МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной и системной экологии ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Магистерская диссертация

На тему Использование спутниковых данных для определения содержания хлорофилла «а» в малых озерах арктической зоны

Исполнитель Дрюкова Екатерина Дмитриевна

(фамилия, имя, отчество)

Руководитель кандидат географических наук, доцент кафедры ПСЭ

(ученая степень, ученое звание)

Зуева Надежда Викторовна

(фамилия, имя, отчество)

«К защите допускаю»
Заведующий кафедрой
(подпись)
Icoevepreorp. welfer sporter
(ученая степень, ученое звание)
cheecee 5 K.
(фамилия, имя, отчество)
«//» сб 2025г

Санкт- Петербург 2025 г.

Оглавление

Списо	к соі	кращений	3
Введен	ние.		4
Глава	1. Ф	изико-географическая характеристика исследуемых регионов	7
]	1.1 Г	Географическое положение	7
1	1.2 P	Рельеф и климатические характеристики	7
]	1.3 X	Карактеристики водных объектов	.11
Глава	2. M	Гетоды и методика обработки	. 15
	2.1	Методы полевых исследований	. 15
	2.2	Основы и методы дистанционного зондирования Земли	.15
	2.3	Программное обеспечение QGIS и SAGAGIS	. 17
2	2.4	Получение и предварительная обработка данных спутника Landsat	t–
8	8,9 и	Sentinel–2	. 19
2	2.5	Принцип получения данных о содержании <i>хлорофилла «а»</i> со	
(спут	никовых изображений	.23
Глава	3. Ka	алибровка регрессионной модели на большом массиве данных	.26
3	3.1 K	Салибровка алгоритма по данным Landsat-8	. 26
3	3.2 K	Калибровка алгоритма по данным Sentinel-2	.32
Глава	4. O	пределение содержания <i>хлорофилла «а»</i> в малых озерах Арктическ	ой
зоны			. 39
۷	4.1	Соотношение спектральных каналов	. 39
۷	4.2	Определение хлорофильного индекса NDCI по снимкам Sentinel	.46
4	4.3	Восстановление содержания <i>хлорофилла «а»</i> в поверхностном сло	e
I	по ар	охивным данным спутника Sentinel	.50
2	4.4 C	Оценка теплового режима по спутниковым данным Landsat	. 55
Вывод	(ы		. 63
Списо	к ист	точников	. 66

Список сокращений

ГИС – Геоинформационная система

ДЗЗ – Дистанционное зондирование Земли

ПО – Программное обеспечение

ЦМР – Цифровая модель рельефа

Chl-a – Хлорофилл «а»

GIS – Geographic information system

QGIS – Quantum geographic information system

Введение

Регион высокоширотной Арктики один из наименее изученных в мире. Особенности климата и географического положения отдельных островов Баренцева моря не позволяют проводить регулярный мониторинг состояния водных объектов. Однако в последние десятилетия исследования показывают существенные изменения температуры водной поверхности, что в скором времени может быть причиной изменения гидробиологических параметров водных объектов.

Определение первичной продукции в водоемах играет важную роль в отслеживании климатических изменений в Арктической зоне. Исследуя многолетнюю динамику роста и развития фитопланктона в водоемах можно отследить климатические изменения. Поэтому мониторинг гидробиологических параметров с помощью дистанционных методов становится особенно актуальным в последнее десятилетие.

По данным спутниковых изображений может быть количественно определена концентрация *хлорофилла «а»*, мутность, прозрачность и другие параметры, основанные на изменении цвета водной поверхности. Так, на основе комбинации мультиспектральных данных датчиков спутников высокого разрешения могут быть получены значения с высокой точностью.

Существует несколько основных алгоритмов определение *хлорофилла «а»* в поверхностном слое водоемов. Наиболее удачным использованием алгоритмов в России является ряд работ по волжским водохранилищам [1–3]. Однако, для каждого региона характерен свой биотопический режим, и пока что универсальной модели не существует.

Как показано в работах [1–3], наиболее значительные ошибки метода наблюдаются в эвтрофных водоемах с большой скоростью изменении концентрации, т.к. снимок не может учесть значительную пространственно—временную изменчивость оптических свойств воды в период активной

вегетации. Для арктических озер скорость образования первичной продукции ниже, поэтому такие модели могут стать достоверным источником информации об изменениях содержания *хлорофилла «а»* в воде. Создание модели пересчета для определения концентрации параметра в озерах островов Баренцева моря по данным ДЗЗ позволит решить проблему отсутствия баз данных по этому региону.

В исследовании впервые применен алгоритм определения содержания *хлорофилла «а»* по данным спутников Landsat и Sentenel для водных объектов в арктической зоне. Использован метод атмосферной коррекции с помощью инструмента «Тор of Atmosphere Reflectance» SAGAGIS для снимков Landsat, который ранее не применялся для исследования параметров воды. Впервые построены карты пространственного распределения концентрации Хлорофилла «а» в озерах о. Мейбел, Земля Франца–Иосифа; о. Северный, Новая Земля и о. Колгуев.

Работа содержит результаты собственных полевых исследований, результаты калибровки алгоритма определения содержания *хлорофилла «а»* в озерах, а также расчета модели для озер островов Баренцева моря.

Результаты могут быть использованы для создания системы мониторинга состояния водных объектов арктической зоны, а также для определения трофического статуса озер.

Целью работы является получение алгоритма обработки данных спутниковых снимков, обеспечивающего определение концентрации *хлорофилла «а»* для малых озер островов Баренцева моря.

Для достижения цели выполнялись следующие задачи:

- 1) Рассмотреть климатические и гидрографические особенности региона исследования;
- 2) Обобщить данные об использовании алгоритмов и методов определения содержания гидробиологических параметров в воде по спутниковым данным;
 - 3) Провести калибровку алгоритма на независимом массиве данных;

- 4) Определить содержание *хлорофилла «а»* в малых озерах арктической зоны по данным спутника Landsat–8;
- 5) Определить значения хлорофильного индекса NDCI по снимкам Sentinel-2;
- 6) Восстановить по спутниковым данным значения параметра за предыдущие годы;
 - 7) Определить температуру водной поверхности по данным Landsat-8;
- 8) Проанализировать возможность применения метода для определения содержания *хлорофилла «а»* в озерах арктической зоны.

1.1 Географическое положение

Баренцево море относится к типу материковых окраинных морей Северно— Ледовитого океана, омывает берега территорий, принадлежащих России и Норвегии. Площадь моря — 1424 тыс. км², примерный объем — 316 тыс. км³, средняя глубина — 222 м, наиболее глубокая часть — 513 м [4].

Гидрологический режим Баренцева моря определяется сложным взаимодействием таких фундаментальных процессов, как высокая изменчивость синоптических условий, проникновение атлантической приливной волны и ее изменения, существенные горизонтальные и вертикальные флуктуации плотности воды. Особое значение имеет взаимодействие атлантических и арктических водных масс, создающее сложную мозаику гидрологических условий в регионе.

Море омывает берега трех больших скоплений островов архипелагов Земля Франца—Иосифа, Новая Земля и Шпицберген, а также несколько отдельных островов, например, о. Колгуев.

Исследование проводилось на территории островов: о. Мейбел архипелага Земля Франца–Иосифа, о. Северный (арх. Новая Земля) и о. Колгуев (п. Бургино).

1.2 Рельеф и климатические характеристики

Архипелаг Земля Франца–Иосифа расположен на окраине материкового шельфа Баренцева моря. В состав входит 192 острова, общая площадь которых около 16 тыс. км². Расстояние от наиболее северного острова – о. Рудольфа (мыс Флигели) до северного полюса составляет около 900 километров. Архипелаг по

географической широте занимает от 79° с.ш. до 82° с.ш., по долготе — от 45° в.д. до 66° в.д. [5, 6].

Острова преимущественно низкогорного рельефа (максимальные абсолютные высотные отметки от 606 до 670 м). Сложен рельеф, в основном, базальтовым плато с высотами от 50 до 300 м, эрозионно–денудационными равнинами с волнисто–грядовым рельефом. В нижних частях склонов плато выработаны морские абразионные и абразионно–аккумулятивные террасы высотой до 30–35 м. Чехол рыхлых четвертичных отложений, в целом, маломощный (0,5–3 м) [6].

Климат архипелага арктический, средняя температура наиболее теплого периода года (июль) составляет 0,7° С. Средняя годовая температура воздуха на Земле Франца–Иосифа равна 12° С, годовая амплитуда температур не превышает 22° С. Вегетационный период длится около двух месяцев, в основном приходится на июль и август [7].

Ледниковый покров составляет 85% от площади островов. Водные объекты на островах архипелага представлены, в основном, небольшими ручьями и озерами ледникового происхождения. Для гидрографического режима более 80% годового стока — ледниковое питание. Таяние ледников и снежников в период года с положительной среднесуточной температурой способствует развитию кратковременного поверхностного стока [7].

Франца-Иосифа известно Ha архипелаге Земля порядка тысячи пресноводных озёр, сформированных преимущественно лагунными ледниковыми процессами. Среди них встречаются крупные водоёмы площадью до 2 км² с максимальными глубинами около 10 метров. Эти озёра характеризуются рядом уникальных особенностей: низкая гидробиологическая продуктивность, суровый температурный и ледовый режим, преобладание минеральной составляющей в осадках, низкая интенсивность седиментации и слабовыраженный диагенез озерных отложений в практически нейтральных условиях [7].

Архипелаг Новая Земля является крупнейшим по площади из архипелагов Баренцева моря и занимает площадь 83 тыс. км². Длина с севера на юг около 1000 км. Состоит он из двух крупных островов Северного и Южного площадью 48,9 и 33,3 тыс. км², помимо них существуют и более мелкие острова. Наибольшая ширина вблизи полуострова Гусиная Земля составляет 150 км. Острова Северный и Южный разделяет пролив Маточкин Шар, ширина которого 2–3 км, длина около 100 км. С запада архипелаг омывается Баренцевым морем, с востока – Карским, через пролив Карские ворота граничит с островом Вайгач [8].

Рельеф архипелага характеризуется разрозненными горными массивами, максимальная высота которых на о. Южный (1291 м) и о. Северный (1547 м). Основная часть Новой Земли преимущественно гористая, территория представлена равнинами (до 200 м), низкогорьем (200–500 м), среднегорьем (500–900 м) и высокогорьем. На побережье с запада островов широко развиты фьорды. Архипелаг является единственным районом России, где представлены все существующие формы оледенения, в том числе и ледниковый щит [9].

Архипелаг расположен в двух климатических поясах — арктическом (о. Северный) и субарктическом (о. Южный). Полярный день длится около 3,5 месяцев, полярная ночь — 4 месяца. Отличительными особенностями климата являются повышенная влажность воздуха, частые и значительные осадки (300—400 мм/год), уменьшающиеся с юга на север, туманы и сильные ветры, сопровождающиеся метелями. Средняя температура теплого периода (июль—август) +5°С на Северном острове и около +7°С на Южном. Необходимо отметить, что Баренцевоморское побережье значительно лучше прогревается в летние месяцы, чем побережье Карского моря. Среднегодовая температура на юге составляют –5,1°С (побережье Баренцева моря), – 7,7°С на юге побережья Карского моря. Вегетационный период на Северном острове продолжается 3,5 месяца, на Южном — 4,5 [10, 11].

Гидрографическая сеть развита лучше на юге архипелага и слабее на севере. Реки Новой Земли в большинстве своем короткие (менее 130 км), горного типа, неглубокие (до 3 м), быстрым течением (1,5–2 м/с), каменным и

порожистым руслом. Все водотоки имеют смешанное ледниково—атмосферное питание и практически каждый год промерзают до дна. Большое количество озер Новой Земли сформировалось на свободной от ледников поверхности. На равнинах — реликтовые и термокарстовые, вдоль побережья — лагунные, отделенные от моря косами и пересыпями, в горах — ледниковые или подпруженные моренными грядами. Крупные озера достигают площади 60 км², с глубиной до 90 м [9].

В прибрежных районах Новой Земли широко распространены реликтовые озера, представляющие собой остатки древних морских заливов и фьордов, сформировавшихся позднеплейстоценовых период трансгрессий. Характерным примером является озеро Ретовского на Северном острове, образовавшееся в результате регрессии моря в осушенной долине, сложенной морскими осадками позднего плейстоцена. Эти озера часто располагаются цепочками, включающими от 5 до 7 водоемов, вытянутых вдоль поднимающихся долин с уклоном поверхности в первые десятые доли градуса. Первое озеро в такой цепи, как правило, представляет собой лагуну с солоноватой водой, отделенную от моря узкой полосой современного пляжа. В последующих озерах цепи вода становится полностью пресной, что отражает постепенное отдаление OT морского влияния И переход К континентальным условиям Донные отложения этих озер представлены обкатанной функционирования. галькой, необработанными плитами сланцев, валунами, между которыми скапливаются частицы мелкозема [9,10].

Остров Колгуев расположен в юго—восточной части Баренцева моря. Площадь острова 3150 км², от материковой части Колугев отделен проливом шириной 70 км [13]. На острове есть населенный пункт — поселок Бугрино, численность населения которого по состоянию на 2021 год насчитывает 337 человек [14].

Высота наиболее возвышенной части острова (центральная часть) варьируется от 80 до 172 м, и представлена, в основном, холмистой и холмисто—котловинной равниной, для которой характерны густая сеть ручьев и

многочисленных озер. Для понижений между холмами, а также для береговых участков характерно большое количество болот и термокарстовых озер [15, 16].

Остров расположен в зоне субарктического морского климата, в пределах подзоны северных и южных тундр. Лето прохладное и короткое. Период средних положительных температур с июня по сентябрь. Средняя температура наиболее теплых месяцев (июль—август) составляет 8,5 °C. Среднегодовое количество осадков на острове 330—340 мм [17]. Продолжительность вегетационного периода на Колгуеве (с температурой воздуха 5 °C и выше) в последние годы существенно увеличивается и составляет от 72 до 130 дней [18].

Гидрографическая сеть на острове достаточно густая с большим количеством ручьев и мелких озер, расположенных вблизи торфяных болот. Река Песчанка является самым большим водным объектов на острове, ее длина 148 км, площадь водосборного бассейна — 921 км². В южной и северной части острова расположены плоские морские террасы, для которых характерна высокая степень заболоченности. Озера небольшие, в основном, округлой формы с заболоченными берегами. Крупнейшее на Колгуеве — озеро Песчаное — расположено в восточной части острова, по происхождению морского лагунного типа [19].

Глава 2. Методы и методика обработки

2.1 Методы полевых исследований

Исследования выполнены в период 2—12 июля 2024 г. в рамках экспедиции «Арктический плавучий университет». Полевые работы осуществлялись на 9 озерах в районах: о. Мейбел, мыс Конрад (арх. Земля Франца—Иосифа); о. Северный, в районе Русской гавани (арх. Новая Земля), вблизи п. Бугрино (о. Колгуев). Отбор проб проводился из поверхностного горизонта на удалении от берега 2—3 м без использования плавсредств.

Определялись следующие характеристики воды: температура, общая минерализация, рН, количество растворенного кислорода, содержание фосфатов (РО4-ион) (Si-ион), форм кремния содержание хлорофилла «a» фитопланктона. Измерения температуры, минерализации, рН проводились с помощью портативных анализаторов, гидрохимический анализ проводился в лаборатории Пробы хлорофилла профильтрованы судне. «a» фильтровальной установки использованием И стекломикроволоконных фильтров марки GF/F (размер пор 0,7 мкм.). Полученные фильтры заморожены на судне до прибытия в лабораторию полярных и морских исследований им. О.Ю. Шмидта, где значения концентраций хлорофилла «а» определены экстрактным флуориметрическим методом.

2.2 Основы и методы дистанционного зондирования Земли

Дистанционное зондирование Земли (ДЗЗ) из космоса предполагает исследование земной поверхности с использованием свойств электромагнитных волн, которые излучают, отражают или рассеивают наблюдаемые объекты. ДЗЗ из космоса — мощный инструмент для мониторинга климата, изучения природных ресурсов, прогнозирования катастроф и решения многих других задач. В экологии такие методы активно используются с целью

совершенствования землепользования и охраны окружающей среды, особенно на труднодоступных территориях [24].

Первые упоминания об использовании дистанционного зондирования Земли относятся к XIX веку, а именно после изобретения фотографии. Однако, активное использование в исследованиях начинается в середине 60–х годов XX века, с появлением космических летательных аппаратов.

Первым спутником, запущенным с целью изучения и мониторинга суши, стал Landsat 1. Он был запущен Национальным управлением по аэронавтике и исследованию космического пространства США (National Aeronautics and Space Administration – NASA) в 1972 году, и позволял получать информацию о земной поверхности в нескольких спектральных диапазонах [25].

Главная цель дистанционного зондирования Земли (ДЗЗ) заключается в информации непосредственно ИЗ извлечении космических снимков, минимизируя или полностью исключая использование дополнительных Этот подход источников данных. значительно увеличивает потенциал применения ГИС-технологий в различных сферах.

Современная обработка данных дистанционного зондирования Земли геоинформационными неразрывно связана системами (ГИС). ГИС собой сложный интегрированный сочетающий представляет комплекс, технологическую составляющую и человеческий фактор. Такие системы обеспечивают сбор, обработку, отображение И распространение пространственно-координированных данных, комплексный анализ данных и знаний об акватории или территории. Результаты обработки можно использовать при решении научных и прикладных задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением экосистемами [26].

Современное дистанционное зондирование значительно расширило возможности получения и обработки информации. Сейчас можно получать данные высокого разрешение любого уголка Земли, а также интерпретировать их с помощью различных методов в зависимости от задач исследователя.

Однако использование методов ДЗЗ сталкивается с определенными трудностями, связанными с тем, как атмосфера поглощает, рассеивает и пропускает электромагнитные волны. Хотя современные спутники обеспечивают высокодетальные снимки, их разрешение всё ещё уступает аэрофотосъёмке в некоторых аспектах. Кроме того, атмосферные помехи (облачность, пыль, смог) могут искажать данные, снижая их достоверность. Часть излучения поглощается молекулами определенных газов, что может влиять на точность получаемых данных [26].

Другая немаловажная проблема связана с оперативностью информации, получаемой ДЗЗ. Спутники не всегда находятся в нужном месте в нужное время. Для мониторинга быстротечных процессов (например, лесных пожаров или наводнений) критически важна частота съёмки, но не все аппараты обеспечивают необходимое временное разрешение. Для задачи мониторинга водных объектов в арктической зоне периодичность получаемой информации хотя и невысокая, но достаточная для анализа [24].

2.3 Программное обеспечение QGIS и SAGAGIS

Работа над проектом Quantum GIS была начата американским геологом Гари Шерманом в 2002 году. В 2007 году Quantum GIS (сейчас – QGIS) получил статус официального проекта Фонда Open Source Geospatial (OSGeo). Таким образом, проект начал быстро развиваться, создавая новые возможности для пользователей [27].

В настоящее время QGIS (Quantum GIS) — это свободное и открытое программное обеспечение (ПО) для работы с геопространственными данными. Оно предоставляет широкие возможности для визуализации, редактирования, перепроецирования, анализа и управления географической информацией. Благодаря своей гибкости и доступности, QGIS активно используется в

картографии, экологии, городском планировании, дистанционном зондировании.

С помощью инструментов QGIS возможна работа с векторными (Shapefile, GeoJSON, KML), растровыми (GeoTIFF, JPEG2000, NetCDF) данными, а также с табличными данными или информацией в виде кода на языке Python. ПО позволяет накладывать слои друг на друга, выполнять математические операции, соединять и обрезать растры, редактировать отображение и масштаб, благодаря чему возможно создание информативных и красочных карт [28].

При скачивании программного пакета QGIS, другое ПО, которое также использовано в работе – SAGA GIS, устанавливается совместно. Но изначально, команды разработчиков и цели, которые они преследовали при создании, у приложений различны.

Разработка ПО SAGA GIS началась в конце 1990—х на кафедре физической географии факультета геологических наук и географии Гёттингенского университета научной группой для анализа цифровых моделей рельефа (ЦМР), для прогнозирования изменений характеристик почв, динамики физико—географических процессов, связанных с рельефом, а также некоторых параметров климата [29].

SAGA является ПО с открытым исходным кодом, то есть ее использование для собственных целей бесплатно и неограниченно. Являясь гибридной ГИС, SAGA поддерживает векторную и растровую модели данных, с акцентом на анализ растров. Особенным преимуществом ПО является то, что оно предоставляет различные инструменты предварительной обработки и коррекции ЦМР и изображений различного разрешения. Программа предоставляет классификаций возможности тематических растровых изображений традиционными методами без обучения и с помощью машинного обучения. Важнейшим отличием otинструментов QGIS является расширенные возможности статистической обработки, в том числе интерполяции. Не маловажная особенность – удобство решения стандартных в науках о Земле аналитических задач на основе ДДЗ. Например, расчет вегетационных и водных индексов, изменений наземного покрова [30, 31].

В работе использованы расчетные и аналитические модули программы SAGA GIS 7.8.2, стиль и конечный результат карт созданы с помощью ПО QGIS Desktop 3.28.8.

2.4 Получение и предварительная обработка данных спутника Landsat—8,9 и Sentinel—2

Коллекция Landsat 8–9 уровня 2 включает в себя спутники Landsat 8, запущенный в феврале 2013 года (уровень 1), и запущенный в 2022 году спутник Landsat 9. На их борту установлены: оперативный датчик изображения поверхности (OLI) и тепловизионный инфракрасный датчик (TIRS), обеспечивающие сезонное покрытие всего земного шара [32].

Таблица 1 – Спектральные диапазоны сенсоров спутника Landsat–8, датчика OLI [32]

Спектральный канал	Длина волны, нм	Разрешение, м
B1	433–453	30
B2	450–515	30
В3	525-600	30
B4	630–680	30
B5	845–845	30
В6	1560–1660	30
В7	2100–2300	30
В8	500–680	15
В9	1360–1390	30

Оперативный датчик изображения поверхности Земли (OLI) снимает в 9 спектральных диапазонах, тепловизионный датчик (TIRS) — в двух тепловизионных диапазонах. Снимки имеют высокое пространственное разрешение 30 м (15 м панхроматический канал), периодичность 1 раз в 16 суток для каждого датчика [32].

Снимки высокого разрешения Sentinel—2 — 20 м (10 м панхроматический канал) имеют периодичность съемки составляет 1 раз в 10 дней. На борту спутника расположен один мультиспектральный прибор (MSI), позволяющий получать данные сразу с 13 спектральных диапазонов. Первые спутники миссии Sentinel—2 запущены в июне 2015 года, следующий в 2017. А с 2024 года действуют два спутника миссии — Sentinel—2A и Sentinel—2B, что сокращает периодичность получения данных до 1 раза в 5 суток [33].

Таблица 1 – Спектральные диапазоны сенсоров спутника Sentinel–2A, MSI

Спектральный канал	Длина волны, нм	Разрешение, м
B1	_	_
B2	458–523	10
В3	543–578	10
B4	650–680	10
B5	698–713	20
В6	733–748	20
В7	773–793	20
В8	785–899	10
B8A	855–875	20
B11	1565–1655	20
B12	2100–2280	20

Данные ДЗЗ получены с помощью интернет–ресурса, созданного Геологической службой США – USGS (United States Geological Survey) [32]. Изображения со спутников находятся в свободном доступе на используемом источнике, ограничений для использования не имеют. В работе использована только часть сцены спутника, чтобы снизить вычислительную нагрузку. А именно, диапазоны каналов №2,3,4,5 и 8.

Ограничением выбора космических изображений для регрессионной модели пересчета спектральной яркости в содержание *хлорофилла «а»* в озерах являются несколько важных параметров. Во–первых, дата и время съемки должны быть наиболее близки к времени сбора подспутниковых образцов. Следующий параметр – облачность, поэтому при поиске снимка использован фильтр облачности ниже 10% (Land Cloud Cover <10%).

Не мало важный аспект предварительной обработки изображений — *атмосферная коррекция*. Коррекция позволяет учесть параметры атмосферы, искажающие качество съемки. Она включает в себя поглощение, рассеяние и переотражение излучения атмосферой на пути от спутника до исследуемого объекта. Существует несколько моделей атмосферной коррекции. Как правило, каждый метод подходит к определенному типу территории или имеет привязку только к одному типу спутника, тем самым создавая ограничения в использовании. Например, в работах [34, 35] описаны наиболее популярные методы атмосферной коррекции для серии Sentinel.

В ПО SAGA GIS коррекция изображений со спутников осуществляется с помощью инструмента «Тор of Atmosphere Reflectance». Алгоритм устраняет искажения, которые вызывает солнечное излучение, а также преобразует значения яркости снимков в коэффициент отражения. Он предназначен специально для спутников серии Landsat, и учитывает особенности данных, получаемых с этого спутника. Все использованные в работе спутниковые изображения были подвергнуты именно этому алгоритму атмосферной коррекции.

Для снимков спутников Sentinel—2A и Sentinel—2B такая обработка уже входит в первичную обработку полученных данных.

Получаемые со спутника Landsat данные являются безразмерными значениями яркости (DN – Digital Number). Чтобы получить значения энергетической яркости, значения DN пересчитываются на основании калибровочных коэффициентов для конкретного снимка. Для изображений спутников Landsat—8 и 9, используют выражение [34]:

$$L_{\lambda} = M_L Q_{cal} + A_L, \tag{1}$$

где L_{λ} — значение энергетической яркости для канала; M_L — калибровочный коэффициент масштабирования конкретного канала; A_L — добавочный коэффициент масштабирования конкретного канала, соответствующий минимальной величине яркости; Q_{cal} — значение DN.

В результате получаются снимки, содержащие значения энергетической яркости для каждого конкретного канала. Такие данные содержат числовые значения, которые могут подвергаться математическим и статистическим операциям в зависимости от задач исследования.

Еще одним этапом предварительной обработки является улучшение качества космических изображений. Разрешение большинства каналов Landsat — 30 м, однако, панхроматический канал (№8) имеет разрешение 15 м. Существует алгоритм (Image Sharpening), увеличивающий качество изображений цветовых каналов на основе данных панхроматического канала [36]. Несколько вариаций такого алгоритма представлено в SAGA GIS. В этой работе для каждого канала Landsat применен алгоритм IHS (Intensity—Hue—Saturation). Улучшение разрешения проводилось и для снимков Sentinel, которые имеют разрешение 20 м, чтобы минимизировать ошибку модели.

После предварительной обработки космических данных, можно приступать к дальнейшим преобразованиям изображений, моделированию и визуализации.

2.5 Принцип получения данных о содержании *хлорофилла «а»* со спутниковых изображений

Одним из факторов, влияющим на цвет воды в океанах и морях, является фитопланктон, а точнее — его ключевой пигмент *хлорофилл «а»*. Этот пигмент играет центральную роль в процессе фотосинтеза, активно поглощая синий и красный свет, в то время как зелёный спектр отражается. В результате чем выше концентрация фитопланктона, тем более зелёной кажется вода при наблюдении из космоса [26]. Это излучение можно не только наблюдать визуально по космоснимкам, но и определить его значение.

Первые методы оценки содержания хлорофилла основывались на статистических регрессионных моделях, построенных по данным спутниковых измерений и сопоставленных с результатами судовых наблюдений. Однако со более сложные полуэмпирические временем появились учитывающие оптические свойства морской воды и позволяющие точнее определять концентрацию пигмента. Для прибрежных зон и внутренних водоёмов применение полуэмпирических алгоритмов остаётся проблематичным. Высокая изменчивость состава воды (взвешенные частицы, растворённые антропогенные загрязнения) часто приводит органические вещества, искажению результатов и требует дополнительной калибровки [37].

В настоящее время существует несколько способов определения содержания *хлорофилла «а»* по ДЗЗ. Алгоритм пересчета спектральной яркости в концентрации, предложенный группой ученых [38], является одним из наиболее успешных. В работе использован полуэмпирический подход, заключающийся в соотнесении скорректированных спектральных

коэффициентов отражения спутника Landsat с измерениями на месте с помощью регрессионного В анализа. результате, онжом получить карты пространственного распределения содержания параметра, при ЭТОМ распространяя моделирование на большое озеро или на соседние водные объекты.

Помимо значений за конкретную дату снимка и отбора проб, можно прогнозировать уровни концентраций *хлорофилла «а»* по космическим изображениям, уже не используя натурных измерений. Метод опробован на многолетних данных о прозрачности воды, о содержании *хлорофилла «а»* некоторых озер Италии. Данный способ показал хороший результат с минимальными погрешностями, по сравнению с другими используемыми ранее для снимков Landsat.

Метод определения *хлорофилла «а»* в более продуктивных озерах по космическим изображениям предложили в 2012 году ученые [39]. В работе описывается «хлорофильный индекс» (NDCI) — отношение разности коэффициентов спектральной яркости поглощения (705 нм) и отражения (665 нм) *хлорофилла «а»* в воде к сумме этих показателей. Такое соотношение показывает наименьшую среднеквадратическую погрешность из всех использованных.

Одним из препятствий повсеместного распространения метода является высокая облачность. Если механизмы атмосферной коррекции и улучшения качества космических изображений с недавнего времени стали общедоступными и нетрудоемкими для пользователей, то «убирать» со снимков облачность – пока что задача, требующая решений. Дело в том, что для датчиков космических аппаратов облако – непросвечивающее тело. Таким образом, место самого облака, а также тени от облака на земную поверхность являются причиной частичной потери данных. Поэтому при выборе снимка руководствуются правилом, по которому общая облачность должна быть менее 10%.

Следовательно, хотя современные алгоритмы цветовой классификации открытой воды достигли значительной точности, их применение в сложных

условиях требует дальнейшего совершенствования и адаптации под специфику конкретных территорий и акваторий.

В работе проводилось определение содержания *хлорофилла «а»* (в мг/м 3) в поверхностном горизонте озер с помощью данных спутниковых изображений высокого разрешения.

Выводы

- 1) В работе создана база данных о содержании *хлорофилла «а»* малых озер в районах: о. Мейбел, мыс Конрад (арх. Земля Франца–Иосифа); о. Северный, в районе Русской гавани (арх. Новая Земля), вблизи п. Бугрино (о. Колгуев). Собраны, обработаны и проанализированы данные со спутниковых изображений Landsat–8 и Sentenel–2.
- 2) Обобщены данные о наиболее удачных алгоритмах использования спутниковых снимков для определения *хлорофилла «а»* в водных объектах суши.
- 3) Калибровка на независимых данных о содержании *хлорофилла «а»* в озерах показала достоверную связь при использовании обоих алгоритмов. Однако, наилучшим образом восстановление значений осуществляется с помощью данных спутниковых изображений Sentinel–2. Метод показал наименьшую среднюю ошибку определения, а также высокую значимую статистически связь. Для регионов калибровки алгоритм определения индекса NDCI можно использовать в отслеживании интенсивности процессов цветения водоемов.

Участвующие в калибровке озера имеют достаточно высокие значения концентраций *хлорофилла «а»*, и, следовательно, высокие темпы изменений концентраций в течение дня в конкретной точке. Поэтому для повышения качества мониторинга рекомендуется использовать комбинацию дистанционных и полевых методов.

4) С помощью алгоритма соотношения спектральных каналов на основе данных спутника Landsat—8 и подспутниковых данных, определены концентрации *хлорофилла «а»* в поверхностном слое малых озер арктической зоны за июль 2024 года. Метод показал статистически значимую связь с натурными измерениями. Таким образом, метод определения содержания *хлорофилла «а»* в водных объектах, основанных на соотношении каналов

Landsat, можно использовать для мониторинга наиболее прозрачных озер арктической зоны.

- 5) Анализ результатов определения содержания *хлорофилла «а»* в озерах с помощью индекса NDCI по снимкам Sentinel показал достоверные результаты, и наименьшую стандартную ошибку определения, по сравнению с предыдущим алгоритмом. Спутниковые изображения Sentenel дают возможность проводить мониторинг содержания параметра даже в озерах с повышенной мутностью в поверхностном слое. Поэтому, такой алгоритм наилучшим образом подходит для исследуемых озер. Данные, полученные с помощью пересчета данных снимка Sentinel—2 могут использоваться для создания систем мониторинга содержания *хлорофилла «а»* в поверхностном слое водоемов арктической зоны.
- 6) Исследование временной динамики содержания *хлорофилла «а»* в озерах проводилось по данным спутника Sentinel–2/MSI за июль с 2022 по 2024 годы. Для озер о. Мейбел значения за 2023 и 2024 годы изменялись несущественно, за 2022 год значения более высокие (рис. 18). Распределение концентраций в озере 3ФИ–2 за этот год более равномерное, по сравнению с последующими сезонами, что может быть связано с более ранним потеплением и снеготаянием. Похожая ситуация наблюдается в поверхностном слое озер о. Северный, за 2022 год значения более высокие, особенно в оз. Есипова (рис. 19).

Значения за 2022 год на острове Колгуев (рис 20), наоборот, ниже, чем в 2023 и 2024 годах. Это может быть связано со спадом продуктивности после интенсивного роста фитопланктона.

7) Исследование температуры водной поверхности проводилось за июль с 2022 по 2024 года. Анализ нескольких лет показал, что для озер более северных островов (о. Мейбел и о. Северный) наиболее холодным стал июль 2024 года (рис. 21 и 22). Температура в исследуемых озерах изменялась в диапазоне 1,0—5,9 °C. Наиболее высокие температуры поверхности озер о. Северный отмечены в 2023 году, озер на о. Мейбел – в 2022 году.

Водные объекты на о. Колгуев расположены значительно южнее, поэтому диапазоны температур в июле у них выше. Так, наиболее высокие значения

наблюдаются за июль 2022 года, температура в озере K–4 достигала 23 °C в отдельных частях. Общий диапазон значений за июль 2022 года по спутниковым данным 20,9–23,0°C (рис. 23). Самая низкая температура за исследуемый период отмечена в 2023 году, наиболее холодной стала поверхность озера K–3 (T=9,12 °C).

8) Взаимосвязь температуры и концентрации *хлорофилла «а»* показала неоднозначные результаты. Так, в июле 2022 года на о. Колгуев температура водной поверхности исследуемых озер была наиболее высокой, а концентрации *хлорофилла «а»* ниже, чем в июле 2023 и 2024 гг. (рис. 24). Это может быть связано с тем, что при высокой температуре (более 20 °C) происходит угнетение развития фитопланктона, и, следовательно, снижение концентрации хлорофилла «а».

В результате, невысокая скорость биохимических реакций и низкие температуры позволяют использовать методику определения параметров водных объектов по космическим изображениям высокого разрешения. Данные, полученные с таких снимков могут использоваться для анализа и оценки временной динамики хлорофилла «а» в фитопланктоне озер арктического региона как самостоятельным методом, так и в комплексе с полевыми исследованиями. В дальнейшем, алгоритм может быть использован для пространственного анализа параметров ближайших водных объектов на соседних островах.

Список источников

- 1. Бочаров А. В. и др. Мониторинг содержания хлорофилла в водоемах по данным спутника//Журнал прикладной спектроскопии. 2017. –Т. 84. №. 2. С. 272–277.
- 2. Мольков А. А., Федоров С. В., Пелевин В. В. Особенности спутникового мониторинга *хлорофилла «а»* в эвтрофных водоемах на примере горьковского водохранилища //Проблемы экологии Волжского бассейна. 2020. С. 19–19.
- 3. Минина Л. М. и др. Пространственно-временное распределение *хлорофилла «а»* среднего речного отдела Чебоксарского водохранилища в летний период по данным спутника Landsat 8. // Вестник рыбохозяйственной науки − 2020. №4. С. 20–34.
- 4. Моря России Баренцево море // География:. URL: https://geographyofrussia.com/morya—rossii—barencevo—more/ (дата обращения: 29.04.2025).
- 5. Арктика С. Моря и острова Северного Ледовитого океана //М., Наука. 1970.– Т. 525. С. 44.
- 6. Мосеев Д. С. и др. Растительный покров морских террас архипелага Земля Франца–Иосифа //Ботанический журнал. 2019. Т. 104. №. 9. С. 1355–1385.
- 7. Говоруха Л. С. Ландшафтно-географическая характеристика Земли Франца-Иосифа //Труды ААНИИ. – 1968. – Т. 285. – С. 86–117.
- 8. Семенков И.Н. Физико-географическая характеристика архипелага Новая Земля (литературный обзор) 2020.
- 9. Малышев Н. А. и др. Новая модель геологического строения и истории формирования Северо-Карского осадочного бассейна //Доклады академии наук.
- Федеральное государственное бюджетное учреждение" Российская академия наук", 2012. T. 445. № 1. C. 50-50.
- 10. Анохин В.М., Бадюков Д. Д., Бадюков Д.Д. Новая Земля. М.: Европейские издания 2009-410 с.

- 11. Алисов Б.П. Климат СССР. М.: Изд-во Московского университета, 1956. 127 с.
- 12. Молодняков С.А. Климатические особенности района Новой Земли // Новая Земля. Природа. История. Археология. Культура. Труды морской арктической комплексной экспедиции (МАКЭ) под общей редакцией П.В. Бояровского. М.: Российский научно–исследовательский институт культурного и природного наследия имени Д.С. Лихачёва. –1998. Кн. 1. С. 101–116.
- 13. Атлас Арктики. м.: гугк, 1985. 204 с.
- 14. Федеральная служба государственной статистики. Перепись населения п. Бугрино в 2020 году. // Росстат URL: https://rosstat.gov.ru/perepisi_naseleniya (дата обращения: 29.04.2025).
- 15. Ференс-Сороцкий А.А. Геоморфология и новейшая тектоника острова Колгуев. //Геоморфология. 1982. No 2. C. 90—95.
- 16. Солнцев Н А. Остров Колгуев: физико—географический очерк // Учёные запискиМосковского государственного университета. 1938. Выпуск XIV. С. 205—271.
- 17. Климат острова Колгуев // Pogodaiklimat URL: http://www.pogodaiklimat.ru/climate/22095.htm (дата обращения: 29.04.2025).
- 18. Глазов П. М., Лощагина Ю. А., Шматова А. Г. и др. Остров Колгуев как объект мониторинга биоты западного сектора российской Арктики // Арктика: экология и экономика. -2024. Т. 14, № 2. С. 261–273. DOI: 10.25283/2223-4594-2024-2-261-273.
- 19. Чертопруд М. В., Крыленко С. В., Лукиных А. И. и др. Особенности сообществ макрозообентоса малых арктических озер Евразии // Биология внутрен. вод. 2021. № 4. С. 378—391. DOI: 10.31857/S0320965221030050 20. Дрюкова Е.Д., Губина А.М., Лис Н.А., Зуева Н.В. Лимнологические характеристики ряда малых арктических озер островов Баренцева моря // Труды XIII Международной научно-практической конференции «Морские исследования и образование (МАRESEDU-2024)» Том I (IV). Тверь: ООО «ПолиПРЕСС», 2025. С. 175-179.

- 21. Китаев С.П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: Карельский научный центр РАН, 2007. 395 с.
- 22. Krasheninnikov A. B. et al. Features of freshwater ecosystems of the Franz Josef Land archipelago //Polar Science. 2022. T. 33. C. 100849.
- 23. Panzenböck M. et al. Dynamics of phyto-and bacterioplankton in a high Arctic lake on Franz Joseph Land archipelago //Aquatic Microbial Ecology. − 2000. − T. 21. − №. 3. − C. 265-273.
- 24. Коросов А. А. Разработка и применение процедуры комплексного дистанционного зондирования для исследования внутриводных процессов в морях и крупных озерах //Авотреф. на соиск. уч. степ. канд. физ.-мат. наук. Спб. 2007. С. 26.
- 25. Landsat 1 Launched // NASA URL: https://www.nasa.gov/image-article/ (дата обращения: 04.04.2025).
- 26. Бочаров А.В. Оценка современного состояния внутреннего водоема на основе методов дистанционного зондирования на примере Иваньковского водохранилища: дис. канд. геогр. наук: 25.00.36. Тверь, 2021. 139 с.
- 27. QGIS Desktop. // OSGeo Projects URL: https://www.osgeo.org/projects/qgis/ (дата обращения: 02.04.2025).
- 28. QGIS Desktop 3.28.8 // QGIS overview URL: https://qgis.org/project/overview/ (дата обращения: 02.04.2025).
- 29. Обзор открытой настольной ГИС SAGA (System for Automated Geoscientific Analyses) история, свойства, аналитический потенциал // GIS-lab.info URL: https://gis-lab.info/qa/saga-intro.html (дата обращения: 02.04.2025).
- 30.Tool Library Documentation SAGA 9.6.1 // Официальный сайт Saga-gis. https://saga-gis.sourceforge.io/saga_tool_doc/9.6.1/imagery_tools_8.html . (дата обращения 09.05.2025)
- 31. Landsat 8 (L8) Data Users Handbook Version 5.0. // USGS URL: http://landsat.usgs.gov/documents/ Landsat8DataUsersHandbook.pdf (accessed Apr. 4, 2019). (дата обращения: 02.04.2025).

- 32. Интернет страница архива спутниковых данных Геологической службы США // USGS URL: https://earthexplorer.usgs.gov. (дата обращения 24.12.2024).
- 33. Интернет страница архива спутниковых данных Sentinel // Copernicus browser URL: https://browser.dataspace.copernicus.eu (дата обращения 24.04.2025).
- 34. Ansper A., Alikas K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes //Remote Sensing. -2018. T. 11. No. 1. C. 64.
- 35. Bresciani, M., Cazzaniga, I., Austoni, M. et al. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8 // Hydrobiologia − 2018. –№. 824. C. 197–214.
- 36. Бабин А.В. Пространственный анализ данных в экологии и природопользовании. Лабораторный практикум: учебное пособие для высших учебных заведений. СПб.: РГГМУ, 2020. 128 с.
- 37. Никитин О. В. и др. Пространственно-временная динамика «цветения» фитопланктона в Куйбышевском водохранилище по данным спутникового зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2024. Т. 21, № 6. С. 284–293.
- 38. Brivio P. A., Giardino C., Zilioli E. Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images //International Journal of Remote Sensing. − 2001. − T. 22. − №. 2-3. − C. 487-502.
- 39. Mishra S., Mishra D. R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters //Remote Sensing of Environment. 2012. T. 117. C. 394-406.
- 40. Трофический статус и лимитирующие факторы трофности озёр г. Мурманска / М. А. Постевая, В. А. Даувальтер, З. И. Слуковский, Д. Б. Денисов // LXXVI Герценовские чтения. География: развитие науки и образования: Материалы Международной научно-практической конференции. В 2-х томах, Санкт-Петербург, 19–21 апреля 2023 года / Отв. редакторы Д. А. Субетто, А. Н.

- Паранина. Том І. Санкт-Петербург: Российский государственный педагогический университет им. А. И. Герцена. 2023. С. 284-288.
- 41. Зубова Е. М. и др. Долговременная динамика основных компонентов экосистемы озера Куэтсъярви (система реки Пасвик, Мурманская область) //Биосфера. 2019. Т. 11. № 4. С. 178-200.
- 42. Кашулин Н. А., Беккелунд А. К., Даувальтер В. А. Особенности летнего пространственного распределения фосфора, азота и *хлорофилла «а»* в крупном эвтрофируемом арктическом озере Имандра (Мурманская область) в связи с массовым развитием фотосинтезирующих микроорганизмов //Биосфера. − 2020. − Т. 12. − № 3. − С. 63-92.
- 43. Water Information System Sweden (VISS) database. [Электронный ресурс]. URL: https://viss.lansstyrelsen.se/ (дата обращения 20.04.2025)
- 44. Adams H. et al. Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes //Earth System Science Data. -2022. T. 14. No. 11. C. 5139-5156.
- 45. Мольков А. А. и др. Исследование сезонного изменения температуры воды озёрной части Горьковского водохранилища в 2018 г. по данным in situ измерений и спутниковым изображениям высокого разрешения //Современные проблемы дистанционного зондирования Земли из космоса. − 2021. − Т. 18. − №. 2. − С. 216-229.
- 46. Zhang K. et al. The temporal and spatial variation of chlorophyll a concentration in the China Seas and its impact on marine fisheries //Frontiers in Marine Science. 2023. T. 10. C. 1212992.
- 47. Tryfon E., Moustaka-Gouni M. Species composition and seasonal cycles of phytoplankton with special reference to the nanoplankton of Lake Mikri Prespa //Lake Prespa, Northwestern Greece: A Unique Balkan Wetland. 1997. C. 61-75.
- 48. Трифонова И.С. Экология и сукцессия озерного фитопланктона / Отв. ред. И.Н. Николаев; АН СССР. Ин-т озероведения. Л. : Наука. Ленингр. отд-ние, 1990. 182 с. ил.; 22. ISBN 5-02-026644-2.