

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной океанографии и комплексного управления

прибрежными зонами

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

«Межгодовая изменчивость компонентов карбонатной системы Норвежского и восточной части Гренландского морей»

Исполнитель: Коврова Евгения Алексеевна

Руководитель: кандидат географических наук,

Хаймина Ольга Владимировна

«К защите допускаю»

И.о. заведующего кафедрой

(подпись)

Кандидат географических наук

(ученая степень, ученое звание)

Хаймина Ольга Владимировна

(фамилия, имя, отчество)

« Of all 20lf.

г. Санкт-Петербург

Оглавление

		Стр.
	Введение	4
1	Район и объект исследования	6
1.1	Физико-географическая характеристика Норвежского и	
	Гренландского морей	6
1.2	Гидрохимический режим Норвежского и Гренландского	
	морей	9
1.3	Карбонатная система океана	11
2	Материалы и методы	19
2.1	Характеристика исходных данных	19
2.2	Семейство расчётных программ CO2SYS	25
2.3	Анализ чувствительности системы к константам	
	диссоциации угольной кислоты	29
2.4	Графический и статистический анализ данных	33
3	Результаты анализа межгодовой изменчивости	
	компонентов карбонатной системы Норвежского и	
	восточной части Гренландского морей	35
3.1	Анализ межгодовой изменчивости компонентов	
	карбонатной системы в точке корабля погоды М	35
3.2	Анализ пространственно-временной изменчивости	
	копмонентов карбонатной сисстемы в районе северного	
	разреза	46
3.3	Анализ соответствия тенденций межгодовой	
	изменчивости компонентов карбонатной системы	
	Норвежского и Гренландского морей	59
	Заключение	63

Список использованной литературы	65
Приложение А. Линейные тренды в межгодовой	
изменчивости гидрологических характеристик и	
компонентов карбонатной системы исследуемого района	69

Введение

В XXI веке проблема закисления Мирового океана становится всё более и более острой [1, 2, 3, 4]. Обнаружено, что акватория Северного Ледовитого океана является потенциальным источником углекислого газа для атмосферы, что делает изучение карбонатной системы в этом районе важным направлением исследований.

Обширный материал экспедиционных исследований накапливается в постоянно пополняемых открытых для общего доступа базах данных, например, архив GLODAPv2.2022. Этот архив включает результаты наблюдений 1085 научных экспедиций, прошедших по всему Мировому океану с 1972 по 2021 год в рамках таких исследовательских проектов, как CARbon dioxide IN the Atlantic Ocean (CARINA) (Двуокись углерода в Атлантическом океане); Carbon dioxide in the Pacific Ocean (PACIFICA) (Двуокись углерода в Тихом океане); GLOBAL OCEAN DATA ANALYSIS PROJECT (GLODAP) (проект глобального анализа океанических данных); GLODAPv2; GLODAPv2.2021 Это позволяет использовать данный архив для анализа пространственно-временной изменчивости различных характеристик морской воды, в том числе компонентов карбонатной системы.

Цель данной дипломной работы заключается в изучении межгодовой изменчивости компонентов карбонатной системы Норвежского и восточной части Гренландского морей.

Для достижения поставленной цели необходимо решить следующие задачи:

 Подготовить краткую физико-географическую характеристику района исследований;

 Подготовить краткое описание карбонатной системы и круговорота углерода;

3) Провести оценку наполненности акватории данными и обосновать выбранные для исследования периоды и районы;

4) Подготовить входные массивы данных компонентов карбонатной системы с последующим расчётом недостающих компонентов;

5) Провести графический и статистический анализы межгодовой изменчивости рассчитанных характеристик для акватории Норвежского и Гренландского морей.

1. Район и объект исследования

 Физико-географическая характеристика Норвежского и Гренландского морей

В качестве района исследования в данной работе были выбраны Норвежское и Гренландское моря,

Северный Ледовитый океан играет важную роль в глобальной экосистеме и является предметом пристального внимания из-за угрозы изменения климата и его возможных последствий для окружающей среды [5].

Через сопредельные Норвежское и Гренландское моря происходит водообмен между Северным Ледовитым океаном и Атлантическом океаном. Поэтому крайне важно изучение процессов, происходящих в этих морях.

Норвежское море. Границы Норвежского моря проходят от мыса Нордкап к о. Медвежий, затем к о. Ян-Майен, мысу Герпир на о. Исландия, к Фарерским и Шетландским о-вам и далее до берегов Скандинавии несколько южнее Согне-фьорда [6].

Береговая линия Норвежского моря характеризуется наличием многочисленных глубоко врезанных в сушу фьордов. На большом пространстве море сообщается с водами Гренландского моря, широким проливом между о. Медвежий и м. Нордкап соединяется с Баренцевым морем. Пролив между побережьем Скандинавии и Шетландскими островами связывает его с Северным морем, а водные пространства между островами Шетландскими, Фарерскими и Исландией — с Атлантическим океаном.

Норвежское море — океаническое окраинное море. Площадь его — 1340 тыс. км2, объем — 2325 тыс. км3, средняя глубина — 1735 м, наибольшая глубина — 3970 м [7].

В целом, Норвежское море представляет собой сложный и динамичный экосистемный комплекс, имеющий важное значение для региональной экономики и глобальных процессов в океане [7].

Норвежское море хорошо изучено благодаря активной деятельности в регионе, включая рыболовство, морские перевозки и научные исследования. Норвежское море является частью важного течения Гренландского течения и Норвежского течения, которые оказывают значительное влияние на климат Европы. Благодаря этому, гидрология, биология и химический состав Норвежского моря были предметом множества исследований.

1. Норвежские исследовательские институты: Норвежский Институт морских исследований (IMR, Institute of Marine Research), Норвежский полярный институт (NPI, The Norwegian Polar Institute) и Норвежский институт исследования окружающей среды (NIVA, Norwegian Institute for Water Research) проводят исследования в области океанографии, биологии, климата и экологии Норвежского моря [8].

2. Международные организации: Международная морская организация (ИМО) и Программа по окружающей среде ООН (ЮНЕП) также участвуют в исследованиях Норвежского моря.

3. Университеты и исследовательские центры: Университеты Норвегии, Швеции, Финляндии, России и других стран, проводят исследования в регионе.

Исследования Норвежского моря включают изучение гидрологического режима, биологического разнообразия, климатических изменений, экосистемных взаимодействий и влияния человеческой деятельности на окружающую среду [9, 10].

Гренландское море. Восточнее крупнейшего в мире о. Гренландия расположено Гренландское море. На севере его граница

проходит от северной оконечности о. Гренландия до северной оконечности Западного Шпицбергена и далее по западному берегу этого острова. Затем она идет по линии м. Южный (Шпицберген) — о. Медвежий и далее по линии о. Медвежий — о. Ян-Майен — м. Герпир (Исландия). С юга Гренландское море ограничено побережьем Исландии и линией м. Рейдинупур (Исландия) — м. Брустер (Гренландия). Западной границей моря служит восточный берег Гренландии [11].

Море имеет сравнительно небольшую протяженность сухопутных границ и свободно сообщается с соседним Норвежским морем. Пролив между островами Шпицберген и Медвежий соединяет его с Баренцевым морем, пролив между Гренландией и Шпицбергеном — с Северным Ледовитым океаном, а Датский пролив — с Атлантическим океаном.

Гренландское море — океаническое окраинное море. Его площадь равна 1195 тыс. км2, объем — 1961 тыс. км3, средняя глубина — 1641 м, наибольшая глубина — 5527 м [11].

Гренландское море играет важную роль в глобальном круговороте воды и тепла, а также является ключевым регионом для изучения изменений климата и их влияния на арктические экосистемы [11].

Гренландское море менее доступно для исследований из-за сурового климата и сложных ледовых условий. Тем не менее, Гренландское море является частью Северного Ледовитого океана, который играет ключевую роль в глобальном климате и циркуляции воды. Исследования в этом регионе фокусируются на ледовой обстановке, течениях, состоянии морской среды и влиянии изменений климата на арктическую экосистему.

Исследования в Гренландском море проводятся различными национальными и международными научными организациями, такими как Арктический и антарктический научно-исследовательский институт (ААНИИ), Национальное управление океанических и атмосферных исследований США (NOAA), центр полярных исследований и исследований имени Альфреда Вегенера, институт Гельмгольца (AWI) в Германии, Норвежский полярный институт, Датский полярный центр и другие. Эти исследования включают в себя гидрологические, гидрохимические, биологические и климатические аспекты, а также изучение влияния изменения климата на экосистему моря.

Исследования часто проводятся с использованием судов, автоматических подводных аппаратов, буйковых станций и спутниковой информации [12. 13, 14].

Норвежское и Гренландское моря взаимодействуют в процессе водообмена между Северным Ледовитым океаном и Атлантическим океаном. Норвежское течение переносит теплые атлантические воды в Гренландское море, а Гренландское течение переносит холодные арктические воды в Норвежское море. Этот водообмен играет важную роль в регулировании климата в высоких широтах, формировании глобальных океанских течений, в глобальном круговороте воды и тепла.

Смешивание этих водных масс влияет на температуру и соленость воды в морях, что, в свою очередь, влияет на их биологическое разнообразие и продуктивность [1, 11].

1.2 Гидрохимический режим Норвежского и Гренландского морей

Соленость воды в Гренландском море ниже по сравнению с Норвежским морем из-за значительного поступления пресных вод из ледников Гренландии и рек.

Концентрация биогенных элементов (фосфаты, нитраты, силикаты) в Норвежском море подвержена сезонным колебаниям, с пиками весной и летом, когда активизируется биологическая продуктивность.

Биологическая продуктивность в Гренландском море меньше, чем в Норвежском, что связано с более суровыми климатическими условиями и меньшим количеством солнечного света в течение года.

Воды Норвежского моря богаты кислородом на больших глубинах, что благоприятствует жизни глубоководных организмов. В Норвежском море наблюдается высокая концентрация углекислого газа [1, 7].

В глубинных слоях Гренландского моря может наблюдаться дефицит кислорода, особенно в районах, где активно происходит опускание глубинных вод. Концентрация углекислого газа в Гренландском море также высока, но может варьироваться в зависимости от региона и глубины. [11]

Карбонатная система является важным компонентом гидрохимического режима и играет ключевую роль в регулировании углеродного цикла и кислотности воды (pH). Она включает в себя различные формы растворённого неорганического углерода (CO₂, H₂CO₃, HCO₃⁻, CO₃²⁻), взаимодействуя с атмосферой и донными отложениями.

В Норвежском и Гренландском морях карбонатная система подвержена влиянию различных факторов, таких как:

1) водообмен с другими морями и Атлантическим океаном, который может привносить воды с различными концентрациями растворенного углерода и соленостью;

2) биохимические процессы, такие как фотосинтез фитопланктона, который поглощает СО2 и продуцирует кислород, и разложение органического вещества, которое высвобождает СО2 обратно в воду;

 взаимодействие с атмосферой, где растворенный CO2 может обмениваться между водой и воздухом, влияя на уровень парниковых газов в атмосфере;

 влияние климата, такие как таяние морских льдов и ледников, которые могут изменять соленость и содержание растворенного углерода в воде.

Изучение карбонатной системы в Норвежском и Гренландском морях важно для понимания глобальных изменений климата и их воздействия на морскую среду. Это включает в себя измерение параметров, таких как pH, соленость, концентрации различных форм углерода, а также мониторинг

изменений во времени и пространстве. Исследования проводятся научными организациями, лабораториями и исследовательскими судами, использующими как наземные наблюдения, так и данные, полученные с помощью спутниковой съемки и автоматических подводных аппаратов [1, 11].

Рассмотрим более подробно современное представление о карбонатной системе океана.

1.3 Карбонатная система океана

Неорганические соединения углерода находятся в океане в виде угольной кислоты и ее производных. К ним относятся двуокись углерода CO_2 , угольная кислота H_2CO_3 , гидрокарбонатные HCO_3^- и карбонатные CO_3^{2-} ионы. Эти соединения между собой взаимозависимы и все вместе образуют карбонатную систему (рисунок 1.1). Рассмотрим карбонатную систему в целом, существующие между ее компонентами равновесия, условия перехода одного компонента в другой, растворимость и возможности выделения компонентов в твердую фазу. Карбонатная система представляет собой один из самых сложных комплексов природных равновесий и определяет характер целого ряда процессов и явлений.

Рисунок 1.1 Карбонатная система океана [15]

Растворение и гидролиз карбонатов обусловливают появление в растворе всех производных угольной кислоты, связанных последовательной системой равновесий (рисунок 1.1)

В обратном направлении всю систему можно представить ступенями растворения CO₂, образования H₂CO₃ и диссоциации (ионизации) угольной кислоты, а количественно характеризовать константами диссоциации последней. Природная карбонатная система водных масс океана стабилизируется, с одной стороны, содержанием СО₂ в атмосфере, с другой — малой растворимостью CaCO₃ — наименее растворимой соли во взвесях или в донных осадках. Следовательно, при добавлении в раствор или удалении из него CO₂ и CaCO₃ будут меняться сумма производных угольной кислоты и соотношения между ними. Все формы производных угольной кислоты одновременно существуют в растворе, причем соотношения между ними меняются в зависимости от условий (параметров состояния). В подобной системе невозможно аналитически определить концентрации отдельных компонентов, поскольку химический анализ нарушает равновесия. Найти эти концентрации можно лишь путем совместного решения уравнений, вытекающих из теории карбонатной системы [15].

Теория карбонатной системы в ее исходном виде обязана главным образом ранним работам К. Буха, Х. Харвея, Г. Ваттенберга и Ст. Грипенберг (1932), применившим принципы химического равновесия и закона действия масс для описания процессов, протекающих в природных растворах. Исходя из двухступенчатой схемы диссоциации угольной кислоты

$$CO_2 + H_2O \rightleftharpoons H_2CO_3 \xleftarrow{K_1} H^+ + HCO_3^- \xleftarrow{K_2} H^+ + CO_3^{2-}, \qquad (1)$$

К- Бух основывал свои теоретические посылки на следующих определениях термодинамических констант диссоциации H₂CO₃[15]:

$$K_{1} = a_{H^{+}} a_{H \cos_{3}} / (a_{\cos_{3}} H_{2} \circ);$$
(2)

$$K_2 = a_{\rm H}^{+} a_{\rm CO_3^{2-}} / a_{\rm HCO_3^{-}}, \tag{3}$$

где а — активность молекулярных или ионных производных. Учитывая малую долю недиссоциированной H₂CO₃ (не более 1 % суммы CO₂+H₂CO₃) и невозможность разделения этих двух составляющих, в уравнении для K\ под CO₂ понимается молекулярная двуокись углерода, т. е. K₁ выражается из схемы

$$CO_2 + H_2O \xrightarrow{K_1} H^+ + HCO_3^-.$$
(4)

Круговорот углерода. Океан и атмосфера обмениваются двуокисью углерода. Океан играет роль регулятора содержания CO₂ в атмосфере. В океане происходит непрерывный обмен углеродом в форме СО₂ между раствором и живым органическим веществом. В зависимости от CO_2 концентрации растворенной меняются соотношения между компонентами карбонатной системы. Главная часть углерода океана заключена в растворенных карбонатах и гидрокарбонатах, представляющих собой основу мощной буферной системы океана. Одновременно протекает обмен углеродом в форме органических и неорганических соединений между водной массой океана и его донными осадками. Здесь преобладает осаждение карбоната кальция. При фотосинтезе также идет процесс поглощения двуокиси углерода и выделения из раствора карбоната кальция. С явным преобладанием поступления на дно океана происходит и обмен между различными видами органического вещества, которое частично захоранивается на дне океана.

Круговорот углерода в океане схематически изображен на рисунке 1.2. Он представляет собой одну из фаз общего круговорота углерода в литосфере. Схема последнего дана на рисунке 1.3, где приводятся приблизительные абсолютные количества углерода (в виде CO₂), содержащиеся в различных природных блоках, и стрелками указаны направления перемещений углерода между ними.

Рисунок 1.2. Схема круговорота углерода в океане [15]

При дифференцировании по отдельным формам сумма углерода в океане складывается из следующих величин: живое органическое вещество 0,03+10¹² т, неживое органическое вещество 10*10¹² т, CO₃+H₂CO₃=0.810¹² т, HCO₃=0.8*10¹² т, HCO₃⁻+CO₃²⁻=114.7*10¹² т.

Различают три круговорота углерода, действующих одновременно и взаимосвязано [15]:

биологический круговорот, протекающий по схеме:
 атмосфера (ассимиляция) → растения (усвоение) → животные (дыхание) →
 тмосфера.

Этот круговорот по интенсивности превосходит все остальные, хотя в него и вовлечено сравнительно небольшое количество углерода. Протекая

на суше и в океане, в последнем он наиболее тесно связан с производными угольной кислоты;

2) большой геологический круговорот, протекающий медленно. Этот круговорот, продолжая биологический, охватывает всю литосферу по схеме:

СО₂ атмосферы и биосферы (книнческое выветривание) роды и карбонаты (вынос в океан) морях (метаморфоз) → метаморфические породы (выделение СО₂) → атмосфера;

3) биолого-технический круговорот сходен с первым, но включает еще органогенные отложения прежних геологических эпох (нефть, каменный уголь), которые деятельностью человека все более вовлекаются в природный круговорот по схеме атмосфера (ассимиляция) растения (усвоение) животные (гумификация) органические остатки (сложный метаморфоз) каменный уголь, нефть -> (сгоравие) атмосфера.

Рисунок 1.3 Схема круговорота углерода в биосфере [15]

На протяжении геологической истории Земли углерод, выделявшийся из мантии в виде газообразных продуктов, а также находившийся в первичной атмосфере, накапливался в земной коре преимущественно в виде $(1.3*10^{16})$ карбонатных отложений морского происхождения т). кристаллических пород (10¹⁶ т), каменного угля й нефти (3,4*10¹⁵ т). Эти отложения являются подлинными «кладовыми» углерода, медленно расходующими и пополняющими свои запасы. Их пополнение в большей своей части идет через океан. Еще недавно на Земле существовало более или менее установившееся равновесие в процессах круговорота углерода. Но с середины прошлого века при все возрастающем потреблении человеком энергии ускоряется переход СО₂ в атмосферу за счет сжигания ископаемого топлива. Нарушение круговорота в одном звене неизбежно вызывает изменения в других. Поэтому особо важное значение имеет изучение обмена CO_2 в системе океан— атмосфера [15].

Многие свойства морской воды определяются состоянием карбонатной системы, в которую входят двуокись углерода, угольная кислота, карбонатные и гидрокарбонатные ионы. Карбонатная система во многом определяет регулирование величины рН и таким образом влияет на многие химические равновесия. Она играет большую роль в различных процессах в океане, таких как: взаимодействие между океаном и атмосферой, фотосинтез и разложение органического вещества, изменение кислотности морской воды и выпадение нерастворимых карбонатных осадков. Карбонатная система влияет на поддержание обстановки, благоприятной для сохранения жизни в океане [16].

Круговорот СО2 в глобальном масштабе представляет собой, вероятно, самый важный для человечества биогеохимический круговорот. Для него характерны небольшие, но весьма подвижные фонды в атмосфере, высокочувствительные к нарушениям, которые вызываются деятельностью человека и которые могут влиять на погоду и климат. Карбонатная система морской воды занимает исключительное положение в биогеохимических

исследованиях экосистемы океана. Ее состояние отражается на процессах неживой части океана (газообмен на границе морская вода/атмосфера, формирование И циркуляция водных масс, хемогенное образование/растворение карбонатов и т.д.) и на процессах, связанных с живой материей (фотосинтез и распад органического вещества, дыхание, микробиологическая деятельность на взвеси и в осадках, биогенное образование/растворение карбонатов и т.д.). Поэтому исследования карбонатного равновесия затрагивают непосредственным образом целый ряд наук о Земле - метеорологию, геологию, океанографию, экологию. Являясь основной буферной системой океана, она регулирует рН морской воды и, следовательно, прямым образом влияет на многие химические равновесия, формы нахождения и миграцию элементов, протекание геохимических и биологических процессов. Таким образом, через исследование карбонатной системы могут быть поняты биотические и абиотические процессы и их взаимосвязь. Также не вызывает сомнений актуальность изучения климатической изменчивости карбонатной системы. В последние десятилетия исследователи разных областей наук о Земле получили множество независимых доказательств об изменчивости климата океана. В настоящее время идут дискуссии о характере этих изменений. Большинство исследователей склоняются тому, К ЧТО происходит глобальное потепление климата планеты, которое связано с ростом концентрации парниковых газов (СО2, СН4, СО, Н2О и др.) в атмосфере. Ежегодный баланс углерода между атмосферой, литосферой и гидросферой является одним из центральных вопросов при изучении изменчивости климата. Эта проблема имеет большое экологическое значение, поскольку углекислый газ, как мощный источник теплового загрязнения, включается в природные биогеохимические циклы в океане и атмосфере [17].

В целом, опубликованные исследования карбонатной системы включают:

1. Мониторинг изменений карбонатной системы: Исследователи отслеживают изменения в карбонатной системе океанов, чтобы оценить влияние глобального потепления и увеличения концентрации СО2 в атмосфере на морскую среду.

2. Междисциплинарные исследования: Исследователи из разных областей, таких как океанография, химическая океанография, биология и климатология, работают вместе, чтобы понять сложные взаимодействия в карбонатной системе.

3. Моделирование карбонатной системы: Исследователи разрабатывают и используют математические модели для предсказания будущих изменений в карбонатной системе под влиянием различных сценариев изменения климата.

4. Экспериментальные исследования: В лабораторных условиях проводятся эксперименты для изучения того, как изменения в карбонатной системе влияют на морских обитателей, особенно на ракообразных, которые строят свои раковины из карбоната кальция.

5. Региональные исследования: Исследователи изучают карбонатную систему в конкретных регионах, таких как Норвежское и Гренландское моря, чтобы понять, как локальные факторы, такие как течения, ледяной покров и биологическая активность, влияют на карбонатную систему.

6. Международные проекты: Проекты, такие как "Программа по изучению карбонатной системы в океанах" (CARINA), собирают и обобщают данные из разных частей мирового океана для создания базы данных, которая может быть использована для глобальных и региональных исследований [18].

Перейдём к рассмотрению межгодовой и пространственной изменчивости компонентов карбонатной системы Норвежского и восточной части Гренландского моря на основе натурных данных.

2 Материалы и методы

2.1 Характеристика исходных данных

В качестве района исследования были выбраны акватории Гренландского и Норвежского морей, представленные на рисунке 2.1

Рисунок 2.1 Район исследования – Норвежское и Гренландское моря: М – корабль погоды М; прямоугольником обозначена область наибольшего количества наблюдений в Гренландском море

Данные, используемые в исследовании были взяты на сайте NOAA и являются частью информационного продукта GLODAPv2.2022 [19], включающего результаты наблюдений 1085 научных экспедиций, прошедших по всему Мировому океану с 1972 по 2021 год в рамках таких исследовательских проектов, как CARbon dioxide IN the Atlantic Ocean (CARINA) (Двуокись углерода в Атлантическом океане); Carbon dioxide in the Pacific Ocean (PACIFICA) (Двуокись углерода в Тихом океане); GLOBAL OCEAN DATA ANALYSIS PROJECT (GLODAP) (проект

глобального анализа океанических данных); GLODAPv2; GLODAPv2.2021 [3].

На первом этапе был проанализирован характер пространственновременного распределения станций наблюдений в выбранном районе (рисунок 2.2).

Рисунок 2.2 Интегральная карта пространственного распределения станций наблюдений из архива GLODAPv2.2022 за 1994-2021 гг. в акватории Норвежского и Гренландского морей: а) общий массив станций наблюдения за характеристиками карбонатной системы; б) станции наблюдения, выбранные для анализа

Так, основные данные наблюдений в Норвежском море – это данные измерений на корабле погоды М. В Гренландском море наибольшее количество наблюдений сосредоточены в районе 74-76° с.ш. (далее – Северный разрез) (рис 2.2 б). Также в архиве в отдельные годы имеются данные наблюдений вдоль юго-западной границы Норвежского моря, однако их количества недостаточно для анализа временной изменчивости, так как они есть только за 3 года (1994, 2002 и 2009 годы) (рис 2.2 а) и ряд других станций, с единичными случаями наблюдений.

Корабль погоды М – одна из 13-ти метеорологических станций Северной Атлантики, расположенная в Норвежском море в точке с координатами 66° с.ш. 2° в.д. с 1948 года по настоящий момент. Остальные 12 станций были упразднены к середине 1990-х годов [20].

С 2001 года на станции погоды М проводятся исследования карбонатного цикла, определяются значения общей щёлочности и содержания растворённого неорганического углерода, что позволяет рассчитывать все компоненты карбонатной системы [2].

Северный разрез представляет собой серию исследований, выполненных с периодичностью 3-4 года между о. Гренландия и арх. Шпицберген.

Архив GLODAPv2.2022 включает вертикальные профили измерений солености, концентрации растворённого кислорода, содержания нитратов, силикатов и фосфатов, концентрации растворенного неорганического углерода (TCO2), значений общей щелочности (TAlk), летучести (фугитивности) углекислого газа (fCO2), водородного показателя (pH), содержания хлорфторуглеродов (CFC-11, CFC-12, CFC-113 и CCl4), SF6 и различных изотопов и органических соединений. Пакет данных содержит информацию об исследовательском судне (код судна, номер круиза и станции), точную дату взятия пробы и координаты точек взятия проб, глубины в точке, горизонты (м) и давление на горизонте (дбар) (таблица 2.1) [3].

Таблица 2.1 Характеристика исходных данных архива

GLODAPv2.2022

Условное		Единицы	
обозначение	Название	измерения	Тип наблюдения
Р	Давление	дбар	Измерения
			14
4	Terreneration	00	измерения, синтез
temperature	Температура	-C	Данных
1		0/	Измерения, синтез
salinity	Соленость	<u>%</u> 0	данных
		1	Измерения, синтез
oxygen	Кислород	МКМОЛЬ КГ ⁻¹	данных
		1	Измерения, синтез
nitrate	Нитраты	МКМОЛЬ КГ ⁻¹	данных
			Измерения, синтез
nitrite	Нитриты	мкмоль кг $^{-1}$	данных
			Измерения, синтез
silicate	Силикаты	мкмоль кг $^{-1}$	данных
			Измерения, синтез
phosphate	Фосфаты	мкмоль кг $^{-1}$	данных
			Измерения, расчеты,
tco2	Общий СО2	мкмоль кг ⁻¹	синтез данных
			Измерения, расчеты,
talk	Общая щёлочность	мкмоль кг ⁻¹	синтез данных
			Измерения, расчеты,
fco2	Летучесть (фугитивность)	мкатм	синтез данных
	рН в общей шкале, 25 ° С и		Измерения, расчеты,
phts25p0	нулевое давление в дбар	ед. рН	синтез данных
- 1 - 1	рН в общей шкале,	· · · 1	Измерения, расчеты,
phtsinsitutp	температура и давление in situ	ед. рН	синтез данных
			Измерения, синтез
toc	Общий органический углерол	umol L ⁻¹	ланных
	Растворённый органический		Измерения, синтез
doc	углерод	µmol L ⁻¹	данных

Данные наблюдений за компонентами карбонатной системы из архива GLODAPv2.2022 имеют переменную временную дискретность, отражённую в таблице 2.2, по которой хорошо виден длительный период с 2004 по 2021 год, в течение которого измерения на корабле погоды М проводились ежегодно.

Так как целью работы было сравнение характера изменчивости содержания компонентов карбонатной системы в Норвежском и

Гренландском морях, для изучения временной изменчивости карбонатной системы Гренландского моря были выбраны те периоды, в которые имеются данные измерений как для северного разреза, так и для корабля погоды М.

Таким образом, были взяты данные по северному разрезу за 2006, 2009, 2013, 2016 и 2019 годы, а для корабля погоды М весь период с 2004 по 2021 год (таблица 2.2).

Таблица 2.2 Временное распределение общего количества станций наблюдений и общего количества наблюдений в год

Общее количество станций наблюдений			Общее количество наблюдений в год		
	Норвежское	Гренландское	Норвежское Гренландское		
	море (корабль	море (северный	море (корабль	море (северный	
Год	погоды М)	разрез)	погоды М)	разрез)	
1994	1	24	5	494	
1996	0	37	0	498	
1997	0	72	0	280	
1998	1	53	9	244	
2001	0	8	0	25	
2002	1	25	2	116	
2003	0	12	0	46	
2004	1	0	40	0	
2005	1	0	106	0	
2006	1	24	126	49	
2007	1	0	66	0	
2008	1	0	56	0	
2009	1	34	130	339	
2010	2	0	38	0	
2011	1	0	5	0	
2012	2	0	14	0	
2013	3	28	23	312	
2014	3	0	67	0	
2015	3	0	38	0	
2016	4	17	48	227	
2017	3	0	34	0	
2018	3	0	48	0	
2019	2	19	33	172	
2020	3	0	23	0	
2021	2	0	8	0	

Для прослеживания более ранних тенденций в Норвежском море, для корабля погоды М были также привлечены данные измерений за 1994, 1998 и 2002 годы.

Следует отметить, что распределение количества наблюдений по глубине не является равномерным (рисунок 2.3). Максимальное количество наблюдений приходится на слой 100-500 метров.

Рисунок 2.3 Распределение по глубинам количества учтенных наблюдений за период 1994-2021 гг для исследуемого района

2.2 Семейство расчётных программ CO2SYS

Для расчётов полного набора компонентов карбонатной системы в работе была использована библиотека PyCO2SYS [21]. PyCO2SYS, написанная с использованием языка программирования Python, является реализацией более ранней версии, написанной с использованием языка программирования MATLAB – CO2SYS [22].

CO2SYS — это семейство программ, написанных с использованием разных языков программирования, нацеленных на расчёт компонентов карбонатной системы.

Основная функция — использование любых двух из четырёх основных параметров системы (водородный показатель, общая щёлочность, растворённый неорганический углерод, и парциальное давление углекислого газа) для расчёта неизвестных компонентов системы.

Первая публикация CO2SYS состоялась в 1998 году в виде программы с интерфейсом DOS, написанной на QBasic. В последующие разработки вошли несколько реализаций в MATLAB, два шаблона Microsoft Excel, пакет Python «PyCO2SYS» и пакет R, вдохновлённый CO2SYS, — «seacarb».

Развитие различных программ CO2SYS продолжается, добавляются новые параметры химического равновесия и совместимость с более широким спектром сред.

Работа с библиотекой возможна в двух режимах – в режиме с одним вводом и в режиме пакетного ввода. При работе с малыми объёмами входных данных используется первый вариант, а при работе с большими массивами используется вариант пакетного ввода.

В режиме с одним вводом, после выбора различных вариантов значений констант и т.д., пользователю предлагается заполнить следующие параметры: соленость, концентрации фосфатов и силикатов (при наличии данных измерений), входные значения температуры и давления воды (или глубины), а также два известных параметра карбонатной системы при входных условиях. Входные значения температуры и давления воды, при которых задаются значения двух известных компонентов карбонатной системы, могут быть такими, при которых измерения проводились, например, в лаборатории, в то время как выходные условия могут относиться к условиям in situ. Перечень выходных параметров представлен в таблице 2.3 [3].

Таблица 2.3 Перечень характеристик, которые могут быть рассчитаны с использованием PyCO2SYS при входных значениях общей щёлочности и общего неорганического углерода [3]

Условное	Единицы	
обозначение	размерности	Характеристика
pН		Водородный показатель
fCO2	μatm	Летучесть (фугитивность) СО2
pCO2	µatm	Парциальное давление СО ₂
HCO3	µmol/kgW	Гидрокарбонат-ион
CO3	µmol/kgW	Карбонат-ион
CO2	µmol/kgW	Водный диоксид углерода (угольная кислота)
B Alk	µmol/kgW	Боратная щёлочность
ОН	µmol/kgW	Гидроксид-ион
P Alk	µmol/kgW	Фосфатная щёлочность
Si Alk	µmol/kgW	Силикатная щёлочность
Revelle		Коэффициент усиления
ΩCa		Степень насыщения кальцита
ΩAr		Степень насыщения арагонита
xCO2	dry at 1 atm ppm	Молярная доля СО2 в сухой морской воде

В отличие от режима с одним вводом, режим пакетного ввода предназначен для использования при работе с большими наборами данных, такими как файлы, созданные MICROSOFT EXCEL или другими программами для работы с электронными таблицами. В этом режиме данные считываются из входного файла, а результаты вычисляются и печатаются в выходной файл. Поскольку набор данных может содержать значения, которые отсутствуют или неизвестны, пользователь может определить числовое значение в качестве обозначения пропущенного значения (MVD missing-value designator). Если MVD не определен пользователем, будет использоваться значение по умолчанию – 0. Крайне важно, чтобы в каждом из полей входных данных было указано значение; поэтому неизвестные значения всегда следует устанавливать равными MVD. Если MVD вводится для одного из входных компонентов карбонатной системы, вычисления производиться не будут, и каждой выходной переменной будет присвоено значение MVD. Используются значения по умолчанию: соленость: 35 ‰; общее количество фосфатов: 0 мкмоль/кг; общее содержание силиката: 0 мкмоль/кг; входная температура: 20 °C; входное давление: 0 дбар; выходная температура, равная значению входной температуры; и выходное давление, равное значению входного давления [3].

Для правильной работы библиотеки PyCO2SYS требуется большое количество значений, характеризующих химическое равновесие были карбонатной системы. Эти значения определены многими исследователями [15, 23, 24]. Большинство значений температуры и солености принимаются в пределах диапазонов, обычно встречающихся в океанах, поэтому использование значений за пределами этих диапазонов может привести к экстраполяции соответствий за пределы региона, где были собраны данные.

Существует восемь комбинаций констант равновесия, используемых в этой библиотеке [3]. Они отличаются в основном формулировками эмпирических выражений для констант диссоциации угольной кислоты первой (К1) и второй ступени (К2). Принято использовать константу растворимости СО2 в морской воде (К0), рассчитанную Вейсом (1974), который объединил измерения Мюррея и Райли (1971) с некоторыми своими собственными и аппроксимировал полученные данные. Оценки точности К₀ варьируются от 0,2% (Вейс 1974) до 0,5% (Диксон и Райли

1978). Вириальные коэффициенты CO2 и CO2-аіг также взяты из расчётов Вейса (1974). Давление насыщенного паров H2O над морской водой взято из расчётов Вейса и Прайса (1980). Константы равновесия сульфата и фторида приведены в работах Морриса и Райли (1966) и Райли (1965) соответственно. Значение константы диссоциации сульфат-иона (K_{SO4}) взято из работ либо Xo и др. (1977), либо Диксона (1990а). Оба они приведены в единицах моль/кг-H2O. Константа диссоциации фтористого водорода (K_F) рассчитана по Диксону и Райли (1979). Она приводится в единицах моль/кг-H2O. Сульфат и фторид практически не влияют на щелочность в большинстве случаев, но их концентрации и константы диссоциации важны при пересчете между различными шкалами pH. Значение, используемое для коэффициента активности иона водорода (fH) соответствует приведенному в Такахаши и др. (1982), за исключением выбора расчётов Пенга (1987).

Соответствующие константы равновесия, которые определяют равновесие компонентов карбонатной системы в морской воде, К1 и К2, были определены для различных температур и солености воды разными исследователями (таблица 2.4) [3].

Таблица 2.4 Сводка измерений по константам диссоциации угольной кислоты в морской воде. (по Миллеро, 1995) [23]

	Диапазон	Диапазон			Рассчит	анная
Автор	температур	солёности	Стандартная ошибка		при S=35 t=25°С	
	°C	‰	Pk1	Pk2	Pk1	Pk2
Hansson,						
1973	5-30	20-40	0.007 (0.005)	0.009 (0.018)	5.8502	8.9419
Mehrbach et						
al, 1973	2-35	26-43	0.006 (0.008)	0.010 (0.030)	5.8372	8.9554
Goyet &						
Poisson	-1-40	10-50	0.007 (0.001)	0.011 (0.005)	5.8487	8.9189
Dickson &						
Millero	0-35	20-43	0.008 (0.002)	0.013 (0.020)	5.8457	8.9454
Roy et al	0-45	5-45	0.003	0.002	5.868	8.9154

2.3 Анализ чувствительности системы к значениям констант диссоциации угольной кислоты

Для характерных значений температуры и солёности воды Норвежского моря были рассчитаны значения концентрации общего неорганического углерода при использовании различных констант диссоциации, формулы которых представлены в таблице 2.5.

При заданном диапазоне температур и солёности воды значения концентрации общего неорганического углерода рассчитанные в примере (рисунок 2.4) с использованием констант диссоциации по Диксону и Миллеро, Хансону, Меербаху и др., Буху, Лимену, Гойету и Пуассону, Эдмонду и Гискесу, а так же по Питковичу, незначительно различаются при солёности более 33 ‰, но значительно различаются при солёности ниже 32 ‰, особенно при значениях содержания общего неорганического углерода менее 2020 мкмоль/кг.

Таким образом использование констант по Диксону и Миллеро, Хансону, Меербаху и др., Буху, Лимену, Эдмонду и Гискесу и Питковичу нецелесообразно, лучшим выбором являются константы диссоциации по Гойету и Пуассону.

A 10700		Demarka		Истонные
Автор		Формула		Источник
1	2		3	4
		pK1(HAN) = 851.4/T + 3.237 -		Thermodynami
	K1	$0.0106S + 0.000105S^2$		cs of the
Hansson,		pK2(HAN) = -3885.4/T + 125.844 -		carbon dioxide
1973	K2	18.141 In T - 0.0192S + 0.000132S ²		system in the
		pK1(MEHR) = 3670.7/T - 62.008 +		oceans
	K1	9.7944 In T - 0.0118S + 0.000116S ²		FRANK J.
Mehrbach		pK2(MEHR) = 1394.7/T + 4.777 -		MILLERO
et al, 1973	K2	$0.0184S + 0.000118S^2$		1995

Таблица 2.5 Расчётные формулы констант диссоциации [15, 23, 24]

Продолжение таблицы 2.5

1	2	3	4
		pK1(G&P) = 807.18/T + 3.374	
		-0.00175S In (T) +	
	K1	0.000095S ²	
		pK2(G&P) = 1486.6/T + 4.491	
		-0.00412S In (T) +	
Govet & Poisson	K2	0.000215S ²	
		pK1(D&M) = 845.0/T + 3.284	
	K1	$-0.0098S + 0.000087S^2$	
		pK2(D&M) = 1377.3/T +	
Dickson & Millero	K2	$4.824 - 0.0185S + 0.000122S^2$	
Hansson, 1973a:			
Culberson and		In $Kw = 148.9802$ -	
Pytkowicz, 1973:		13847.26/T - 23.6521 In T + (-	
Dickson and		5.977 + 118.67/T + 1.0495 In	
Riley, 1979a)	Kw	$T)S^{0,5} - 0.01615S$	
		$\ln KB = (-8966.90 - 1000)$	
		$2890\ 51\$ S ⁰ ⁵ - 77 942S +	
		$1.726S^{1/5} - 0.0993S^2)/T +$	
		$(148\ 0248\ +\ 137\ 1948^{0.5}\ +$	
		(160.0210 + 137.1310) (-24.4344 - 107.1310)	
		$25.085S^{0.5} - 0.2474S$ In T +	
Dickson (1990b)	KB	0.053105S ^{0,5} T	
		$\frac{1}{12} \frac{1}{12} \frac$	
		$\lim_{n \to \infty} \Pr = 115.34 - 4570.752/1$	
		-16.433 III 1 + (0.09171 - 106.726/T)S025 + (0.01844)	
	V. 1	$100.750/1)S^{\circ} + (-0.01844 - 0.65642/T)S^{\circ}$	
	крі	0.03043/1)S	
		$\ln Kp2 = 1/2.1033 - 27.027 L T$	7D1 1 '
		$\frac{3014.}{10.1} - \frac{2}{92.1} + \frac{100240}{1000}$	i nermodynamics
	IZ O	$(1.3566 - 160.340/1)8^{0.3} + (-$	of the carbon
	Кр2	$0.05778 \pm 0.3733571)S$	dioxide system in
X7 1 X (*11		$\ln Kp3 = -18.126 - 30/0.75/1$	the oceans
Yao and Millero,		$+(2.81197 + 17.2703971)S^{0.3}$	FRANK J.
1995	КрЗ	+(-0.09984 - 44.99486/1)S	MILLERO 1995
		pK'l = 6.3784 - 0.01137CI -	
	K1	$0.010765T + 1.536 * 10 \ ^{4}T^{2}$	
		pK'2 = 9.8227 - 0.027I9C1	
		-0.015215T + 1,3232 *	
	K2	$10^{-4}T^2$	О. А. Алекин Ю.
		pK'B = 9.2211 — 0.01472Cl -	И. Ляхин химия
К. Бух (1956)	KB	$0.0093782T + 3.7947 * 10^{-5}T^{2}$	ОКЕАНА

Продолжение таблицы 2.5

1	2	3	4
		pK'1 = 6.34 - 0.01Cl	
	K1	$0.008T + 8 * 10^{-5}T^{2}$	
		pK'2 = 9.78 - 0.02CI - 0.02CI	
	K2	0.012T	
		pK'B = 9.26 - 0.016Cl -	
Дж. Лимен (1957)	KB	0.010T	
		$pK'1 = 3404.71T^{-1} +$	
		0.032786T — 14.7122 —	
	K1	0.19178Cl ¹ / ₃	
		$pK'2 = 2902.39T^{-1} + 0.02379T$	
Лж. Элмонл и	K2	$-6.4710 - 0.4693 \text{Cl}^{1/3}$	
Лж. Гискес		$pK'B = 2291.90T^{-1} + 0.01756T$	
(1970)	KB	$-3.3850 - 0.32051C1\frac{1}{3}$	А. Алекин Ю. И.
		$pK'_{1} = 3.5091 + 867.71T^{-1}$	Ляхин химия
	K1	$0.02325S + 2.8739 * 10^{-4}S^{2}$	ОКЕАНА
		$pK'^2 = 5.0258 \pm 1375.3T^{-1}$	
	K2	0.116768½	
И Ханссон		$pK'B = 5.7444 + 1028.7T^{-1}$ -	
(1973)	KB	$0.029456S + 3.6226 * 10^{-4}S^{2}$	
		$pK'_{1} = -137201 + 0.031334T$	
		$+ 3235.76T^{-1} + 1.300 *$	
	K1	10^{-5} ST - 0.1032S ¹ / ₂	
		$pK'^2 = 5371.9645 + 1.671221T$	
		+ 0.22913S + 18.38021 Jg S -	
		$128375\ 28T^{-1} - 2194\ 3055\ 1g$	
Ч Меербах и лр		$T = 8.0944 * 10^{-4} ST =$	
(1973)	К2	$5617.11T^{-1} \log S + 2.136ST^{-1}$	
		$pK'_{1} = -137201 + 0.031334 *$	MEASUREMENT
		T+3235.76/T+1.300*	OF THE
	K1	10^{-5*} S* T - 0, 1032 * S ¹ / ₂	APPARENT
			DISSOCIATION
		pK'2 = 5371.9645 + 1.671221	CONSTANTS OF
		*T+ 0.22913*S+ 18.3802 *	CARBONIC
C. Mehrbach, C.		log(S) - 128375.28/T -	ACID IN
H. Culberson. J. E.		2194.3055 * log(T) - 8.0944 *	SEAWATER AT
Hawley, and R. M.		10 ⁻⁴ * S* T - 5617.11 *	ATMOSPHERIC
Pytkowicz	K2	$\log(S)/T + 2.136 * S/T$	PRESSURE1

Рисунок 2.4 Значения концентрации общего неорганического углерода в диапазоне температуры и солёности, характерных для Норвежского моря. Одним цветом обозначены равные значения концентрации, рассчитанные с помощью разных констант диссоциации; линиями с наибольшей толщиной обозначены значения, константы диссоциации для которых были рассчитаны по Гойету и Пуассону.

2.4 Графический и статистический анализ данных

Одним из методов анализа данных является метод графического анализа – визуального представления полученных результатов расчётов в виде графиков, гистограмм, пространственных и временных разрезов.

Такой метод позволяет выявить тенденции и закономерности в данных, дать более полную оценку результатов.

Для представления данных в наглядной форме были использованы следующие ПО:

• Surfer использовался для построения карт района исследования и пространственного распределения точек. Для этого была взята карта мира в формате bln с привязкой координат. На ней был выделен район исследования, на который были нанесены границы морей, район 74-76 ° с.ш. (северный разрез) и точка с координатам 66° с.ш. 2° в.д. (корабль погоды М). Затем, с помощью инструмента Post на карту были нанесены станции наблюдений.

• Ocean Data View, с помощью которого были построены вертикальные разрезы по рассчитанным характеристикам: пространственные для района 74-76° с.ш. -12,5-17,5 ° в.д. и временные для корабля погоды М.

• Excel. С его помощью были построены сводные таблицы данных и графики трендов. Для этого были выделены 3 горизонта в поверхностном слое: 20 м, 100 м и 500 м, для которых были взяты среднегодовые значения, точечно нанесённые на графики, и построены линейные тренды. Были также выведены уравнения трендов, коэффициенты детерминации и корреляции для моделей. Так как длина рассматриваемых статистических рядов меньше 25-30 значений, они относятся к малым выборкам и должны быть оценены при помощи рангового коэффициента корреляции Спирмена.

Для расчёта рангового коэффициента корреляции Спирмена используется формула:

$$\rho_{x/y} = 1 - \frac{6\sum d_i^2}{N9(N^2 - 1)},\tag{5}$$

где d_i² – квадрат разности рангов; N – число наблюдений [25].

В данной работе коэффициенты корреляции Спирмена были рассчитаны с помощью онлайн-калькулятора [26].

Коэффициенты корреляции были рассчитаны для пар значений одинаковых характеристик в Норвежском и Гренландском морях и проверены на значимость с помощью t-критерия Стьюдента по формуле:

$$t^* = \rho_{x/y} \sqrt{\frac{N-2}{1-\rho_{x/y}^2}} \tag{6}$$

Значение рангового коэффициента корреляции Спирмена считается значимым, если t* больше, чем t_{кр}, при уровне значимости 0,05 [25].

3. Результаты анализа межгодовой изменчивости компонентов карбонатной системы Норвежского и восточной части Гренландского морей

3.1 Анализ межгодовой изменчивости компонентов карбонатной системы в точке корабля погоды М

Межгодовая изменчивость распределения значений солёности с глубиной отображена на рисунке 3.1. Наибольшим изменениям подвержен деятельный 500-метровый слой океана, в котором распределение солёности в среднем меняется в диапазоне 35-35,4 ‰. В этом слое хорошо видны периоды, на которые приходились более высокие значения солёности. С 1998 по 2012 год был довольно длительный период, в течение которого наблюдались наибольшие значения солёности в верхнем слое. С 2012 по 2018 годы значения солёности в 500-метровом слое были несколько ниже, чем в предыдущий период. В 2018-2019 годах виден непродолжительный период распреснения деятельного слоя, после которого снова началось повышение значений, однако всё ещё значительно меньшее в сравнении с периодом с 1998 по 2012 год.

Ниже 500 м значения солёности менялись слабо, в пределах 34,8-35 ‰, на протяжении всего периода наблюдений. Значимые тенденции отсутствуют.

При этом хорошо видны колебания глубины деятельного слоя, в котором наблюдались наибольшие изменения. Так в 2002 году он был довольно неглубок, около 250 м, в периоды наибольшей солёности, к 2009 – 2010 годам, снова увеличился, почти до 500 м, после периода пониженной солёности в 2019 году, несмотря на возобновившийся рост значений солёности, верхний слои имеет тенденцию к уменьшению толщины.

Рисунок 3.1 Временной разрез распределения значений солёности воды с глубиной на корабле погоды М

солёности наблюдались изменения Аналогично распределения значений температуры воды (рисунок 3.2). Наибольшим изменениям подвержен деятельный слой океана, до 500 м, в котором температура в диапазоне 3-15°C. В нём меняется В хорошо среднем видны непродолжительные периоды более высоких значений температур, которые приходятся на 1994 и 2012 годы, при чём в это время наиболее прогретым, 10-15 °С, был слой до 100 м.

На протяжении всего периода наблюдений толщина более тёплого деятельного слоя менялся в пределах 300-500 м от поверхности, что, вероятно, связано с сезонной изменчивостью. Наибольшие глубины тёплого слое наблюдались в 1998, 2010 и 2017 годах.

На глубинах 600-700 м находится более холодный и менее изменчивый слой с температурами от 3 до 0 °С. На разрезе хорошо видно, что с 2019 года этот слой увеличивается – наблюдается тенденция к повышению значений температуры в среднем слое.
Более глубокий слой, от 700 м и глубже, более стабилен, без значимых тенденций изменения распределения, с отрицательными температурами, от 0 до -2,5 °C.

Рисунок 3.2 Временной разрез распределения значений температуры воды с глубиной на корабле погоды М

Наиболее изменчивое распределение как с глубиной, так и со временем наблюдается у значений общей щёлочности (рисунок 3.3). Хорошо виден деятельный слой, до 500 м, он более стабилен по времени, относительно более глубокого слоя, значения общей щёлочности в нём выше, 2300-2350 мкмоль/кг. Нижняя граница слоя постоянно меняется от глубин 200 м до 500 м, а с 2019 года её положение имеет тенденцию к уменьшению глубины.

В 1994 году значения общей щёлочности в 500-метровом слое были максимальны за весь период наблюдений, в диапазоне 2330-2350 мкмоль/кг, в дальнейшем такие высокие значения зафиксированы не были. Также был период высоких значений в верхнем слое, 2320-2330 мкмоль/кг, в 2010-2011 годах, а в 2006-2007 годах значения общей щёлочности в деятельном слое были наименьшими – 2300-2310 мкмоль/кг.

Более глубокий слой, приблизительно от 500 м, не имеет чёткого распределения значений общей щёлочности ни со временем, ни с глубиной. Средние значения в нём составляют около 2300 мкмоль/кг и наблюдаются на всех горизонтах этого слоя, однако есть как высокие значения на всех горизонтах (от границы с деятельным слоем), в том числе и больших глубинах (более 1500) в 2009-2015 годах, так и низкие значения на границе с 500-метровым слоем – до 2290 и ниже мкмоль/кг в 2002 и 2007 годах, 300-500 м.

С 2019 года наблюдается образование чёткого среднего слоя низких значений, около 2300 мкмоль/кг, который расширяется как к поверхности (уменьшение толщины деятельного слоя высоких значений), так и в глубь (увеличение глубины верхней границы глубинного слоя высоких значений).

Рисунок 3.3 Временной разрез распределения значений общей щёлочности с глубиной на корабле погоды М

По рисунку 3.4 хорошо прослеживаются определённые тенденции изменения распределения значений общего неорганического углерода с глубиной и со временем. В деятельном слое прослеживается чёткая тенденция к увеличению значений содержания общего СО2 и уменьшению глубины нижней границы деятельного слоя, от наименьших за весь период наблюдений – 2000-2050 мкмоль/кг в 1994 году на 250 м до 2100-2150 мкмоль/кг на том же горизонте в 2021 году.

От границы деятельного слоя, которая также уменьшилась со временем, наблюдается слой средних значений, около 2150 мкмоль/кг до глубин 600-700 м с локальным повышением значения до 2160 мкмоль/кг на глубине 200 м в 2019 году. В целом, от поверхности до нижней границы среднего слоя наблюдается повышение значений ТСО2.

В более глубоком слое также отмечена тенденция к повышению значений общего неорганического углерода со временем так на 1000 м метрах в 1998 году значения содержания общего СО2 составляли около 2150 мкмоль/кг, а в 2021 году – почти достигали отметки в 2200 мкмоль/кг. При этом наблюдается слабая тенденция к уменьшению значений содержания общего СО2 с глубиной в этом слое.

Рисунок 3.4 Временной разрез распределения значений общего неорганического углерода с глубиной на корабле погоды М

Достаточно хорошо прослеживаются тенденции изменения значений водородного показателя за довольно длительный период, что хорошо видно по рисунку 3.5.

Рисунок 3.5 Временной разрез распределения значений водородного показателя с глубиной на корабле погоды М

Наибольшие значения водородного показателя за весь период наблюдений находились в диапазоне 8,1-8,2 рН наблюдались в 1994 году на глубинах до 500 м. деятельный слой высоких значений, 8,05-8,15 рН слабо выражен и в период с 2004 года до 2021 года уменьшился с 100 м глубины до 20 м.

В 1998 году достаточно высокие значения водородного показателя, 8,05-8,1 pH, наблюдались на всех горизонтах, а в 2002 и 2007 годах, на глубинах более 2000 м были наименьшие значения – не более 8 pH.

Глубже нижней границы деятельного слоя нет других чётких разделений на слои, а значения водородного показателя находятся в среднем в диапазоне 8-8,05 рН с некоторыми повышениями на всех горизонтах в 2004 и 2012 годах.

Заметна слабая тенденция к уменьшению значения водородного показателя с глубиной, однако имеются и относительно высокие значения на глубинах 700-1200 м.

С 2019 года значения водородного показателя стабильно уменьшаются со временем на всех горизонтах.

Достаточно стабильный характер изменения распределения на довольно длительном периоде имеют значения парциального давления углекислого газа (рисунок 3.6).

Рисунок 3.6 Временной разрез распределения значений парциального давления с глубиной на корабле погоды М

В деятельном слое хорошо видны несколько достаточно чётких тенденций: на глубинах до 100 м с относительно низкими значениями - тенденция к повышению значений со временем – от минимального значения около 240 мкатм в 1994 году до 400 мкатм в 2021 году, и глубиной – до 250 м, где, в 2019 году, наблюдаются максимальные значения за весь период наблюдений – до 400 мкатм.

Далее начинается понижение распределения высоких значений с глубиной, до 360 мкатм на 500 м и менее 300 на глубинах более 2000 м. Однако тенденция к увеличению значения со временем сохраняется на всех горизонтах.

Изменение распределения значений гидрокарбонат-иона (рисунок 3.7) аналогично распределению общего неорганического углерода. На разрезе хорошо виден деятельный слой низких значений гидрокарбонатиона – от 1800 мкмоль/кг в 1994 году на глубине 4 м до 2000 мкмоль/кг в 2021 году. Глубина деятельного слоя явно уменьшалась со временем, одновременно с увеличением значений гидрокарбонат-иона.

От нижней границы деятельного слоя до глубин около 500-600 м наблюдается довольно стабильный слой средних значений HCO3 – около 2020 мкмоль/кг, ниже которого начинается слой с максимальными значениями гидрокарбонат-иона у верхней границы слоя (около 2060 мкмоль/кг в 2019-2021 годах) и явными тенденциями к уменьшению значений с глубиной и увеличением со временем.

Рисунок 3.7 Временной разрез распределения значений гидрокарбонат-иона с глубиной на корабле погоды М

На разрезах хорошо видны пробелы в данных, наибольшее количество которых приходится на период до 2004 года. После 2004 года данных значительно больше, чем в более ранний период, они более последовательны, измерения проводились ежегодно, с относительно равных горизонтов, что сделало возможным анализ более глубоких слоёв и прослеживание межгодовой изменчивости.

На разрезах хорошо видно, что наибольшая изменчивость всех показателей наблюдается в деятельном слое, в распределении всех показателей видны тенденции к уменьшению толщины деятельного слоя с образованием расширяющегося среднего слоя.

Изменения значений гидрокарбонат-иона и общего неорганического углерода существенно увеличились с начала измерений, как и значений парциального давления углекислого газа, что со временем может привести к становлению акватории Норвежского моря источником поступления углекислого газа в атмосферу.

Так, в верхнем 20-метровом слое средние значения гидрокарбонатиона и общего неорганического углерода в период 1994-2021 гг. увеличились на 201,06 мкмоль/кг и 117,32 мкмоль/кг соответственно, а средние значение парциального давления увеличились на 183,867 мкатм

На горизонте около 100 м средние значения гидрокарбонат-иона и общего неорганического углерода в период 1994-2021 гг. увеличились на 35,22 мкмоль/кг и 15,56 мкмоль/кг соответственно, а средние значение парциального давления увеличились на 92,294 мкатм.

На горизонте около 1000 м средние значения гидрокарбонат-иона и общего неорганического углерода в период 1998-2021 гг. увеличились на 24,413 мкмоль/кг и 19,4 мкмоль/кг соответственно, а средние значение парциального давления увеличились на 35,501 мкатм.

Уменьшение значений общей щёлочности и водородного показателя свидетельствуют о закисления вод Норвежского моря.

Так, в верхнем 20-метровом слое средние значения общей щёлочности и водородного показателя в период 1994-2021 гг. уменьшились на 28,46 мкмоль/кг и 0,21 ед. pH соответственно.

На горизонте около 100 м средние значения общей щёлочности и водородного показателя в период 1994-2021 гг. уменьшились на 23,91 мкмоль/кг и 0,098 ед. pH соответственно.

На горизонте около 1000 м средние значения общей щёлочности в период 1998-2021 гг увеличились на 5,89 мкмоль/кг, а значения водородного показателя – уменьшились на 0,039 ед. рН.

По данным, полученным на корабле погоды М, ранее уже проводились исследования с анализом межгодовой изменчивости компонентов карбонатной системы. Данные для этого исследования были взяты из архива GLODAPv2.2020, а также температура и соленость поверхности моря по данным OWSM. Для этого исследования использовалась более ранняя версия расчётной программы – CO2SYS, написанная с использованием языка программирования MATLAB.

Сравнение полученных результатов с этим исследованием (рисунки 3.8-3.10) подтверждает сделанные ранее выводы и целесообразность дальнейшего использование архива данных GLODAPv2.2022 и модификации расчётной программы CO2SYS – PyCO2SYS, написанной с использованием языка программирования Python.

При этом в архиве данных GLODAPv2.2022 имеются более ранние значения наблюдений, что позволяет проследить характер изменения распределения компонентов карбонатной системы за более продолжительный период, чем в исследовании 2022 года. Несмотря на то, что эти данные имеют большое количество пропусков, имеющиеся значения наблюдений в деятельном слое позволяют заметить, что ещё в конце 1990-х годов прослеживались аналогичные тенденции изменения распределения компонентов карбонатной системы.

Рисунок 3.8 Сравнение результатов с более ранним исследованием на примере временного разреза распределения значений солёности воды с глубиной на корабле погоды М: а) по результатам данного исследования; б) по результатам более раннего исследования; распределения значений температуры воды с глубиной на корабле погоды М: в) по результатам данного исследования; г) по результатам более раннего исследования

Рисунок 3.9 Сравнение результатов с более ранним исследованием на примере временного разреза распределения значений летучести (фугитивности) углекислого газа с глубиной на корабле погоды М: а) по результатам данного исследования; б) по результатам более раннего исследования; распределения значений водородного показателя с глубиной на корабле погоды М: в) по результатам данного исследования; г) по результатам более раннего исследования

Рисунок 3.10 Сравнение результатов с более ранним исследованием на примере временного разреза распределения значений содержания общего неорганического углерода с глубиной на корабле погоды М: а) по результатам данного исследования; б) по результатам более раннего исследования

3.2 Анализ пространственно-временной изменчивости компонентов карбонатной системы в районе северного разреза

Пространственное распределение значений солёности воды изображено на рисунке 3.11. На разрезах хорошо видно, что во все годы

западная часть области наблюдений была значительно распреснена (менее 34,9 ‰ на протяжении всего периода наблюдений) в деятельном слое, нижняя граница которого находилась на глубинах 200-250 м, в то время как в восточной части в деятельном слое (до глубин 500-600 м) наблюдались наибольшие значения солёности – более 35,1 ‰ в 2006, 2009 и 2013 годах, и в диапазоне от 35 до 35,1 ‰ в 2019 году.

Однако восточнее 15° в.д. во все годы, где имеются значения в деятельном слое, до 250 м, наблюдается распреснённая область со значениями от 34,8 и до 34,95 ‰, а в 2016 году напротив, в западной части области, есть небольшая область повышенной солёности на глубине 250 м со значениями 35 ‰.

В 2006 и 2009 годах вглубь, от нижней границы деятельного слоя, наблюдались низкие значения солёности, с областями как относительно высоких для данного слоя (до 34,95 ‰), так и низких (менее 34,9 ‰) значений солёности.

В 2013-2019 годах ниже деятельного слоя по всей области хорошо виден очень стабильный, ровный слой с тенденцией уменьшения значений солёности с глубиной и со временем до диапазона значений 34,9-34,95 ‰.

Так же, как и в точке корабля погоды М, распределение значений температуры воды в районе северного разреза (рисунок 3.12) схоже с распределением значений солёности. В 2006-2013 годах в деятельном слое хорошо видно разделение на более холодную западную и более тёплую восточную части разреза. Наибольшие значения температуры наблюдались на отрезке от 5 до 15 ° в.д. и в разные годы составляли от 3 до 8 °C на горизонтах до 500-600 м.

В 2013-2016 годах повышенные температуры наблюдались также и в западной части разреза и находились в диапазоне 3-6 °С на горизонтах до 100-250 м.

Рисунок 3.11 Пространственные разрезы распределения значений солёности воды в районе северного разреза: а) 2006 год, июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Рисунок 3.12 Пространственные разрезы распределения значений температуры воды в районе северного разреза: а) 2006 год, июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Во все годы наблюдения по нижней границе деятельного тёплого слоя по всему разрезу наблюдалась относительно ровная узкая область холодных вод, со значениями температуры около 2 °C, от которой начиналось постепенное понижение температуры воды до отрицательных значений.

При этом с каждым годом нулевое значение температуры начиналось на более глубоком горизонте, чем в предыдущий период наблюдений, от 500 м в 2006 году до 700 м в 2019 году (рисунок 3.12).

В отличие от распределения значений общей щёлочности в Норвежском море, в распределении этого компонента в Гренландском море лучше видны определённые закономерности, что хорошо видно на рисунке 3.13. В значениях общей щёлочности довольно слабо просматриваются значимые тенденции, однако можно заметить, что область высоких значений в деятельном слое восточной части разреза расширяется со временем, так в 2019 году появились высокие значения, более 2310 мкмоль/кг на горизонте 1500 м, прежде такие значения наблюдались только в деятельном (до 500-600 м) слое в восточной части.

При этом расширялась центральная область низких значений, от 2295 до 2305 мкмоль/кг от 5° з.д. до 10° в.д. и глубин 250-2500 м.

Сильнее всего изменениям подвержена западная часть исследуемой области: в ней наблюдались как высокие значения, 2305-2310 мкмоль/кг на глубинах более 1500 м в 2006, так и низкие – менее 2295 мкмоль/кг на всех горизонтах.

По рисунку 3.14 хорошо видно, что изменения распределения значений общего неорганического углерода в Гренландском море схожи с изменениями распределения в Норвежском море. Хорошо видно, что область низких значений, 2080-2140 мкмоль/кг, в деятельном слое, 250-500 м, смещалась со временем: сначала она была в восточной части (2006 год), затем на всей области наблюдения (2009-2016 годы), а после – только на западе разреза (2019 год). При этом значения в ней постепенно становились выше, а сама область меньше по глубине.

Рисунок 3.13 Пространственные разрезы распределения значений общей щёлочности в районе северного разреза: а) 2006 год, июль – август;

б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Рисунок 3.14 Пространственные разрезы распределения значений общего неорганического углерода в районе северного разреза: а) 2006 год,

июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

От нижней границы деятельного слоя по всей области на протяжении всего периода наблюдений преобладали высокие значения TCO2 – более 2150 мкмоль/кг в 2006 году и более 2160 мкмоль/кг – в 2019 году. При этом наибольшие значения наблюдались сначала на горизонтах 700-1200 м в 2006 году, со временем распространяясь на другие горизонты, так в 2019 году они наблюдались на горизонтах от 300 до 2500 м, несколько понижаясь с глубиной. Таким образом наблюдается явная тенденция к повышению значений TCO2 со временем, повышению к нижней границе деятельного слоя и уменьшению с глубиной с более глубоком слое (рисунок 3.13)

На рисунке 3.15 хорошо виден характер распределения водородного показателя, схожий с описанными выше изменениями распределения значений солёности воды. Область высоких значений водородного показателя в деятельном слое смещалась со временем из восточной части разреза, со значениями более 8,15 рН на глубинах до 250 м, сначала распространившись по всем долготам со значениями 8,1-8,17 рН, затем в западную часть разреза.

Обширная область средних значений, 8,05-8,1 pH, которая сначала находилась в западной и центральной частях разреза на глубинах до 1500 м, со временем со временем распространилась на все долготы и от нижней границы деятельного слоя до 1000 м в 2013 году и, затем, менее 500 м в 2019 году.

При этом область низких значений, 8 pH и меньше, со временем распространилась на менее глубокие горизонты: от 2500 м в 2006 году и до 1500 м в 2019 году. Таким образом хорошо прослеживается тенденция к уменьшению значений водородного показателя с глубиной и со временем.

Рисунок 3.15 Пространственные разрезы распределения значений водородного показателя в районе северного разреза: а) 2006 год, июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Тенденцию изменения значений, схожую с тенденцией в точке корабля погоды М, имеют значения парциального давления в районе сереного разреза (рисунок 3.16). На всех разрезах видна область низких значений парциального давления углекислого газа, 320-280 мкатм, в деятельном слое, которая со временем сузилась и сместилась с востока, (2006 год, до 300 м) распространившись сначала по всем долготам в 2009-2013 годах, на запад (2019 год, 200-250 м).

От нижней границы деятельного слоя начинается область высоких значений pCO2 – 360 мкатм, которая также сначала находилась на востоке и до глубин 700 м, затем, к 2019 году распространилась по всему разрезу и более чем на 1500 м глубины со значениями более 360 мкатм.

При этом значения парциального давления углекислого газа уменьшались с глубиной до 300 мкатм и менее.

Значения гидрокарбонат-иона в Гренландском море имеют схожий 3.17) распределения (рисунок co общего характер значениями неорганического углерода, а также со значениями этих же характеристик с Норвежском мореНаименьшие значения содержания гидрокарбонат-иона, менее 1910 мкмоль/кг, наблюдались в 2006 году на глубинах до 300 м и 12-17 ° в.д.. область низких значений распространилась на все долготы в 2009-2016 годах, сократившись по глубинам и несколько увеличившись по значениям – около 1925-1975 мкмоль/кг до глубин 200-250 м. затем область сместилась на запад разреза, однако в восточной части значения оставались относительно низкими – около 2000 мкмоль/кг.

Значения содержания гидрокарбонат-иона повышались от поверхности до максимальных значений более 2025 мкмоль/кг на горизонтах 500-1500 м в 2006, с увеличением области высоких значений от250 до 2500 м в 2019 году, с некоторым понижениям значений до 2020 мкмоль/кг на более глубоких горизонтах.

Таким образом значения содержания гидрокарбонат-иона имеют тенденцию к повышению значений со временем.

Рисунок 3.16 Пространственные разрезы распределения значений парциального давления углекислого газа в районе северного разреза: а) 2006 год, июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Рисунок 3.17 Пространственные разрезы распределения значений гидрокарбонат-иона в районе северного разреза: а) 2006 год, июль – август; б) 2009 год, июнь; в) 2013 год, июль; г) 2016 год, август; 2019 год, май – июнь

Многие показатели имеют схожие временные тенденции, несмотря на разное пространственное расположение: и на корабле погоды М и на северном разрезе тенденцию к увеличению значений со временем имеют t, TCO2, pCO2 и HCO3, а к уменьшению – S и pH. Характер тенденций изменения распределения значений общей щёлочности на корабле погоды М и на северном разрезе различны – в первом случае значения уменьшаются со временем, а во втором – увеличиваются.

Это объясняется расположением этих районов наблюдений в зоне влияния Норвежского течения, западная и центральная ветви которого отклоняются от района с точкой корабля погоды М и входят в Гренландское море, к району северного разрез, давая начало Западно-Шпицбергенскому течению [27].

Западно-Шпицберегнское течение является тёплым поверхностным течением, располагающимся на глубинах 50-100 м. Оно привносит тёплые солёные воды в поверхностный слой Гренландского моря и способствует формированию тёплых промежуточных вод [28]. Такое расположение точек наблюдения объясняет образование очагов тёплых солёных вод в деятельном слое восточной части северного разреза, а также высокие значения в восточной части разреза таких компонентов карбонатной системы, как общий неорганический углерод, гидрокарбонат-ион и парциальное давление углекислого газа. Отличие распределения значений компонентов карбонатной системы в западной части северного разреза объясняется её расположением в зоне влияния холодного Восточно-Гренландского течения. 3.3 Анализ соответствия тенденций межгодовой изменчивости компонентов карбонатной системы Норвежского и Гренландского морей.

Для оценки соответствия тенденций изменения значений компонентов карбонатной системы в двух рассматриваемых районах по средним значениям были построены графики трендов межгодовой изменчивости в слое 0-20 м и на горизонтах 100 и 500 м (рисунки 3.18-3.20).

На рисунках (приложение A.1-A.14) изображены облака точек средних значений компонентов карбонатной системы и построенные по ним линейные тренды.

По графикам хорошо видна сонаправленность трендов различных характеристик, что говорит о схожих тенденциях, возникающих при пространственно-временном распределении.

Положительные сонаправленные тренды, и, соответственно, тенденции к повышению значений, имеют ТСО2, рСО2 и НСО3; отрицательные сонаправленные тренды и тенденции к понижению температур – S, t и pH; тренды TA разнонаправлены: ряд корабля погоды М имеет положительный тренд – тенденция к повышению значений, ряд северного разреза – отрицательный тренд и тенденцию к понижению значений.

Таким образов в слое 0-20 м и на горизонте 100 м большинство характеристик совпадают по направленности распределения облака точек, кроме общей щёлочности.

Однако, рассчитанные для полученных выборок коэффициенты корреляции Спирмена во всех случаях оказались незначимыми при проверке их по t-критерию Стьюдента при уровне значимости 0,05, что может свидетельствовать о существовании некоторой задержки переноса вод Норвежским течением от точки корабля погоды M к району северного разреза.

Несколько другое соотношение тенденций наблюдается на горизонте 500 м – по графикам (рисунки 3.18-3.24) хорошо видна сонаправленность трендов различных характеристик, что говорит о схожих тенденциях, возникающих при пространственно-временном распределении.

Положительные сонаправленные тренды, и, соответственно, тенденции к повышению значений, имеют ТСО2, рСО2 и НСО3; отрицательные сонаправленные тренды и тенденции к понижению температур – ТА и рН; тренды S, t разнонаправлены: ряд корабля погоды М имеет положительные тренды – тенденции к повышению значений, ряд северного разреза – отрицательные тренды и тенденции к понижению значений.

На горизонте 500 м большинство характеристик совпадают по характеру распределения, кроме общей солёности и температуры.

При этом некоторые из рассчитанных для этого горизонта коэффициентов корреляции оказались значимыми при проверке их по t-критерию Стьюдента при уровне значимости 0,05.

Рисунок 3.18 Графики трендов межгодовой изменчивости значений солёности воды в Норвежском и Гренландском морях на горизонте 500 м.

Рисунок 3.19 Графики трендов межгодовой изменчивости значений температуры воды в Норвежском и Гренландском морях на горизонте 500 м.

Рисунок 3.20 Графики трендов межгодовой изменчивости значений общей щёлочности в Норвежском и Гренландском морях на горизонте 500 м

Рисунок 3.21 Графики трендов межгодовой изменчивости значений общего неорганического углерода в Норвежском и Гренландском морях на горизонте 500 м

Рисунок 3.22 Графики трендов межгодовой изменчивости значений водородного показателя в Норвежском и Гренландском морях на горизонте 500 м

Рисунок 3.23 Графики трендов межгодовой изменчивости значений парциального давления углекислого газа в Норвежском и Гренландском морях на горизонте 500 м

Рисунок 3.24 Графики трендов межгодовой изменчивости значений гидрокарбонат-иона в Норвежском и Гренландском морях на горизонте 500 м

Таким образом такие характеристики, как содержание общего неорганического углерода, парциальное давление углекислого газа и содержание гидрокарбонат-иона, имели тенденции к повышению значений на всех горизонтах как для корабля погоды М, так и для района северного разреза. При этом в большей степени возрастают значения этих характеристик в верхнем 100-метровом слое.

Закисление океана также прослеживается в обоих исследуемых районах, о чём свидетельствует наличие в них тенденции к понижению значений водородного показателя на всех горизонтах, также в большей степени в в верхнем 100-метровом слое.

Таким образом очевидно, что наиболее выраженные изменения межгодовой изменчивости компонентов карбонатной системы происходят в верхнем 100-метровом слое, как в Норвежском, так и в Гренландском морях.

Заключение

В ходе выполненного исследования были получены следующие результаты:

исходя из физико-географической характеристики
 Норвежского и Гренландского морей, показана ключевая роль водообмена
 по системе теплых течений (Норвежское и Западно-Шпицбергенское);

 приведены общие сведения о карбонатной системе океана и эмпирические зависимости, используемые для расчета констант диссоциации угольной кислоты и других констант равновесия при вычислении компонентов карбонатной системы;

 на основании анализа пространственного и временного распределения станций наблюдений, вошедших в архив GLODAPv2.2022, выявлена наибольшая обеспеченность данными для точки корабля погоды М в Норвежском море и разреза вдоль 74-76 с.ш. в Гренландском море.;

 с использованием библиотеки PyCO2SYS по данным архива GLODAPv2.2022 рассчитаны компоненты карбонатной системы для точки корабль погоды М (1994-2021 гг) и района северного разреза за 2006, 2009, 2013, 2016, 2019 гг;

5) выполненные графический и статистический анализы полученных результатов позволили выявить наличие тенденции к закислению верхнего 500-метрового слоя вод Норвежского и Гренландского морей. Следует отметить, что для верхнего 100 метрового слоя она более выражена.

Это позволяет предположить, что Норвежское и Гренландское моря, при сохранении имеющихся тенденций изменения компонентов карбонатной системы, будут выступать не в роли поглотителей атмосферного углекислого газа, а наоборот - источников атмосферного СО2.

Список использованной литературы

 А.А. Романов, А.А. Романов, Норвежское море – 1997, основные результаты комплексного научно-производственного эксперимента. 180-182 с (дата обращения: 11.03.2023)

2. Ingunn Skjelvan, Siv K. Lauvset, Truls Johannessen, Kjell Gundersen, Oystein Skagseth, Decadal trends in Ocean Acidification from the Ocean Weather Station M in the Norwegian Sea – 2022, - URL: https://www.sciencedirect.com/science/article/pii/S0924796322000768?__cf_ch 1_tk=AtsBD2QeSFmGQ5z_C8iPMbG4kZXeN_GVFGd0EorswyM-1717312280-0.0.1.1-12137#bb0055 (дата обращения: 14.05.2024)

3. L.L. Robbins, M.E. Hansen, J.A. Kleypas, and S.C. Meylan, Program Developed for CO2 System Calculations, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. – URL: https://www.ncei.noaa.gov/access/oceancarbon-acidification-data-system/oceans/CO2SYS/co2rprt.html (дата обращения: 13.12.2023)

4. В.Н. Малинин, П.А. Вайновский, Изменчивость обмена углекислым газом между океаном и атмосферой в Северной Атлантике, 2021 (дата обращения: 22.05.2024)

5. Прознания: Северный Ледовитый океан. научная электронная база знаний: сайт. – URL: https://proznania.ru/?page_id=2323 (дата обращения: 28.11.2023)

6. Большая российская энциклопедия 2004–2017: Норвежское море: сайт. URL: https://old.bigenc.ru/geography/text/2670757. (дата обращения: 05.04.2024)

7. Прознания: Гренландское море. научная электронная база знаний: сайт. – URL: https://proznania.ru/?page_id=2352 (дата обращения: 28.11.2023)

8. The Norwegian Polar Institute: официальный сайт – URL: https://www.npolar.no/en/about-us/#toggle-id-4 (дата обращения: 17.04.2024)

9. Международная морская организация (ИМО): Департамента глобальных коммуникаций ООН. – URL: https://www.un.org/ru/ecosoc/imo/ (дата обращения: 17.04.2024)

10. Программа Организации Объединенных Наций по окружающей среде (ЮНЕП): Архив ООН – 2010. URL: https://www.un.org/ru/ga/unep/ (дата обращения: 17.04.2024)

11. Коршенко А.Н., Качество морских вод по гидрохимическимпоказателям, Москва, «Наука». Ежегодник 2020. – URL:http://oceanography.ru/index.php/component/jdownloads/?task=download.send&id=1856:1856-kachestvo-morskikh-vod-po-gidrokhimicheskim-pokazatelyam-2020-god&catid=3&Itemid=412 127-131 с (дата обращения: 5.12.2023)

12. ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLARUND MEERESFORSCHUNG: официальный сайт. URL: https://www.awi.de/en/ (дата обращения: 22.04.2024)

13. National Centers for Environmental Information: официальный сайт. – URL: https://www.ncei.noaa.gov/products/ocean-carbon-acidification-data-system (дата обращения: 22.04.2024)

14. АРКТИЧЕСКИЙ И АНТАРКТИЧЕСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ: официальный сайт. – URL: https://www.aari.ru/about (дата обращения: 22.04.2024)

Алекин О.А., Ляхин Ю.И. Химия океана. – Л.: Гидрометеоиздат,
 1984. - 118-120, 138-140 с. (дата обращения: 20.11.2023)

16. Кафедра Океанологии МГУ – 2016-2024: официальный сайт. –
URL: https://ocean-msu.ru/oceanology/gidrokhimiya/ (дата обращения: 20.11.2023)

17. Павлова Галина Юрьевна, диссертация кандидата химических наук, Карбонатная система как индикатор биогеохимических процессов в

океане. – URL: https://earthpapers.net/karbonatnaya-sistema-kak-indikatorbiogeohimicheskih-protsessov-v-okeane (дата обращения: 17.01.2024)

18. CLIMATE DATA GUIDE: Углерод Северной Атлантики: CARINA: Carbon in the North Altantic: официальный сайт. – URL: https://climatedataguide.ucar.edu/climate-data/carina-carbon-north-altantic (дата обращения: 11.03.2023)

19. National Centers for Environmental Information: Global Ocean Data
Analysis Project version 2.2022 (GLODAPv2.2022) – URL:
https://www.ncei.noaa.gov/access/metadata/landingpage/bin/iso?id=gov.noaa.nodc:0257247 (дата обращения: 4.12.2023)

20. Norwegian Meteorological Institute - Station "Mike". – URL:

https://en.wikipedia.org/wiki/MS_Polarfront (дата обращения: 14.05.2024)

21. Matthew P. Humphreys, PyCO2SYS, How to use PyCO2SYS – 2020-2023, - URL: https://pyco2sys.readthedocs.io/en/latest/ (дата обращения: 17.04.2024)

22. Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot, PyCO2SYS v1.8: marine carbonate system calculations in Python – 2022, - URL: https://gmd.copernicus.org/articles/15/15/2022/#section2(дата обращения: 09.04.2024)

23. FRANK J. MILLERO, Thermodynamics of the carbon dioxide system in the oceans, 1995 – 661-664 с (дата обращения: 20.11.2023)

24. C. Mehrbach, C. H. Culberson, J. E. Hawley, and R. M. Pytkowicx, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, 1973, 898, 995 с (дата обращения: 20.11.2023)

25. Гордеева С.М. Практикум по дисциплине «Статистические методы обработки и анализа гидрометеорологической информации» - СПб.: РГГМУ, 2010. – 63-65 с. (дата обращения: 16.05.2024)

26. Назначение рангового коэффициента корреляции, 2006-2024. – URL: https://www.psychol-ok.ru/statistics/spearman/ (дата обращения: 20.05.2024) 27. Большая российская энциклопедия, Норвежское течение, 2004– 2017. – URL: https://old.bigenc.ru/geography/text/2670775 (дата обращения: 20.05.2024)

28. Большая российская энциклопедия, Западно-Шпицбергенское течение, 2004–2017. – URL: https://old.bigenc.ru/geography/text/1988108 (дата обращения: 20.05.2024)

Приложение А Линейные тренды в межгодовой изменчивости гидрологических характеристик и компонентов карбонатной системы исследуемого района

Рисунок А.1 Графики трендов межгодовой изменчивости значений солёности воды в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.2 Графики трендов межгодовой изменчивости значений температуры воды в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.3 Графики трендов межгодовой изменчивости значений Общей щёлочности в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.4 Графики трендов межгодовой изменчивости значений общего неорганического углерода в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.5 Графики трендов межгодовой изменчивости значений водородного показателя в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.6 Графики трендов межгодовой изменчивости значений парциального давления в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.7 Графики трендов межгодовой изменчивости значений гидрокарбонат-иона в Норвежском и Гренландском морях в слое 0-20 м

Рисунок А.8 Графики трендов межгодовой изменчивости значений солёности воды в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.9 Графики трендов межгодовой изменчивости значений температуры воды в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.10 Графики трендов межгодовой изменчивости значений Общей щёлочности в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.11 Графики трендов межгодовой изменчивости значений общего неорганического углерода в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.12 Графики трендов межгодовой изменчивости значений водородного показателя в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.13 Графики трендов межгодовой изменчивости значений парциального давления в Норвежском и Гренландском морях на горизонте 100 м

Рисунок А.14 Графики трендов межгодовой изменчивости значений гидрокарбонат-иона в Норвежском и Гренландском морях на горизонте 100 м