. 3, из ко торой видно, что для рассмотренного случая поток радиации на стену практически от высоты не зависит. Поток радиации на под стилающую поверхность существенно зависит от удаления о стены для северной ориентации и практически не зависит от него для стены южной ориентации.

В нижней строке табл. З приведены для сравнения потоки, рас считанные по обычно используемым формулам:

$$F_{c}^{\downarrow} = 0.5F_{H} + F_{c_{\odot}} + 0.5A_{\pi}F_{\pi_{\odot}},$$
$$\widetilde{F}_{\pi}^{\downarrow} = F_{H} + F_{\pi_{\odot}}.$$
(21)

Сравнение величин F_c^{\downarrow} и \tilde{F}_c^{\downarrow} показывает, что для нашего случая они достаточно близки как для южной, так и для северной ориентации.

СПИСОК ЛИТЕРАТУРЫ

 Каган Р. Л.. Клягина Л. П. К методике расчета потоков коротковолновой радиации на отдельно стоящее здание (см. наст. сб.).
 Справочник по климату СССР. Ч. 1, вып. 26. Л., Гидрометеоиздат, 1966.