

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра водно-технических изысканий

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(магистерская диссертация)

На тему	Заторно-зажорные явления
	р. Печора
Испо лнители	Палконен Анна Андреевна
	(фамилия, имя, отчество)
Руков одител	ь кандидат физико-математических наук
	(ученая степень, ученое звание)
	Саноцкая Надежда Александровна
	(фамилия, имя, отчество)
«К защите до	опускаю»
Заведую щий	кафедрой
	(подпись)
	кандидат географических наук, доцент
	(ученая степень, ученое звание)
	Исаев Дмитрий Игоревич
	(фамилия, имя, отчество)

Санкт-Петербург 2020

EDZ WOHLER 2020 F.

			4
1.			6
	1.1	, , ,	
			6
	1.2		12
	1.3	,	
			16
	1.4		21
	1.5		22
	1.6	,	23
	1.7		
			25
2.			29
	2.1		29
	2.2		32
	2.3		33
3.			
			37
	3.1		37
	3.2		43
	3.3		
			44
4.			52

4.1		52
4.2	•••	57
		61
		63
		6/

· -• 1 2 . .

--

· ·

.

.

. .

.

.

-

1.1 , , ,

-

,

•

,

;

,

.

•

· , .

•

· ,

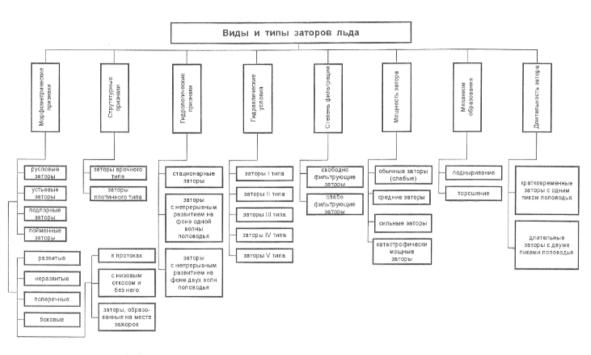
,

P_i, 2, 3 4• (P_i) . 10%

50%. P_{i} 10 / .

8

.[2] 0,6).


50 -80%); 0,7); (5-7 0,6-0,8 /

(100°))

1.2 (); 22

- ; - ; - ; - ; - () - ,

_ .

1.1 -

, 1.1, : ,

a)

,

b) c) d) 2,5) 2,5)

·

```
)
                                                          0,7 ;
   (h )
                                           (h): h/h 0,5;
                                           (
                       10-30%);
                                                     (5 -7
```

1 / ; (1-2), (2-3 10-12), . [2] 1.3 (-2...-10°).

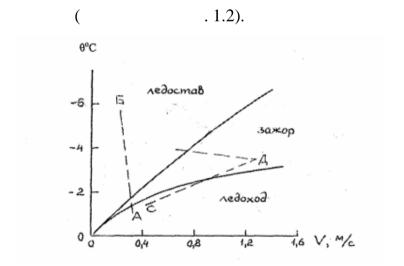
0,5-1,6 / .

16

0,5 /

,

1.2).


(),

(. 1.2).

,

,

,

1.2 –

•

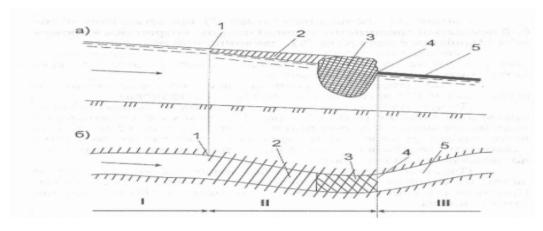
, ,

· ·

,

.

, , ,


.

,

, . .

·

1.3.

1.3 – :

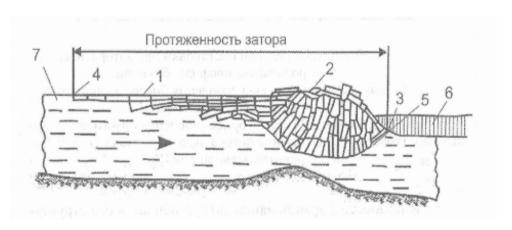
- ; - ;

I- ; II- ; 3 - ; 3 -

();4- ;5-

, . 0,8 /,

. 0,0 /


•

. ()

, 1.4: - « » ()(5),

(6)

;

1.4 –

1 – () ;2 – () ;3 –

() ;4 – ()

;5 - ;6 - ;7 –

.

.[1] 2-5 / . .[2] 1.4 **« >>**),), .). - 3-5

5-8 .

3, *−* 30-20%, . . 3-5 (). 3 -6 . 6 -9 . .[1] 1.5 10-15 .

·

. [6] 1.6 ();)).

, ,

, (2), (1/3

,

,

.

. , , ,

. ,

1.7

, ,

,

,

,

.

, ,

,

, , , , . . .

•

-;

, .

,

•

.

, ,

.

·

2. 2.1

29

).

0,5 -1 . 3 10. 5. 0,25 0,35 . 4 (8 20). 1-2 $Q_{\mathbf{n}} = \eta \mathbf{h}_{\mathbf{n}} B V_{\mathbf{n}}$

.

,).

,

· , -

,

,

,

,

•

,

•

•

2.2

,

,

· -

, . .

•

,

,

, « ...»,

,

.

,

. [1]

,

.

,

· ·

,

2.3

,

•

•

,

()

,

•

.

.

· ·

·

•

$$2H = 12.1\sqrt{\sum_{i=1}^{6} \theta_{-i}} + 5.48i + 2.76h - 71.4 \frac{\sum_{i=1}^{6} \theta_{-i}}{\sum_{i=1}^{6} \theta_{-i}} + B_{-7},$$

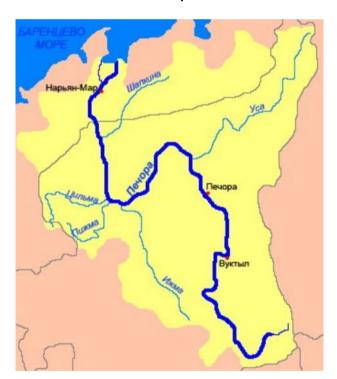
$$\sum \Theta_{-}$$

$$h-$$
 ;

$$\sum_{\theta} \theta$$
 +

- 3**-**5 , - 1-3 - 5, − 1**-**2 . 1 -2 8-10 **«** (), . .),

.[4]


3.

3.1 -

,

. 1096 .

,

3.1 –

1809 , $322\,000^{-2}$. 130 . . .

, -

630 2 (« ») 130). 45 (120 2900 0,62 . 190 (); (). 3.1.1). 3 ‰.

•

(), 16 100 15-45 , 75-100 300

") 50 1499 3.1.2 80% 10%. 32 15 (),

3.1.3 ,

-2,5°C.

-19,3°C, +15,4°C.

- 26 , -10 .

192 , -70 ,

- 73 . 580

30 .

,

. -

, –

- 8 12

,

5° -7° 3.1.4), (16-18 . (), .). 3.1.5

20 62 . -1090 $^{3}/$; 148^{3} , -4140 $^{3}/$ (131,663 ³). 17 / ³, 67 / 3 (/); - 85 / **,** -66 /. (100-280 /). -139 86 , 3.2

,

6-9 . 60 -80% 4 (0-144 130 (40). 2 -3 2 -3,5 (1958); 1966 .[3] *3.3*. 1980 .

44

2016 .

37 , , 24%.

. . . ,

,

3.3.1

. – .

.

1.

 $H_{max} = -0.348 h + 0.750 + 7.008 \ \ \Gamma + 0.285 \ \ H_{(20III-31III)} + 426$

h - ; - ;

 $\mathbb{D}^{'}\Gamma$ - ;

 $2H_{(20III-31III)} - .$

$$S/ = 7,201.$$

•

2. \(\sum_{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tinit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\\ \text{\texi}\tilit{\text{\texit{\text{\text{\texit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texit{\texi{\texi{\texi{\texi{\texi{\texi}\til\tint{\tiint{\texit{\tet{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\ti

 H_{max} = -0,133 +0,505 $\frac{\mathbf{D}\theta}{+0,2148h}$ +10,9h -30,7 I+886

 $\sum \Theta$

31 ;

h – 31 ;

h – 31 ;

I – .

S/ = 1,864.

3.

 H_{max} = -0,288h +0,748 +5,91 $^{\circ}$ T+439

h – ;

- ;

?T- ;

S/ = 6,92.

4.

$$H_{max}$$
= -12,7h + 16,0 $?$ T +1,98 +1084

h - ;

- ;

?T- ;

S/ = 1,903.

·

:

1.

$$H_{max} = 0,669 \text{h} - 0,215 + 3,23 \boxed{\Gamma} + 1,57 \boxed{H}_{(20\text{III}-31\text{III})} + 636$$

h – ;

- ;

 $?|_{\Gamma}$;

?H_(20III-31III) - ;

S/ =5,697.

2.

Н

 $H_{max} = -0.027H + 674$

S/ = 47,1. . [7]

,

,

, 1.1.

1.1 –

	H_{max}	Н
1984	699	190
2004	744	147
2007	618	74
2008	761	163
2009	651	164
2012	599	126

Excel

, 1.2,

1.3

, 1.4.

1.2 –

	R	0,582	
R-		0,339	

R-	0,174
	60,64
	6

1.3 –

Df	SS	MS	F	F
1	7546	7546	2,052	0,225
4	14707	3677		
5	22253			

1.4 –

				t-	P-		
						95%	95%
Y-		540	100	5,394	0,006	262	818
	X 1	0,965	0,673	1,433	0,225	-0,905	2,834

$$H_{max} = 0.964H + 540$$

H - , .

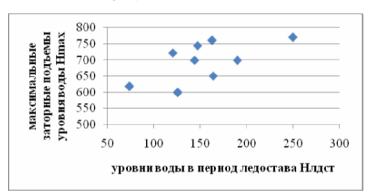
1.5

1.5 –

. – . .

	Hmax		?
2014	770	781	1,418
2015	742	692	6,715
2016	700	679	3,048

[4]:


$$S/ = 0,704$$

S –

_

max•

$$r_1 = 0,71.$$

3.1 –

max

4-5

3.3.2

1.6.

1.6 –

	max	min	h	I
1984	699	28	81	22,2
2004	744	6	82	22,7
2007	618	44	70	16,4
2008	761	53	75	16,0
2009	651	47	85	20,8

2011	685	66	80	19,6
2012	599	37	68	25,1

Excel ,

1.7,

1.8

1.9

1.7 –

	R	0,694
R-		0,482
	R-	0,036
		62,0
		7

1.8 –

Df	SS	MS	F	F
3	10744	3581	0,931	0,523
3	11544	3848		
6	22288			

1.9 –

				t-	P-		
						95%	95%
Y-		570	382	1,49	0,23	-645	1784
	X 1	-1,33	1,57	-0,85	0,46	-6,32	3,66
	X 2	4,74	3,99	1,19	0,32	-7,96	17,4
	X 3	-9,98	9,00	-1,11	0,35	-38,6	18,6

. . . .

$$H_{max}$$
=4,744 h -9,981I -1,329 H_{min} +570

h - , ;

I – ;.

 H_{min} - , .

1.10.

1.10 -

. – . .

	max		?
2014	770	763	0,896
2015	742	743	0,077
2016	700	693	1,039

: S/ = 0.196 . .

.[8] – .

5 .

4. 4.1 ().). (. [1]

53

4.1.1.

0,2-0,5 0,5-1,0),),

0°. (..) 50% 50%).) 0 °C 0 °C) 0 °C) -0 ° C. (1-2)

 0° .

. , ,

,

•

4.1.2.

7-10 .

.

,

,

· -

,

.

2-2,5 4-4,5

20 70 .

(2-3 0 ° C.[6]

. 15-25 1-3 / .

5

0 ° C,

10

4.1.3

, , ,

.

4.2 4.2.1 . :

--

). ,

-

· :

· · · ,

.[1]

4.2.2

· ,

.

, . .

, . [6] ,

4.2.3

().

•

· ,

,

,

,

, .

) a) b) c) . .) d) e) **« ».**

61

.[1]

·
.

.

-,

•

:

,

.

, ,

,

1.	,	•		
	2004			
2.				
	.: , 2008 228			
3.			1.	
	. , , 1	976		
4.				
	, . ,	1982, . 100.	()	
5.			, , 2015	
6.	,			
	, 2015			
7.	,			
	. – , . , , 2007	-436 .		
8.				
	,			. – .,
	. , 1986, 50. ()			
9.	198	30 2016	0,	4,8,9
	. ,	•		•
1.0	, .	1000	1000	
10.		1980	1990	1
			,	
11.	· h	ttp://www.pogo	odaiklimat ru/	
12		up.// www.poge		r rf mi
12	· · · · · ·		: https://wate	1-11.1 U/

1. H_{max} = -0,348h +0,750 +7,008 \Box Γ +0,285 \Box $H_{(20III-31III)}$ +426

	Hmax	h		?'Γ	☑H _(20III-31III)
1984	699	81	232	16	6
2004	744	82	168	24	-38
2007	618	70	147	16	18
2008	761	75	281	16	4
2009	651	85	230	24	-29
2012	599	68	189	12	-5

R	0,662
R-	0,438
R-	-1,808
	112
	6

Df	SS	MS	F	F
4	9756	2439	0,195	0,914
1	12497	12497		
5	22253			

				t-	P-	95%	95%
Y-		426	854	0,498	0,706	-10424	11275
	X 1	-0,348	17,543	-0,020	0,987	-223	223
	X 2	0,750	1,344	0,558	0,676	-16,3	17,8
	X 3	7,008	27,801	0,252	0,843	-346	360
	X 4	0,285	3,870	0,074	0,953	-48,9	49,5

	H_{max}		2
2014	770	639	17,0
2015	742	637	14,2
2016	700	665	4,977

2.
$$H_{max} = -0.027H + 674$$

	max	
1981	656	149
1982	690	164
1983	602	70
1984	699	190
1985	554	70
1986	652	106
1987	758	207
1988	839	81
1989	644	362
1990	663	150
1991	811	150
1993	747	128
1994	597	185
1995	791	167
1996	634	216
1997	147	129
1998	803	205
1999	740	123
2000	630	115
2001	650	311
2002	782	71
2003	720	146
2004	744	147
2006	515	239
2007	618	74
2008	761	163
2009	651	164

R	0,0143
R-	0,0002
R-	-0,0398
	135

______27

df	SS	MS	F	F
1	94,05	94,05	0,005	0,943
25	457860	18314		
26	457954			

				t-	P-	95%	95%
Y-		675	66	10	2E-10	539	810
	1 X	-0,027	0,382	-0,072	0,943	-0,814	0,759

	max		?
2012	599	671	12,05
2013	632	671	6,23
2014	770	668	13,27
2015	742	671	7,02
2016	700	671	4,19

3.
$$H_{max}$$
= -0,133 +0,505 +0,2148h +10,9h -30,7 I+886

	max	Н	Θ	h	h	I
1984	699	190	-1045	34	61	0,6
2004	744	147	-864	17	53	-3,8
2007	618	74	-1032	28	58	1,8
2008	761	163	-548	16	51	0,4
2009	651	164	-860	11	55	-2,9
2012	599	126	-648	3	41	-0,5

R	1
R-	1
R-	65535
	0
	6

Df	SS	MS
5	22253	4451
0	0	65535
5	22253	

		t-	95%	95%	95,0%
Y-	886	65535	886	886	6399
X 1	-0,133	65535	-0,133	-0,133	3,430
2 X	0,505	65535	0,505	0,505	112
X 3	10,920	65535	10,92	10,92	158
X 4	0,214	65535	0,214	0,214	248
X 5	-30,733	65535	-30,7	-30,7	

	Hmax		?
2014	770	406	47,3
2015	742	705	2,4
2016	700	551	21,3

4.
$$H_{max} = -0.288h + 0.748 + 5.91$$
 T+439

	Hmax	h		?'T
1984	699	81	232	16
2004	744	82	168	24
2007	618	70	147	16
2008	761	75	281	16
2009	651	85	230	24
2012	599	68	189	12

	R	0,660
R-		0,435
	R-	-0,412
		79,3
		6

Df	SS	MS	F		F
3	9688	3229	0,514	0,713	
2	12565	6283			
5	22253				

				t-	P-	95%	95%
Y-		439	592	0,741	0,536	-2108	2986
	X 1	-0,288	12,425	-0,023	0,984	-53,8	53,2
	X 2	0,748	0,953	0,785	0,515	-3,35	4,85
	X 3	5,92	16,7	0,354	0,757	-65,9	77,8

	Hmax		?
2014	770	635	17,5189
2015	742	639	1,42869
2016	700	666	4,905331

$$5 H_{max} = -12.7 h + 16.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +1084$$

	Hmax			2'r
			h	
1984	699	190	81	16
2004	744	147	82	24
2007	618	74	70	16
2008	761	163	75	16
2009	651	164	85	24
2012	599	126	68	12

	R	0,692
R-		0,479
	R-	-0,304

76,2
6

df	SS	MS	F	1	F
3	10649	3550	0,612	0,669	
2	11604	5802			
5	22253				

				, t	P-		
				t-		95%	95%
Y-		1084	1052	1,030	0,411	-3442,733	5610,013
	X 1	1,99	2,18	0,91	0,46	-7,39	11,36
	X 2	-12,7	22,5	-0,566	0,628	-110	84,1
	X 3	16,0	23,5	0,681	0,566	-85,2	117

	Hmax			?
2014	770	250	929	-20,6
2015	742	121	800	-10,8
2016	700	144	798	-14,0