

министерство науки и высшего образования российской федерации федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра экспериментальной физики атмосферы

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

На тему: «Анализ загрязнения воздуха Санкт-Петербурга твердыми примесями»

Исполнитель	Васильева Анастасия Руслановна (фамилия, имя, отчество)
Руководитель	кандидат физико-математических наук, доцент (ученая степень, ученое звание)
	Крюкова Светлана Викторовна
	(фамилия, имя, отчество)
«К защите допуск Заведующий каф	:аю» едрой — БЛИ
	(подпись)
K	андидат физико-математических наук, доцент
	(ученая степень, ученое звание)
	Восканян Карина Левановна
	(фамилия, имя, отчество)

«14» июня 2025 г.

Санкт–Петербург 2025

Оглавление

Введение
1. Теоретические основы изучения загрязнения атмосферного воздуха
твердыми примесями
1.1 Обзор источников и видов твердых примесей в атмосферном воздухе. 5
1.2 Методы мониторинга и анализа загрязнения воздуха твердыми примесями
1.3 Влияние твердых примесей на здоровье населения и окружающую среду
2 Характеристика Санкт-Петербурга как объекта исследования
2.1 Географическое положение и климатические особенности Санкт- Петербурга
2.2 Социально-экономическая характеристика Санкт-Петербурга 18
2.3 Основные источники загрязнения атмосферного воздуха в Санкт- Петербурге
2.4 Система мониторинга качества воздуха в Санкт-Петербурге
3 Анализ загрязнения воздуха Санкт-Петербурга твердыми примесями 26
$3.1.1$ Анализ динамики концентраций твердых примесей — PM_{10} по данным станций мониторинга за сентябрь 2024 года
3.1.2 Анализ динамики концентраций твердых примесей – PM10 по данным станций мониторинга за октябрь 2024 года
$3.1.3$ Анализ динамики концентраций твердых примесей — PM_{10} по данным станций мониторинга за ноябрь 2024 года
3.2 Анализ влияния метеорологических факторов на концентрации твердых примесей
Заключение
Список литературы

Введение

Атмосферный воздух—это жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений.

Он необходим для нормального существования на Земле живых организмов.

Санкт-Петербург, являясь вторым по величине городом России, характеризуется высокой плотностью населения, развитой промышленностью, интенсивным транспортным потоком и сложными метеорологическими условиями, способствующими накоплению и удержанию загрязняющих веществ в атмосфере.

Среди разнообразных загрязнителей, твердые примеси (включающие в себя пыль, сажу, золу, аэрозоли и другие частицы) занимают особое место, оказывая значительное влияние на прозрачность атмосферы, респираторную систему человека и климатические процессы.

Любое промышленное производство оказывает значительное влияние на окружающую среду, поэтому защита природы от загрязнения становится приоритетной задачей в условиях развития промышленности.

В этой связи, мониторинг и анализ загрязнения воздуха, особенно в крупных промышленных центрах, таких как Санкт-Петербург, приобретает особую актуальность.

Актуальность данной работы обусловлена необходимостью разработки эффективных стратегий по улучшению экологической обстановки в Санкт-Петербурге и обеспечению устойчивого развития города в условиях растущей антропогенной нагрузки. Результаты исследования могут быть использованы органами государственного управления, предприятиями и общественными организациями для принятия обоснованных решений в области охраны атмосферного воздуха и улучшения качества жизни населения.

Целью работы является оценка экологической обстановки в Санкт-Петербурге.

Для достижения цели сформированы следующие задачи:

- 1. Произвести анализ посуточных данных концентраций загрязняющих веществ в г. Санкт-Петербурге за осенний период 2024 года;
- 2. Построить графики распределения концентрации загрязняющих веществ за осенний период 2024 г.;
- 3. Проанализировать полученные данные.
- 4. Определить степень влияния метеорологических факторов на загрязнение воздуха в г. Санкт-Петербург;
- 5. Сделать выводы по анализу данных.

Объект исследования: атмосферный воздух Санкт-Петербурга, а также данные, полученные со станций экологического мониторинга воздуха

Предмет исследования: измерения концентраций, загрязняющих веществ - взвешенные частицы PM_{10} за осенний (сентябрь, октябрь, ноябрь) период 2024 года.

Структура выпускной работы: работа состоит из введения, трех глав, которые подразделены на подглавы, заключения, списка использованной литературы.

Первая глава посвящена теоретическим основам изучения загрязнения атмосферного воздуха твердыми примесями. Вторая глава посвящена характеристикам Санкт-Петербурга как объекта исследования. В заключение работы сделаны основные выводы по результатам исследования

- 1. Теоретические основы изучения загрязнения атмосферного воздуха твердыми примесями
- 1.1 Обзор источников и видов твердых примесей в атмосферном воздухе

Атмосферный воздух городов представляет собой сложную смесь газов и взвешенных частиц, именуемых твердыми примесями или взвешенными частицами (РМ – Particulate Matter). Эти частицы, варьирующиеся по размеру, составу и происхождению, оказывают значительное влияние на здоровье человека, окружающую среду и климат. [1]

Твердые примеси представляют собой многокомпонентную смесь микроскопических частиц, состоящая из пыли, копоти, пепла и частиц, образующихся в результате химических процессов, происходящих в атмосфере. Их малый размер позволяет им глубоко проникать в дыхательную систему человека, вызывая широкий спектр заболеваний, от респираторных до сердечно-сосудистых.

ПДК - предельная допустимая концентрация загрязняющего вещества в атмосферном воздухе - концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни. Величины ПДК приведены в мг/м³

ПДКмр - предельно допустимая максимальная разовая концентрация химического вещества в воздухе населенных мест, мг/м³. Эта концентрация при вдыхании в течение 20-30 мин не должна вызывать рефлекторных реакций в организме человека.

ПДКсс - предельно допустимая среднесуточная концентрация химического вещества в воздухе населенных мест, мг/м³. Эта концентрация не

должна оказывать на человека прямого или косвенного вредного воздействия при неопределенно долгом (годы) вдыхании [2].

Санкт-Петербург, являясь крупным промышленным, транспортным и культурным центром, подвержен воздействию различных источников загрязнения атмосферного воздуха, в том числе и твердыми примесями.

Данный обзор посвящен классификации, происхождению и свойствам твердых примесей, присутствующих в атмосферном воздухе.

Классификация твердых примесей:

Твердые примеси классифицируются по различным признакам, в том числе по размеру, составу и происхождению:

По размеру:

- PM_{10} (Particulate Matter ≤ 10 мкм): частицы, диаметр которых не превышает 10 микрометров. К ним относятся в основном пыль, пыльца растений, частицы сгорания топлива и промышленных процессов. PM_{10} способны проникать в верхние дыхательные пути человека и вызывать раздражение и респираторные заболевания.
- $PM_{2.5}$ (Particulate Matter ≤ 2.5 мкм): более мелкие частицы, диаметр которых не превышает 2.5 микрометра. Они включают продукты сгорания (сажа, органические соединения), вторичные аэрозоли, образующиеся в результате химических реакций в атмосфере, а также наночастицы. $PM_{2.5}$ представляют наибольшую опасность для здоровья, так как способны проникать глубоко в легкие и даже в кровеносную систему. [3]

По химическому составу:

Минеральные частицы: пыль, песок, глинистые минералы, поднимаемые ветром с поверхности земли.

- Органические частицы: сажа, продукты неполного сгорания топлива, биогенные аэрозоли (пыльца, споры).
- Неорганические соли: сульфаты, нитраты, хлориды, образующиеся в результате химических реакций в атмосфере.
- Металлы и их соединения: содержатся в выбросах промышленных предприятий, автотранспорта и сжигании отходов. [3]

По происхождению:

- Первичные твердые примеси: выбрасываются непосредственно в атмосферу из различных источников (например, пыль от дорог, сажа от сжигания топлива).
- Вторичные твердые примеси: образуются в атмосфере в результате химических реакций между газообразными загрязняющими веществами (например, сульфаты, нитраты). [3]

Источники твердых примесей:

Источники твердых примесей в атмосферном воздухе можно разделить на природные и антропогенные:

- Природные источники:
- Эрозия почвы и ветровой подъем пыли: основной источник минеральных частиц.
 - Лесные пожары: выброс сажи, золы и других продуктов сгорания.
 - Вулканические извержения: выброс пепла, газов и аэрозолей.
 - Морские брызги: выброс морских солей в атмосферу.
 - Биогенные источники: пыльца растений, споры грибов, бактерии. [4]

- Антропогенные источники:
- Транспорт: выбросы от автомобилей, самолетов, судов основные источники $PM_{2.5}$ и PM_{10} в городах.
- Промышленность: выбросы от промышленных предприятий (металлургия, химическая промышленность, энергетика).
- Энергетика: выбросы от ТЭЦ, котельных, работающих на угле, мазуте и газе.
- Сельское хозяйство: выбросы пыли при обработке почвы, внесении удобрений.
 - Строительство: выбросы пыли и строительных материалов.
- Сжигание отходов: неконтролируемое сжигание отходов приводит к выбросу токсичных веществ и твердых примесей.
- Домашнее отопление: использование угля и дров для отопления домов в частном секторе [4]
- 1.2 Методы мониторинга и анализа загрязнения воздуха твердыми примесями

Мониторинг и анализ загрязнения атмосферного воздуха твердыми примесями (РМ - Particulate Matter) играет ключевую роль в оценке экологической обстановки, определении источников загрязнения и контроле за соблюдением нормативных требований.

Существуют различные методы, используемые для мониторинга и анализа, которые можно классифицировать на дистанционные методы, стационарные посты наблюдений и лабораторные анализы.

1. Дистанционные методы мониторинга [4]

Дистанционные методы позволяют получать информацию о загрязнении больших воздуха на территориях без непосредственного контакта с исследуемой средой. Они особенно полезны ДЛЯ мониторинга В труднодоступных или опасных районах.

— Спутниковый мониторинг:

Принцип работы:

Использует спутники с различными сенсорами для измерения оптических свойств атмосферы, таких как оптическая толщина аэрозоля (AOD - Aerosol Optical Depth), которая связана с концентрацией твердых примесей.

– Преимущества:

Охват больших территорий, возможность получения данных в режиме реального времени, возможность мониторинга в труднодоступных районах.

Недостатки:

Ограниченная точность и разрешение по сравнению с наземными методами, зависимость от погодных условий, сложность интерпретации данных.

Примеры спутников:

MODIS (Aqua, Terra), VIIRS (Suomi NPP), Sentinel-5P.

— Лидарное зондирование (LIDAR - Light Detection and Ranging):

– Принцип работы:

Использует лазерный луч для зондирования атмосферы. Измеряется рассеяние света на аэрозолях, что позволяет определять их концентрацию и вертикальное распределение.

Преимущества:

Высокое пространственное разрешение, возможность определения вертикального профиля загрязнения, возможность мониторинга в реальном времени.

Недостатки:

Ограниченная дальность действия, зависимость от погодных условий, высокая стоимость оборудования.

– Типы лидаров:

Рамановские лидары, эластичные лидары, поляризационные лидары.

— Содарное зондирование (SODAR - Sonic Detection and Ranging):

Принцип работы:

Использует звуковые волны для зондирования атмосферы. Измеряется рассеяние звука на неоднородностях атмосферы, что позволяет определять характеристики ветра и турбулентности, влияющие на распространение загрязняющих веществ.

Преимущества:

Возможность получения информации о метеорологических условиях, влияющих на распространение загрязнений.

Недостатки:

Ограниченная точность и разрешение, чувствительность к шуму.

2. Стационарные посты наблюдений

Стационарные посты наблюдений (СПН) являются основным элементом системы мониторинга загрязнения воздуха. Они обеспечивают непрерывный или дискретный сбор данных о концентрации твердых примесей и других загрязняющих веществ в определенных точках города.

– Принцип работы:

СПН оснащены автоматическими приборами, которые измеряют концентрацию PM_{10} , $PM_{2.5}$ и других загрязняющих веществ в режиме реального времени или с определенной периодичностью.

– Преимущества:

Высокая точность и надежность данных, возможность непрерывного мониторинга, возможность контроля за соблюдением нормативов качества воздуха.

Недостатки:

Ограниченное количество пунктов наблюдений, высокая стоимость оборудования и эксплуатации, необходимость калибровки и обслуживания приборов.

– Типы приборов:

- Гравиметрические анализаторы:

Измеряют массу твердых примесей, осевших на фильтре за определенный период времени.

- Оптические анализаторы (нефелометры):

Измеряют рассеяние света на твердых примесях, что позволяет оценить их концентрацию.

- Бета-аттенюационные мониторы:

Измеряют ослабление потока бета-частиц при прохождении через фильтр с осевшими твердыми примесями.

- TEOM (Tapered Element Oscillating Microbalance):

Измеряют изменение частоты колебаний конического элемента при осаждении на нем твердых примесей.

3. Лабораторные анализы:

Лабораторные анализы проводятся для определения химического состава, морфологии и других характеристик твердых примесей, собранных на фильтрах или другими методами.

- Методы сбора проб:
 - Аспирационный метод:

Прокачка воздуха через фильтр с определенной скоростью для сбора твердых примесей.

- Импакторный метод:

Разделение частиц по размеру с использованием каскадных импакторов.

- Методы анализа:
 - Гравиметрический анализ:

Определение массы твердых примесей, осевших на фильтре.

- Атомно-абсорбционная спектрометрия (AAS):

Определение концентрации металлов в твердых примесях.

- Ионная хроматография (IC):

Определение концентрации ионов (сульфатов, нитратов, хлоридов) в твердых примесях. [4]

- Газовая хроматография-масс-спектрометрия (GC-MS):

Определение органических соединений в твердых примесях.

- Электронная микроскопия (SEM, TEM):

Изучение морфологии и структуры твердых примесей.

- Рентгенофлуоресцентный анализ (XRF):

Определение элементного состава твердых примесей.

Преимущества:

Высокая точность и чувствительность, возможность получения детальной информации о составе твердых примесей.

Недостатки:

Трудоемкость, высокая стоимость, невозможность получения данных в режиме реального времени.

Выбор методов мониторинга и анализа загрязнения воздуха твердыми примесями зависит от поставленных целей и задач, доступных ресурсов и специфики исследуемого района.

- Для оперативного мониторинга и контроля за соблюдением нормативов целесообразно использовать стационарные посты наблюдений с автоматическими приборами.
- Для определения источников загрязнения и изучения процессов формирования твердых примесей необходимо проводить лабораторные анализы.
- Для мониторинга на больших территориях и в труднодоступных районах могут использоваться дистанционные методы.

Сочетание различных методов позволяет получить наиболее полную и достоверную информацию о загрязнении воздуха твердыми примесями и разработать эффективные меры по его снижению.

- 1.3 Влияние твердых примесей на здоровье населения и окружающую среду
 - 1. Механизмы воздействия на здоровье населения:

Твердые частицы (далее ТЧ) попадают в организм человека преимущественно через дыхательную систему.

Размер частиц определяет глубину их проникновения:

- Крупные частицы (PM_{10}) задерживаются в верхних дыхательных путях (носоглотке, трахее, бронхах), вызывая раздражение и воспаление.
- Мелкие частицы (РМ2.5) проникают глубже в легкие, достигая альвеол, где происходит газообмен. Они могут переноситься в кровеносную систему, оказывая системное воздействие на организм.
- Ультрадисперсные частицы (UFP) могут проникать даже через гематоэнцефалический барьер, влияя на нервную систему.

Основные механизмы воздействия твердых частиц на здоровье:

- Воспаление: ТЧ вызывают воспалительные реакции в дыхательных путях и легких, приводящие к кашлю, одышке, бронхиту и обострению астмы.
- Окислительный стресс: ТЧ генерируют свободные радикалы, вызывающие окислительный стресс, повреждающий клетки и ДНК.
- Сердечно-сосудистые эффекты: ТЧ способствуют образованию тромбов, повышают артериальное давление и увеличивают риск инфарктов и инсультов.
- Иммунные нарушения: ТЧ могут ослаблять иммунную систему, делая организм более восприимчивым к инфекциям. [1]

- 2. Механизмы воздействия на окружающую среду:
- Загрязнение почвы и воды:

TЧ оседают на поверхности почвы и воды, загрязняя их тяжелыми металлами, органическими веществами и другими токсичными соединениями.

— Изменение химического состава почвы:

Кислотные дожди, образующиеся из-за выбросов ТЧ, изменяют рН почвы, делая ее менее плодородной.

— Нарушение фотосинтеза:

ТЧ, оседая на листьях растений, препятствуют проникновению солнечного света и снижают эффективность фотосинтеза.

— Повреждение растительности:

ТЧ могут вызывать некроз листьев, замедление роста и снижение урожайности сельскохозяйственных культур.

— Загрязнение водоемов:

ТЧ, попадая в водоемы, снижают их прозрачность, ухудшают качество воды и наносят вред водным организмам.

— Изменение климата:

Некоторые ТЧ (например, сажа) поглощают солнечный свет, нагревая атмосферу и способствуя глобальному потеплению. Другие (например, сульфатные аэрозоли) отражают солнечный свет, охлаждая атмосферу.

— Разрушение озонового слоя:

Некоторые ТЧ содержат вещества, разрушающие озоновый слой.

- 3. Последствия для экосистем:
- Нарушение пищевых цепей:

Загрязнение почвы и воды приводит к накоплению токсичных веществ в организмах, находящихся в начале пищевой цепи, и их передаче на более высокие уровни.

— Снижение биоразнообразия:

Загрязнение окружающей среды приводит к исчезновению чувствительных видов и изменению структуры экосистем.

— Деградация лесов:

Кислотные дожди и загрязнение почвы приводят к ослаблению деревьев и повышают их восприимчивость к болезням и вредителям.

- Ухудшение качества воды в водоемах: Загрязнение водоемов приводит к гибели рыбы и других водных организмов.
 - Нарушение функционирования экосистем:

Загрязнение окружающей среды нарушает процессы круговорота веществ и энергии в экосистемах.

- 2 Характеристика Санкт-Петербурга как объекта исследования
- 2.1 Географическое положение и климатические особенности Санкт-Петербурга

Географическое положение:

Санкт-Петербург является самым северным из городов мира с населением свыше миллиона человек. Город расположен на северо-западе Российской Федерации, в пределах Приневской низменности на прилегающем к устью реки Невы побережье Невской Губы Финского залива и на многочисленных островах Невской дельты.

Климатические особенности:

Климат Санкт-Петербурга умеренный, переходный от морского к континентальному. На него оказывают влияние как близость Балтийского моря и Атлантического океана, так и континентальные воздушные массы. Это делает климат довольно переменчивым.

Вот основные климатические особенности Санкт-Петербурга:

Средняя годовая температура воздуха в Санкт-Петербурге составляет 5,6°C.

Наиболее холодные месяцы года — декабрь и февраль со средними температурами –7,9...–10,4°С. Наиболее тёплый месяц года — июль, его средняя суточная температура воздуха составляет 19,5°С.

Для Санкт-Петербурга характерна высокая влажность воздуха — около 80% (летом — 60-70%, а зимой — 83-88%), поскольку количество выпадающих осадков примерно на 200-250 мм превышает испарение влаги.

Санкт-Петербург по своему географическому местоположению попадает в зону избыточного увлажнения. В течение года осадки выпадают неравномерно: большая их часть (67%) приходится на теплый период (апрель - октябрь, с максимумом в июле - августе) и только 33% — на холодный (минимум в феврале - марте).

Среднегодовая сумма осадков в Санкт-Петербурге - около 662 мм. В течение года среднее количество дней с осадками - около 200 (от 13 дней в апреле до 22 дней в декабре). Первый снег выпадает обычно в начале ноября и сохраняется до середины апреля. Устойчивый снежный покров лежит от 110 до 145 дней, в среднем от начала декабря до конца марта. К концу февраля высота снежного покрова достигает максимальной величины — около 30-32 см.

В условиях высокой влажности характерна и значительная облачность. В среднем за год в Санкт-Петербурге бывает лишь 30 безоблачных дней. Самая высокая облачность зимой (свыше 80 %), наименьшая - летом (около 50 %).

Наблюдаются туманы, особенно осенью и в начале зимы.

2.2 Социально-экономическая характеристика Санкт-Петербурга Вот основные аспекты этой характеристики:

Социальная сфера:

Население: Санкт-Петербург – второй по численности населения город России (около 5,6 млн человек по данным на 2023 год), плотность населения высокая.

Экономическая сфера:

Общая характеристика: Санкт-Петербург – крупный промышленный центр.

Промышленность:

Судостроение, машиностроение, производство энергетического оборудования, транспортных средств, промышленного оборудования, пищевая промышленность, химическая промышленность - производство химических веществ, пластмасс, резиновых изделий, фармацевтика. Транспорт и логистика:

Крупный транспортный узел - расположение на пересечении важных транспортных путей, морской порт- один из крупнейших морских портов России, аэропорт Пулково, железнодорожный транспорт: Развитая сеть железных дорог, связывающих город с другими регионами России и зарубежными странами.

2.3 Основные источники загрязнения атмосферного воздуха в Санкт-Петербурге

Санкт-Петербург, как крупный промышленный и транспортный узел, подвержен загрязнению атмосферного воздуха от различных источников. Основные из них:

1. Транспорт:

Автомобильный транспорт:

Основной вкладчик в загрязнение воздуха в Санкт-Петербурге. Наибольшее количество вредных веществ выбрасывают старые автомобили с неисправными двигателями и дизельные грузовики.

Авиатранспорт:

Аэропорт Пулково также вносит свой вклад, но он относительно небольшой по сравнению с другими источниками в городе.

2. Энергетика:

– ТЭЦ (Теплоэлектроцентрали):

В Санкт-Петербурге функционирует ряд ТЭЦ, которые сжигают природный газ и мазут для производства электроэнергии и тепла.

3. Промышленные предприятия:

Химическая промышленность:

Производство удобрений, пластмасс, лаков и красок может сопровождаться выбросами токсичных веществ

Машиностроительная промышленность:

Предприятия, занимающиеся металлообработкой и покраской, могут выбрасывать в воздух твердые частицы и летучие органические соединения.

Другие отрасли:

Целлюлозно-бумажная, пищевая и другие отрасли промышленности также вносят свой вклад в загрязнение воздуха.

4. Строительный комплекс:

Строительные площадки:

В процессе строительства и сноса зданий образуется большое количество пыли и других твердых частиц.

– Производство строительных материалов:

Производство цемента, бетона и других строительных материалов также сопровождается выбросами пыли и газов.

Влияние географических и метеорологических факторов:

Низкая скорость ветра:

В Санкт-Петербурге часто наблюдается слабая скорость ветра, что затрудняет рассеивание загрязняющих веществ.

– Инверсии температуры:

Инверсии температуры, когда теплый воздух находится над холодным, препятствуют подъему и рассеиванию загрязняющих веществ, способствуя их накоплению в приземном слое атмосферы.

2.4 Система мониторинга качества воздуха в Санкт-Петербурге

Система мониторинга качества воздуха в Санкт-Петербурге (далее - СПб) представляет собой комплекс организационных, технических и аналитических мер, направленных на регулярное измерение и оценку уровня загрязнения атмосферного воздуха, предоставление информации о текущей экологической ситуации и прогнозирование ее изменений.

1. Структура системы мониторинга:

Комитет по природопользованию, охране окружающей среды и обеспечению экологической безопасности Санкт-Петербурга (КППиООС):

Является главным органом, ответственным за организацию и координацию системы мониторинга. Осуществляет разработку и реализацию экологических программ, в том числе в сфере мониторинга атмосферного воздуха.

– Центр экологического мониторинга и контроля (ЦЭМК):

Подведомственное КППиООС учреждение, выполняющее непосредственный мониторинг атмосферного воздуха, обработку и анализ полученных данных, а также предоставление информации населению и заинтересованным организациям.

- Стационарные посты наблюдения:

Основа системы мониторинга. Расположены в различных районах города, как правило, вблизи промышленных предприятий, транспортных магистралей и жилых зон. Оборудованы автоматическими станциями, измеряющими концентрации основных загрязняющих веществ.

– Мобильные лаборатории:

Используются для оперативного обследования загрязнения атмосферного воздуха в различных точках города, в том числе в районах, где отсутствуют стационарные посты.

– Ведомственные сети мониторинга:

Некоторые крупные промышленные предприятия СПб ведут собственный мониторинг выбросов и приземной концентрации загрязняющих

веществ в санитарно-защитных зонах своих предприятий. Данные этих сетей также могут учитываться в общей системе мониторинга.

Информационно-аналитическая система:

Обеспечивает сбор, хранение, обработку и анализ данных мониторинга, а также их визуализацию и предоставление пользователям.

Система оповещения:

Предназначена для оперативного информирования населения о случаях высокого загрязнения атмосферного воздуха и мерах предосторожности. [5]

2. Методы мониторинга:

Система мониторинга в СПб использует как автоматизированные, так и ручные методы отбора и анализа проб атмосферного воздуха.

Автоматические станции мониторинга:

Оснащены газоанализаторами и другими приборами, которые непрерывно измеряют концентрации загрязняющих веществ в режиме реального времени.

Ручные методы:

Используются для отбора проб воздуха на фильтры или в специальные емкости с последующим анализом в лаборатории. Применяются для измерения концентраций специфических загрязняющих веществ, которые не измеряются автоматическими станциями, таких как: • Тяжелые металлы (свинец, кадмий, ртуть и др.)

- Полициклические ароматические углеводороды (ПАУ)
 - Диоксины и фураны
 - Метеорологические измерения:

Автоматические станции мониторинга также оснащены датчиками, измеряющими метеорологические параметры, такие как: температура воздуха, влажность воздуха, скорость и направление ветра, атмосферное давление, осадки

Метеоданные необходимы для анализа причин загрязнения и прогнозирования его распространения.

Дистанционные методы:

В некоторых случаях могут использоваться дистанционные методы мониторинга, такие как оптическое зондирование атмосферы (например, лидары) для определения вертикального распределения загрязняющих веществ.

3. Данные мониторинга:

Периодичность измерений:

Автоматические станции мониторинга производят измерения непрерывно, обычно регистрируя средние значения концентраций загрязняющих веществ за 30-минутные или часовые интервалы.

Представление данных:

Данные мониторинга представляются в виде таблиц, графиков и карт загрязнения.

Сравнение с нормативами:

Полученные данные сравниваются с предельно допустимыми концентрациями (ПДК) загрязняющих веществ, установленными в России.

Оценка качества воздуха:

На основе данных мониторинга проводится оценка качества воздуха по различным индексам и показателям, таким как индекс загрязнения атмосферы (ИЗА) и стандартный индекс загрязнения (СИ).

Прогнозирование загрязнения:

На основе данных мониторинга и метеорологических прогнозов разрабатываются прогнозы загрязнения атмосферного воздуха на ближайшие сутки.

Доступность данных:

Данные мониторинга качества воздуха в СПб доступны населению и организациям через различные каналы:

Официальный сайт КППиООС СПб:

Содержит информацию о текущем состоянии и прогнозе загрязнения атмосферного воздуха, а также архивные данные.

– Интерактивные карты:

Показывают расположение станций мониторинга и текущие значения концентраций загрязняющих веществ в различных районах города.

Мобильные приложения:

Предоставляют информацию о качестве воздуха в режиме реального времени на мобильных устройствах.

Информационные табло:

Устанавливаются в общественных местах и показывают текущий уровень загрязнения воздуха. [4]

4. Проблемы и перспективы развития системы мониторинга:

Недостаточное количество станций мониторинга:

Для более точной оценки загрязнения воздуха требуется увеличение числа стационарных постов наблюдения, особенно в районах интенсивной застройки и вблизи промышленных предприятий.

Неравномерное распределение станций:

Необходимо более равномерное распределение станций мониторинга по территории города, чтобы охватить все районы с высоким уровнем загрязнения.

- Устаревшее оборудование:

Требуется модернизация оборудования на стационарных постах наблюдения и замена устаревших приборов на более современные и точные.

Совершенствование методов анализа данных:

Необходимо разрабатывать и внедрять более совершенные методы анализа данных мониторинга, чтобы выявлять причины загрязнения и разрабатывать эффективные меры по его снижению.

– Интеграция с другими системами мониторинга:

Необходимо интегрировать систему мониторинга качества воздуха в СПб с другими системами экологического мониторинга, такими как мониторинг водных ресурсов и почвы.

– Развитие системы прогнозирования:

Необходимо совершенствовать систему прогнозирования загрязнения атмосферного воздуха, чтобы предоставлять населению и организациям более точные и своевременные предупреждения о случаях высокого загрязнения.

В целом, система мониторинга качества воздуха в Санкт-Петербурге функционирует, но требует дальнейшего развития и модернизации для обеспечения более точной и оперативной информации о состоянии атмосферного воздуха и эффективной защиты здоровья.

3 Анализ загрязнения воздуха Санкт-Петербурга твердыми примесями

В Санкт-Петербурге находится 25 автоматических станций мониторинга атмосферного воздуха.

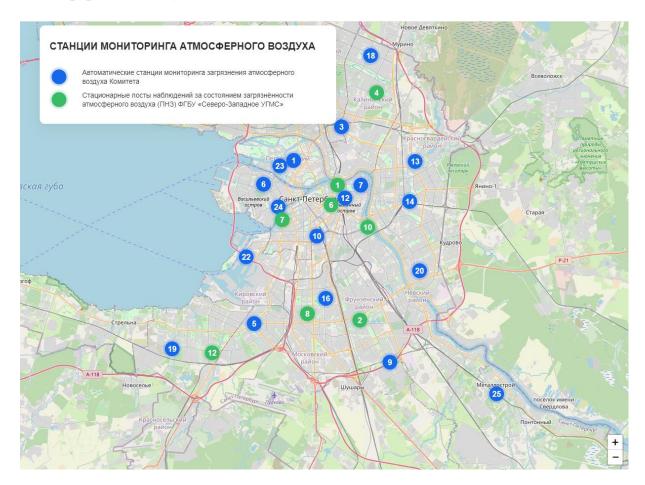


Рисунок 1. Схема расположения станций в городе Санкт-Петербург Данные по твердым примесям PM_{10} снимаются на станциях, таких как:

№ станции	Адрес станции
1	ул. Профессора Попова, дом 48
5	ЦПКиО им.С.М.Кирова, Елагин остров, дом.4
8	ул. Новосельковская, дом 23
9	Малая Балканская ул., дом 54
14	Уткин пр., д.16
17	г. Пушкин, Тиньков пер., дом 7
19	пр. Ветеранов, дом 167, к. 6/1
22	Канонерский остров, дом 21, строение 1

$3.1.1~{\rm A}$ нализ динамики концентраций твердых примесей – ${\rm PM}_{10}$ по данным станций мониторинга за сентябрь 2024 года

Рисунок 2. Динамика запыления воздуха за сентябрь на станции №1

На рис.2 представлено: концентрация РМ10 варьируется от 0,2 до 1,1 долей ПДКсс. Максимальное значение достигается 12 сентября — 1,1 доли ПДКсс. Минимальное значение достигается 26 сентября — 0,1 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

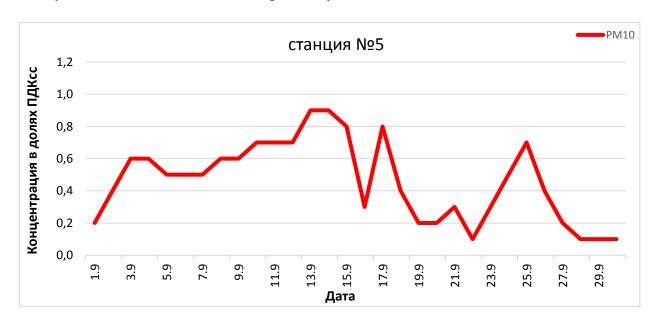


Рисунок 3. Динамика запыления воздуха за сентябрь на станции №5

На рис.3 представлено: концентрация PM_{10} варьируется от 0,1 до 0,9 долей ПДКсс. Имея максимумы 0,9 доли ПДКсс — 13 и 14 сентября и минимумы 0,1 доли ПДКсс — 22, 28, 29 и 30 сентября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

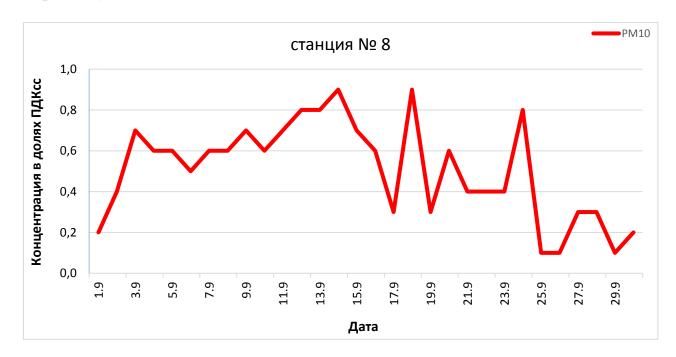


Рисунок 4. Динамика запыления воздуха за сентябрь на станции №8

На рис.4 представлено: концентрация PM_{10} варьируется от 0,1 до 0,9 долей ПДКсс. Имея максимумы 0,9 доли ПДКсс – 14 и 18 сентября и минимумы 0,1 доли ПДКсс – 25, 26, 29 сентября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 5. Динамика запыления воздуха за сентябрь на станции №9

На рис.5 представлено: концентрация PM_{10} варьируется от 0,1 до 1,2 долей ПДКсс. Максимальное значение 1,2 доли ПДКсс было достигнуто 13 сентября, а минимумы 0,1 доли ПДКсс – 28, 29 сентября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

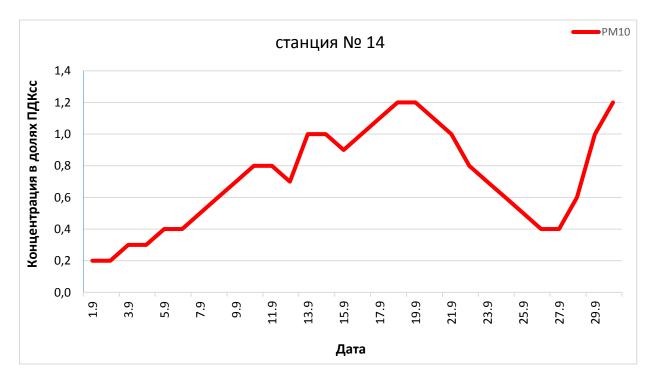


Рисунок 6. Динамика запыления воздуха за сентябрь на станции №14

На рис.6 представлено: концентрация РМ₁₀ варьируется от 0,2 до 1,2 долей ПДКсс. В течение месяца имеет тренд на повышение с минимума 1 сентября – 0,1 доли ПДКсс до 18 сентября, достигнув свой максимум 1,2 доли ПДКсс, а далее понизилась до 0,4 доли ПДКсс – 26 сентября, и к концу месяца возросла до максимума 1,2 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу

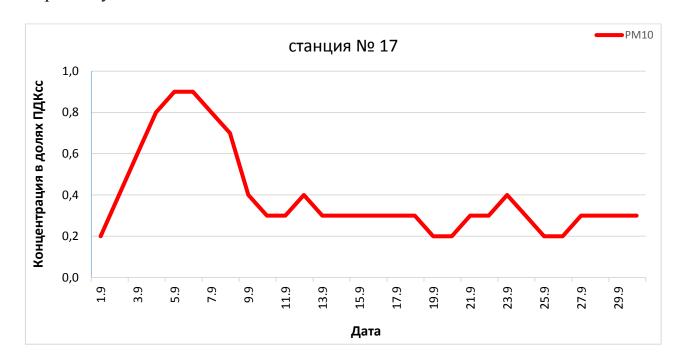


Рисунок 7. Динамика запыления воздуха за сентябрь на станции №17

На рис.7 представлено: концентрация PM_{10} варьируется от 0,2 до 0,9 долей ПДКсс. В начале месяца из своего минимума 0,2 доли ПДКсс возросла до максимума 0,9 доли ПДКсс – 5 сентября, далее понизилась до значения 0,3 доли ПДКсс – 10 сентября и до конца месяца находилась в пределах этого значения. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

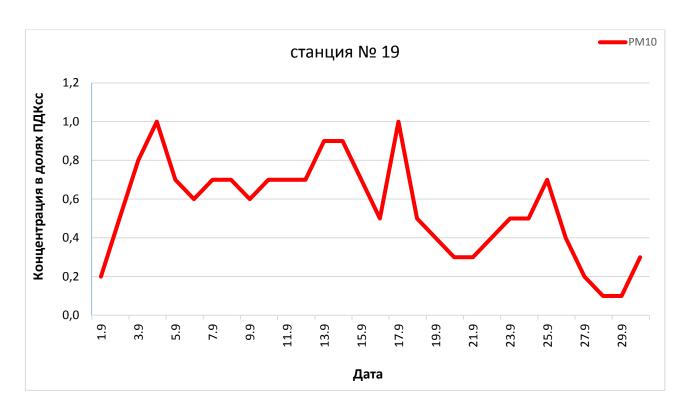


Рисунок 8. Динамика запыления воздуха за сентябрь на станции №19

На рис.8 представлено: концентрация PM_{10} варьируется от 0,1 до 1,0 долей ПДКсс. Максимальное значение 1,0 доли ПДКсс было достигнуто 4 и 17 сентября, а минимумы 0,1 доли ПДКсс – 28, 29 сентября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 9. Динамика запыления воздуха за сентябрь на станции №22

На рис.9 представлено: концентрация PM_{10} в течение варьируется от 0,1 до 0,4 долей ПДКсс. Максимальное значение 0,7 доли ПДКсс — 25 сентября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

3.1.2 Анализ динамики концентраций твердых примесей – PM10 по данным станций мониторинга за октябрь 2024 года.

Рисунок 10. Динамика запыления воздуха за октябрь на станции №1

На рис. 10 представлено: концентрация PM_{10} в течение месяца колеблется в пределах от своего минимума 0,1 до 0,3 долей ПДКсс, а 16 октября возрастает до своего максимума 0,5 долей ПДКсс и до конца месяца остается пределе минимума. При этом большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

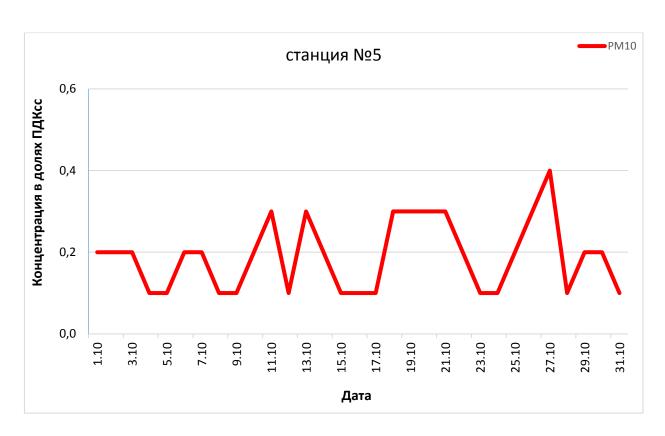


Рисунок 11. Динамика запыления воздуха за октябрь на станции №5

На рис.11 представлено: концентрация PM_{10} варьируется от 0,1 до 0,3 долей ПДКсс. Достигая максимального значения 0,4 доли ПДКсс – 26 октября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

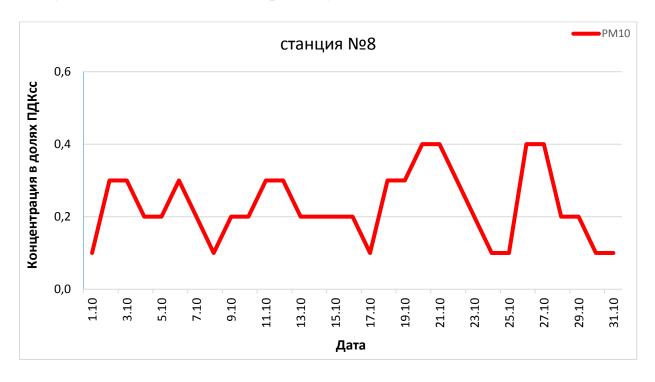


Рисунок 12. Динамика запыления воздуха за октябрь на станции №8

На рис.12 представлено: концентрация PM_{10} варьируется от 0,1 до 0,4 долей ПДКсс. Максимальное значение концентрации наблюдаются 1-3 октября, 10-12 октября, 18-21 октября и 26-27 октября, достигая значений 0,4 доли ПДКсс и последние дни октября, концентрация снижается до минимума 0,1 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 13. Динамика запыления воздуха за октябрь на станции №9

На рис.13 представлено: концентрация PM_{10} варьируется от 0,1 до 0,5 долей ПДКсс. Максимальное значение концентрации 0,5 доли ПДКсс – 1, 19 и 26 октября, а минимумы 0,1 доли ПДКсс – 4, 8, 9, 15, 16, 23, 24, 30, 31 октября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 14. Динамика запыления воздуха за октябрь на станции №14

На рис.14 представлено: концентрация PM_{10} в начале месяца имеет максимум 0,8 доли ПДКсс – 1 октября, затем постепенно снижается до 0,3 доли ПДКсс к середине месяца. Во второй половине месяца концентрация колеблется в диапазоне примерно от 0,2 до 0,4 доли ПДКсс, имея пик только 0,6 доли ПДКсс – 12 октября. При этом большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 15. Динамика запыления воздуха за октябрь на станции №17

На рис.15 представлено: концентрация PM_{10} весь октябрь стабильна около значения 0,2-0,3 доли ПДКсс. Максимальное значение 0,4 доли ПДКсс -17 октября. При этом большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 16. Динамика запыления воздуха за октябрь на станции №19

На рис.16 представлено: концентрация PM_{10} в начале месяца имеет максимум 0,6 доли ПДКсс -1 октября, затем постепенно снижается до 0,2 доли ПДКсс к 10 октябрю. Далее с 11 октября до конца месяца значения колеблются от 0,5 доли ПДКсс до минимума 0,1 доли ПДКсс -15, 23, 29-31 октября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 17. Динамика запыления воздуха за октябрь на станции №22

На рис.17 представлено: концентрация PM_{10} варьируется от 0,1 до 0,5 доли ПДКсс. Наиболее высокие значения(максимумы) наблюдаются в начале месяца — 1 октября — 0,5 доли ПДКсс, а также 9, 18-21 и 27 октября — до 0,4 доли ПДКсс. А в такие дни как 4, 15, 23, 29-31 октября концентрация опускается до своего минимума 0,1 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

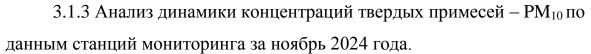


Рисунок 18. Динамика запыления воздуха за ноябрь на станции №1

На рис.18 представлено: концентрация PM_{10} варьируется от 0,1 до 0,5 доли ПДКсс. Максимум значения наблюдается 6 ноября — 0,5 доли ПДКсс. Минимум — 0,1 доли ПДКсс наблюдается 17, 19 и 25 ноября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 19. Динамика запыления воздуха за ноябрь на станции №5

На рис.19 представлено: концентрация PM_{10} имеет тенденцию на рост. Вначале месяца с 1 по 11 ноября значения имеют свой минимум 0,1 доли ПДКсс, с 12 по 23 ноября концентрация вырастает до 0,2 доли ПДКсс и с 25 числа до конца месяца достигается и сохраняется максимум — 0,3 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 20. Динамика запыления воздуха за ноябрь на станции №8

На рис.20 представлено: концентрация PM_{10} варьируется от 0,1 до 0,7 доли ПДКсс. Максимум значения наблюдается 6 ноября — 0,7 доли ПДКсс. Минимум — 0,1 доли ПДКсс наблюдается 18 и 24 ноября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 21. Динамика запыления воздуха за ноябрь на станции №9

На рис.21 представлено: концентрация PM_{10} в начале месяца из своего минимума 0,1 доли ПДКсс 1 ноября возрастает до 0,4 доли ПДКсс — 15 ноября, далее опускается и колеблется от 0,1 до 0,3 доли ПДКсс с 16 по 25 ноября. 27 ноября достигает свой максимум — 0,5 доли ПДКсс, и до конца месяца имеет тенденции на снижение. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 22. Динамика запыления воздуха за ноябрь на станции №14

На рис.22 представлено: концентрация PM_{10} с 1 по 24 ноября варьируется от 0,1 до 0,3 доли ПДКсс, имея минимумы 0,1 доли ПДКсс — 14, 16-18 и 24 ноября. С 24 ноября концентрация вырастает до своего максимума 0,7 доли ПДКсс, и с 28 числа до конца месяца концентрация уменьшается. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

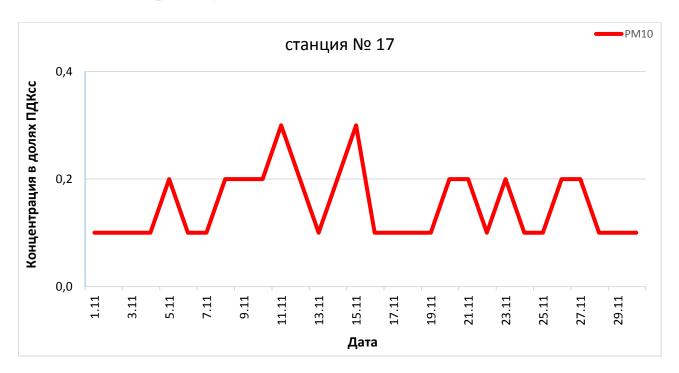


Рисунок 23. Динамика запыления воздуха за ноябрь на станции №17

На рис.23 представлено: концентрация PM_{10} в течение месяца варьируется от 0,1 до 0,2 доли ПДКсс, имея пики 0,3 доли ПДКсс – 11 и 15 ноября. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Рисунок 24. Динамика запыления воздуха за ноябрь на станции №19

На рис.24 представлено: в первые 9 дней ноября концентрация PM_{10} стабильна, имеет минимум — 0,1 доли ПДКсс. С 10 по 24 ноября концентрация повышается — 0,2 доли ПДКсс. 25 ноября наблюдается резкий пик до 0,4 доли ПДКсс. В последние дни месяца концентрация снижается и остается от 0,2 до 0,3 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

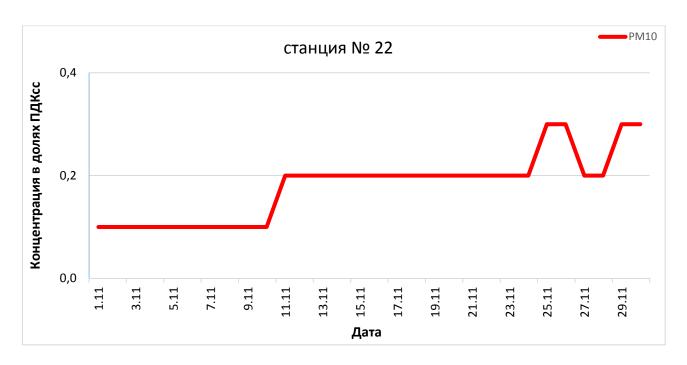


Рисунок 25. Динамика запыления воздуха за ноябрь на станции №22

На рис.25 представлено: с 1 по 10 ноября концентрация PM_{10} сохраняет минимум — 0,1 доли ПДКсс. С 11 по 24 ноября концентрация повышается — 0,2 доли ПДКсс с 25 ноября достигает свой максимум 0,3 доли ПДКсс, далее до конца месяца колеблется от 0,2 до 0,3 доли ПДКсс. Большая часть значений ниже 1 доли ПДКсс, что говорит об уровне загрязнения воздуха ниже или близком к нормативу.

Вывод: осенью 2024 года на станциях концентрация PM_{10} была в основном ниже или около нормы (ПДКсс), с единичными превышениями в середине и в конце месяца. Это говорит о сравнительно удовлетворительном качестве воздуха, хотя отдельные дни требуют внимания.

Таблица 1 — Максимальные и минимальные концентрации загрязняющих веществ — PM_{10} на стациях за осенний период 2024 года в Санкт-Петербурге

								110) на с				
№ станции			(2024 год)		 		2024 год)				024 год)	
	min	Дата	max	Дата	min	Дата	max	Дата	min	Дата	max	Дата
1	0,1	26.9	1,1	12.9	0,1	3.10	0,5	16.10	0,1	17.11	0,5	
					0,1	4.10			-,-			
					0,1	15.10	0,5	17.10	0,1	19.11		6.11
					0,1	22.10			-,-			
					0,1	28.10	0,5	19.10	0,1	25.11		
					0,1	30.10	,					
	0,1	22.9	0,9	13.9	0,1	4.10	0,4	27.10	0,1	1.11	0,3 - 0,3 - 0,3	25.11
					0,1	5.10						
					0,1	8.10			0,1	2.11		
	0,1				0,1	9.10			0,1	3.11		26.11
					0,1	12.10			0,1	4.11		
5					0,1	15.10			0,1	5.11		27.11
	0,1	29.9	0,9	14.9	0,1	16.10			0,1	6.11	0,3	28.11
					0,1	17.10			0,1	7.11	0,3	29.11
					0,1	23.10			0,1	8.11		
		30.9			0,1	24.10			0,1	9.11		
	0,1				0,1	28.10			0,1	10.11		30.11
					0,1	31.10			0,1	11.11		
	0,1	25.9	0,9	14.9	0,1	1.10	0,4	20.10		0,1 18.11	0,7	6.11
					0,1	8.10			0.1			
					0,1	17.10			0,1			
8	0,1	26.9			0,1	24.10	0,4	21.10				
	0,1	20.9			0,1	25.10	0,4	26.10		24.11		
	0,1	29.9	0,9	18.9	0,1	30.10	0,4	20.10	0,1			
					0,1	31.10		27.10				
9	0,1	28.9	1,2	13.9	0,1	4.10	0,5	1.10	0,1	1.11	0,5	27.11
					0,1	8.10			0,1	2.11		
					0,1	9.10			0,1	16.11		
					0,1	15.10			0,1	17.11		
					0,1	16.10			0,1	18.11		
	0,1	29.9	,-		0,1	23.10	0,5	19.10	0,1	20.11	0,5	28.11
					0,1	24.10			0,1	21.11		
					0,1	30.10			0,1	24.11		
					0,1	31.10			0,1	25.11		
14	0,2	1.9	1,2	18.9	0,2		0,8	1.10	0,1	14.11	0,7	28.11
									0,1	16.11		
						18.10			0,1	17.11		
									0,1	18.11		
	0,2	2.9	1,2	19.9		29.10			0,1	20.11		
			1,2	30.9	0,2				0,1	24.11		
									0,1	30.11		

17	0,2	1.9	0,9	5.9	0,2	1.10		17.10	0,1	1.11	0,3	11.11
					0,2	1.10			0,1	2.11		
					0.2	6.10			0,1	3.11		
					0,2	0.10			0,1	4.11		
	0,2	19.9			0,2	7.10			0,1	6.11		
					0,2	7.10			0,1	7.11		
					0,2	13.10			0,1	13.11		
			0,9		0,2	13.10			0,1	16.11		
	0,2	20.9			0,2	14.10	0,4		0,1	17.11		
				6.9	0,2	14.10			0,1	18.11		15.11
					0,2	25.10			0,1	19.11		
					0,2	23.10			0,1	22.11		
	0,2	25.9			0,2	26.10			0,1	24.11		
					0,2	20.10			0,1	25.11		
					0,2	27.10			0,1	28.11		
	0,2	2 26.9			0,2	29.10			0,1	29.11		
	,,,				0,2	30.10			0,1	30.11		
	1	28.9	1	4.9				1.10	0,1	1.11	0,4	26.11
	0,1				0,1	15.10			0,1	2.11		
									0,1	3.11		
					0,1	16.10	0,6		0,1	4.11		
									0,1	5.11		
19				17.9	0,1	23.10			0,1	6.11		
					0.4	2440			0,1	7.11		
					0,1	24.10			0,1	8.11		
					0,1	29.10			0,1	9.11		
					0,1	25.10			0,1	10.11		
	0.1	1.9			0.1	4.10			,	 		
22	0,1	7.9	0,7	25.9	0,1	5.10		1.10	0,1	1.11	0,3	25.11
	0,1	10.9			0,1	8.10	-			+		
	0,1	11.9			0,1	15.10			0,1	2.11		
	0,1	15.9			0,1	16.10			0,1	3.11	0,3	
	0,1	16.9			0,1	17.10	0,5		0,1	4.11		
	0,1	19.9			0,1	23.10			0,1	5.11	0,3	29.11
	0,1	20.9			0,1	24.10			0,1	6.11		
	0,1	21.9			0,1	28.10			0,1	7.11		
	0,1	22.9			0,1	29.10			0,1	8.11		30.11
	0,1	28.9			0,1	30.11			0,1	9.11		
	0,1	29.9			0,1	31.10			0,1	10.11		
	_,				-,-				-,-			

В табл. 1 представлено — что разница между максимальными и минимальными концентрациями загрязняющих веществ — PM_{10} , наибольшая в сентябре, а наименьшая в ноябре.

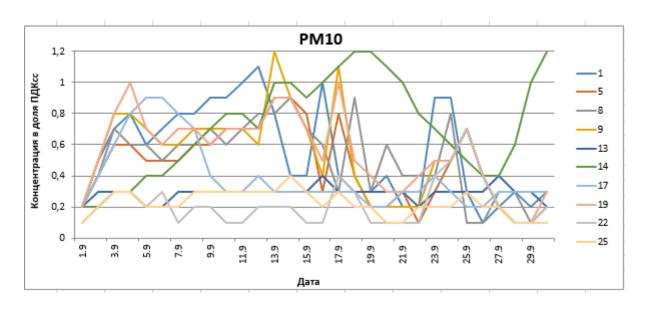


Рисунок 26. Динамика запыления воздуха за сентябрь по всем станциям.

На рис.26 представлено: в течение сентября на разных станциях наблюдались колебания уровня загрязнения PM_{10} , но чаще всего в пределах допустимых значений. Некоторые станции демонстрируют более выраженные пики загрязнения в определённые дни, в то время как другие остаются относительно стабильными. Это указывают на необходимость мониторинга и контроля

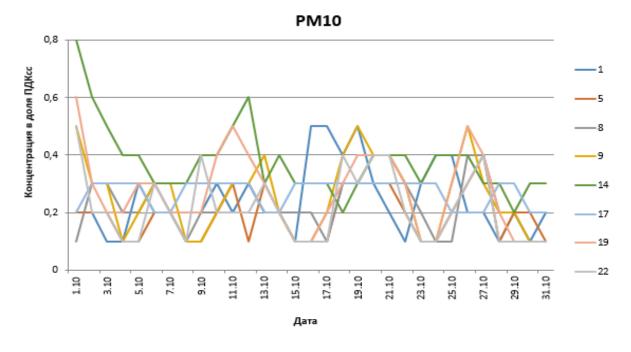


Рисунок 27. Динамика запыления воздуха за октябрь по всем станциям.

На рис.27 представлено: в течение октября уровень загрязнения PM_{10} на разных станциях демонстрирует значительную вариативность, но чаще всего в пределах допустимых значений. Высокие значения в начале месяца и отдельные пики в течение месяца указывают на необходимость мониторинга и контроля.

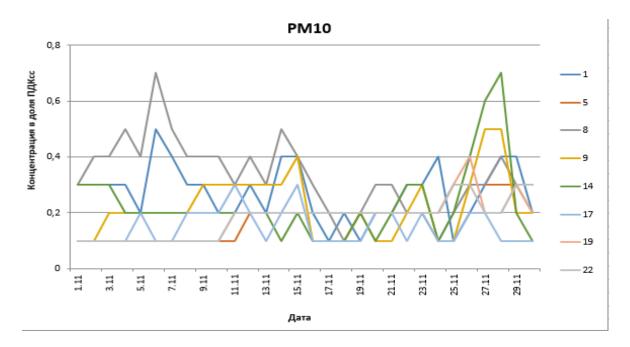


Рисунок 28. Динамика запыления воздуха за ноябрь по всем станциям.

На рис.28 представлено: в течение ноября уровень загрязнения PM_{10} на разных станциях демонстрирует значительную вариативность, но чаще всего в пределах допустимых значений. Высокие значения в начале месяца и отдельные пики в течение месяца указывают на необходимость мониторинга и контроля.

3.2 Анализ влияния метеорологических факторов на концентрации твердых примесей.

Влияние метеорологических факторов на распространение пыли в атмосфере Санкт-Петербурга является важным аспектом при оценке качества воздуха и экологической обстановки.

Рассмотрим основные метеоусловия, которые влияют на запылённость воздуха:

1. Ветер:

- Направление и скорость ветра сильно влияют на распространение пылевых частиц.
- Ветер может переносить пыль на большие расстояния, особенно при сильных порывах.
- В СПб преобладают западные и юго-западные ветры, которые могут приносить загрязнения из промышленных зон и строительных площадок.
- При слабом ветре пыль оседает, концентрация в приземном слое растёт.

2. Температура воздуха:

- Высокие температуры способствуют высыханию поверхности, увеличивая количество поднимаемой пыли.
- Низкие температуры могут способствовать осаждению пыли, так как холодный воздух удерживает меньше взвешенных частиц.
- В переходные сезоны (весна, осень) температура колеблется, что влияет на динамику пыления.

3. Влажность воздуха:

 Повышенная влажность способствует связыванию пыли и её осаждению.

- В условиях высокой влажности (туман, дождь) концентрация пыли в воздухе снижается.
- В СПб, где влажность часто высокая из-за близости Финского залива, влажность играет большую роль в снижении запылённости.

4. Атмосферное давление:

- Высокое давление часто связано с устойчивой погодой и слабым ветром, что может приводить к накоплению загрязнений, включая пыль.
- Низкое давление признак ухудшения погоды, усиления ветра и осадков, что способствует очистке воздуха.

5. Осадки:

- Дождь и снег эффективно очищают атмосферу от пылевых частиц.
- В СПб осадки достаточно часты, что помогает снижать концентрацию пыли.

Рассмотрим максимальные и минимальные пики в динамике запыления воздуха На станции 1:

Минимальное значение наблюдалось (0,1 доли ПДКсс) 26 сентября 2024 года.

Погода в Санкт-Петербурге ночью 26 сентября 2024 года: облачно, осадков и погодных явлений не наблюдалось. Атмосферное давление было в пределах нормы. Температура воздуха +14...+16°C. Ветер южный слабый, 2—3 м/с. Относительная влажность 77—84%.

Днем 26 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность с просветами, осадков и погодных явлений не наблюдалось. Давление было в пределах нормы. Температура воздуха +15...+21°C. Ветер южный умеренный, 3—4 м/с, порывами до 10 м/с. Влажность воздуха 59—83%.

Рисунок 29. Суточных ход температуры за 26 сентября 2024 г.

Рисунок 30. Суточных ход скорости ветра за 26 сентября 2024 г.

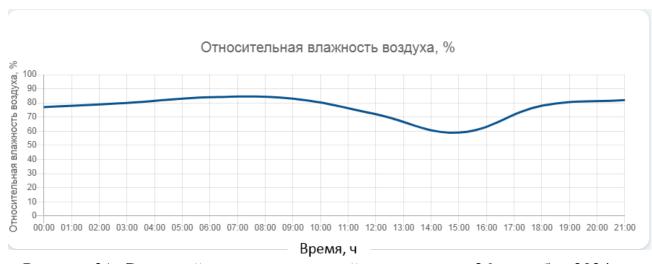


Рисунок 31. Суточный ход относительной влажности за 26 сентября 2024 г.

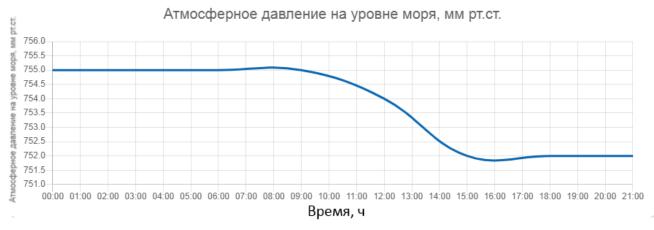


Рисунок 32. Суточный ход атмосферного давления за 26 сентября 2024 г.

Максимальное значения концентрации наблюдалось (1,1 доли ПДКсс) — 12 сентября 2024 года.

Погода в Санкт-Петербурге ночью 12 сентября 2024 года: сплошная облачность без просветов, осадков и погодных явлений не наблюдалось. Атмосферное давление было в пределах нормы. Температура воздуха +18...+20°C. Ветер юго-восточный слабый, 1 м/с. Относительная влажность 66—77%.

Днем 12 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность с просветами, дождь, пасмурно или облачность более 5 баллов. Давление было в пределах нормы. Температура воздуха +19...+25°C. Ветер восточный слабый, 1—2 м/с. Влажность воздуха 55—78%

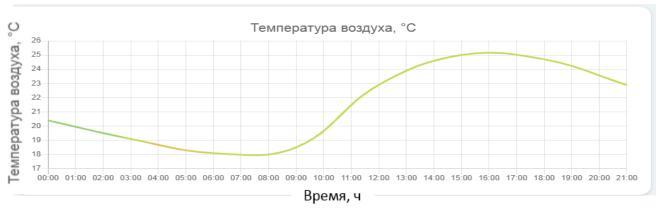


Рисунок 33. Суточных ход температуры за 12 сентября 2024 г.

Рисунок 34. Суточных ход скорости ветра за 12 сентября 2024г.

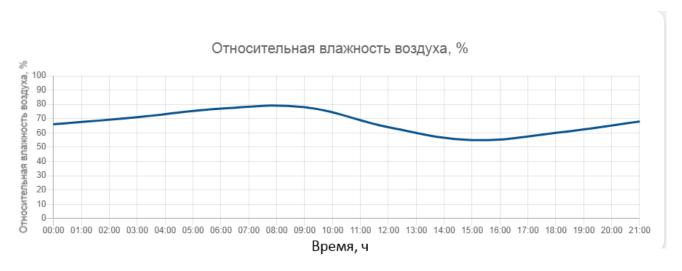


Рисунок 35. Суточных ход относительной влажности за 12 сентября 2024г.

Рисунок 36. Суточных ход атмосферного давления за 12 сентября 2024г.

Вывод: в день минимальной концентрации (26 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 3 м/с с порывами до 10 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (12 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 5:

Минимальное значение концентрации наблюдалось (0,1 доли ПДКсс) 29 сентября 2024 года.

Погода в Санкт-Петербурге ночью 29 сентября 2024 года: значительная облачность, дождь с перерывами, дождь, пасмурно или облачность более 5 баллов. Атмосферное давление было в пределах нормы. Температура воздуха +11...+13°C. Ветер юго-западный слабый, 2—4 м/с. Относительная влажность 82—90%.

Днем 29 сентября 2024 года в Санкт-Петербурге характер погоды был таким: малооблачно, слабый дождь, дождь, ливневые осадки, облачность увеличилась от менее 5 баллов до более 5 баллов, пасмурно или облачность более 5 баллов. Давление было в пределах нормы. Температура воздуха +9...+11°C. Ветер юго-западный слабый, 2—4 м/с. Влажность воздуха 68—84%.

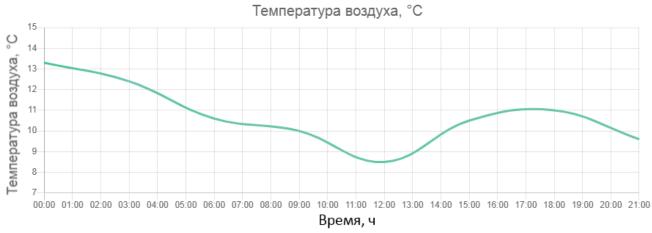


Рисунок 37. Суточных ход температуры за 29 сентября 2024г.

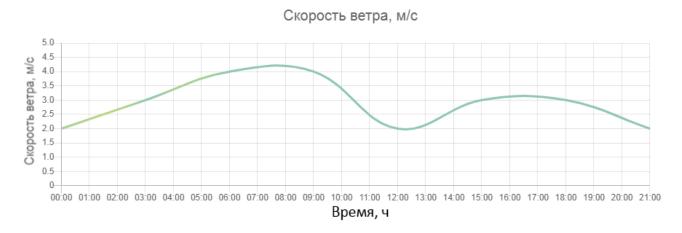


Рисунок 38. Суточных ход скорости ветра за 29 сентября 2024г.



Рисунок 39. Суточных ход относительной влажности за 29 сентября 2024г.

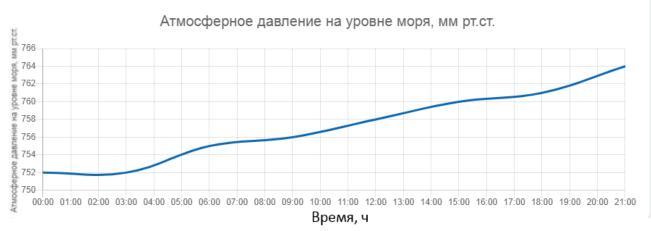


Рисунок 40. Суточных ход атмосферного давления за 29 сентября 2024г.

Максимальное значение концентрации наблюдалось (0,9 доли ПДКсс) 13 сентября.

Погода в Санкт-Петербурге ночью 13 сентября 2024 года: ясно, дымка, облачность увеличилась от менее 5 баллов до более 5 баллов. Атмосферное давление было в пределах нормы. Температура воздуха +18...+20°С. Ветер в переменных направлениях слабый, 0—2 м/с. Относительная влажность 80—90%.

Днем 13 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность без просветов, дождь, пасмурно или облачность более 5 баллов. Давление было в пределах нормы. Температура воздуха +19...+26°C. Ветер юго-восточный слабый, 1—3 м/с. Влажность воздуха 43—78%.

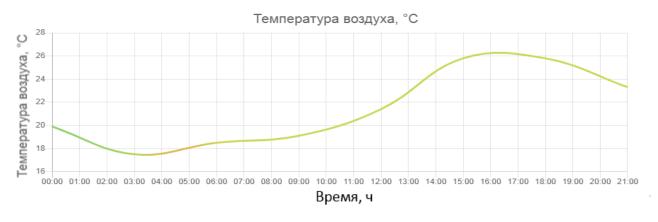


Рисунок 41. Суточных ход температуры за 13 сентября 2024г.

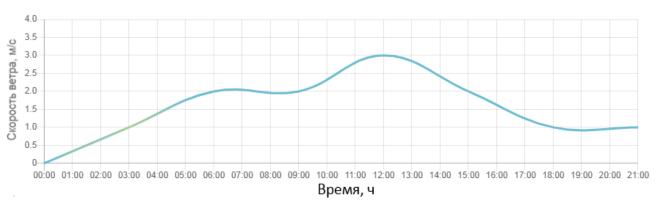


Рисунок 42. Суточных ход скорости ветра за 13 сентября 2024г.

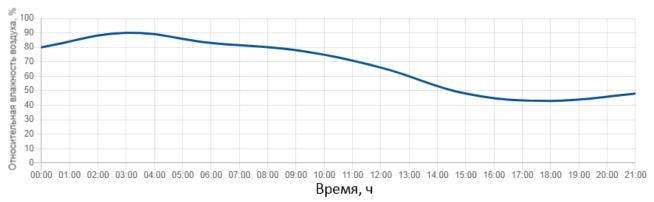


Рисунок 43. Суточных ход относительной влажности за 13 сентября 2024г.

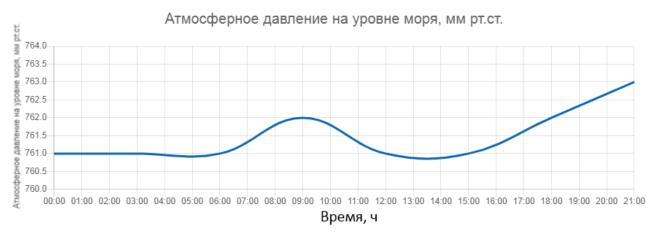


Рисунок 44. Суточных ход атмосферного давления за 13 сентября 2024г.

Вывод: в день минимальной концентрации (29 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра весь день была 2-4 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (13 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 8

Минимальное значение концентрации наблюдалось (0,1 доли ПДКсс) 25 сентября

Погода в Санкт-Петербурге ночью 25 сентября 2024 года: сплошная облачность без просветов, осадков и погодных явлений не наблюдалось. Атмосферное давление было в пределах нормы. Температура воздуха +13...+15°C. Ветер юго-восточный слабый, 1—2 м/с. Относительная влажность 75—86%.

Днем 25 сентября 2024 года в Санкт-Петербурге характер погоды был таким: малооблачно, слабый дождь, дождь, облачность увеличилась от менее 5 баллов до более 5 баллов. Давление было в пределах нормы. Температура воздуха +15...+24°C. Ветер южный слабый, 2—4 м/с. Влажность воздуха 50—78%.

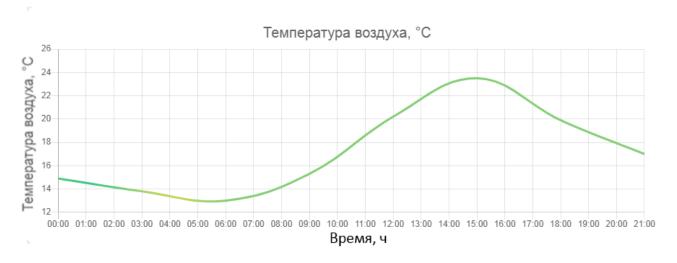


Рисунок 45. Суточных ход температуры за 25 сентября 2024г.

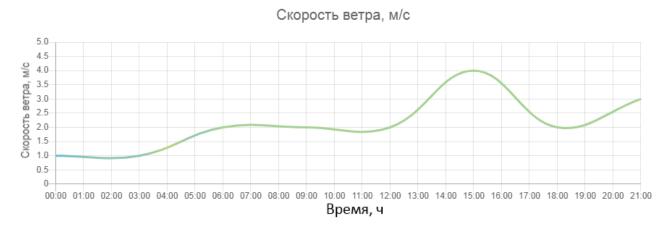


Рисунок 46. Суточных ход скорости ветра за 25 сентября 2024г.

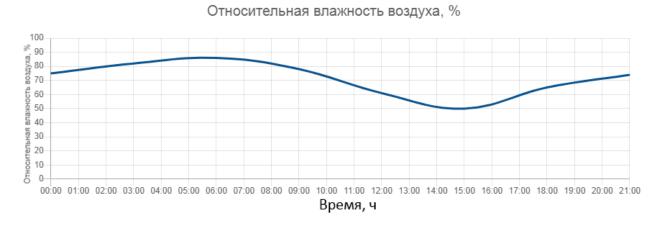


Рисунок 47. Суточных ход относительной влажности за 25 сентября 2024г.

Рисунок 48. Суточных ход атмосферного давления за 25 сентября 2024г.

Максимальное значения концентрации наблюдалось (0,9 доли ПДКсс) 18 сентября

Погода в Санкт-Петербурге ночью 18 сентября 2024 года: сплошная облачность без просветов, дымка, пасмурно или облачность более 5 баллов. Атмосферное давление было выше нормы. Температура воздуха +15...+16°C. Ветер западный слабый, 1 м/с. Относительная влажность 83—95%.

Днем 18 сентября 2024 года в Санкт-Петербурге характер погоды был таким: значительная облачность, туман, ледяной туман или мгла, видимость менее 1 км, пасмурно или облачность более 5 баллов. Давление было выше нормы. Температура воздуха +14...+18°C. Ветер западный слабый, 1—2 м/с. Влажность воздуха 72—95%.



Рисунок 49. Суточных ход температуры за 18 сентября 2024г.

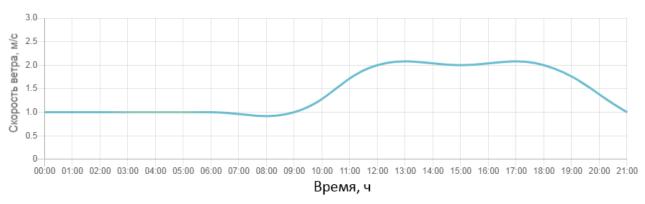


Рисунок 50. Суточных ход скорости ветра за 18 сентября 2024г.

Рисунок 51. Суточных ход относительной влажности за 18 сентября 2024г.

Рисунок 52. Суточных ход атмосферного давления за 18 сентября 2024г.

Вывод: в день минимальной концентрации (25 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра весь день была 2-4 м/с, что позволило частицам PM_{10} распространить и рассеять пыль на большое расстояние. В день максимальной

концентрации (18 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 9:

Минимальное значение концентрации наблюдалось (0,1 доли ПДКсс) 28 сентября.

Погода в Санкт-Петербурге ночью 28 сентября 2024 года: сплошная облачность с просветами, дождь, пасмурно или облачность более 5 баллов, облачность увеличилась от менее 5 баллов до более 5 баллов. Атмосферное давление было ниже нормы. Температура воздуха +14...+15°C. Ветер южный умеренный, 4 м/с, порывами до 12 м/с. Относительная влажность 77—82%.

Днем 28 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность без просветов, слабый дождь с перерывами, дождь, пасмурно или облачность более 5 баллов, ливневые осадки. Давление было в пределах нормы. Температура воздуха +13...+15°C. Ветер югозападный умеренный, 1—4 м/с, порывами до 11 м/с. Влажность воздуха 76—88%.



Рисунок 53. Суточных ход температуры за 28 сентября 2024г.

Скорость ветра, м/с

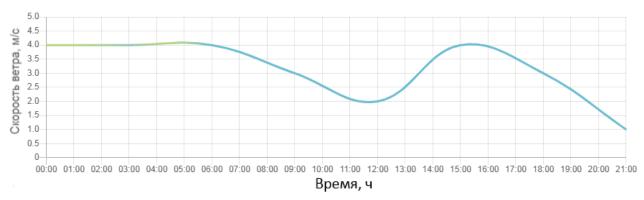


Рисунок 54. Суточных ход скорости ветра за 28 сентября 2024г.

Относительная влажность воздуха, %

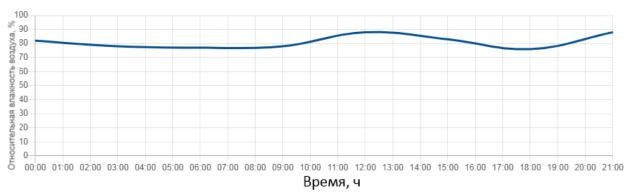


Рисунок 55. Суточных ход относительной влажности за 28 сентября 2024г.

Рисунок 56. Суточных ход атмосферного давления за 28 сентября 2024г.

Максимальное значение концентрации наблюдалось (1,2 доли ПДКсс) 13 сентября.

Погода в Санкт-Петербурге ночью 13 сентября 2024 года: ясно, дымка, облачность увеличилась от менее 5 баллов до более 5 баллов. Атмосферное давление было в пределах нормы. Температура воздуха +18...+20°С. Ветер в переменных направлениях слабый, 0—2 м/с. Относительная влажность 80—90%.

Днем 13 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность без просветов, дождь, пасмурно или облачность более 5 баллов. Давление было в пределах нормы. Температура воздуха +19...+26°C. Ветер юго-восточный слабый, 1—3 м/с. Влажность воздуха 43—78%.

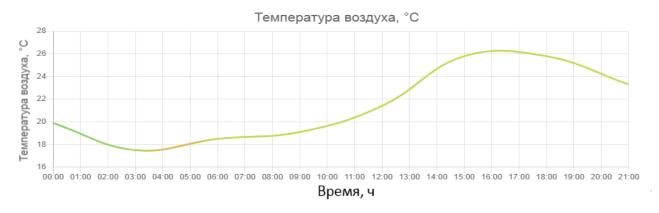


Рисунок 57. Суточных ход температуры за 13 сентября 2024г.

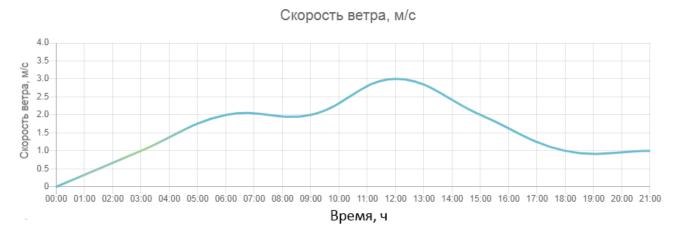


Рисунок 58. Суточных ход скорости ветра за 13 сентября 2024г.

Относительная влажность воздуха, %

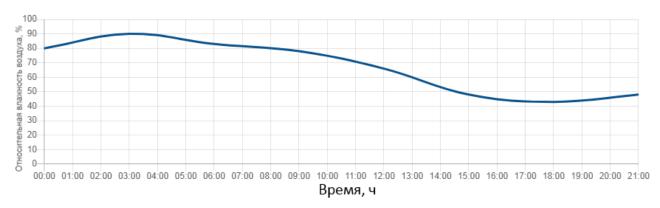


Рисунок 59. Суточных ход относительной влажности за 13 сентября 2024г.

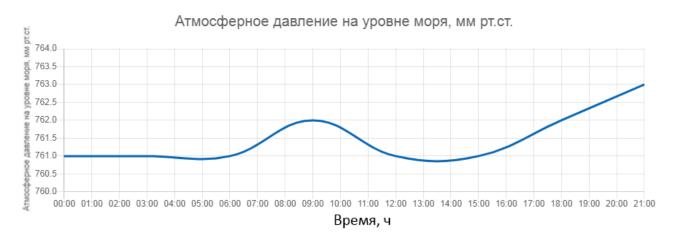


Рисунок 60. Суточных ход атмосферного давления за 13 сентября 2024г.

Вывод: в день минимальной концентрации (28 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 4 м/с, порывами до 12 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (13 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 14:

Минимальное значение концентрации наблюдалось (0,2 доли ПДКсс) 1 сентября.

Погода в Санкт-Петербурге ночью 1 сентября 2024 года: сплошная облачность с просветами, ливневые осадки, дождь. Атмосферное давление было в пределах нормы. Температура воздуха +13...+15°C. Ветер югозападный слабый, 1—2 м/с. Относительная влажность 90—93%.

Днем 1 сентября 2024 года в Санкт-Петербурге характер погоды был таким: малооблачно, осадков и погодных явлений не наблюдалось. Давление было в пределах нормы. Температура воздуха +15...+20°C. Ветер югозападный слабый, 1—3 м/с. Влажность воздуха 55—82%.

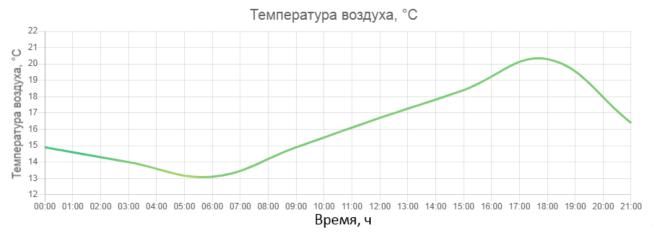


Рисунок 61. Суточных ход температуры за 1 сентября 2024г.

Рисунок 62. Суточных ход скорости ветра за 1 сентября 2024г.

Относительная влажность воздуха, %

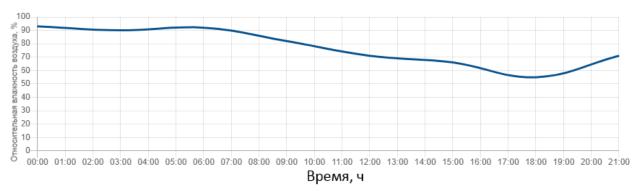


Рисунок 63. Суточных ход относительной влажности за 1 сентября 2024г.

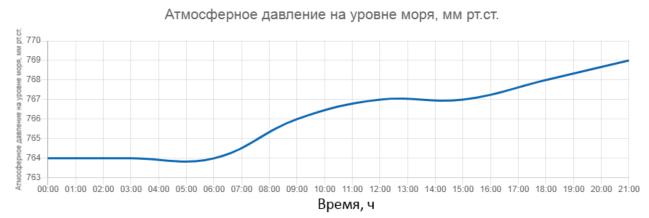


Рисунок 64. Суточных ход атмосферного давления за 1 сентября 2024г.

Минимальное значение концентрации наблюдалось (1,2 доли ПДКсс) 30 сентября.

Погода в Санкт-Петербурге ночью 30 сентября 2024 года: сплошная облачность без просветов, дождь, ливневые осадки, пасмурно или облачность более 5 баллов. Атмосферное давление было в пределах нормы. Температура воздуха +7...+8°C. Ветер западный умеренный, 1—3 м/с, порывами до 10 м/с. Относительная влажность 73—87%.

Днем 30 сентября 2024 года в Санкт-Петербурге характер погоды был таким: малооблачно, осадков и погодных явлений не наблюдалось. Давление было выше нормы. Температура воздуха +5...+12°C. Ветер северный слабый, 0—3 м/с. Влажность воздуха 48—89%.

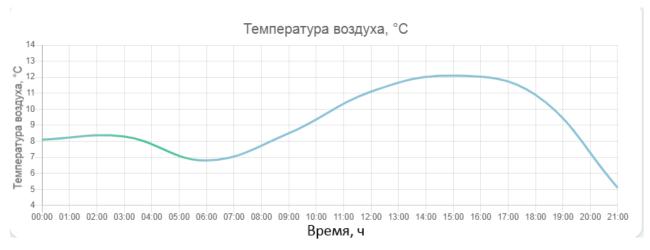


Рисунок 65. Суточных ход температуры за 30 сентября 2024г.

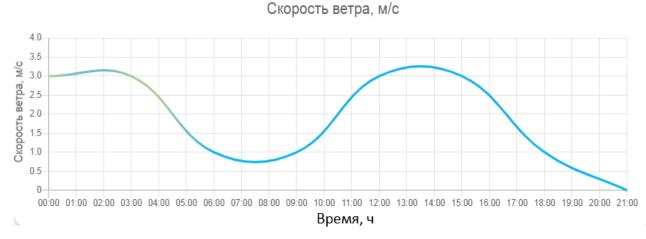


Рисунок 66. Суточных ход скорости ветра за 30 сентября 2024г.

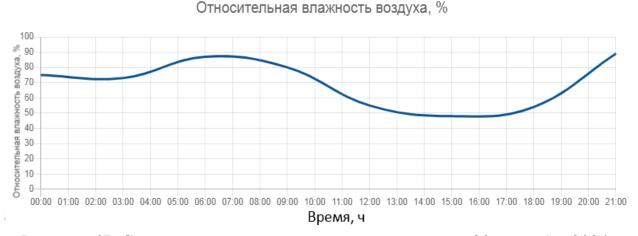


Рисунок 67. Суточных ход относительной влажности за 30 сентября 2024г.

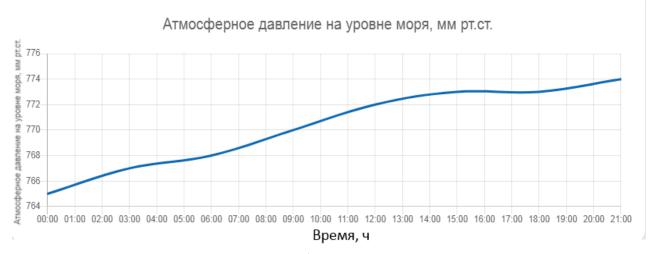


Рисунок 68. Суточных ход атмосферного давления за 30 сентября 2024г.

Вывод: в день минимальной концентрации (1 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 2-3 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (30 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 17:

Минимальное значение концентрации наблюдалось (0,2 доли ПДКсс) 20 сентября.

Погода в Санкт-Петербурге ночью 20 сентября 2024 года: ясно, осадков и погодных явлений не наблюдалось. Атмосферное давление было выше нормы. Температура воздуха +13°C. Ветер западный слабый, 1 м/с. Относительная влажность 94—96%.

Днем 20 сентября 2024 года в Санкт-Петербурге характер погоды был таким: облачно, осадков и погодных явлений не наблюдалось. Давление было в пределах нормы. Температура воздуха +15...+19°C. Ветер западный умеренный, 1—4 м/с, порывами до 10 м/с. Влажность воздуха 76—94%.

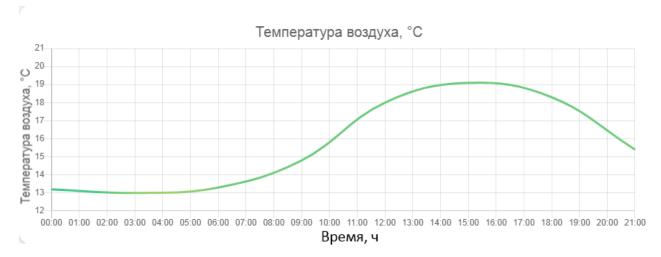


Рисунок 69. Суточных ход температуры за 20 сентября 2024г.

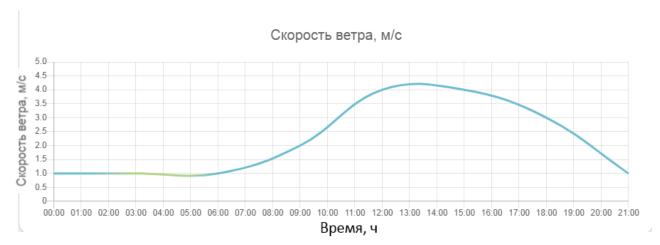


Рисунок 70. Суточных ход скорости ветра за 20 сентября 2024г.

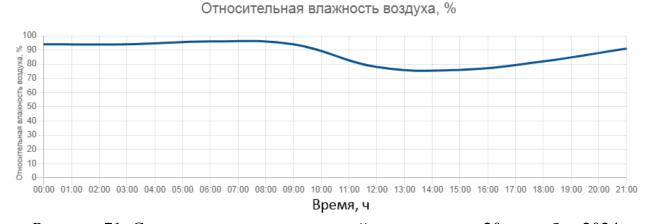


Рисунок 71. Суточных ход относительной влажности за 20 сентября 2024г.

Рисунок 72. Суточных ход атмосферного давления за 20 сентября 2024г.

Максимальное значение концентрации наблюдалось (0,9 доли ПДКсс) 6 сентября.

Погода в Санкт-Петербурге ночью 6 сентября 2024 года: ясно, дымка, поземный туман, ясно или облачность менее 5 баллов, туман, ледяной туман или мгла, видимость менее 1 км. Атмосферное давление было выше нормы. Температура воздуха +12...+15°C. Ветер северный слабый, 0 м/с. Относительная влажность 87—96%.

Днем 6 сентября 2024 года в Санкт-Петербурге характер погоды был таким: ясно, туман, ледяной туман или мгла, видимость менее 1 км, ясно или облачность менее 5 баллов. Давление было выше нормы. Температура воздуха +19...+24°C. Ветер южный слабый, 0—2 м/с. Влажность воздуха 43—71%.

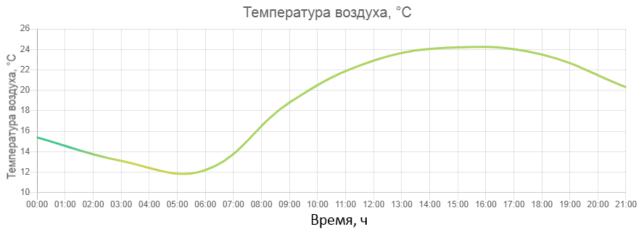


Рисунок 73. Суточных ход температуры за 6 сентября 2024г.

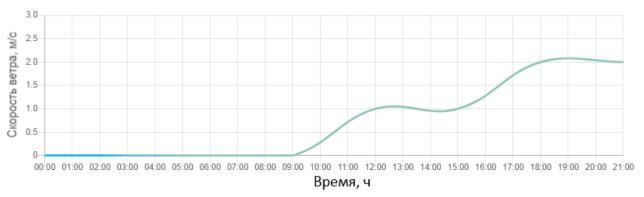


Рисунок 74. Суточных ход скорости ветра за 6 сентября 2024г.

Относительная влажность воздуха, %

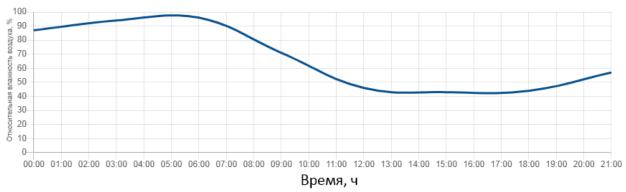


Рисунок 75. Суточных ход относительной влажности за 6 сентября 2024г.

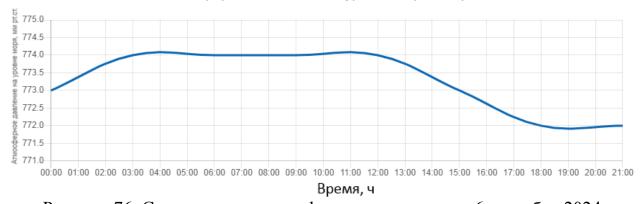


Рисунок 76. Суточных ход атмосферного давления за 6 сентября 2024г.

Вывод: в день минимальной концентрации (20 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 2-4 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день

максимальной концентрации (6 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 0-1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 19:

Минимальное значение концентрации наблюдалось (0,1 доли ПДКсс) 28 сентября.

Погода в Санкт-Петербурге ночью 28 сентября 2024 года: сплошная облачность с просветами, дождь, пасмурно или облачность более 5 баллов, облачность увеличилась от менее 5 баллов до более 5 баллов. Атмосферное давление было ниже нормы. Температура воздуха +14...+15°C. Ветер южный умеренный, 4 м/с, порывами до 12 м/с. Относительная влажность 77—82%.

Днем 28 сентября 2024 года в Санкт-Петербурге характер погоды был таким: сплошная облачность без просветов, слабый дождь с перерывами, дождь, пасмурно или облачность более 5 баллов, ливневые осадки. Давление было в пределах нормы. Температура воздуха +13...+15°C. Ветер югозападный умеренный, 1—4 м/с, порывами до 11 м/с. Влажность воздуха 76—88%.

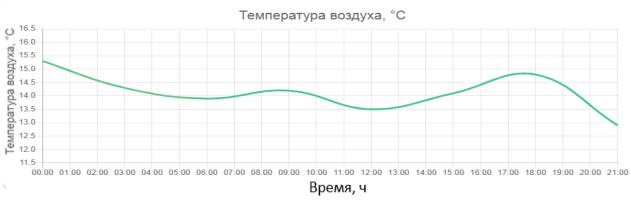


Рисунок 77. Суточных ход температуры за 28 сентября 2024г.

Скорость ветра, м/с

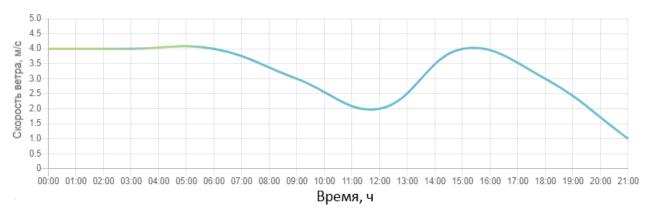


Рисунок 78. Суточных ход скорости ветра за 28 сентября 2024г.

Относительная влажность воздуха, %

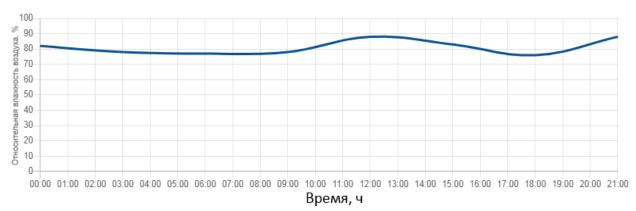


Рисунок 79. Суточных ход относительной влажности за 28 сентября 2024г.



Рисунок 80. Суточных ход атмосферного давления за 28 сентября 2024г.

Максимальное значение концентрации наблюдалось (1,0 доли ПДКсс) 17 сентября.

Погода в Санкт-Петербурге ночью 17 сентября 2024 года: значительная облачность, дымка, пасмурно или облачность более 5 баллов. Атмосферное давление было выше нормы. Температура воздуха +14...+15°C. Ветер северный слабый, 0—1 м/с. Относительная влажность 94—96%.

Днем 17 сентября 2024 года в Санкт-Петербурге характер погоды был таким: ясно, осадков и погодных явлений не наблюдалось. Давление было выше нормы. Температура воздуха +16...+26°C. Ветер северный слабый, 0—2 м/с. Влажность воздуха 40—86%.

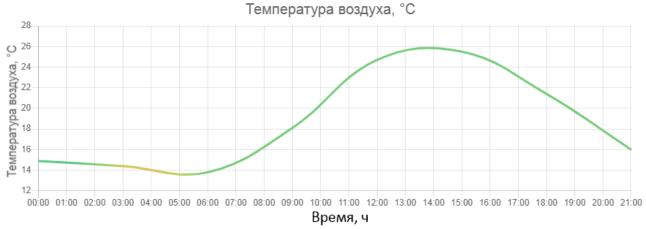


Рисунок 81. Суточных ход температуры за 17 сентября 2024г.

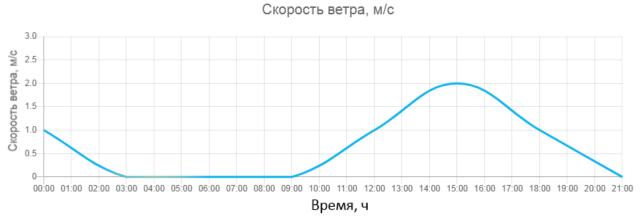


Рисунок 82. Суточных ход скорости ветра за 17 сентября 2024г.

Относительная влажность воздуха, %

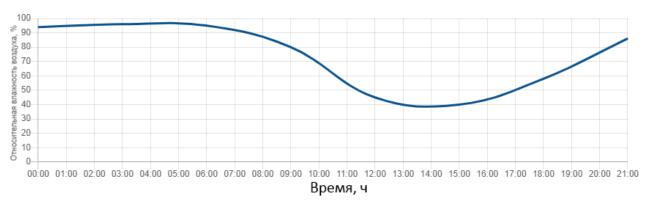


Рисунок 83. Суточных ход относительной влажности за 17 сентября 2024г.

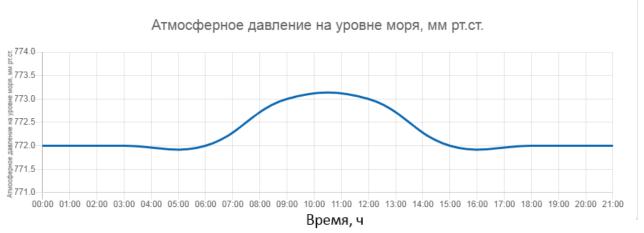


Рисунок 84. Суточных ход атмосферного давления за 17 сентября 2024г.

Вывод: в день минимальной концентрации (28 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 4 м/с, порывами до 12 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (17 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 0-1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

На станции 22:

Минимальное значение концентрации наблюдалось (0,1 доли ПДКсс) 10 сентября.

Погода в Санкт-Петербурге ночью 10 сентября 2024 года: ясно, осадков и погодных явлений не наблюдалось. Атмосферное давление было в пределах нормы. Температура воздуха +16...+18°C. Ветер восточный слабый, 1—2 м/с. Относительная влажность 67—74%.

Днем 10 сентября 2024 года в Санкт-Петербурге характер погоды был таким: значительная облачность, осадков и погодных явлений не наблюдалось. Давление было в пределах нормы. Температура воздуха +18...+26°C. Ветер юго-восточный умеренный, 2—3 м/с, порывами до 10 м/с. Влажность воздуха 35—67%.

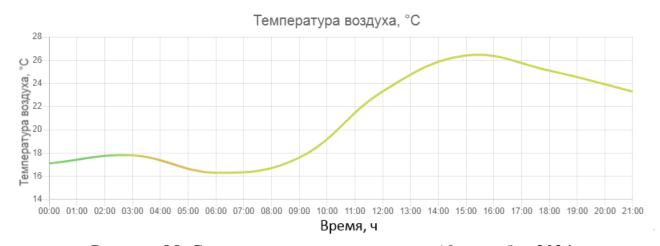


Рисунок 85. Суточных ход температуры за 10 сентября 2024г.

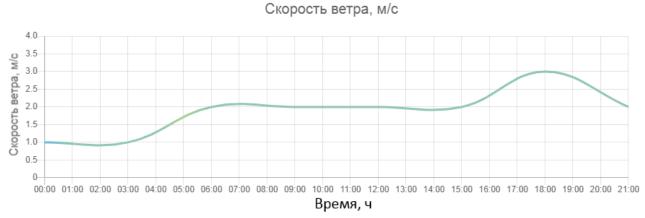


Рисунок 86. Суточных ход скорости ветра за 10 сентября 2024г.

Относительная влажность воздуха, %

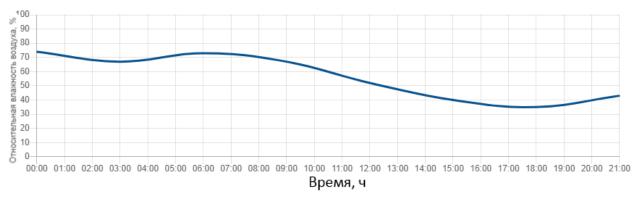


Рисунок 87. Суточных ход относительной влажности за 10 сентября 2024г.

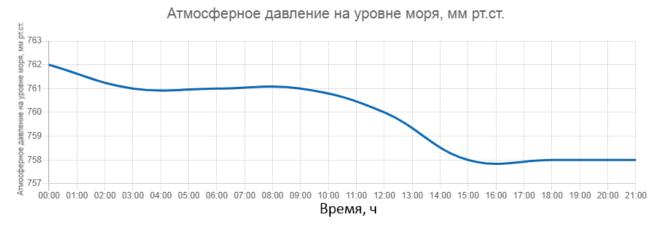


Рисунок 88. Суточных ход атмосферного давления за 10 сентября 2024г.

Максимальное значение концентрации наблюдалось (0,7 доли ПДКсс) 25 сентября.

Погода в Санкт-Петербурге ночью 25 сентября 2024 года: сплошная облачность без просветов, осадков и погодных явлений не наблюдалось. Атмосферное давление было в пределах нормы. Температура воздуха +13...+15°C. Ветер юго-восточный слабый, 1—2 м/с. Относительная влажность 75—86%.

Днем 25 сентября 2024 года в Санкт-Петербурге характер погоды был таким: малооблачно, слабый дождь, дождь, облачность увеличилась от менее 5 баллов до более 5 баллов. Давление было в пределах нормы. Температура

воздуха +15...+24°С. Ветер южный слабый, 2—4 м/с. Влажность воздуха 50—78%.

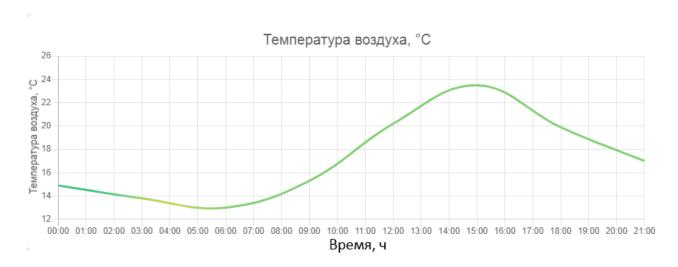


Рисунок 89. Суточных ход температуры за 25 сентября 2024г.

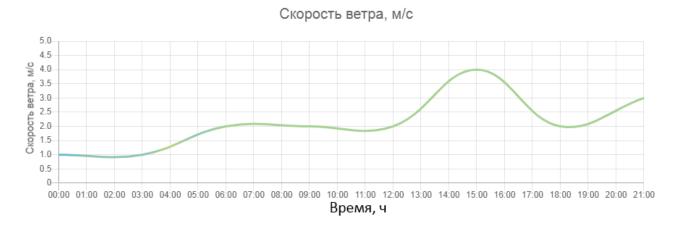


Рисунок 90. Суточных ход скорости ветра за 25 сентября 2024г.

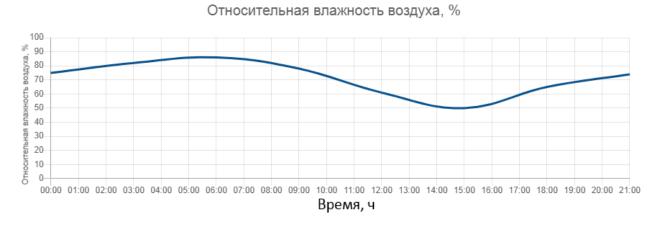


Рисунок 91. Суточных ход относительной влажности за 25 сентября 2024г.

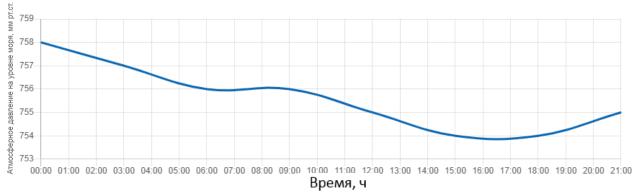


Рисунок 92. Суточных ход атмосферного давления за 25 сентября 2024г.

Вывод: в день минимальной концентрации (10 сентября) амплитуда суточного хода рассмотренных метеорологических величин была не велика. Но скорость ветра практически весь день была 2-3 м/с, что позволило частицам РМ₁₀ распространить и рассеять пыль на большое расстояние. В день максимальной концентрации (25 сентября) мы видим обратную ситуацию, амплитуда суточного хода была большая, а скорость ветра весь день была примерно 1 м/с, что позволило пыли осесть, из-за чего концентрация была максимальная.

В октябре, ноябре разница между минимальными и максимальными концентрациями невелики, поэтому эти случаи рассматривать не будем.

Заключение

Твердые примеси в атмосферном воздухе представляют собой сложную и разнообразную смесь частиц различного размера, состава и происхождения. Их изучение имеет важное значение для понимания процессов загрязнения атмосферы, оценки воздействия на здоровье человека и окружающую среду, а также для разработки эффективных мер по снижению негативного влияния. Учет классификации, источников и свойств твердых примесей является необходимым условием для проведения комплексного анализа загрязнения атмосферного воздуха и разработки обоснованных решений по улучшению его качества.

В работе были описаны:

- источники получения данных о концентрациях загрязняющих $\mbox{веществ} \mbox{PM}_{10}$
- значения метеорологических величин на концентрацию загрязняющих веществ PM_{10}
- исследована динамика временных рядов концентраций загрязняющих веществ PM_{10}
- определено количественное содержание загрязняющих веществ PM_{10} в атмосферном воздухе Санкт-Петербурга с помощью сравнения этих значений с нормами допустимых концентраций
- исследовано влияние метеорологических факторов на концентрацию загрязняющих веществ PM_{10}
- В результате исследования временных рядов концентраций загрязняющих веществ PM_{10} в осенний период 2024 года можно сделать следующие выводы:
- Наибольшие концентрации загрязняющих веществ наблюдались в сентябре, наименьшие в ноябре;

– Метеорологические факторы оказывают влияние на концентрацию загрязняющих веществ, особенно скорость ветра.

По итогу, можно сказать, что за исследуемый период концентрация загрязняющих веществ— PM_{10} не превысила нормативных значений.

Для уменьшения уровня загрязненности атмосферного воздуха необходимы кардинальные меры, в том числе:

- распространение электротранспорта
- очистные сооружения на трубах опасных предприятий
- фильтры подобного действия на выхлопные трубы автомобилей,
- использование более экологически чистого топлива
- развитие безотходных производств
- улучшение общей экологии путем высадки деревьев,
- более продуманного расположения промышленных предприятий и других загрязняющих источников, исходя из повторяемости ветров в конкретном районе.

Список литературы

- 1. Новиков, Ю. В. Экология, окружающая среда и человек / Ю. В. Новиков. Москва: ФАИР-ПРЕСС, 2008. 560 с.
- 2. Ивлев Л.С., Довгалюк Ю.А. Физика атмосферных аэрозольных систем. СПб: НИИХ СПбГУ. 1999 194 с.
- 3. Безуглая, Э. Ю. Метеорологический потенциал и загрязнение воздуха городов/ Э. Ю. Безуглая. Ленинград: Гидрометеоиздат, 1986. 254 с.
- 4. Калюкова Е. Н. Экологический мониторинг атмосферы: практикум для бакалавров направления подготовки 20.03.01 «Техносферная безопасность» по профилю «Инженерная защита окружающей среды» Ульяновск: УлГТУ, 2015. 131 с.
- 5. Смирнова, О. П. Оценка влияния автотранспорта на загрязнение атмосферного воздуха в Санкт-Петербурге / О. П. Смирнова, В. С. Петров // Вестник Санкт-Петербургского университета. Серия 7: Геология. География. 2018. Т. 63, № 4. С. 456-468.
- 6. Израэль Ю. А. Экология и контроль состояния природной среды / Ю. А. Израэль. Ленинград: Гидрометеоиздат, 1984. 560 с.
 - 7. Дроздов В.В. Общая экология. СПб.:РГГМУ. 2011 412 с.
- 8. Алексеев. В. А. Диагностика жизненного состояния деревьев и древостоев: учебное пособие/В. А. Алексеев. Санкт-Петербург: СПбГЛТА, 2000. –128 с.
- 9. Воронцов, А. И. Экология и охрана природы / А. И. Воронцов. Москва: Высшая школа, 2002. 477 с.

- 10. Вронский В.А. Прикладная экология. Ростов-на-Дону: Феникс. -1996 512 с.
- 11. Кулаков М.В., Технологические измерения и приборы для химических производств, М. 1983 424 с.
- 12. Межгосударственный стандарт ГОСТ 17.2.1.01-76 Охрана природы (ССОП). Атмосфера. Классификация выбросов по составу (с изменением №1), М. 2004 39 с.
- 13. Клименко А. П. Методы и приборы для измерения концентрации пыли. М.: Химия, 1978 208 с.
- 14. Дудкин Н. И., Козлов Д. Н. Проблемы контроля массовой концентрации аэрозолей. М.: Экология производства, 2005 32 с.
- 15. Еремкин А.И. Нормирование выбросов, загрязняющих веществ в атмосферу. М.: Ассоциации. -2000 176 с.
- 16. Под ред. С.А. Брылова, К. Штродки. Охрана окружающей среды, М. 1985 272 с.
- 17. Будыко М.И. Глобальная экология. М.: Мысль. 1977 328 с.Борис О.М. Химия окружающей среды /Под ред. Дж. О. М. Бориса, М.: Химия. 1982 671 с.
- 18. Глазовский, Н. Ф. Окружающая среда и устойчивое развитие / Н. Ф. Глазовский. Москва: Товарищество научных изданий КМК, 2010. 400 с.
- 19. Крюкова С.В. Контроль загрязнения природной среды: анализ данных загрязнения. Лабораторный практикум. СПб: РГГМУ, 2015 45 с.
- 20. Погода в Санкт-Петербурге. Архив погодных условий [Официальный сайт]. URL: https://www.meteoservice.ru/archive/sankt-peterburg (дата обращения 31.05.2025г.)

21. Федеральная служба по гидрометеорологии и мониторингу окружающей среды [Официальный сайт]. — URL: https://www.meteorf.ru (дата обращения 31.05.2025г.)