

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра океанологии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

«Изменение толщины льда Восточно-Сибирского моря в зависимости от суровости зимы»

Исполнитель: Носков Евгений Владимирович

Научный руководитель: к. ф.-м. н., Подрезова Надежда Алексеевна

«К защите допускаю»

Заведующий кафедрой

(подпись)

Кандидат географических наук

(ученая степень, ученое звание)

Густоев Дмитрий Владимирович

(фамилия, имя, отчество)

«26» word 2023r.

г. Санкт-Петербург

2023

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра океанологии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

«Изменение толщины льда Восточно-Сибирского моря в зависимости от суровости зимы»

Исполнитель: Носков Евгений Владимирович

Руководитель: к. фм. н., Подрезова Надежда Алексеевна
«К защите допускаю»
Заведующий кафедрой
(подпись)
Кандидат географических наук
(ученая степень, ученое звание)
Густоев Дмитрий Владимирович
(фамилия, имя, отчество)
«»20г.
г. Санкт-Петербург

2023

Оглавление

Введение	2
Глава 1. Физико-географическое положение Восточно-Сибирского моря	3
1.1 Географическое положение	3
1.2 Гидрологический режим	5
1.3. Климат	6
1.4 Термохалинные характеристики моря	6
1.5 Физико-географическое описание выбранных станции	. 13
Глава 2. Методы исследования	. 17
2.1 Тренд временного ряда	. 17
2.2 Гармонический анализ Фурье и спектр	. 18
2.3 Кластерный анализ	. 19
2.4 Сумма градусо-дней мороза	. 20
Глава 3. Полученные результаты	. 21
3.1 Исходные данные	. 21
3.2 Расчет трендовой составляющей	. 22
3.3 Гармонический анализ Фурье	. 24
3.4 Расчет суммы градусо-дней мороза	. 26
3.5 Кластерный анализ	. 27
Заключение	. 34
Список литературы	. 36

Введение

Весьма актуален расчет толщины ледяного покрова Восточно-Сибирского моря, так как оно одно из морей Северного морского пути. Так же это связано с проектированием инфраструктуры. Толщина ледяного покрова зависит от гидрометеорологических условий (температура воздуха, количество осадков, скорость ветра и такие гидрологические элементы.

Целью работы является оценка зависимости между степенью суровости зимы и толщиной льда.

Задачами работы являются:

- Ознакомление с физико-географическими особенностями заданного региона;
- Формирование временных рядов по толщине льда и температуре воздуха;
 - Полный анализ этих временных рядов:
- анализ тренда временного ряда;
- гармонический и спектральный анализ Фурье;
- расчет суммы градусо-дней мороза;
- кластерный анализ.

Глава 1. Физико-географическое положение Восточно-Сибирского моря

1.1 Географическое положение

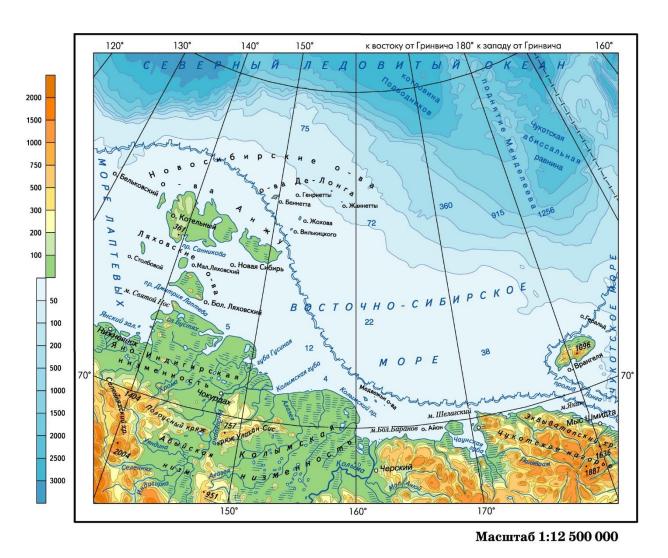


Рисунок 1 - Географическая карта Восточно-Сибирского моря

Координаты:	74.119156 северной широты, 157.242234 восточной долготы
Площадь:	944600 KM ²
Объем:	60700 км³
Максимальная глубина:	915 м
Средняя глубина:	66 м
Солёность:	до 32 ‰
Впадающие реки:	—————————————————————————————————————
Климат:	арктический

Рисунок 2 - Характеристики Восточно-Сибирского моря [1]

В северо-восточной части Азии расположено Восточно-Сибирское море. Между морями Лаптевых и Чукотским. Его площадь 944 600 км².

Его западная граница проходит от точки пересечения меридиана северной оконечности о. Котельный с краем материковой отмели (79° с. ш., 139° в. д.) до северной оконечности этого острова (м. Анисий), затем по его западному берегу и далее следует вдоль восточной границы моря Лаптевых.

Северная граница проходит по краю материковой отмели от точки с координатами 79° с. ш., 139° в. д. до точки с координатами 76° с. ш., 180° в. д., а восточная граница — от точки с этими координатами по меридиану 180° до о. Врангеля, затем по его северо-западному берегу до м. Блоссом и далее до м. Якан на материке. Южная граница проходит по материковому берегу от м. Якан до м. Святой Нос (западная граница пролива Дмитрия Лаптева и Санникова).

Побережье малонаселенное из-за сурового климата. [2] Береговая линия - изломанная.

Самые крупные заливы: Хромская губа, Чаунская губа, Колымский залив, Омуляхская губа.

Около 70 % площади глубиной не более 50 метров. Наибольшая глубина в северо-восточной части - 155 метров.

В центральной части моря нет островов, основная масса находится вдоль южного побережья (восточные и западные границы).

Крупнейшие острова:

- Де-Лонга;
- Новосибирские острова;
- Ляховские острова;
- Айон;
- Медвежьи острова.

Многие острова состоят из песка и ископаемого льда, поэтому постепенно разрушаются.

1.2 Гидрологический режим

Материковые стоки составляют около 150 км³/год. Большую часть воды приносят следующие реки:

- Колыма;
- Индигирка;
- Алазея.

Так как зимой море находится подо льдами, все речные стоки попадают в водоем летом. В восточной части встречаются плавучие льды. Море замерзает в октябре-ноябре и сохраняется до июля. Лед к концу зимы нарастает до 2 метров.

На поверхности моря отмечаются постоянные течения (с запада на восток, но могут менять направление под действием ветра). В западной части присутствуют волнения (волны до 3–5 метров).

Штормы зимой достаточно часто (продолжаются до 5 суток).

Штормы летом длятся не больше 2 дней. [2]

1.3. Климат

Климат в Восточно-Сибирском море арктический.

Летом пасмурная погода и мелкий моросящий дождь, иногда мокрый снег; преобладают ветры северных направлений. Температура воздуха составляет от 0...+2 °C на севере до +4 °C на юге.

Зимой преобладают холодные юго-западные и южные ветры. Средние температуры воздуха в феврале от -28 до -30 °C (миним. -50 °C).

Осенью на побережье скорость ветров увеличивается до 20–25 м/с.

В год выпадает 100–200 мм осадков. [2]

1.4 Термохалинные характеристики моря

Большой процент Восточно-Сибирского моря (от поверхности до дна) занимают поверхностные арктические воды (из-за мелководности и отсутствия глубоких желобов). В приустьевых районах имеется уникальная вода (смешения речной и морской вод). У нее низкая соленость и повышенная температура.

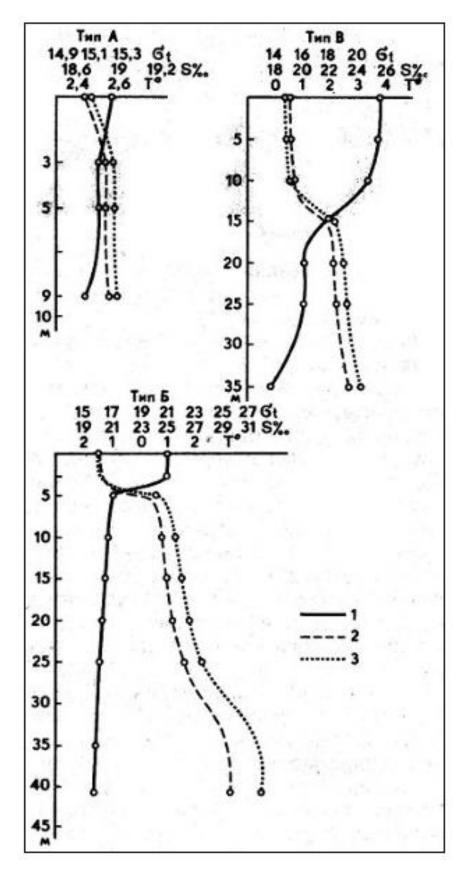


Рисунок 3 - Вертикальное распределение температуры по типам (1), солености (2) и плотности (3) воды в арктических морях [3]

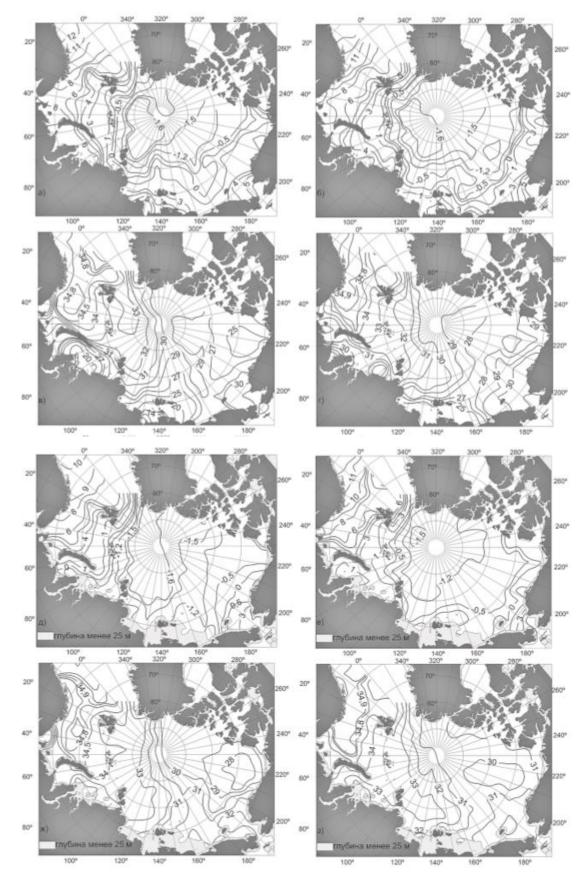


Рисунок 4 - Поверхностный слой. Распределение температуры (°С) (а, б, д, е) и солености (‰) (в, г, ж, з) на глубине 5 м (а–г) и 25 м (д–з) (слева — данные наблюдений, справа — данные модели) [4]

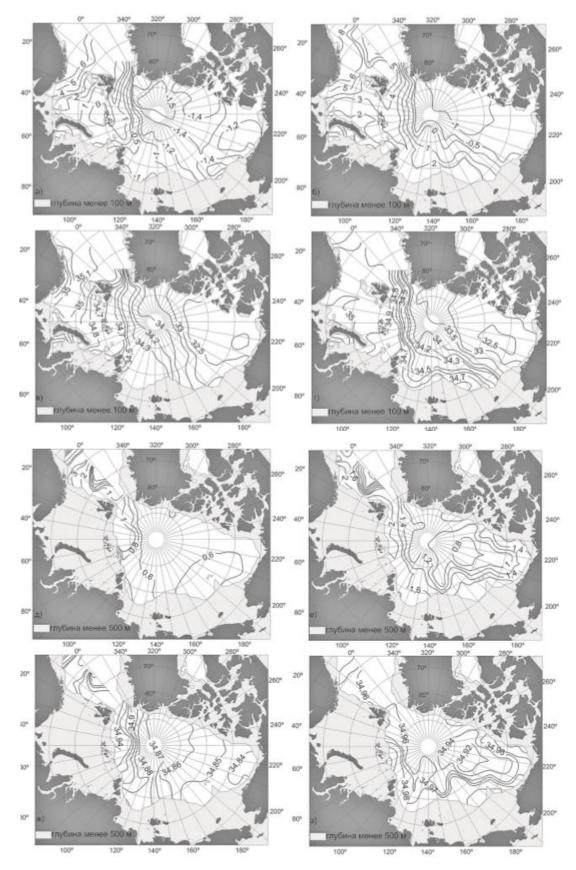


Рисунок 5 - Промежуточный слой. Распределение температуры (°С) (а, б, д, е) и солености (‰) (в, г, ж, з) на глубине 105 м (а–г) и 500 м (д–з) (слева — данные наблюдений, справа — данные модели) [4]

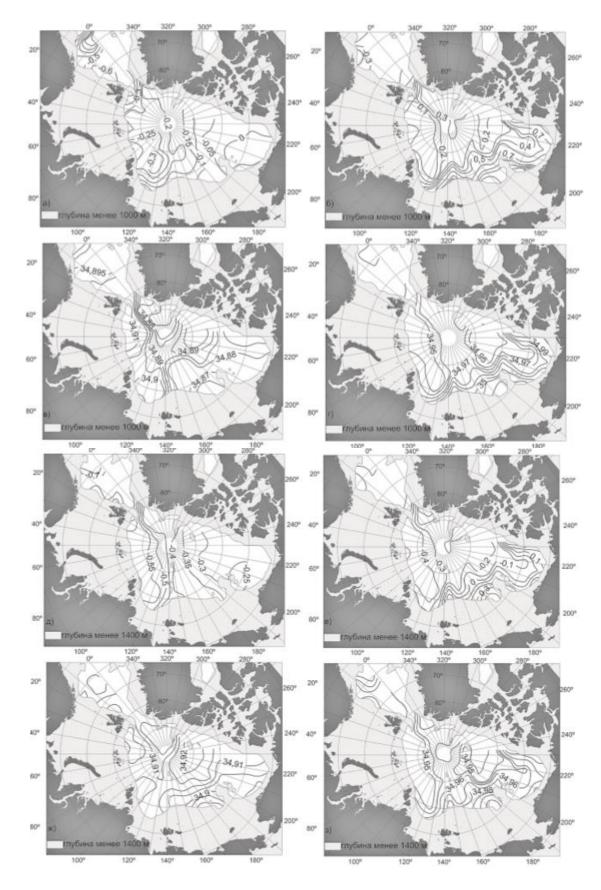


Рисунок 6 - Глубинные слои. Распределение температуры (°С) (а, б, д, е) и солености (‰) (в, г, ж, з) на глубине 1000 м (а-г) и 1400 м (д-з) (слева — данные наблюдений, справа — данные модели)

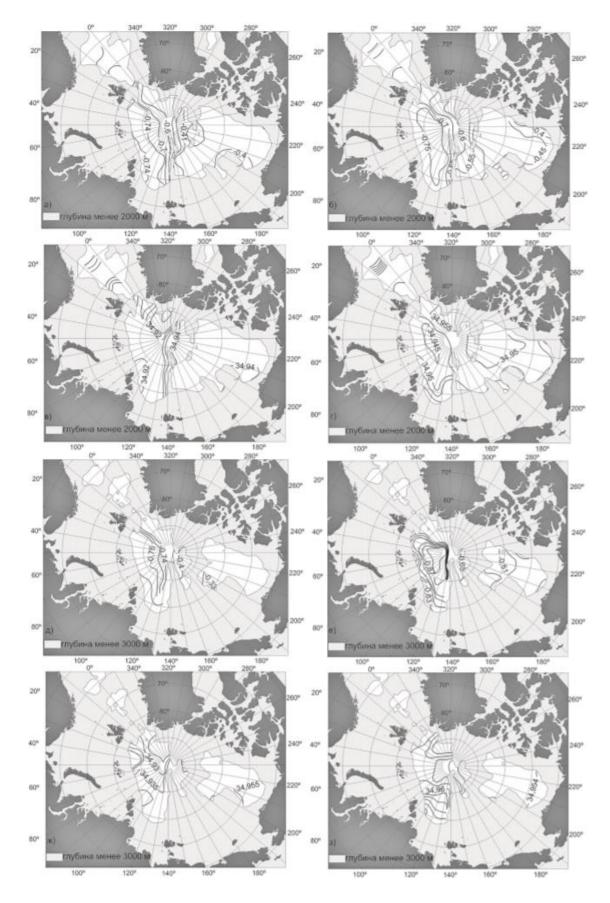


Рисунок 7 - Глубинные слои. Распределение температуры (°С) (а, б, д, е) и солености (‰) (в, г, ж, з) на глубине 2000 м (а-г) и 3000 м (д-з) (слева — данные наблюдений, справа — данные модели)

Температура воды понижается с юга на север в любой сезон.

Зимой возле устьев рек: $-0.2 - 0.6^{\circ}$, у северных границ: $1.7 - 1.8^{\circ}$.

Летом в заливах и бухтах: 7-8°, в районах без льда: 2—3°, у кромки льда близка к 0° .

Зимой и весной изменение температуры особо не заметно. Но возле устьев крупных рек температура опускается в подледных горизонтах до -0.5° , у дна до -1.5° .

Летом, в местах где нет льдов температура воды понижается от поверхности до дна возле берега на западе моря. В восточной части в слое 3—5 м наблюдается поверхностная температура и далее резко опускается до горизонтов 5—7 м и далее плавно понижается ко дну. Так как Восточно-Сибирское море является одим из самых холодных арктических морей, у него мелководное прогревается слабо.

На поверхности с юго-запада к северо-востоку увеличивается соленость:

Зимой, весной: 4—5‰; вблизи устьев Колымы и Индигирки: 24—26‰; у Медвежьих островов: 28—30‰; на северных окраинах моря 31—32‰.

Летом из-за притока речных вод и таяния льдов поверхностная соленость в прибрежной зоне: 18—22‰; у Медвежьих островов: 20— 22‰; на севере, у кромки тающих льдов: 24— 26‰.

Зимой на большей части моря соленость незначительно повышается от поверхности до дна. Только в северозападном районе (где проникают океанские воды с севера), соленость увеличивается от 23% в верхнем слое толщиной 10—15 м до 30% у дна.

С конца весны и в течение лета, где нет льда образуется опресненный слой толщиной 20—25 м, под которым соленость увеличивается с глубиной.

Осенью-зимой высокая плотность воды, чем весной и летом. Большая плотность на севере и на востоке, чем на западе моря.

На пространствах, где нет льда, летом, сильный ветер перемешивает воду до горизонтов 20—25 м. А где глубина 25 м, ветровое перемешивание

распространяется до дна. В местах резкого расслоения вод по плотности ветровое перемешивание проникает лишь до горизонтов 10—15 м, где его ограничивают значительные вертикальные градиенты плотности.

Осенне-зимняя конвекция в Восточно-Сибирском море на глубинах 40—50 м, которые занимают более 70% всей его площади, проникает до дна. Зимняя вертикальная циркуляция (конец холодного сезона) распространяется до горизонтов 70—80 м, где ее ограничивает большая вертикальная устойчивость вод. [3]

1.5 Физико-географическое описание выбранных станции

1. П/станция Амбарчик. Описание физико-географических условий района станции: Рельеф станции представляет собой ровную поверхность, местами всхолмлённую. На расстоянии 3 км и 10-12 км к востоку проходят гряда сопок высотой 100-200 метров. Почва представляет собой песок и илистый песок. Берега бухты Амбарчик ровные малоизрезанные. На расстоянии 50-60 метров от уреза воды, местами почти у самой воды берега круто обрываются. Дно бухты ровное, глубины незначительны. На фарватере максимальная глубина порядка 6-7 метров, преобладают глубины 2-3 метра. У входа в бухту бар, где глубина порядком 4 метров. Колебания уровня сгонно-нагонные, приливно-отливные колебания очень малы и практически не улавливаются. Волнение в бухте почти всегда не правильное, волны крутые и короткие. Незначительные глубины на баре и в самой бухте обуславливают разрушение волн до подхода к береговой черте. У мысов Столбовой и Медвежий наблюдается толчея. В температурном, химическом и ледовом режимах значительную роль играет сток вод реки Колымы. Поверхностный слой воды сильно распреснен. Вследствие низкой солёности поверхностного слоя воды и незначительной глубины в районе бухты ледообразование идет очень быстро. В первой декаде октября бухта и

прилегающие покрываются льдом. По тем же причинам идет быстрое нарастание льда. За одну зиму мощность ледяного покрова достигает 2,2-2,4 метра. Из всего сказанного видно, что основным фактором, влияющим на гидрологический режим бухты Амбарчик и прилегающего района моря, является сток реки Колымы.

2. П/станция Певек. Описание физико-географических условий района станции: Гидрометеостанция Певек расположена на южном берегу галечной косы, примыкающей к северо-западному углу полуострова Певек. Коса вытянута с запада на восток на 1,2-1,3 км и с севера на юг на 400 метров. Поверхность косы ровная без растительного покрова. Бухта Певек не глубоко вдается в северо-западный угол полуострова Певек. С севера бухта ограниченна галечной косой наблюдений, с юга-косой Эгим-Гектикер. Площадь бухты 3,5 км², ширина входного пролива 1,8 км, длина с CB на ЮЗ 2,9 км. Наибольшая ширина 0,9 км. Северная часть бухты имеет наибольшую глубину равную 15,2 метров, южная 7-10 м. Рельеф дна плавно снижается от берегов к центру. В северной половине бухты изобата 10 метров очерчивает котлообразную впадину шириной около 500 метров и длиной 1 км. Вдоль восточного и южного берегов бухты тянется полоса осушек шириной до 40-50 метров и глубинами 0,2-0,8 над ней. Общее колебания уровня складывается из периодических и не периодических колебаний. Вдоль всего берега моря и в районе обширного мелководья к западу от Чаунской губы наблюдается чрезвычайно слабое развитие приливных явлений. Амплитуда местных сизигийных приливов 5-15 см. Указанно мелководье способствует развитию сгонно-нагонных явлений и искажает направление приливной волны, идущей с севера из центрального Полярного бассейна, которую оно как бы разделяет на два отрога - западный и восточный. Наиболее часто бывает волнение на севере залива от ЮЗ и СВ т.е с наиболее открытых водных пространств. В проливе Певек волнения распределены довольно открытым доступу волн направлениям. равномерно ПО всем сказывается волнения местного ветра типа фена (местное названия «Южак»)

средняя скорость которого достигает 34 м/сек. «Южак» имеет юго-восточное направление, вызывает нижние воды вблизи берегов, выбрасывает мелкие суда, находящиеся в бухте на берег, обрывает швартовы у крупны судов, стоящих у причала порта. Дальность действия «южака» 70-100 км. С сентября по июнь вся губа бывает покрыта сплошным припайным льдом. В проливе и в бухте Певек припай гладкий без торосов, т.к эта часть губы защищена островами большой и малый Раутан от нажима льдов с севера. Процесс ледообразования прежде всего начинается в южной части губы, где вода опреснена и следовательно, повышена точка замерзания. Отсюда он распространяется на север.

- П/станция Валькаркай. физико-географических Описание условий района станции: станция расположена на ровном низком берегу Восточно-Сибирского моря. Высота станции над уровнем моря 4,4м. С южной стороны (сектор от 100° до 290°) станцию окружают сопки на расстоянии 3-4 км, средней высотой 400-500м. Береговая черта в районе станции вытянута с запада на восток. Берег каменистый - мелкая галька, но полого понижается с удалением от берега на расстоянии 100-150м, глубина моря 6-7м. Рифов и мелей нет. Преобладающие ветры восточных и западных румбов, ветры западных румбов вызывают большой нагон воды, восточных румбов вызывают спад воды. Волнение, вызванное северными и западными ветрами значительно разрушает берег. Зимой в районе станции море покрыто неподвижным льдом. До момента установления устойчивого припая лед подвергается сильному торошению. Толщина льда в холодную зиму достигает 2-х метров. В летнее время море очищается ото льда или же наблюдается дрейфующий лед.
- **4.** П/станция Айон. Описание физико-географических условий района станции: рельеф в окрестности станции в радиусе 10-15 км представляет собой бугристо-кочковатую равнину с отдельными незначительными возвышенностями, на всем пространстве изрезанными многочисленными каналами в разных направлениях. Почва песчаная с

примесью ила, местами торфянистая, глины и камней нет. Водный объект Восточно-Сибирское море, открыта для наблюдений от ЮЗ через 3 до СВ. Берег в районе станции сравнительно прямой, с незначительной выпуклостью в сторону моря, направление береговой линии с ЮЗ на СВ в ЮЗ направлении. Берег обрывистый и достигает высоты до 40 м. Непосредственно от обрыва находится береговая отмель шириной 50-150 м. Скалистых берегов и гор нет. Профиль дна в прибрежной части волнистый, на расстоянии 300-400 метров от берега идут 3 косы параллельно берегу, которые образовались в результате волнения, так как грунт морского дна песчаный. Рифов и подводных камней нет.

Глава 2. Методы исследования

2.1 Тренд временного ряда

Первый этап анализа — оценка стационарности (неизменность основных статистических характеристик во времени). Это касается среднего значения и дисперсии.

Тренд отражает наличие во временной изменчивости исследуемой характеристики длиннопериодного колебания с периодом, существенно превышающим длину выборки.

Сформулируем уравнение линейного тренда:

$$y = a_1 t + a_0 + \varepsilon, \tag{2.1}$$

и нелинейного (квадрат ичного) т ренда:

$$y = a_2 t^2 + a_1 t + a_0 + \varepsilon,$$
 (2.2)

где t - время.

Основными характеристиками тренда являются:

1. Коэффициент детерминации r^2 (для линейного тренда) или его нелинейный аналог n^2 , характеризующий вклад тренда в общую дисперсию ряда. Вклад может быть значительным или не значимым. Это определяется на основании проверки на значимость коэффициента корреляции r или n.

В случае их незначимости считается, что тренда нет.

2. Величина тренда - изменение характеристики по линейному тренду за определенный промежуток времени. Для среднегодовых рядов, как правило, величина тренда рассчитывается за 10 лет, для среднемесячных - за год.

Величина тренда равна коэффициенту а₁ линейного тренда и имеет размерность характеристики у за единицу дискретности. Если в исследуемой выборке и линейный, и нелинейный тренды значимы, тогда при анализе

предпочтение отдают нелинейному тренду, если он вносит значительно (более чем на 5%) больший вклад в дисперсию выборки, или линейному - в обратном случае. [5]

2.2 Гармонический анализ Фурье и спектр

Любой ряд можно разложить без остатка в ряд Фурье, т.е. на конечное число гармоник. Гармониками называются тригонометрические функции, имеющие периоды, кратные длине ряда, т.е. каждая гармони ка целое число раз «укладывается» в длину исходного ряда.

Формула гармоники:

$$G_k = A_k cos(\omega_k t - \phi_k)$$
 (2.3)

$$\omega_k = 2\pi/T_k$$
 (2.4)

где k - номер гармоники; A_k - амплитуда k-той гармоники; ω_k — частота k-той гармоники; T_k - период k-той гармоники; ϕ_k — фаза k-той гармоники; t-время.

Полное разложение в ряд Фурье - определение гармоник количеством N/2.

Гармоники, как правило, нумеруются. Гармоника № 1 (G_1) имеет период равный длине ряда N, последняя гармоника имеет период равный 2 единицы дискретности.

Характеристики гармоники определяются на основании коэффициентов Фурье a_k и b_k :

$$a_k = \frac{2}{N} \sum_{i=1}^{N} [x_i \sin(\overline{w}_k * t_i)]$$

(2.5)

$$b_k = \sum_{i=1}^{N} [x_i sin(\overline{w}_k * t_i)]$$

(2.6)

где x_i - исходный ряд; N - длина ряда; \overline{w}_k - частота k-той гармони ku; t_i - ряд времени $t_i=i,\,i=1,\,2,3...N$.

Характеристики гармоники определяются по формулам:

Амплитуда гармоники
$$A_k = \sqrt{a_k^2 + b_k^2};$$
 (2.7)

Фаза гармоники
$$\phi_k = \operatorname{arctg} \frac{a_k}{b_k} \pm \pi;$$
 (2.8)

Дисперсия гармоники
$$D_k = \frac{A_k^2}{2}$$
; (2.9)

Вклад гармоники в общую дисперсию ряда:
$$V_k = \frac{D_k}{D_v}$$
, (2.10)

где D_v-дисперсия исходного ряда.

Амплитуда гармоники показывает наибольшее отклонение характеристики от среднего значения на данном периоде.

Вклад дисперсии гармоники в общую дисперсию ряда, по сути, является аналогом коэффициента детерминацииг², поэтому точно так же может быть проверен на значимость.

Гармоники, имеющие большую дисперсию (и соответственно, амплитуду), будут представлены «пиками» на соответствующем графике спектра.

В большинстве исследований представляется достаточным выявление частот (и соответственно, периодов) для которых отмечаются пики периодограммы.

Тогда по таблицам и графикам периодограмм, полученных методом БПФ нужно определить периоды для пиков спектра, а потом для этих периодов провести гармонический анализ: рассчитать характеристики гармоник, сформулировать для них уравнения, рассчитать ряды этих гармоник (в зависимости от времени) и путем сложения этих рядов получить восстановленный ряд. [5]

2.3 Кластерный анализ

Кластерный анализ — это совокупность методов и алгоритмов теории распознавания образов, направленных на решение процедуры классификации

множества объектов в многомерном пространстве признаков посредством процедуры самообучения.

Классификация — это разбиение множества объектов (явлений, процессов и т.п.) на ряд однородных подмножеств (классов, групп, таксонов и т.п.) по наиболее существенным признакам их сходства.

Для кластерного анализа будет использоваться пакет анализа PAST4. [5]

2.4 Сумма градусо-дней мороза

За зимний период сумма градусо-дней мороза рассчитывается по формуле:

$$\Sigma(-T)_a$$
-СГДМ за зимний период (2.13)
Где T_a — температура атмосферы. [3]

Глава 3. Полученные результаты

3.1 Исходные данные

Для данной выпускной квалификационной работы было выбрано Восточно-Сибирское море.

Данные по толщине льда были выбраны с архива ФГБУ ЧУКОТСКОЕ УГМС с 1994 по 2021 год.

Данные по температуре воздуха были выбраны на сайте pп5 по станции:

• остров Айон с 1994 по 2021 гг.

Данные по температуре воздуха были выбраны на сайте ВНИГМИИ-МЦД по станции:

• бухта Амбарчик с 1994 по 2021гг.

Данные по следующим станциям были выбраны с архива ФГБУ ЧУГМС:

• Певек, Валькаркай с 2000 по 2021 гг.

Рисунок 8 – Расположение выбранных станций на карте

Таблица 1 - Выбранные метеорологические станции в Восточно-Сибирском море

Название станции	Индекс	Разряд станции
Бухта Амбарчик	25034	Мг-2
о. Айон	25042	Мг-2
Певек	25051	Мг-2
Валькаркай	21978	Мг-2

Собраны данные за 28 лет (с 1994 по 2021 год). Данные по толщине льда усреднены по среднедекадным, а далее в среднегодовые. В данных наблюдались значительные пропуски.

Для оценки изменения толщины льда в Восточно-Сибирском море, выделили тренд, сделали гармонический и спектральный анализ Фурье.

3.2 Расчет трендовой составляющей

Уравнение линейного тренда было сформировано для толщин льда:

H = -0,8787t + 129,88. Далее провели проверку коэффициентов регрессии (а и b) и коэффициента детерминации (r2).

Таблица 2 - Характеристики линейного тренда среднегодового ряда

Регрессионная с	татистика							
Множественный R	0,694							
R-квадрат	0,482							
Нормированный R- квадрат	0,462							
Стандартная ошибка	7,638							
Наблюдения	28							
Дисперсионный								
анализ								
	df	SS	MS	F	Значимость F			
Регрессия	1	1410,624	1410,624	24,178	4,18192E-05			
Остаток	26	1516,912	58,343					
Итого	27	2927,537						
	1	Стандартная						
	Коэффициенты	ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%	Нижние 95,0%	Верхние 95,0%
Ү-пересечение	1881,115461	358,743	5,244	1,7687E-05	1143,709	2618,522	1143,709	2618,522
Переменная Х 1	-0,878691439	0,179	-4,917	4,1819E-05	-1,246	-0,511	-1,246	-0,511

Далее выполняется проверка коэффициента корреляции на значимость: H0: r = 0 и $H1: r \neq 0$. Рассчитали критерий Стьюдента и сравнили с tкр. $t^*=6,83$ при tkp=2,05. $t^* > tkp$, условие выполняется коэффициент корреляции значим, тренд есть. Величина тренда равна коэффициенту а1 линейного тренда и составляет -0,8787 см²/год. Следовательно, величина тренда Tr=-8,7 см²/10 лет.

Было сформулировано уравнение нелинейного тренда для толщины льда:

$$H = -0.0713t^2 + 1.1883t + 119.55$$

Далее выполняется проверка коэффициента корреляции на значимость.

H0: r = 0 и $H1: r \neq 0$. Рассчитывается критерий Стьюдента и сравниваем с t*=11,61 при t*=2,05. t*>t*, условие выполняется, нулевая гипотеза отвергается, т.е. коэффициент корреляции значим, тренд есть.

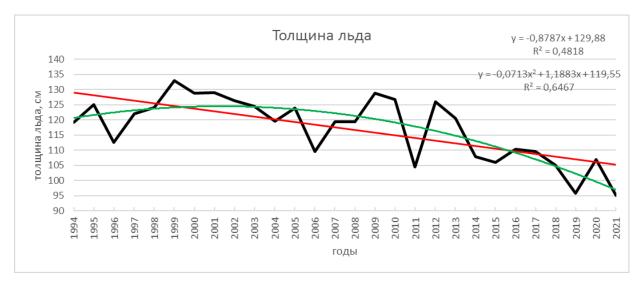


Рисунок 9 - Среднегодовой ход толщины льда и ее линейный и нелинейный тренд

Наибольшее значение толщины льда было в 1999 году, наименьшее в 2021 году.

3.3 Гармонический анализ Фурье

Ранее для ряда среднегодового хода толщины льда найден линейный тренд, далее он был удален и как результат, найден ряд отклонений. Для полученного ряда построили периодограмму в программе «PAST 4».

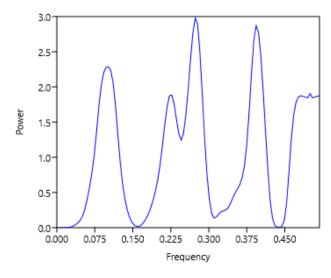


Рисунок 10 - Периодограмма для среднегодового ряда толщины льда

Далее по периодограмме выбрали максимальные пики

Таблица 3 - Характеристики гармоник

Параметры			
гармоник	Гарм1	Гарм2	Гарм3
Частота, 1/год	0,10	0,27	0,39
Период, год	9,82	3,66	2,54
Частота, рад/год	0,64	1,72	2,47
К-т Фурье ak	-3,60	2,32	-2,78
К-т Фурье bk	0,28	-3,25	-2,84
A, ℃	3,62	3,99	3,97
Фаза, рад	-1,49	2,52	3,92
Фаза, год	-2,34	1,47	1,58
Дисперсия			
гармоники, ℃^2	6,54	7,97	7,88
Дисперсия			
исх.ряда, ℃^2	38,31	38,31	38,31
Вклад гармоники			
в ряд откл от ТПО	0,17	0,21	0,21
Коэффициент			
корелляции	0,41	0,46	0,45
срКВ погрешность	0,11	0,10	0,11
Критерий			
Стьюдента t*	3,66	4,36	4,31
tкp	2,05	2,05	2,05
значимость t*>tкр	значим	значим	значим

Для всех гармоник, так как во всех случаях t^* > tкр, нулевая гипотеза отвергается, вклад в дисперсию ряда значим.

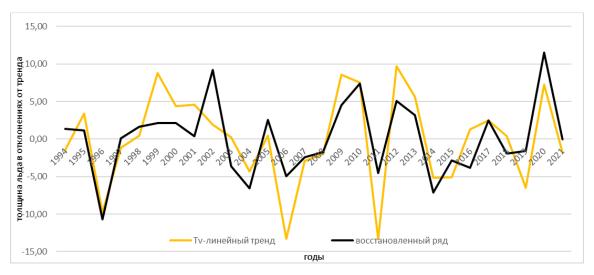


Рисунок 11 - Совмещенный график исходных значений толщины льда и восстановленных по формулам гармоник

Первой гармоникой описывается 17% дисперсии, второй гармоникой 21%, третьей гармоникой 21%, в сумме всеми тремя гармониками описывается 59% дисперсии исходного ряда.

3.4 Расчет суммы градусо-дней мороза

Для определения критериев суровости зим, нужно рассчитать сумму градусо-дней мороза (СГДМ), а потом произвести кластерный анализ по этим данным Амбарчик и Айон с 1994 по 2021 год, Певек и Валькаркай с 2000 по 2021 гг.

Таблица 4 - СГДМ на выбранных четырех станциях

	Амбарчик	Певек	Айон	Валькаркай
1994	-5355,4		-5192,5	
1995			-5042,8	
1996	-4571,1		-4127,9	
1997	-4689,4		-4616,8	
1998	-5619		-5571,4	
1999	-5751,3		-5404	
2000		-4509,6	-5132,3	-4976,6
2001	-3831	-4214,7	-4769,6	-4778,2
2002	-4724,7	-3983,6	-4636,1	-4183,7
2003	-4540,6	-3706,3	-4308,5	-4044,4
2004	-4632,9	-4144,3	-4412,8	-4224,5
2005	-5248,5	-4554,8	-4942,5	-4344,1
2006	-3174,2	-4102,8	-4652,8	-4074,4
2007	-4333,7	-3498,6	-4069,2	-3456,8
2008	-4545,4	-3883,6	-4194,3	-4230,5
2009	-4605,5	-3903,7	-4462,7	-4089,7
2010	-4958,3	-3875,8	-4426,2	-4027,6
2011	-4147,6	-3945,8	-3937,7	-4129,4
2012	-5054,3	-3903,7	-4975,9	-4300,2
2013	-4210,1	-3938,4	-4135,1	-4211,5
2014	-4475,1	-3605,7	-4348,7	-3701,5
2015	-4566,2	-4042,0	-4276	-4229,2
2016	-4827,7	-3611,6	-4580,7	-3612,2
2017	-3660,9	-2932,4	-3376,5	-2959,2
2018	-3911,3	-3746,7	-3642,3	-3869,4
2019	-4587,3	-3722,3	-4432,6	-3829,7
2020	-4214	-3325,5	-4034,5	-3438,7
2021	-4267,9	-4157,5	-3965,5	-4400,8

3.5 Кластерный анализ

По полученным данным СГДМ произвели кластерный анализ для определения 3-х классов суровости зим (суровая, умеренная и мягкая). Получили дендрограммы и таблицы СГДМ по степеням суровости на станциях.

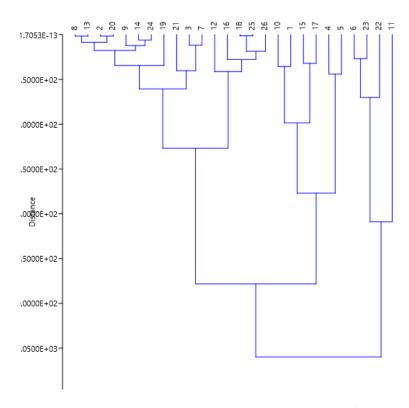


Рисунок 12 - Дендрограмма станции Амбарчик

Таблица 5 - СГДМ по степеням суровости на станции Амбарчик

мягкие		умеренные		суровые	
2001	-3831	1996	-4571,1	1998	-5619
2018	-3911,3	2015	-4566,2	1999	-5751,3
2017	-3660,9	2003	-4540,6	2005	-5248,5
2006	-3174,2	2008	-4545,4	1994	-5355,4
		2004	-4632,9	2010	-4958,3
		2009	-4605,5	2012	-5054,3
		2019	-4587,3		
		2014	-4475,1		
		1997	-4689,4		
		2002	-4724,7		
		2016	-4827,7		
		2007	-4333,7		
		2011	-4147,6		
		2013	-4210,1		
		2020	-4214		
		2021	-4267,9		

Градации по суровостям зим в данной таблице распределяются так: мягкая до 4146, умеренная зима от 4147 до 4957, суровая более 4958.

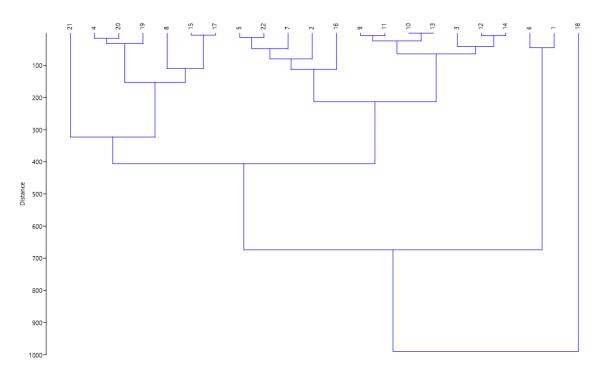


Рисунок 13 - Дендрограмма станции Певек

Таблица 6 - СГДМ по степеням суровости на станции Певек

ПЯМ	кие	умере	нные	суро	вые
2017	-2932,44	2020	-3325,51	2000	-4509,6
		2003	-3706,3	2005	-4554,78
		2018	-3746,74		
		2019	-3722,34		
		2007	-3498,61		
		2014	-3605,65		
		2016	-3611,6		
		2004	-4144,3		
		2021	-4157,49		
		2006	-4102,75		
		2001	-4214,7		
		2015	-4042,04		
		2008	-3883,57		
		2010	-3875,77		
		2009	-3903,74		
		2012	-3903,66		
		2002	-3983,6		
		2011	-3945,83		
		2013	-3938,44		

В данной таблице распределение происходит: мягкая до 3324, умеренная зима от 3325 до 4214, суровая более 4215.

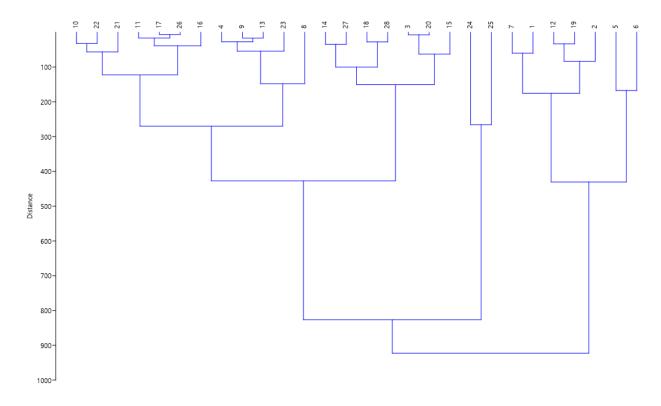


Рисунок 14 - Дендрограмма станции Айон

Таблица 7 - СГДМ по степеням суровости на станции Айон

АТКМ	ше	умерен	нные	суро	вые
2017	-3376,5	2003	-4308,5	2000	-5132,3
2018	-3642,3	2015	-4276	1994	-5192,5
		2014	-4348,7	2005	-4942,5
		2004	-4412,8	2012	-4975,9
		2010	-4426,2	1995	-5042,8
		2019	-4432,6	1998	-5571,4
		1997	-4616,8	1999	-5404
		2002	-4636,1		
		2006	-4652,8		
		2016	-4580,7		
		2001	-4769,6		
		2007	-4069,2		
		2020	-4034,5		
		2011	-3937,7		
		2021	-3965,5		
		1996	-4127,9		
		2013	-4135,1		
		2008	-4194,3		
		2009	-4462,7		

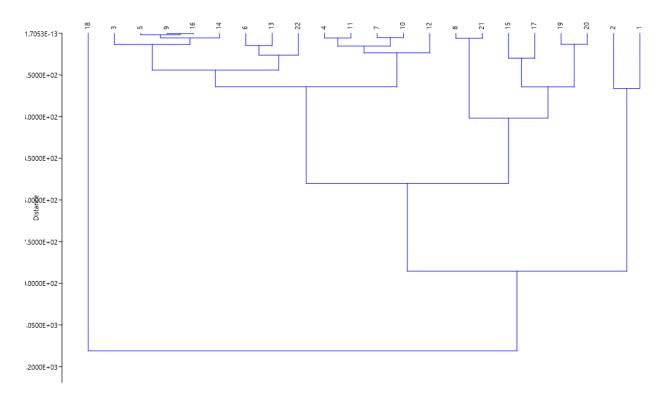


Рисунок 15 - Дендрограмма станции Валькаркай

Таблица 8 - СГДМ по степеням суровости на станции Валькаркай

НПКМ	сие	умере	нные	cypo	вые
2017	-2959,23	2002	-4183,7	2000	-4976,6
		2003	-4044,4	2001	-4778,2
		2004	-4224,5		
		2005	-4344,11		
		2006	-4074,37		
		2007	-3456,78		
		2008	-4230,47		
		2009	-4089,69		
		2010	-4027,6		
		2011	-4129,39		
		2012	-4300,19		
		2013	-4211,54		
		2014	-3701,49		
		2015	-4229,2		
		2016	-3612,21		
		2018	-3869,44		
		2019	-3829,7		
		2020	-3438,67		
		2021	-4400,75		

Таблица 9 - Степени суровости на каждый год на всех станциях

Год	Амбарчик	Певек	Айон	Валькаркай
1994-1995	C	-	С	-
1995-1996	-	-	С	-
1996-1997	У	-	У	-
1997-1998	У	-	У	-
1998-1999	С	-	С	-
1999-2000	С	-	С	-
2000-2001	-	С	С	С
2001-2002	M	У	У	C
2002-2003	У	У	У	У
2003-2004	У	У	У	У
2004-2005	У	У	У	У
2005-2006	C	C	С	У
2006-2007	M	У	У	У
2007-2008	У	У	У	У
2008-2009	У	У	У	У
2009-2010	У	У	У	У
2010-2011	C	У	У	У
2011-2012	У	У	У	У
2012-2013	C	У	С	У
2013-2014	У	У	У	У
2014-2015	У	У	У	У
2015-2016	У	У	У	У
2016-2017	У	У	У	У
2017-2018	M	M	M	M
2018-2019	M	У	M	У
2019-2020	У	У	У	У
2020-2021	У	У	У	У
2021-2022	У	У	У	У

Для каждой станции с помощью кластерного анализа определили степени суровости зим. Далее из этой таблицы нужно было выбрать года, с наибольшим совпадением степени суровости 2000-2001 (суровая), 2008-2009 (умеренная) и 2017-2018 (мягкая). По выбранным годам составлена таблица с толщиной льда.

Таблица 10 - Таблица толщины льда за три зимы разной суровости

Месяц	Мягкая	Уменная	Суровая
	2017-2018 г, см	2008-2009 г, см	2000-2001 г, см
Январь	102	117	132
Февраль	126	136	159
Март	149	157	187
Апрель	163	175	201
Май	159	175	188
Октябрь	12	15	19
Ноябрь	32	35	62
Декабрь	65	69	108

За выбранные годы был построен график толщины льда.

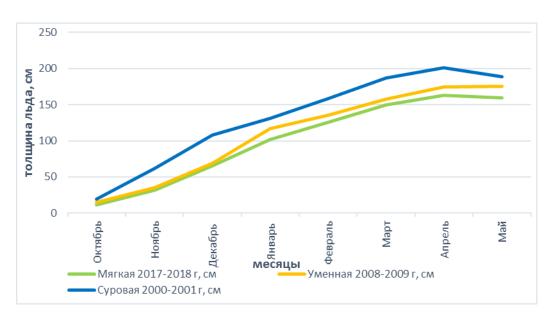


Рисунок 16 - Годовой ход толщины льда за три выбранные зимы

На рисунке 16 показан годовой ход толщины льда за мягкую, умеренную и суровую зимы. Толщина льда в мягкую зиму меньше, чем в суровую или умеренную. Минимум по всем трем зимам приходится на октябрь. Максимум в каждой зиме приходится на апрель. Данных по толщине льда за сентябрь, август нет, т.к. летом нет льда, поэтому и данных нет.

Заключение

В данной выпускной квалификационной работе я использовал данные по толщине льда Восточно-Сибирского моря на четырех станциях (бухта Амбарчик, о. Айон, Певек, Валькаркай) за период с 1994 по 2021 год.

И данные по температуре атмосферы с 1994 по 2021 год для станций бухта Амбарчик, остров Айон и с 2000 по 2021 год для станции Певек и Валькаркай.

Для данной работы был рассчитан тренд, выполнен гармонический и спектральный анализ по толщине льда в Восточно-Сибирском море.

Было сформулировано уравнение линейного тренда для толщины льда: H = -0,8787t + 129,88. Так как тренд отрицательный можно сделать вывод, что толщина льда с течением времени уменьшается. Выделено три значимые гармоники с периодами 9,82 лет, 3,66 и 2,54 года.

Были рассчитаны СГДМ для выполнения кластерного анализа на станциях бухта Амбарчик, о. Айон, Певек, Валькаркай. В программе PAST4 были построены кластеры, с помощью которых их разделили на 3 класса: 2000-2001 (суровая), 2008-2009 (умеренная) и 2017-2018 (мягкая). Данные по площади льда были взяты по этим годам и построен график, который показал, что толщина льда зависит от суровости зимы. Наименьшая толщина льда наблюдается в мягкую зиму, наибольшая в суровую зиму. Толщина льда в умеренную зиму за пределы суровой и мягкой зим не выходит.

Градации по суровостям зим рассчитаны так:

Бухта Абрамчик - мягкая до 4146, умеренная зима от 4147 до 4214, суровая более 4215.

Певек - мягкая до 3324, умеренная от 3325 до 4508, суровая более 4509. Айон - мягкая до 3936, умеренная от 3937 до 4769, суровая более 4770. Валькаркай - мягкая до 3437, умеренная от 3438 до 4400, суровая более 4401.

Список литературы

- 1. https://iskatel.com/places/vostochno-sibirskoe-more
- 2. https://old.bigenc.ru/geography/text/5287994
- 3. http://proznania.ru/?page_id=2357
- 4. Е.В. Блошкина, М.С. Махотин, Д.Л. Волков, Н.В. Колдунов Сравнение распределения термохалинных характеристик в северном ледовитом океане по данным измерений и по результатам расчета региональной конфигурации модели mitgcm
 - 5. Порт Певек [сайт]. URL: https://www.pevekmorport.com/blank-c20r9
- 6. База знаний [Электронный ресурс] // Данные по ВосточноСибирскому морю: сайт. URL: http://proznania.ru (последняя дата обращения: 18.04.2021)
- 7. Сезонная и межгодовая изменчивость ледяных массивов Восточно-Сибирского моря / А. В. Юлин, М. В. Шаратунова, Е. А. Павлова, В. В. Иванов // Проблемы Арктики и Антарктики. — 2018. — Т. 64. — № 3(117). — С. 229-240. — DOI 10.30758/0555-2648-2018-64-3-229240;
- 8. Шаронов Андрей Юрьевич, Шматков Владимир Антонович Задачи гидрометеорологического обеспечения круглогодичной навигации в Восточно-Сибирском море // Вестник государственного университета морского и речного флота им. адмирала С. О. Макарова. 2018. №1. URL: https://cyberleninka.ru/article/n/zadachi-gidrometeorologicheskogoobespecheniya-kruglogodichnoy-navigatsii-v-vostochno-sibirskom-more (дата обращения: 24.10.2021).
- 9. Харлампьева, Н. К. Межрегиональное сотрудничество регионов моря Лаптевых и Восточно-Сибирского моря / Н. К. Харлампьева, Д. А. Лутфуллин, Т. М. Лемешева // Арктика XXI век. Гуманитарные науки. 2017. № 4(14). С. 38-46;

- 10. Малинин В.Н. Статистические методы анализа гидрометеорологической информации. Учебник. СПб.: изд. РГГМУ, 2008. 404 с.
- 11. Плотников, В. В. Изменчивость и сопряженность ледовых условий в системе морей Восточной Арктики (Лаптевых, ВосточноСибирское, Чукотское) / В. В. Плотников, В. И. Пустошнова // Метеорология и гидрология. 2012. N 7. С. 54-65;
- 12. Горбунов, Ю. А. Стамухи Восточно-Сибирского и Чукотского морей / Ю. А. Горбунов, С. М. Лосев, Л. Н. Дымент // Материалы гляциологических исследований. 2007. № 102. С. 41-47;
- 13. Амбросимов, А. К. Сипы Восточно-Сибирского моря / А. К. Амбросимов // Проблемы экоинформатики: Сборник докладов XIV Международного симпозиума Московского научно-технического общества радиотехники, электроники и связи им. А.С. Попова, Москва, 01–03 декабря 2020 года / Под редакцией Ф.А. Мкртчяна. Москва: Московское НТО радиотехники, электроники и связи им. А.С. Попова, 2020. С. 183-185;
- 14. Большая советская энциклопедия: [в 30 т.] / гл. ред. А. М. Прохоров. 3-е изд. М. : Советская энциклопедия, 1969—1978;
- 15. Гордеева С.М. Практикум по дисциплине «Статистические методы обработки и анализа гидрометеорологической информации» СПб.: РГГМУ, 2010. 74с.
- 16. Малинин В.Н. Статистические методы анализа гидрометеорологической информации. Учебник. СПб.: изд. РГГМУ, 2008. 404 с.
- 17. НАФИ [Электронный ресурс] // SPSS Учебный курс. Тема 9. Кластерный анализ: сайт. — URL: https://nafi.ru/academy/prepodavatelyamspss/ (последняя дата обращения: 30.05.2022).
- 18. National Centers for Environmental Information: [сайт]. URL: https://www.ncdc.noaa.gov/snow-and-ice/regional-sea-ice/area/ESiberian/0 (дата обращения: 22.03.2022).

- 19. Справочно-информационный портал "Погода и климат".: [сайт]. URL: http://www.pogodaiklimat.ru/ (дата обращения: 17.04.2022).
- 20. Гидрометцентр России [Электронный ресурс] // Данные по температуре воздуха для метеостанци: сайт. URL: http://aisori.meteo.ru/ClimateR (последняя дата обращения: 30.05.2021).