Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕНЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

В.А. ЛОБАНОВ

Методические указания по выполнению курсовой работы:

«Оценка современных региональных изменений климатических характеристик»

Допущено Учебно-методическим объединением по образованию в области гидрометеорологии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности «Метеорология»

Санкт-Петербург

2018

Одобрено Ученым советом метеорологического факультета

Методические указания по выполнению курсовой работы "Оценка современных региональных изменений климатических характеристик". Направление подготовки 280200 – Прикладная гидрометеорология Профиль подготовки – Магистранты. – СПб.: Изд. РГГМУ, 2018. – 91 с.

Методические указания составлены в соответствии С программой дисциплины "Специальные главы статистического полей". Даются анализа процессов И рекомендации ПО выполнению курсовой работы в рамках данной дисциплины. Приводится стандартное содержание курсовой работы. теоретические положения, описание вычислительных программ, примеры расчета и оформления результатов, рекомендуемая литература.

Составил: Лобанов В. А., д-р. техн. наук, профессор кафедры метеорологии, климатологии и охраны атмосферы РГГМУ

Ответственный редактор: Абанников А. С., к-т геогр. наук, заведующий кафедрой метеорологии, климатологии и охраны атмосферы РГГМУ.

ISBN 978-5-86813-460-9

© Лобанов В.А., 2018

© Российский государственный гидрометеорологический университет (РГГМУ), 2018

Цели работы

Основная:

научиться выполнять научно-исследовательскую работу по оценке современных региональных изменений климата с использованием эффективных статистических методов, моделей, технологий и программного обеспечения.

Частные

1. Получить теоретические знания по статистическим методам обработки и анализа информации и пространственно-временному статистическому моделированию.

2. Научиться осуществлять поиск сайтов в Интернете на которых размещены многолетние ряды климатических характеристик и индексов и получать информацию с этих сайтов, включая последние годы наблюдений.

3. Научиться работать с СУБД и программным обеспечением комплекса «Гидрорасчеты» для формирования региональных баз данных (БД), для оценки однородности и стационарности, восстановления пропусков наблюдений и приведения рядов к многолетнему периоду, а также по определению расчетных климатических характеристик редкой повторяемости.

4. Научиться работать с ГИС на примере MapInfo для формирования геоинформационных слоев координат метеостанций и выполнения пространственной интерполяции (климатических норм, расчетных климатических характеристик редкой повторяемости, параметров моделей временных рядов и т.п.).

5. Выполнить исследование по оценке наиболее эффективных моделей временных рядов, осуществить пространственное обобщение показателей нестационарных моделей и сделать вывод о проявлении современных климатических изменений в рассматриваемом регионе и для рассматриваемой климатической характеристики.

6. На примере отдельных метеостанций определить параметры статистической модели внутригодовых изменений и установить виды моделей временных рядов для этих параметров.

7. Построить пространственную статистическую модель, определить ее параметры и установить виды моделей временных рядов для этих параметров.

Пример титульного листа курсовой работы

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ (РГГМУ)

Кафедра МКОА РГГМУ

Курсовая работа по дисциплине:

«Специальные главы статистического анализа процессов и полей»

на тему:

«Оценка современных климатических изменений осадков января

на севере Западной Сибири»

Выполнил: ст.гр. ММ-1 Семенов В.О.

Проверил:

проф. кафедры МКОА, д.т.н. Лобанов В.А.

Санкт-Петербург 2017

Пример оглавления курсовой работы

1. Выбор метеостанций и формирование базы данных многолетних рядов климатических характеристик

1.1. Выбор информации из стандартных архивов климатических данных (для территории России или мира)

1.2. Расположение пунктов наблюдений по территории (создание геоинформационного слоя координат станций с помощью ГИС MapInfo)

1.3. Формирование региональной базы данных многолетних рядов климатических характеристик (с помощью СУБД ПК «Гидрорасчеты»)

1.4. Анализ информационных особенностей региональной БД (с помощью СУБД ПК «Гидрорасчеты»)

Выводы

2. Анализ качества данных и оценка климатических характеристик в стационарных условиях

2.1. Анализ однородности и стационарности исходной информации (программа «Однородность»)

2.2. Восстановление пропусков и приведение рядов к многолетнему периоду с оценкой эффективности приведения и качества восстановленных данных (программа «Аналог»)

2.3. Расчет климатических характеристик в стационарных условиях (программа «Обеспеченность»)

2.4. Пространственное обобщение климатических характеристик (интерполятор ГИС MapInfo).

Выводы

3. Оценка климатических изменений

3.1. Расчет параметров основных моделей временных рядов: стационарная выборка, нестационарные модели линейного тренда и ступенчатых изменений (программа TIMOD)

3.2. Пространственное обобщение полученных параметров нестационарных моделей по территории (интерполятор ГИС MapInfo)

Выводы

4. Статистическое моделирование климатических процессов и полей

4.1.Расчет параметров линейной статистической модели внутригодовых изменений (программа INTRA)

4.2. Определение вида моделей временных рядов для параметров модели внутригодовых изменений (программа TIMOD)

4.3.Расчет параметров пространственной статистической модели (программа SPACE)

4.4. Определение вида моделей временных рядов для параметров пространственной модели (программа TIMOD) Выводы.

1. Выбор метеостанций и формирование базы данных многолетних рядов климатических характеристик 1.1. Выбор информации из стандартных архивов климатических данных

Каждым студентом самостоятельно выбирается территория и климатическая характеристика, которая подлежит исследованию. Желательно, чтобы выбранная характеристика и территория соответствовали теме магистерской диссертации и позволили использовать полученные результаты при написании одного из разделов диссертации, посвященного оценке современного изменения климата. В настоящем примере выбрана территория севера Западной Сибири и в качестве исследуемой характеристики – суммы осадков января.

Многолетние ряды климатических характеристик могут быть выбраны из архивов, находящихся в свободном доступе на следующих сайтах Интернета:

1). Сайт Королевского метеорологического института Нидерландов (КNMI на анг. языке) http://climexp.knmi.nl/selectstation.cgi?someone, где приведены многолетние ряды следующих характеристик (Рис.1.1):

- суточные данные станций (осадки, среднесуточная температура, минимальная и максимальная за сутки температура, давление, высота снежного покрова, облачность);

- суточные климатические индексы (Эль-Ниньо, индексы атмосферной циркуляции, солнечная радиация, солнечная

активность в виде чисел Вольфа, температура и осадки для центральной Англии и другие);

- месячные данные станций (суммы осадков за месяц, среднемесячная температура, максимальная и минимальная температура воздуха за месяц, давление на уровне моря);

- месячные климатические индексы (Эль-Ниньо, индекс Северо-Атлантического колебания, индекс Арктического колебания, глобальная температура, средняя температура океана по слоям, концентрации углекислого газа, солнечная постоянная, числа Вольфа, вращение Земли, тропические циклоны, морской лед, снежный покров и другие);

- годовые климатические индексы (Эль-Ниньо, Северо-Атлантическое колебание, десятилетние колебания Тихого океана, глобальная температура и ее исторические реконструкции, уровень моря, концентрация CO₂ за последнюю тысячу лет, солнечная радиация, индексы засушливости и другие).

На рис.1.1 в качестве примера показана KNMI Climate Explore - СУБД (средство управления базой данных) для выбора многолетних рядов сумм месячных осадков.

nate Explo	oren Select / ×				
CO	climexp.knmi.nl/selectstation.cg	i?id=s	someone@somewhere		陶 ☆ 🛡
	(Alex)				
	- Carao			KNMI Climate Explorer	
	Climate Explorer Euro	opean	Climate Assessment & Data		search in the Climate Explorer
	Select a monthly time se Historical observations	eries			Select a time series > Daily station data > Daily climate indices
	GHON-H (adjusted)	1	CINCN-H (all)	atlue	> Monthly station data > Monthly climate indices
	O precipitation	1	e precipitation	O PSMSL sealevel	Annual climate indices View, unload your time series
	O mean temperature	D	O mean temperature	O sealevel (JASL)	Colord a Bald
	O minimum temperature	Ð	O minimum temperature	O world river discharge (RivDis)	> Daily fields
	O maximum temperature	_	🖸 🔾 maximum temperature 🔟	O LEA river discharge (HCDN)	Monthly coservations Monthly reanalysis fields
			O sealevel pressure	O european SLP (ADVICE)	 Monthly and seasonal historical reconstructions Monthly seasonal hindcasts
	(full lists)			O N-America snowcourses (NRCS)	> Monthly decadal hindcasts > Monthly CMIP3+ scenario runs
	Select stations				Monthly CMIPS scenario runs Annual CMIPS extremes
	stations with a name containing				> Monthly CORDEX scenario runs
	 10 stations near 		N. PE (select on world map)		 External data (ensembles, ncep, enact, soda, ecmwl,
	all stations in the region 62		n - 74 - 60 - e - 85	-1	/ view, upload your neid
	the stations with station number # lon1 lon2 lat1 lat2 station number (one per	ns (opti er lin	ional) ne)		
	Time, distance				
	At least 10 years of data in t	ne mo	onthly * season starting in any month *	in years	
	At least * apart and with	-	m < elevation <		Активация Windows
	Get stations Clear Form				Чтобы активировать Windows, пере параметрам компьютера.

Рис.1.1. База данных Королевского метеорологического института Нидерландов

Здесь после выбора вида информации (засветка в меню Select a time series вида архива: Monthly station data) слева

появляются функции для выбора характеристики (Historical observations) и станций (Select stations). В данном случае выбраны осадки (precipitation) из архива GHCM-M (all) и задан регион для выбора метеостанций с координатами 62-74° с.ш. и 60-80° в.д., относящийся к северу Западной Сибири.

После нажатия клавиши «Get station» на экране появляется список метеостанций в выбранном районе (рис.1.2). Для каждой метеостанции приводится ее название, страна или часть страны (в данном случае – азиатский сектор Российской Федерации), координаты метеостанции, ВМО-код станции, количество лет и период наблюдений.

Рис. 1.2. Выбранные метеостанции по осадкам в районе Западной Сибири из архива KNMI

Далее по функции «get data» для выбранной метеостанции (в данном случае остров Диксон) следует перейти в окно, где приводятся графики временных рядов и далее, нажав функцию «raw data», перейти к матрице, содержащей многолетние данные месячных сумм осадков, как показано на рис.1.3

← →	C [() clime	exp.knm	ii.nl/data	/pa2067	'4.dat							
1972	31.7	46.9	2.0	11.0	6.0	16.4	50.2	42.9	30.4	16.0	1.0	68.7	
1973	6.0	35.8	5.0	3.0	9.3	40.3	18.2	82.4	40.9	22.0	6.0	5.0	
1974	7.0	39.6	30.3	8.0	44.2	25.2	44.5	18.6	59.7	38.0	3.0	9.0	
1975	48.7	5.0	3.0	12.0	3.0	22.7	34.2	25.5	31.6	42.8	9.0	53.7	
1976	21.0	32.0	14.0	32.0	15.0	63.0	43.3	65.0	46.8	25.0	8.0	4.0	
1977	13.0	3.0	38.0	29.0	35.0	12.6	-999.9	24.4	39.8	17.0	-999.9	-999.9	
1978	17.0	18.0	12.0	5.0	11.0	18.9	50.2	39.4	9.4	23.0	22.0	14.0	
1979	6.0	8.0	3.0	4.0	3.0	41.0	40.2	38.0	25.2	2.0	3.0	12.0	
1980	6.0	35.3	2.0	6.0	9.0	34.5	68.6	75.0	56.4	26.0	4.0	32.0	
1981	105.1	7.0	4.0	10.0	7.0	33.6	13.8	52.6	28.1	15.0	12.0	9.0	
1982	32.5	5.0	3.0	10.0	5.0	49.4	13.8	78.0	40.8	14.0	2.0	10.0	
1983	8.0	12.0	2.0	5.0	4.0	55.0	51.0	28.2	33.0	19.0	38.0	6.0	
1984	31.0	34.1	5.0	3.0	3.0	11.2	51.9	33.1	49.6	10.0	7.0	10.0	
1985	27.7	13.6	20.8	9.9	4.6	30.8	31.4	65.7	43.6	42.4	18.5	13.0	
1986	18.3	12.6	44.3	24.8	12.1	33.4	33.4	45.4	55.9	35.0	37.8	14.5	
1987	29.8	13.0	23.4	13.3	29.4	16.7	20.0	31.9	19.8	52.1	26.5	25.0	
1988	73.3	29.1	37.5	7.5	11.6	25.0	12.0	30.3	56.1	36.4	31.0	67.9	
1989	42.2	36.7	31.6	20.0	40.9	47.6	57.2	45.4	61.4	27.8	25.8	62.6	
1990	1.9	15.7	27.3	24.4	19.2	16.1	15.8	66.8	14.4	22.2	17.0	47.0	
1991	35.7	24.0	10.0	26.0	20.0	17.0	23.0	20.0	48.0	43.0	12.0	31.0	
1992	23.0	16.0	17.0	4.0	26.0	18.0	69.0	52.0	36.0	17.0	32.0	47.0	
1993	-999.9	25.0	41.0	-999.9	19.0	21.0	30.0	47.0	29.0	29.0	51.0	53.0	
1994	-999.9	0.0	9.0	-999.9	-999.9	12.0	-999.9	79.0	53.0	45.0	30.0	13.0	
1995	46.0	98.0	-999.9	26.0	14.0	11.0	12.0	60.0	31.0	35.0	43.0	45.0	
1996	2.2	5.4	3.3	-999.9	4.0	39.0	64.0	40.0	-999.9	73.0	23.0	28.0	
1997	48.0	51.0	24.0	31.0	19.0	38.0	27.0	24.0	29.0	40.0	23.0	26.0	
1998	33.0	10.0	18.0	7.0	40.0	49.0	-999.9	41.0	44.0	18.0	10.0	43.0	
1999	10.0	38.0	14.0	18.0	21.0	22.0	51.0	56.0	52.0	50.0	22.0	31.0	
2000	24.0	30.0	13.0	36.0	21.0	36.0	22.0	32.0	61.0	33.0	17.0	7.0	
2001	15.0	15.0	12.0	17.0	22.0	26.0	43.0	16.0	61.0	40.0	37.0	67.0	
2002	222.0	24.0	17.0	20.0	22.0	27.0	48.0	50.0	58.0	36.0	24.0	13.0	
2003	56.0	39.0	44.0	25.0	35.0	13.0	11.0	12.0	30.0	17.0	15.0	24.0	
2004	26.0	25.0	20.0	14.0	11.0	27.0	25.0	31.0	25.0	41.0	29.0	36.0	
2005	25.0	65.0	22.0	18.0	37.0	45.0	45.0	34.0	32.0	38.0	40.0	35.0	
2006	30.0	41.0	18.0	4.0	30.0	31.0	38.0	34.0	83.0	41.0	44.0	66.0	
2007	44.0	5.0	70.0	32.0	20.0	6.0	31.0	37.0	27.0	47.0	37.0	56.0	
2008	81.0	52.0	15.0	27.0	30.0	36.0	8.0	20.0	66.0	47.0	34.0	80.0	
2009	67.0	18.0	32.0	43.0	20.0	41.0	39.0	53.0	63.0	55.0	27.0	29.0	
2010	67.0	11.0	37.0	46.0	29.0	45.0	40.0	33.0	37.0	25.0	41.0	60.0	
2011	65.0	29.0	47.0	20.0	20.0	35.0	46.0	38.0	24.0	60.0	38.0	31.0	
2012	26.0	24.0	26.0	16.0	29.0	23.0	55.0	56.0	33.0	25.0	26.0	14.0	
2013	42.0	38.0	8.0	16.0	36.0	26.0	4.0	23.0	16.0	33.0	24.0	6.0	
2014	9.0	12.0	28.0	29.0	48.0	19.0	38.0	70.0	54.0	16.0	33.0	22.0	
2015	9.0	35.0	39.0	11.0	33.0	35.0	59.0	13.0	46.0	71.0	48.0	57.0	
2016	25.0	43.0	25.0	47.0	26.0	17.0	10.0	44.0	28.0	64.0	20.0	12.0	
2017	57.0	48.0	23.0	-999.9	-999.9	-999.9	-999.9	-999.9	-999.9	-999.9	-999.9	-999.9	

Рис.1.3. Многолетние ряды сумм месячных осадков для метеостанции остров
Диксон в архиве KNMI

Полученная матрица данных через буфер обмена и через редактор «Блокнот» преобразуется в файл формата Excel, в который последовательно добавляется информация и по другим выбранным метеостанциям. При этом константы отсутствия информации («999.9» на рис.1.3) заменяются на пробелы. Фрагмент полученного файла с информацией по многолетним рядам осадков на метеостанциях в районе Западной Сибири (файл

region.xls), приведен на рис.1.4, который, как и рис.1.3, помещается в п.1.1 курсовой работы.

2	licrosoft E	xcel - treg														PX
:鬯	Файл Пр	авка <u>В</u> ид	Встдека	Формат С	ервис Дан	ные <u>О</u> кно	⊆правка						Введите	вопрос		ð ×
						Aria	Cyr	• 10	- Ж. К	<u>ч</u>] = з		9 % 000	*,0 ,00	: (# 🖽	· 31 - 1	A - I
٤n		AIA	R 1 19 18		8.3	- 10 - CH -		AL AL IN	1 3 100%	- 0						
-	Å1	-	6 20674				60	AT AT ICA			_	_	_	_		
	A	В	C	D	E	F	G	Н		J	K	L	M	N	0	-
1	20674	1916									2.6	-5.7	-23.4	-30.2		-8
2	20674	1917	-29	-33.5	-27.3	-20.2	-4.8	0.5	6	2	-1.7	-11.7	-21.5	-18.9		-8
3	20674	1918	-29	-23.8	-25.4	-17.8	-12.1	-0.4	4.7	4.3	2.1	-9.7	-17.4	-20.9		
4	20674	1919	-27	-31.1	-28.4	-17	-7.8	-1	2.9	9.1	4.3	-3.5	-21.6	-26.3		
5	20674	1920	-21.3	-19.1	-16.5	-17.9	-9.5	-0.9	2.1	3.9						
6	20674	1921							4.3	1.9	0.1	-4.1	-13.4	-24.6		
7	20674	1922	-22.1	-33.4	-18.1	-19.4	-6.3	2.5	5.8	5.1	0.5	-10.5	-16.7	-20.8		
8	20674	1923	-23.3	-23.2	-27.5	-18.8	-11.7	1.4	4.7	9.2	3.8	-5.5	-16.7	-22.7		
9	20674	1924	-29.4	-21.5	-19.6	-19.4	-5.9	0.2	9.4	5.9	2.3	-4.3	-11.3	-22.7		
10	20674	1925	-19.6	-23.9	-26.5	-17.8	-9.8	-1.7	1.4	1.5	-0.3	-6.6	-18	-24.6		
11	20674	1926	-23.6	-32.1	-16.5	-17.4	-12.6	-2.4	3.4	5.1	-0.7	-5.4	-17.6	-23.1		
12	20674	1927	-29.6	-18	-25.4	-17.1	-3.6	0.6	1.2	3.2	3.3	-5.9	-23.5	-27.4		
13	20674	1928	-23.9	-20.9	-27.1	-19.6	-9.3	-0.3	5.4	7.3	2.8	-7.7	-11.8	-20		
14	20674	1929	-29.3	-24.1	-25.3	-18.6	-11	-0.4	6.6	4.8	3.9	-2.7	-12.7	-20.9		
15	20674	1930	-19.6	-31.4	-26.5	-17.6	-7	-0.8	6	3.6	0.3	-10.1	-10	-22.5		
16	20674	1931	-34.1	-15.4	-26.6	-20.5	-7.4	-0.5	4.1	5.3	3.8	-2.2	-11.5	-19.1		
17	20674	1932	-24.6	-22.5	-23	-12.1	-5.2	2.4	7.8	7.3	5.1	-6.5	-20.3	-28.9		
18	20674	1933	-23.1	-22.6	-25.8	-14.7	-11.5	-2.1	2.2	2.1	-1	-6.3	-23.6	-25		
19	20674	1934	-21	-16.3	-21.3	-18.3	-6.8	-0.2	1.5	5.1	-0.4	-5.8	-14.6	-24.8		
20	20674	1935	-27.1	-17.4	-24.3	-22.1	-4.8	0.2	4	6.7	1.6	-7.2	-17.2	-20.6		
21	20674	1936	-31.4	-27.2	-24.5	-12.9	-7.9	0	3	4.1	4.6	-4.9	-15.7	-18.5		
22	20674	1937	-13	-20.1	-29.9	-16.5	-7	0	4	3	1.8	-6.2	-14.3	-19.5		
23	20674	1938	-15.1	-23.8	-19.3	-12.9	-6	1.4	4.8	6.5	3.4	-8.9	-16.1	-20.5		
24	20674	1939	-25.8	-21.8	-21.2	-19.3	-9	1	7.7	4	-0.7	-8.5	-15.6	-17.3		-
25	20674	1940	-27.2	-26.8	-27.7	-17.8	-7.1	2.7	4.6	5.9	3.7	-9.9	-17.4	-26.4		
26	20674	1941	-29.1	-27.6	-29.2	-21.9	-3.4	2.4	5.5	6.3	1.8	-2.9	-17.8	-23.9		
27	20674	1942	-15.8	-21.2	-30.9	-19.5	-4.9	2.2	6.6	6.2	3.9	-7.8	-17.2	-14.8		
28	20674	1943	-24.4	-18.2	-20.9	-8.4	-5	4.8	5.4	5	0.9	-3.4	-13.9	-25.7		-
29	20674	1944	-18	-21	-21.9	-14.7	-6.1	-1.1	4.5	3	2.9	-4.2	-12.5	-9.9		-
30	20674	1945	-19.3	-17	-27.8	-13.8	-5.4	2.9	6	7.8	2.8	-3.8	-21.2	-21.6		
31	20674	1946	-23.3	-28.5	-22.6	-13.2	-7.2	-0.6	3.8	4.1	1.2	-7.4	-17.5	-22.6	_	
H 4	→ H\tr	g/	11.8	31.6		16.1	6.41	115	50	<	1 1	111	ALC R	JILEI	1	2

Рис.1.4. Многолетние ряды сумм месячных осадков, переведенные в формат Excel

Помимо сайта KNMI, архивы многолетних рядов климатических характеристик, можно получить со следующих сайтов.

Сайт Всероссийского научно-исследовательского института гидрометеорологической информации – Мирового центра данных (ВНИИГМИ-МЦД) http://meteo.ru/institute/, содержащий информацию по двум основным архивам данных среднемесячной дискретности (температура воздуха, осадки, атмосферное давление) и суточной дискретности (среднесуточная, максимальная и минимальная за сутки температуры воздуха, осадки) на территории России.

Сайт Центра анализа данных по углекислому газу (CDIAC), входящего в состав Мирового центра данных (США, Вашингтон) http://cdiac.ornl.gov/by_new/bysubjec.html#climate, содержащий следующие наборы данных многолетних рядов климатических характеристик:

-среднегодовая и среднемесячная глобальная, полушарная И зональная температура воздуха у поверхности;

- многолетние ряды климатических характеристик месячной дискретности на метеостанциях набора данных GHCN (Global Historical Climatology Network);

- многолетние ряды температуры воздуха на высотах по данным сети радиозондирования атмосферы.

Сайт центров по окружающей среде национальной администрации по океану и атмосфере США (NOAA national environmental for information) centers https://www.ncdc.noaa.gov/data-access/, содержащий как многолетние данные по климатическим характеристикам, так и по палеоклиматологии.

Сайт метеорологического немешкого института http://www.wetterzentrale.de/, содержащий синоптическую как многолетнюю информацию, так И многолетние ряды климатических характеристик.

Метофиса. Великобритания (MetOffice, Сайт UK). содержащий многолетние ряды климатических характеристик: http://www.metoffice.gov.uk/public/weather/climate-

historic/#?tab=climateHistoric.

1.2. Расположение пунктов наблюдений по территории

В этой части курсовой работы осуществляется создание геоинформационного слоя координат станций с помощью ГИС MapInfo. Для этой цели, прежде всего, формируется файл метаданных в формате Excel, содержащий 4 поля: код метеостанции, название, широта, долгота (файл coord.xls). Геоинформационный слой координат метеостанций формируется в ГИС MapInfo также как и при выполнении лабораторной работы №5 в Практикуме по климатологии, Часть 1 [1]. В результате в курсовой работе должна быть приведена карта расположения выбранных метеостанций, как показано на рис. 1.5 в качестве примера для метеостанций на севере Западной Сибири.

Рис.1.5. Расположение метеостанций на территории севера Западной Сибири

1.3. Формирование региональной базы данных многолетних рядов климатических характеристик

В этой части работы два подготовленных файла в формате Excel (coord и region) экспортируются в программный комплекс (ПК) «Гидрорасчеты» и формируется региональная база данных за многолетний период с помощью СУБД ПК «Гидрорасчеты». Последовательность формирования региональной БД следующая. - Файлы coord и region переводятся в формат CSV (разделители – запятые) как показано на рис. 1.6.

Рис.1.6. Преобразование файлов метаданных и многолетних рядов в формат CSV

- В ПК «Гидрорасчеты» создается новая база данных, как показано на рис.1.7. Для создания новой БД после запуска ПК «Гидрорасчеты» следует перейти на закладку «Базы данных» и нажать клавишу <+> в основном меню. В появившемся окне (Рис.1.7) следует дать название базе данных и имя папки, в которой она будет сформирована с указанием маршрута (перед именем папки следует поставить слеш). Новая база данных сформируется после нажатия клавиши «Создать».

Рис.1.7. Создание новой БД "ОсадкиЗапСиб" в ПК «Гидрорасчеты» в папке Region

Сформированная таким образом БД является пустой и в нее последовательно следует импортировать файлы coord и region в формате CSV. Для этой цели надо вначале войти в созданную БД, выбрать пункт меню <Файл\Импорт данных>, далее <Пользовательские форматы обмена данными> и затем выбрать импортируемую в БД характеристику из списка – в данном случае <Гидрологические посты> для импорта метаданных из файла coord (рис.1.8).

Рис.1.8. Выбор из списка импортируемой характеристики

Затем выбора формата появляется окно ДЛЯ (рис.1.9). импортируемых В данных данном случае импортируемый файл coord содержит 4 поля (код станции, название, широта, долгота) и ему соответствует формат KodNameLatLong в списке форматов.

Если же соответствующего формата импортируемого файла нет в списке, то он формируется пользователем при нажатии клавиши <+>, после чего задается произвольное имя формата (например, «Формат 44») и далее осуществляется редактирование формата, как показано на рис.1.10, включающее в себя следующие операции:

Им	порт данных в программу БД ГИДРОРАСЧЕТЫ
-9	Рормат импорта данных
	БД ГИДРОРАСЧЕТЫ (текстовой формат) 🚽 🖄 🔊 🗐
	БД ГИДРОРАСЧЕТЫ (текстовой формат)
В	KodNameLatLong 17main КодНазвРаст2ШирДолПл
-1	Ополнительные параметры
	Пропустить строк в начале текстового файла
-	ОК ХОтмена 7 Помощь

Рис.1.9. Выбор из списка формата выбора данных

Текстовой файл Настройка вывода по	лей
Выбор полей для записи в файл Лостипные поля	Выбознные поля
Код водного объекта ГВК. Расстояние от устья, км Расстояние от истья, км Код ландшаятной зоны Площадь водосбора, км.кв Высота "О" графика, м Код системы рысот Дата акрытия Дата акрытия Дата акрытия Дата поеторного открытия Код аргминистр.терр. Код SFMC	Код поста по ГВК Наименование поста Широта, град. Долгота, град.
Код типа поста Код типа поста Коо вида набл попразделения	изменить порядок вывода 🛔 🛃
Код разряда поста Код типа поста Кол вида набо попразделения	Изменить порядок вывода 🔺 🖠

Рис. 1.10. Создание структуры формата для импортируемого файла метаданных

- задание вида формата входного файла, в данном случае текстовый файл с разделителем полей, соответствующий формату CSV;

- выбор полей, соответствующих структуре входного файла из стандартного списка полей таблицы «Гидрологические посты» ПК «Гидрорасчеты», для чего выбираемые поля переносятся из левой части («Доступные поля») в правую часть («Выбранные поля») клавишей «>»;

- поля в правой части можно редактировать, изменяя их порядок стрелками, включая и исключая пустые поля клавишами <+> и <->, а также возвращая неправильно выбранные поля обратно в левую часть клавишей «<»;

- осуществляется проверка разделителя столбцов во входном файле, который в данном случае должен быть «;».

После выбора существующего или вновь созданного формата из списка, следует задать имя входного файла, выбрав его по клавише <поиск файла> («...») и проверить правильность его формата по соседней клавише <просмотр файла> (рис.1.11). При импорте файла можно использовать и задание дополнительных параметров, как показано на рис.1.11. При этом, пропуск строк в начале текстового файла задается, если в нем действительно есть символьная информация, например, названия полей.

Импорт данных в программу БД ГИДРОРАСЧЕТЫ	Выбрать входной файл			? 🛛
Формат импорта данных	Папка: 🔁 IMPORT	•	+ 🗈 💣 📰•	
KodNameLatLong				
Входной файл	Недавние документы			
(B)	G			
	Рабочий стол			
Пополнительные паражетры: ГФП проводить проверку наличия веодичых значений в базе данных	>			
Разрешить добавление новых значений	Мои документы			
 Разрешить замену существующих данных Заменять значения в БД символом отсутствия данных (пробел) 	9			
Пропустить строк в начале текстового файла	Мой компьютер			
	Сетевое Имя файла:		-	Открыть
ок ок отмена у цомощь	Тип файлов:	Все файлы (".")	*	Отмена

Рис.1.11. Импорт метаданных в ПК «Гидрорасчеты»

После нажатия клавиши <OK> осуществляется импорт данных и при благополучном его завершении появляется сообщение «Импорт данных успешно завершен». После нажатия клавиши <OK> результаты импорта будут представлены, как показано на рис.1.12, если вид таблицы метаданных задан как «Таблица БД».

Гидрорас	неты (Гидр	юлогические наблюдения)							
райл / Вид	Пункты на	блюдений 🕕 Графики 🌔 Программы 📓 Карта 🛛 💩 Помоц	ĮЬ						1
🕯 Посты 🛃	Данные на	блюдений 🐼 Восстановленные данные							
- 14									
		Dixon island							
Отм	Код поста	Наименование	Код ВО	Дата открытия	Дата закрытия	Расст. от устья, км	Расст.от истока, км	Широта, град	Долгота, град 1 те 🔨
	20674	Dixon island						73.5000	80.3000
	23146	MYS KAMENNYJ						68.5000	73.6000
	23242	Novy-Port						67.7000	73.0000
	23256	Tazovskoe						67.5000	78.7000
1	23330	Salekhard						66.5000	66.5000
	23365	Sidorovsk						66.6000	82.3000
	23552	Tarko-sale						64.9000	77.8000
	23631	Berezovo, AMSG						63.9000	65.1000
	23662	Tolika						64.0000	82.1000
	23724	Nyaksimvol						62,4000	60.9000
	23734	Oktyabr'skoye						62,5000	66.1000
	23849	Surgut, AMSG						61.3000	73.5000

Рис.1.12. Результаты импорта метаданных в ПК «Гидрорасчеты»

Аналогичным образом осуществляется импорт многолетних данных из файла region, но для него в таблице «Пользовательские форматы обмена данными» выбирается таблица «Среднемесячные расходы воды» и тип формата «кодгод12мес.», и если его нет в списке форматов, то он создается из стандартного, используя все его поля. Если импорт данных успешно осуществлен, то их можно увидеть на экране, выполнив последовательное нажатие следующих клавиш: «Данные наблюдений», «Выбор данных», «Среднемесячные расходы воды». Пример таблицы данных приведен на рис.1.13.

Тосты	Данные в	заблюдений	и Восст.	ановленные да	нные	- ionouto						
						Dixo	n island [C	реднемесячн	ые расходы	воды]		
<	H	1916 - 2004		Кол-во = 89		Excel	R	6727	14	9.00	in the	1 "
Год	1	11	111	IV	V	VI	VII	VIII	IX	×	×	XII
1916									21.000	37.000	7.000	3.000
1917	6.000	3.000	3.000	10.000	13.000	24.000	34.000	24.000	37.000	12.000	0.000	0.000
1918	0.000	1.000	1.000	4.000	1.000	34.000	54.000	78.000	33.000	12.000	4.000	0.000
1919	2.000	0.000	1.000	1.000	4.000	1.000	42.000	15.000	15.000	54.000	58.000	44.000
1920		23.000	9.000	6.000	9.000	45.000	23.000	36.000				
1921							63.000	50.000	40.000	7.000	13.000	4.000
1922	6.000	7.000	14.000	6.000	24.000	10.000	10.000	78.000	30.000	10.000	21.000	11.000
1923	13.000	5.000	6.000	13.000	15.000	44.000	10.000	30.000	19.000	7.000	16.000	6.000
1924	5.000	8.000	4.000	9.000	3.000	1.000	25.000	52.000	36.000	28.000	13.000	9.000
1925	8.000	5.000	3.000	3.000	3.000	13.000	11.000	26.000	15.000	37.000	10.000	18.000
1926	13.000	8.000	7.000	4.000	9.000	13.000	49.000	31.000	41.000	23.000	9.000	1.000
1927	3.000	7.000	4.000	7.000	12.000	6.000	29.000	52.000	30.000	10.000	7.000	3.000
1928	3.000	4.000	1.000	0.000	3.000	6.000	30.000	44.000	53.000	9.000	12.000	0.000
1929	3.000	9.000	6.000	78.000	16.000	25.000	47.000	19.000	53.000	42.000	21.000	7.000
1930	6.000	3.000	3.000	3.000	9.000	33.000	5.000	35.000	32.000	10.000	24.000	6.000
1931	0.000	7.000	4.000	4.000	15.000	24.000	7.000	24.000	42.000	10.000	9.000	6.000
1932	3.000	5.000	6.000	3.000	7.000	23.000	22.000	72.000	82.000	24.000	7.000	6.000
1933	6.000	1.000	9.000	7.000	1.000	11.000	38.000	66.000	8.000	31.000	3.000	6.000
1934	13.000	3.000	4.000	6.000	6.000	23.000	24.000	80.000	23.000	21.000	9.000	6.000
1935	6.000	5.000	6.000	1.000	15.000	6.000	6.000		36.000	23.000	18.000	7.000
1936	9.000	4.000	9.000	13.000	9.000	8.000	49.000	9.000	80.000	23.000	3.000	13.000
1937	11.000	4.000	1.000	6.000	1.000	63.000	16.000	80.000	50.000	30.000	12.000	10.000
1938	11.000	4.000	13.000	9.000	15.000	20.000	27.000	85.000	84.000	24.000	12.000	6.000
1939	13.000	8.000	10.000	4.000	6.000	32.000	48.000	24.000	27.000	14.000	9.000	10.000
1940	6.000	5.000	4.000	4.000	7.000	19.000	57.000	70.000	14.000	9.000	9.000	7.000
1941	11.000	5.000	6.000	1.000	4.000	32.000	96.000	31.000	63.000	37.000	22.000	4.000
1942	8.000	7.000	10.000	4.000	7.000	25.000	34.000	43.000	71.000	19.000	19.000	40.000
1943	27.000	27.000	13.000	16.000	31.000	9.000	19.000	84.000	47.000	44.000	9.000	11.000
1944	11.000	8.000	7.000	10.000	4.000	11.000	40.000	58.000	60.000	63.000	10.000	7.000
1945	6.000	7.000	3.000	4.000	46.000	21.000	50.000	57.000	89.000	26.000	6.000	9.000
1946	6.000	7.000	4.000	9.000	7.000	24.000	29.000	17.000	20.000	14.000	7.000	6.000
1947	5.000	5.000	3.000	6.000	6.000	58.000	31.000	23.000	70.000	92.000	3.000	4.000
1948	5.000	1.000	4.000	7.000	15.000	26.000	39.000	31.000	23.000	38.000	27.000	9.000
1949	6.000	7.000	7.000	7.000	10.000	11.000	43.000	41.000	51.000	59.000	12.000	4.000
1950	5.000	7.000	1.000	9.000	10.000	24.000	42.000	37.000	27.000	28.000	16.000	9.000
1951	13.000	3.000	11.000	24.000	22.000	13.000	55.000	45.000	49.000	35.000	19.000	10.000

Рис.1.13. Результаты импорта многолетних рядов в ПК «Гидрорасчеты»

Таблицы вида рис.1.12 и 1.13 помещаются в п.1.3 курсовой работы в качестве подтверждения сформированной региональной базы данных в ПК «Гидрорасчеты».

1.4. Анализ информационных особенностей региональной БД

B п.1.4 приводится таблица, в которой показаны информационные особенности созданной БД средствами ПК Для получения информационной «Гидрорасчеты». таблицы следует последовательно нажать следующие клавиши: «Файл», «Отчет о наличии данных в БД», «Выбор таблиц данных», <Среднемесячные расходы воды>, <ОК>, <ОК>. Полученную таблицу следует записать в файл, нажав «Файл» и «Записать таблицу в файл>. Далее выбрать формат выходного файла (например, Word) и сформировать поля выходной таблицы, перенося из таблицы «Доступные поля» слева в таблицу поля» справа, например, поля: «Код поста», «Выбранные «Широта», «Долгота», «Среднемесячные «Наименование»,

расходы воды», «кол-во лет 1». Помимо настройки формата при формировании данной таблицы необходимо настроить и поля, содержащие цифры после запятой, нажав клавишу «Настройка вывода полей» и далее для полей «Широта» и «Долгота» необходимо написать количество десятичных знаков после запятой, например, 4. Затем после нажатия клавиши «ОК» следует выбрать маршрут и имя файла, в который будет записана таблица. Полученную таблицу следует представить в разделе 1.4 курсовой работы. Табл.1.1 является примером такой таблицы для метеостанций с месячными суммами осадков для территории севера Западной Сибири.

Выводы по 1-ой главе

В качестве рассматриваемой климатической характеристики выбраны осадки января на территории севера Западной Сибири.

Многолетние ряды наблюдений за суммами месячных осадков на 12 метеостанциях выбраны из базы данных Королевского метеорологического института Нидерландов с сайта http://climexp.knmi.nl/selectstation.cgi?someone.

Таблица 1.1

Код	Наименование	Широта	Долгота,	Период	Продол
поста		, град	град	наблюде-	житель-
				ний	ность,
					лет
20674	Остров Диксон	73,5000	80,3000	1916 - 2004	89
23146	Мыс Каменный	68,5000	73,6000	1951 - 1994	44
23242	Новый Порт	67,7000	73,0000	1924 - 2004	81
23256	Тазовское	67,5000	78,7000	1933 - 2004	68
23330	Салехард	66,5000	66,5000	1891 - 2004	113
23365	Сидоровск	66,6000	82,3000	1951 - 1997	47
23552	Тарко-Сале	64,9000	77,8000	1937 - 2004	68
23631	Березово	63,9000	65,1000	1891 - 2004	109
23662	Толика	64,0000	82,1000	1947 - 2004	58
23724	Няксимволь	62,4000	60,9000	1933 - 2004	68
23734	Октябрьское	62,5000	66,1000	1895 - 2004	101
23849	Сургут	61,3000	73,5000	1891 - 1998	100

Продолжительность рядов наблюдений за суммами месячных осадков в региональной БД

В ГИС MapInfo сформирован геоинформационный слой координат метеостанций и получена карта расположения метеостанций по территории (рис.1.5), свидетельствующая о том, что район покрыт наблюдениями достаточно равномерно.

Метаданные и многолетние ряды были импортированы в ПК «Гидрорасчеты» и в результате создана региональная база климатических данных.

Анализ информационных особенностей сформированной БД, представленных в табл.1.1, свидетельствует, что продолжительность наблюдений изменяется в широких пределах от 44 лет на метеостанции Мыс Каменный до 113 лет на метеостанции Салехард и в среднем составляет 79 лет.

2. Анализ качества данных и оценка климатических характеристик в стационарных условиях

Вторая глава курсовой работы связана с анализом однородности эмпирических распределений и стационарности временных рядов, восстановлением пропусков и приведением определению многолетнему периоду, рядов к расчетных характеристик представлению климатических И ИХ на географическом пространстве. Практически в данной главе повторяются лабораторные работы 1-3 и 5 из Практикума по климатологии, часть 1, но выполненные с помощью современных программных средств и на массовом материале, что дает осуществить пространственное обобшение возможность расчетных климатических характеристик.

2.1. Анализ однородности и стационарности исходной информации (программа «Однородность»)

Цель настоящего раздела работы – научиться работать с программой «Однородность» ПК «Гидрорасчеты» и выполнить анализ однородности и стационарности для выбранных рядов по территории. Программа «Однородность» предназначена для оценки резко отклоняющихся экстремальных значений в

эмпирическом распределении по статистическим критериям Диксона и Смирнова-Граббса и однородности (стационарности) основных параметров временных рядов гидрометеорологических характеристик: средних значений и дисперсий по статистическим критериям Стъюдента и Фишера. Программа находится в основном меню (функция «Программы») и вызывается из него, как показано на рис.2.1.

1 / Вид	Пункты на	блюдений 间 Графики 📗	🔪 Програжны 🔚 Карта 🛛 🙆 Помоц	ць				
Посты 🜏	Данные на	блюдений 📈 Восстанов	Проверка данных на однородность и с	тационарность				
4 1	H D	Dixon island	Програнна восст. пропусков и удл.ряд	06				
Отм.	Код поста	Наименование	Расчет обеспеченных характеристик п	о однородным данным	жрыл	ия Расст.от устья, км Расст.от истока, к	м Широта, град	Долгота, град і.т
	20674	Dixon island	Расчет обеспеченных характеристик п	о неоднородным данным			73.5000	80.3000
	23146	MYS KAMENNYJ	Расчет обеспеченных характеристик с	учетом исторических наксимумо	3	1	68,5000	73.6000
	23242	Novy-Port	Расчет внутригодового распределения	1			67.7000	73.0000
	23256	Tazovskoe	20 A 41/2		_		67.5000	78.7000
	23330	Salekhard	Программа ПРОФИЛЬ				66.5000	66.5000
	23365	Sidorovsk	Програнна назмые				66.6000	82.3000
	23552	Tarko-sale					64.9000	77.8000
	23631	Berezovo, AMSG					63.9000	65.1000
	23662	Tolika					64.0000	82,1000
	23724	Nyaksimvol					62.4000	60.9000
	23734	Oktyabr'skoye					62.5000	66.1000
	23849	Surgut, AMSG					61.3000	73.5000

Рис.2.1. Вызов программы «Однородность» из основного меню ПК «Гидрорасчеты»

При таком вызове программы из основного меню она будет работать только с данными на высвеченной станции, в данном Остров случае _ метеостанция Диксон. Программу «Однородность» можно вызвать и другим путем: засветка требуемой метеостанции, «Данные наблюдений», «Выбор данных», «Среднемесячные расходы воды», «Программы» и далее из списка программ для работы с выбранной таблицей данных на конкретной метеостанции. После вызова программы следует задать анализируемую характеристику – в данном случае осадки января, которые в таблице характеристик представлены как «Январь». После нажатия кнопки <OK> появляется сообщение о передаче данных в программу и после вторичного нажатия осуществляется < OK >переход кнопки в программу «Однородность» и появляется основное исходное окно программы с таблицами и графиками, как показано на рис.2.2.

На экране (рис.2.2) представлена информация о пункте наблюдений, рассматриваемой характеристике, периоде наблюдений, который можно изменить при вводе значений в соответствующие поля, расположенные на контрольной панели в верхней части экрана. При нажатии кнопки «Применить» произойдет пересчет характеристик эмпирического распределения на основании введенных значений. Все изменения сразу отразятся во всех таблицах и графиках. Экран заставки (главного меню) программы разбит на четыре рабочих окна. В левом верхнем окне представлена таблица хронологического ряда наблюдений, а справа от нее – окно хронологического графика. В левом нижнем таблица обеспеченностей, приведена эмпирических окне ранжированных значений ряда и соответствующих им лет, а справа - окно с графиком эмпирического распределения. Каждая таблица и график могут быть записаны в файлы. Пользователю предоставляется возможность самостоятельно настроить формат записи данных в различные внешние файлы. Для этого сначала необходимо выбрать формат выходного файла и элементы данных для записи. Графики могут быть отредактированы и также или записаны в файл или переданы непосредственно в текст курсовой работы через буфер обмена.

Рис.2.2. Главное меню программы «Однородность»

После задания расчетного периода (если необходимо), просмотра и анализа исходных данных осуществляется переход к вычислительному блоку нажатием кнопки «Расчет». Далее осуществляется выбор метода расчета: «Оценка однородности экстремальных значений» и «Оценка стационарности временных рядов» (рис.2.2). Вначале выбирается «Оценка однородности экстремальных значений» и осуществляется выход на экран задания параметров (рис.2.3).

Статистические критерии		Коэффициент автокорреляции (1)	
🔽 Максимумумы по Дикс	сону (до трех)	вычисляется автоматически	1
🔽 Минимумы по Диксону	(до трех)		
🦵 Максимум по Смирнов	у_Граббсу (один)		
П Минимум по Смирнову	_Граббсу (один)	Коэффициент ассиметрии Сз	
Уровень значимости, % ——		REALING OPENING ARTOMATING OF M	14

Рис.2.3. Экран задания параметров для оценки экстремальных значений в программе «Однородность»

Для оценки резко отклоняющихся экстремальных значений в эмпирическом распределении по статистическим критериям Диксона и Смирнова-Граббса следует выполнить следующие шаги: - выбрать статистические критерии - выбор (отмена выбора) устанавливается щелчком клавиши мыши в строке рассматриваемого критерия;

- задать уровень значимости - уровень значимости задается пользователем в поле редактирования (обычно 5%);

- определить способы вычисления коэффициентов автокорреляции и асимметрии: вычисляется автоматически (обычно) или задается пользователем.

После нажатия кнопки «Расчет» осуществляются вычисления и появляется таблица с результатами расчетов, в которой представлены: вид анализируемого экстремума

(максимум или минимум); используемый критерий; расчетное значение статистики критерия; критическое значение статистики критерия; уровень значимости, соответствующий расчетному значению статистики критерия; вывод об однородности или которые неоднородности; годы, значения за являются неоднородными (по максимуму до трех лет). Таблица результатов расчетов записывается в файл при нажатии кнопки «Записать данные таблицы в файл» (на панели над таблицей) и выборе соответствующих полей таблицы, формата выходного файла (например, Word) и нажатия кнопки <OK> с последующим заланием имени файла.

После записи в файл результатов расчетов по оценке однородности эмпирического распределения, задается функция «Оценка стационарности временных рядов» и осуществляется переход в окно, где задаются параметры для расчета стационарности дисперсий по критерию Фишера и средних значений по критерию Стьюдента (рис.2.4). Временной ряд разбивается на два диапазона. По умолчанию временной ряд разбивается пополам, но пользователь может самостоятельно откорректировать границы диапазонов.

	1				_
Статистич	неские кри	перии		Коэффициент автокорреляции (1)	
🔽 Кр	итерий Фи	ншера		вычисляется автоматически	-
🔽 Kpi	итерий Ста	ьюдента			
Расчетны	е периодь	r		- Коэффициент ассиметрии Cs	
	начало	конец	кол-во лет		2.2
1 период	1917	1960	41	вычисляется автоматически	•
2 период	1961	2004	41		
	7.4	1997		100 VIII VIII VIII VIII VIII VIII VIII V	

Рис.2.4. Экран задания параметров для оценки стационарности параметров в программе «Однородность»

В результате расчетов по второй части программы также формируется таблица результатов, которая записывается в файл.

Аналогичным образом осуществляются расчеты по программе «Однородность» для всех остальных метеостанций и для выбранной характеристики – в данном случае сумм осадков января. В качестве примера в курсовой работе приводятся детальные результаты расчетов для одной станции, желательно, для той. где получены выводы неоднородности 0 И нестационарности. В качестве примера приводится оценка однородности стационарности для И осадков января на метеостанции Остров Диксон.

Эмпирическое распределение CVMM осадков января рис.2.5. из которого приведено следует, что оценке на максимальный однородности подлежит экстремум, отклоняющийся от остальной части распределения. Поэтому была залана только проверка на максимальные экстремумы по критериям Диксона и Смирнова-Граббса, уровень значимости задан α=5% и вычисление коэффициентов автокорреляции И асимметрии - «автоматически».

Рис.2.5. Эмпирическое распределение сумм осадков января на метеостанции Остров Диксон

Результаты оценки однородности приведены в табл. 2.1, из которой следует, что максимальный экстремум является однородным при уровне значимости, соответствующему расчетному значению статистики, более 10% (в табл.2.1 – 11%) во

всех случаев, кроме одного, где он равен 9.9%. Поэтому вывод об однородности максимально экстремума является надежным.

Таблица 2.1

Экстре	Критерий	Расчетн	Критич.	Уровен	Вывод	Годы
мум		.знач.	знач.	ь		
				значим		
				ости		
				расч.		
max	Диксон 1	0,3771	0,4373	9,9267	однороден	
max	Диксон 2	0,3771	0,4419	11,0000	однороден	
max	Диксон 3	0,4000	0,5239	11,0000	однороден	
max	Диксон 4	0,4046	0,5246	11,0000	однороден	
max	Диксон 5	0,4000	0,5279	11,0000	однороден	
max	Смирнов-	4,8091	5,5266	11,0000	однороден	
	Граббс					

Результаты оценки однородности эмпирического распределения сумм осадков января для метеостанции Остров Диксон

Временной график ряда наблюдений за осадками января на метеостанции Остров Диксон приведен на рис.2.6.

Рис.2.6. Ряд наблюдений сумм осадков января на метеостанции Остров Диксон

Анализ временного ряда показывает, что наблюдается как нестационарность средних значений, так и дисперсий: средние и дисперсии второго периода наблюдений, примерно с 1952 г. много больше, чем для первого периода. Поэтому в данном случае ряд наблюдений не разделялся на две равные части, а делился по дате предполагаемого нарушения стационарности: 1917-1951 гг. и 1952-2004 гг. Результаты оценки стационарности по критериям Фишера и Стьюдента приведены в табл.2.2.

Таблица 2.2

Критерий	Расчетн	Критич.	Уровень	Вывод
	ое зн.	3Н.	значимости	
			расч.	
Критерий Фишера	41,0753	1,8977	0,9000	Неоднороден
Критерий	7,3952	2,8711	0,9000	Неоднороден
Стъюдента				_

Результаты оценки стационарности средних значений и дисперсий осадков января для метеостанции Остров Диксон

Как следует из результатов табл.2.2, средние значения и дисперсии двух частей ряда не являются стационарными (расчетные значения больше критических) и уровень значимости, соответствующий расчетному значению статистики критерия Фишера и Стьюдента в обоих случаях менее 1% (в табл.2.2 – 0.9%), что говорит о высокой степени достоверности отклонения нулевой гипотезы о стационарности. При этом средние и дисперсии за два периода следующие: за период 1917-1951 гг. среднее = 7,5 мм, дисперсия 22,7 мм²; за период 1952-2004 гг. среднее = 42,4 мм, дисперсия 933,4 мм², т.е. различия в средних в 5,6 раз, в дисперсиях – в 41,1 раз.

Аналогичные расчеты по оценке однородности и стационарности проведены и для рядов сумм осадков января и на других метеостанциях и обобщенные результаты приведены в табл.2.3.

28

Таблица 2.3

.Код	Наименование	Д	Φ	Ст	Год
поста					
20674	Остров Диксон	+	-	-	
23146	Мыс Каменный	(-)2,1	-	+	1961
23242	Новый Порт	+	-	-	
23256	Тазовское	+	-	+	
23330	Салехард	+	+	-	
23365	Сидоровск	+	+	+	
23552	Тарко-Сале	+	+	-	
23631	Березово	+	+	-	
23662	Толика	+	+	+	
23724	Няксимволь	+	-	+	
23734	Октябрьское	+	+	-	
23849	Сургут	+	(+)4,3	+	

Результаты оценки однородности и стационарности месячных сумм осадков января по критериям Диксона (Д), Фишера (Ф) и Стьюдента (Ст) на метеостанциях севера Западной Сибири

В табл. 2.3 знаком «+» представлен вывод о принятии гипотезы однородности и стационарности, а знаком «-» - об отклонении. Если расчетное значение статистики критерия близко к критическому, но превышает его, то в таблице также приводится уровень значимости, соответствующий расчетному значению критерия. В этом случае вывод о принятии или отклонении гипотезы однородности и стационарности является сомнительным и заключается в скобки. Знак «(+)» ставится, если уровень значимости, соответствующий расчетному значению статистики критерия, меньше 5%, но больше или равен 3%. Знак «(-)», если этот уровень значимости менее 3%, но больше 1%. Знак «+» ставится, если уровень значимости, соответствующий расчетному значению и отклонении критерия, меньше 5%, но больше или равен 3%. Знак «(-)», если этот уровень значимости, соответствующий расчетному значению статистики критерия, равен или более 5%, а «-», если он равен или менее 1%, т.е. в этих случаях нулевая гипотеза или достаточно надежно принимается или также надежно отклоняется.

Примеры нестационарных рядов по средним и дисперсиям, которые также следует поместить в курсовую работу, приведены на рис.2.7.

Рис.2.7. Примеры нестационарных рядов сумм осадков января на метеостанциях севера Западной Сибири

2.2. Восстановление пропусков и приведение рядов к многолетнему периоду с оценкой эффективности приведения и качества восстановленных данных

Цель настоящего раздела работы – научиться работать с программой «Аналог» ΠК «Гидрорасчеты» И выполнить восстановление пропусков и приведение непродолжительных рядов наблюдений к многолетнему периоду на метеостанциях рассматриваемой территории. Теоретические положения методики восстановления пропусков и приведения непродолжительных наблюдений к многолетнему периоду рядов изложены В Лабораторной работе 2 Практикума по климатологии Часть 1. Программа «Аналог» работает только группой с пунктов наблюдений, поэтому ее вызов осуществляется из главного меню программного комплекса «Гидрорасчеты», как показано на рис.2.8.

Гидрора	счеты (Гидр	ологические наблюде	ния)							
Файл 🏸 Вид	Пункты не	блюдений 间 Графики	🕨 Програмны 🔛 Карта 🛛 🙆 Помощь							111000100000
Посты	뉞 Данные н	аблюдений 🔀 Восстанов	Проверка данных на однородность и ста	ционарность						
	E E Del	Oktyabr'skove	Програнма восст. пропусков и удл.рядов							
Отм	Код поста	Наименование	Расчет обеспеченных характеристик по с	Расчет обеспеченных характеристик по однородным данным			Расст.от устья, км	Расст.от истока, км	Широта, град	Долгота, град 1 те 🔨
1	20674	Dixon island	Расчет обеспеченных характеристик по н	Расчет обеспеченных характеристик по неоднородным данным					73.5000	80.3000
10	23146	MYS KAMENNYJ	Расчет обеспеченных характеристик с учетом исторических максимунов						68.5000	73.6000
	23242	Novy-Port	Расчет внутригодового распределения						67.7000	73.0000
	23256	Tazovskoe							67.5000	78.7000
	23330	Salekhard	Программа ПРОФИЛЬ				66.5000	66.5000		
	23365	Sidorovsk	Програнна и Азичыв						66.6000	82.3000
	23552	Tarko-sale							64.9000	77.8000
	23631	Berezovo, AMSG							63.9000	65.1000
1	23662	Tolika							64.0000	82,1000
	23724	Nyaksimvol'							62.4000	60.9000
)	23734	Oktyabr'skoye							62.5000	66.1000
100	220.40	Course AMICC							C1 2000	70,5000

Рис.2.8. Вызов программы «Аналог» («Программа восст. пропусков и удл. рядов») из главного меню ПК «Гидрорасчеты»

После вызова программы появляется таблица выбора из списка, где отмечается рассматриваемая характеристика, в данном случае «Январь» для сумм осадков января. После выбора характеристики и нажатия кнопки «ОК» появляется сообщение: «Выборка пунктов наблюдений передана в программу восстановления данных!» и после нажатия кнопки «ОК» появляется исходный экран программы «Аналог», как показано на рис.2.9.

and the								
🖪 ГИДРОІ	РАСЧЕТЫ :	Программа восстановления проп	усков в данных					
/ Файл	Таблица 🕨	Расчет Справка						
🖷 Исход	ный ряд							
		Т	аблица данных : Среднемесячные	е расхолы волы:	Характеристи	ка: I		
H 4 1	- M	Кол-во = 12 📝 🕼 🗗	al a state of the	a triple of a	Section 1		Tigt .	Control 1
Отм	Код	Наименование	Кол-во	Период	Код водн.об.	Широта	Долгота	Пл.водосб., км.кв
	20674	Dixon island	82	1917-2004	0	73.50	80.30	1
	23146	MYS KAMENNYJ	43	1951 - 1994	0	68.50	73.60	
	23242	Novy-Port	75	1925 - 2004	0	67.70	73.00	
	23256	Tazovskoe	67	1934-2004	0	67.50	78.70	
	23330	Salekhard	107	1891 - 2004	0	66.50	66.50	
	23365	Sidorovsk	46	1951 - 1997	0	66.60	82.30	
	23552	Tarko-sale	68	1937 - 2004	0	64.90	77.80	
	23631	Berezovo, AMSG	102	1891 - 2004	0	63.90	65.10	
	23662	Toljka	56	1948 - 2004	0	64.00	82.10	
	23724	Nyaksimvol'	67	1933 - 2004	0	62.40	60.90	
	23734	Oktyabr'skoye	98	1898 - 2004	0	62.50	66.10	
Þ	23849	Surgut, AMSG	97	1891 - 1990	0	61.30	73.50	

Рис.2.9. Главное меню программы «Аналог»

Работа начинается с нажатия меню «Расчет», где имеются три главные функции: метод восстановления пропусков, расчет и матрица парной корреляции. Просмотр матрицы парной корреляции представляет интерес до проведения вычислений с целью оценки степени связанности рядов, например, для того, чтобы задать предельное минимальное пороговое значение коэффициента корреляции и оценить возможные эффективные аналоги. Пример матрицы парных корреляций показан на рис.2.10. Определение коэффициентов парной корреляции осуществляется за совместный период. Если коэффициенты не определены, то это означает, что совместный период составляет менее 6 лет.

🕜 Файл												
	20674	23146	23242	23256	23330	23365	23552	23631	23662	23724	23734	23849
20674	1	0.378	0.421	0.180	0.314	-0.051	0.090	0.084	0.007	0.003	0.311	0.029
23146	0.378	1	0.260	0.099	0.282	-0.058	-0.064	-0.233	0.049	-0.159	0.170	0.034
23242	0.421	0.260	1	0.341	0.309	0.044	0.247	0.295	0.219	0.190	0.460	0.173
23256	0.180	0.099	0.341	1	0.099	0.541	0.383	0.048	0.170	-0.099	0.119	0.155
23330	0.314	0.282	0.309	0.099	1	-0.017	0.215	0.403	0.049	0.120	0.542	0.311
23365	-0.051	-0.058	0.044	0.541	-0.017	1	0.535	0.144	0.452	-0.024	0.146	0.335
23552	0.090	-0.064	0.247	0.383	0.215	0.535	1	0.307	0.523	0.097	0.356	0.431
23631	0.084	-0.233	0.295	0.048	0.403	0.144	0.307	1	0.223	0.666	0.723	0.376
23662	0.007	0.049	0.219	0.170	0.049	0.452	0.523	0.223	1	0.171	0.509	0.450
23724	0.003	-0.159	0.190	-0.099	0.120	-0.024	0.097	0.666	0.171	1	0.494	0.322
23734	0.311	0.170	0.460	0.119	0.542	0.146	0.356	0.723	0.509	0.494	1	0.467
23849	0.029	0.034	0.173	0.155	0.311	0.335	0.431	0.376	0.450	0.322	0.467	1

Кол-во = 12

Рис.2.10. Матрица парных коэффициентов корреляции между многолетними рядами сумм осадков января

Из анализа матрицы парных коэффициентов корреляции для рядов осадков января по территории Западной Сибири следует, что их связанность достаточно низкая и наибольшие значения равны 0,666 и 0,723. Поэтому предельное минимальное значение коэффициента парной корреляции следует задавать в диапазоне от 0,6 до 0,7. Меньше 0,6 задавать не следует, т.к. в соответствии с формулой (27) из Лаб. работы 2 (Практикум по климатологии, Часть 1) погрешность восстановленных значений при R=0,7 составляет 51%, а при R=0,6 уже 64%. Из многочисленных исследований следует, что осадки связаны по территории намного хуже, чем температура воздуха, поэтому при низких парных корреляциях предельное минимальное значение коэффициента корреляции следует задавать для осадков не ниже 0,6-0,7, а для температур воздуха, которые связаны лучше, 0,8 – 0,85. Затем следует выбрать пункты наблюдений, которые необходимо восстанавливать. Как правило, следует осуществлять восстановление для всех пунктов наблюдений, поэтому в меню «Таблица» выбирается функция «Выбрать пункт для восстановления» и затем функция «Выбрать все» и в результате отметки выбора задаются для всех пунктов.

После выбора пунктов для восстановления в главном меню нажимаем функцию <Расчет> и далее метод восстановления пропусков выбирается из двух вариантов: на основе связи с аналогами (при возможности включения в уравнение регрессии от одного до трех аналогов) или при построении однофакторных региональных зависимостей за разные годы. По умолчанию в функции <Метод восстановления пропусков> задан первый метод, что и требуется. Поэтому сразу переходим к функции <Расчет>, где появляется следующее окно, в котором требуется задать параметры (рис.2.11).

Рис.2.11. Задание параметров уравнений для восстановления пропусков наблюдений и приведения непродолжительных рядов к многолетнему периоду

• Минимальный совместный период наблюдений, лет – не менее 6 лет. Пункты, у которых совместный период наблюдений с постом, для которого восстанавливаются данные, менее 6 лет будут исключаться из списка аналогов. При задании числа аналогов в уравнении 3 минимальный совместный период должен быть задан равным 10.

• Максимальное количество аналогов в уравнении (от 1 до 3x).

• Минимально допустимое значение коэффициента корреляции *R*.

• Среднее отношение коэффициента уравнения регрессии к его среднеквадратической ошибке *R*/*σ*_{*R*} (обычно задается ≥2.0).

• Исключать отрицательные значения – отметка ставится для данных, которые не могут иметь отрицательных значений (например, осадки).

• Учитывать погрешность определения характеристики – при установке флажка следует выбрать метод определения погрешности для восстановленных значений и задать максимально допустимое значение погрешности в %.

В данном случае задаем минимальный совместный период минимальное наблюдений 10 лет. количество аналогов в уравнении 3, минимальное допустимое значение коэффициента корреляции 0,65, среднее отношение коэффициента уравнения регрессии к его среднеквадратической ошибке 2,0 (следует задавать всегда, что соответствует 95%-ному доверительному интервалу), ставится отметка исключать отрицательные расчетные значения, что необходимо лля такой климатической характеристики как осадки (для температур воздуха, не требуется, в том случае, если они могут быть отрицательными).

После нажатия кнопки <Расчет> выполняется приведение к многолетнему периоду и восстановление пропусков наблюдений для всех 12 рядов сумм осадков января и основные результаты после завершения расчетов представлены в таблице рис.2.12.

Т	Код	Наиненование	Кол-во факт	Кол-во восст.	Эффект восст.	К Средн.погр. восст.	Стд.откл.иск.	Стдотклеосст	Критерий Фишера	Средн.иск.ряда 4
H		Sidorovsk						13.417		21.761
ſ	23631	Berezovo, AMSG	102	10	9.8	7.229	10.947	7.361	2.212	23.618
	23662	Toljka	56	12	21.4	7.931	11.133	9.521	1.367	29.643
	23724	Nyaksimvol'	67	37	55.2	8.614	11.684	15.354	1.727	25.896
	23734	Oktyabr'skoye	98	14	14.3	7.165	12.272	7.352	2.786	30.112
12										

Рис.2.12. Итоговая таблица с результатами работы программы «Аналог»

Как следует из таблицы рис.2.12, из 12 рядов наблюдений при заданных условиях восстановление было осуществлено только для 5 рядов. Полученная таблица имеет следующие поля: - «Код» - пятизначный код пункта наблюдений по классификации ГВК;

- «Наименование» - название реки и пункта наблюдений;

- «Кол-во факт.» - количество фактических лет наблюдений;

- «Кол-во восст.» - количество восстановленных лет;

- «Эффект.восст.%» - показатель эффективности восстановления *Дп*'(%);

- «Средн.погр.восст.» - средняя из всех стандартных погрешностей восстановления (в размерности рассматриваемой характеристики) $\sigma_{\mathcal{E}_{cp}}$;

- «Стд.откл.исх.» - среднее квадратическое (стандартное) отклонение исходного ряда наблюдений (σγ);

- «Стд.откл.восст.» - среднее квадратическое (стандартное) отклонение восстановленных значений;

- «Критерий Фишера» - расчетное значение статистики критерия Фишера, как правило, если расчетная статистика меньше 2, то восстановленные данные можно считать однородными по дисперсиям исходным данным (вывод будет надежным в том случае, если объемы исходной и восстановленной подвыборок достаточны и значительно не отличаются);

- «Средн.исх.ряда» - среднее значение исходного ряда наблюдений;
 - «Средн.восст.ряда» - среднее значение восстановленных значений;

- «Критерий Стьюдента» - расчетное значение статистики критерия Стьюдента, как правило, если расчетная статистика меньше 2, то восстановленные данные можно считать однородными по средним величинам исходным данным (вывод будет надежным в том случае, если объемы исходной и восстановленной подвыборок достаточны и значительно не отличаются).

Полученные результаты свидетельствуют о том, что количество восстановленных лет варьирует от 10 до 37, надежность вывода об однородности дисперсий и средних можно надежно считать только для ряда 23724 Няксимволь, где количество восстановленных лет равно 37, а наблюденных – 67 и здесь расчетные значения статистик критериев Фишера и Стьюдента меньше критических (восстановленные данные

однородны). В остальных случаях период восстановленных данных по отношению к фактическим намного меньше и выводы недостаточно надежны. Таблица рис.2.12 с соответствующими пояснениями также помещается в курсовую работу.

информация Более летальная результатам ПО восстановления представлена в дополнительных таблицах для каждого пункта наблюдений. В качестве примера ее можно дать метеостанций, случае выбрана лля олной ИЗ в данном Няксимволь. Для получения результирующего метеостанция содержащего как многолетнего ряда. наблюденные. так И восстановленные ланные. следует нажать заклалки «Восстановленные значения» таблица. после чего появится включающая 3 поля: год, значение, погрешность восстановления (в данном случае в мм). Для наблюденных значений погрешность восстановления представлена в таблице в виде нулевых значений. Данная таблица записывается в файл при нажатии кнопки «Файл», затем «Сохранить таблицу как...» и далее выбрать формат выходного файла (Документ Microsoft Word) и переместить поля слева в правую часть выходной таблицы. Также обязательно надо войти в закладку «Настройка вывода полей» и там задать количество десятичных знаков после запятой (в данном случае 1). После этого нажать кнопку «ОК» и задать имя файла, в который будет записана таблица. Полученную таблицу также следует представить в курсовой работе, в данном случае это табл.2.4.

Таблица 2.4

Год	Значение	Погрешность восст.
		(абс.),мм
1891	10,5	8,6
1893	2,1	8,6
1894	5,7	8,6
1895	6,9	8,6
1897	39,0	8,6
1898	55,7	8,6
1899	31,9	8,6
1900	16,4	8,6
1901	14,0	8,6

Многолетний ряд наблюденных и восстановленных значений осадков января для метеостанции Няксимволь
Год	Значение Погрешность восст.	
		(абс.),мм
1902	5,7	8,6
1903	18,8	8,6
1904	29,5	8,6
1906	43,8	8,6
1907	0,9	8,6
1908	14,0	8,6
1909	15,2	8,6
1910	17,6	8,6
1911	10,5	8,6
1912	20,0	8,6
1913	17,6	8,6
1914	31,9	8,6
1915	28,3	8,6
1916	35,5	8,6
1917	43,8	8,6
1923	10,5	8,6
1924	10,5	8,6
1925	24,7	8,6
1926	20,0	8,6
1928	25,9	8,6
1930	8,1	8,6
1931	21,2	8,6
1932	18,8	8,6
1933	18,0	0,0
1934	6,0	0,0
1935	14,0	0,0
1936	27,0	0,0
1937	7,0	0,0
1938	22,0	0,0
1939	22,0	0,0
1940	31,0	0,0
1941	26,0	0,0
1942	21,0	0,0
1943	8,0	0,0
1944	30,0	0,0
1945	16,0	0,0
1946	31,0	0,0
1947	21,0	0,0
1948	18,0	0,0
1949	15,0	0,0
1950	16,0	0,0

Год	Значение	Погрешность восст.
		(абс.),мм
1951	32,0	0,0
1952	18,0	0,0
1953	17,0	0,0
1954	18,0	0,0
1955	17,0	0,0
1956	30,0	0,0
1957	26,0	0,0
1958	34,0	0,0
1959	29,0	0,0
1960	44,0	0,0
1961	24,0	0,0
1962	26,0	0,0
1963	27,0	0,0
1964	35,0	0,0
1965	31,0	0,0
1966	15,0	0,0
1967	23,0	0,0
1968	39,0	0,0
1969	9,0	0,0
1970	27,0	0,0
1971	30,0	0,0
1972	23,0	0,0
1973	26,0	0,0
1974	8,0	0,0
1975	28,0	0,0
1976	59,0	0,0
1977	35,0	0,0
1978	23,0	0,0
1979	23,0	0,0
1980	23,0	0,0
1981	15,0	0,0
1982	38,0	0,0
1983	35,0	0,0
1984	11,0	0,0
1985	51,0	0,0
1986	27,0	0,0
1987	34,0	0,0
1988	24,0	0,0
1989	33,0	0,0
1990	60,0	0,0
1991	37,0	0,0

Год	Значение	Погрешность восст.
		(абс.),мм
1992	45,0	0,0
1993	34,0	0,0
1994	37,0	0,0
1995	12,0	0,0
1996	7,0	0,0
1997	12,0	0,0
1998	46,2	8,6
1999	49,7	8,6
2000	54,5	8,6
2001	40,2	8,6
2002	42,6	8,6
2003	42,0	0,0
2004	33,0	0,0

Помимо многолетнего ряда имеется возможность получить более детальную информацию об эффективности восстановления за каждый год. При нажатии кнопки «Показать подробную характеристик таблицу восстановления данных» появляется таблица, которая включает в себя на каждый восстановленный год: восстановленное значение, используемое уравнение регрессии, его коэффициент корреляции, стандартную погрешность восстановления, относительную погрешность восстановления в % и номера аналогов, участвующих в восстановлении. Эту таблицу при нажатии кнопок «Файл», «Записать таблицу в файл» и при перенесении полей из левой части в правую и нажатии кнопки «Настройка вывода полей», где обязательно задается количество десятичных знаков после запятой, затем также следует записать в файл формата Word. В качестве примера эта таблица также приводится в курсовой работе (табл.2.5).

Таблица 2.5

Характеристики эффективности восстановления осадков за каждый год на метеостанции Няксимволь

Год	Значе	Уравнение	Коэ	Ста	Относ	Коды
	ние	1	ф.ко	нд.п	ит.пог	посто
			ррел	огре	решн	B-
			яци	шно	ость,	анало
			И	сть	%	гов
1891	10,5	Y = 0,7932 X + 7,0291	0,67	8,6	82,3	23631
1893	2,1	Y = 0,7932 X + 7,0291	0,67	8,6	404,5	23631
1894	5,7	Y = 0,7932 X + 7,0291	0,67	8,6	151,1	23631
1895	6,9	Y = 0,7932 X + 7,0291	0,67	8,6	125,0	23631
1897	39,0	Y = 0,7932 X + 7,0291	0,67	8,6	22,1	23631
1898	55,7	Y = 0,7932 X + 7,0291	0,67	8,6	15,5	23631
1899	31,9	Y = 0,7932 X + 7,0291	0,67	8,6	27,0	23631
1900	16,4	Y = 0,7932 X + 7,0291	0,67	8,6	52,5	23631
1901	14,0	Y = 0,7932 X + 7,0291	0,67	8,6	61,4	23631
1902	5,7	Y = 0,7932 X + 7,0291	0,67	8,6	151,1	23631
1903	18,8	Y = 0,7932 X + 7,0291	0,67	8,6	45,8	23631
1904	29,5	Y = 0,7932 X + 7,0291	0,67	8,6	29,2	23631
1906	43,8	Y = 0,7932 X + 7,0291	0,67	8,6	19,7	23631
1907	0,9	Y = 0,7932 X + 7,0291	0,67	8,6	917,3	23631
1908	14,0	Y = 0,7932 X + 7,0291	0,67	8,6	61,4	23631
1909	15,2	Y = 0,7932 X + 7,0291	0,67	8,6	56,6	23631
1910	17,6	Y = 0,7932 X + 7,0291	0,67	8,6	48,9	23631
1911	10,5	Y = 0,7932 X + 7,0291	0,67	8,6	82,3	23631
1912	20,0	Y = 0,7932 X + 7,0291	0,67	8,6	43,1	23631
1913	17,6	Y = 0,7932 X + 7,0291	0,67	8,6	48,9	23631
1914	31,9	Y = 0,7932 X + 7,0291	0,67	8,6	27,0	23631
1915	28,3	Y = 0,7932 X + 7,0291	0,67	8,6	30,4	23631
1916	35,5	Y = 0,7932 X + 7,0291	0,67	8,6	24,3	23631
1917	43,8	Y = 0,7932 X + 7,0291	0,67	8,6	19,7	23631
1923	10,5	Y = 0,7932 X + 7,0291	0,67	8,6	82,3	23631
1924	10,5	Y = 0,7932 X + 7,0291	0,67	8,6	82,3	23631
1925	24,7	Y = 0,7932 X + 7,0291	0,67	8,6	34,8	23631
1926	20,0	Y = 0,7932 X + 7,0291	0,67	8,6	43,1	23631
1928	25,9	Y = 0,7932 X + 7,0291	0,67	8,6	33,2	23631
1930	8,1	Y = 0,7932 X + 7,0291	0,67	8,6	106,6	23631
1931	21,2	Y = 0,7932 X + 7,0291	0,67	8,6	40,7	23631
1932	18,8	Y = 0,7932 X + 7,0291	0,67	8,6	45,8	23631
1998	46,2	$Y = \overline{0,7932} X + 7,0291$	0,67	8,6	18,7	23631
1999	49,7	$Y = \overline{0,7932} X + 7,0291$	0,67	8,6	17,3	23631
2000	54,5	Y = 0,7932 X + 7,0291	0,67	8,6	15,8	23631

Год	Значе	Уравнение	Коэ	Ста	Относ	Коды
	ние		ф.ко	нд.п	ИТ.ПОГ	посто
			ррел	огре	решн	В-
			яци	шно	ость,	анало
			И	сть	%	гов
2001	40,2	Y = 0,7932 X + 7,0291	0,67	8,6	21,4	23631
2002	42,6	Y = 0,7932 X + 7,0291	0,67	8,6	20,2	23631

Еще одна таблица, которая в качестве примера приводится в курсовой работе – это список используемых аналогов, которая вызывается по кнопке «Показать список используемых аналогов для данного пункта». Эта таблица также записывается в файл и приводится в курсовой работе (табл.2.6). В данном случае для восстановления использовался только один аналог – метеостанция Березово.

Таблица 2.6

Список метеостанций аналогов, использованных для восстановления осадков на метеостанции Няксимволь

Код	Наименование	Кол	Период	Широта	Долгота
		-BO			
23631	Berezovo, AMSG	102	1891 - 2004	63,9000	65,1000

После выполнения программы все полученные результаты следует обязательно записать в базу данных восстановленных значений нажатием кнопки «+» в закладке «Восстановленный ряд» (Копировать все восстановленные значения в БД Гидрорасчеты).

Для вызова восстановленных данных из соответствующей базы следует в главном меню ПК «Гидрорасчеты» войти в закладку «Восстановленные данные», затем в закладку «Работа с данными», «Выбор данных» и затем следует выбрать из списка восстановленную характеристику, в данном случае осадки за январь («Январь»). После этого появится таблица с наблюденными и восстановленными данными. В качестве примера в курсовой работе следует привести на одном рисунке два графика: исходный ряд наблюдений и ряд после процедуры восстановления. В данном случае в качестве примера на рис.2.13 приведены два временных ряда осадков января по метеостанции Няксимволь: короткий ряд наблюдений продолжительностью 67 лет и приведенный к многолетнему период, продолжительность которого стала 104 года.

Рис.2.13. Исходный (вверху) и восстановленный (внизу) многолетние ряды осадков января на метеостанции Няксимволь

2.3. Расчет климатических характеристик в стационарных условиях

Основная задача, для которой осуществляются расчеты в это определение параметров стационарных условиях _ И расчетных климатических характеристик редкой повторяемости. программа служит «Обеспеченность», Для этой цели а теоретические положения выполнения этих расчетов приведены в Лабораторной работе №3 в Практикуме по климатологии, Часть 1. Программа предназначена для определения основных расчетных характеристик и параметров распределения при наличии данных аппроксимации наблюдений на основе аналитическими распределениями С.Н.Крицкого и М.Ф.Менкеля и Пирсона 3 типа и при определении параметров распределения методами моментов, приближенно наибольшего правдоподобия, наименьших квадратов и подбором отношения Cs/Cv пользователем.

Программа «Обеспеченность» может вызываться как из основного меню ПК «Гидрорасчеты», так и из внутреннего меню выбора климатической характеристики, для которой после выполняются расчеты. В обоих случаях это функция меню «Программы» и в нем «Расчет обеспеченных характеристик по однородным данным». Для расчета по программе используются ряды, приведенные к многолетнему периоду («Восстановленные данные», «Работа с данными», «Выбор данных» и далее рассматриваемая климатическая характеристика, в данном случае - январские осадки и затем «Значение») или исходные ряды наблюдений, если по программе «Аналог» удалось не восстановить ни одного года для данного пункта.

В данном случае для 5 пунктов наблюдений используются ряды, приведенные к многолетнему периоду, а для остальных 7 пунктов, где не было получено восстановленных данных, исходные ряды наблюдений.

программе R качестве примера расчета ПО «Обеспеченность» рассмотрим ряд сумм осадков января на метеостанции Няксимволь, приведенный к многолетнему периоду. выбора климатической характеристики запуска После И программы (кнопка «ОК» и сообщение «Данные переданы в программу расчета обеспеченных характеристик!», «OK») осуществляется переход исходное меню программы в «Обеспеченность», как показано на рис.2.14.

На экране рис.2.14 представлена информация о пункте наблюдений, рассматриваемой характеристике, периоде наблюдений, который можно изменить при вводе значений в соответствующие поля, расположенные на контрольной панели в верхней части экрана. В левом верхнем окне представлена таблица хронологического ряда наблюдений, а справа от нее – окно хронологического графика. В левом нижнем окне приведена таблица эмпирических обеспеченностей, ранжированных значений ряда и соответствующих им лет, а справа - окно с графиком эмпирического распределения. Каждая таблица и график могут быть записаны в файлы.

Рис.2.14. Главное меню программы «Обеспеченность»

Переход к вычислительному блоку осуществляется нажатием кнопки «Расчет». На появившемся экране (Рис.2.15) следует задать параметры расчета. В данном случае выбрано распределение Крицкого-Менкеля и метод наименьших квадратов для расчета параметров распределения.

распрадологии			
распределение Крицкого-I	Менкеля		
усеченное распределение	Крицкого-Менкел	ія	
год определения параметро	в распределения		
С метод моментов			
📀 метод наименьших квад	ратов (МНК)		
С подбор отношения Cs/Cv	и пользователем		
метод наибольшего прав	вдоподобия		
С задание параметров рас	спределения поль	зователем	
	_	Задать парамет	ры
П ичитывать поправки на с	омещение Су Са	r(1)	

Рис.2.15. Экран задания параметров расчета в программе «Обеспеченность»

Выбор параметров аналитического распределения для определения расчетных характеристик выполняется в следующей последовательности:

• Выбор типа распределения - трехпараметрическое распределение Крицкого-Менкеля или распределение Пирсона III типа (биномиальная кривая).

• Выбор метода определения параметров распределения – выбирается один из методов: моментов, наименьших квадратов, задание отношения Cs/Cv пользователем или наибольшего правдоподобия.

Если выбрано задание отношения Cs/Cv пользователем, то аналитическое распределение сначала строится на основании эмпирических характеристик методом моментов (по выбранному типу распределения), а затем пользователь задает (подбирает) это отношение прямо в окне графика. Пользователь также может задать все характеристики распределения (выбранного типа распределения) при выборе соответствующего переключателя и при нажатии на кнопку «Задать параметры». В открывшемся диалоговом окне следует задать требуемые параметры (среднее значение. коэффициент вариации Cv. отношение Cs/Cv. коэффициент автокорреляции). Если какие-либо параметры не заданы пользователем, то они будут рассчитаны на основании других заданных параметров и характеристик эмпирического распределения.

• Учет поправок на смещение - при установленном флажке при выполнении расчетов будут учитываться поправки на смещение при определении коэффициентов вариации Cv, асимметрии Cs и автокорреляции R(1).

После задания типа распределения и метода расчета параметров осуществляется расчет (клавиша «Дальше») аналитической аппроксимации эмпирического распределения, что представляется в следующем окне в виде графика. Пример показан на рис.2.16 при задании аналитического распределения Крицкого-Менкеля и метода наименьших квадратов для расчета параметров распределения осадков января на метеостанции Няксимволь по ряду, приведенному к многолетнему периоду.

Рис.2.16. Результаты аппроксимации эмпирического распределения аналитическим распределением для осадков января на метеостанции Няксимволь

При выборе в верхней строке аналитического распределения Крицкого-Менкеля для него в окне легенды (слева) приводятся: средняя погрешность аппроксимации (в данном 12,4%), случае E1=0.124 или максимальная погрешность аппроксимации (в данном случае Е2=0,317 или 31,7%), а также параметры выбранной аппроксимации Cv=0,518, Cs/Cv=0,889 и Cs=0,460.

Целью проводимых расчетов является определение надежной климатической нормы (среднего многолетнего значения) по ряду, приведенному к многолетнему периоду, а также расчетных климатических характеристик редкой повторяемости: повторяемость 1 раз в 100 лет и 1 раз в 200 лет. В данном случае рассматриваются суммы твердых осадков января для И практических расчетов интерес представляют их наибольшие значения. Поэтому повторяемости 1 раз в 100 лет соответствует квантиль распределения обеспеченностью 1%, а повторяемости 1 раз в 200 лет – квантиль обеспеченностью 0,5%, т.е. значения в верхней части кривой распределения. Если бы рассматривались осадки летнего месяца для оценки степени засушливости, то интерес представляли бы наименьшие значения осадков в нижней части кривой, и повторяемость 1 раз в 100 и 200 лет

соответствовала бы обеспеченности 99% и 99,5% соответственно. Если рассматриваются другие климатические характеристики, например, температура воздуха, то выбор обеспеченности (в верхней или нижней частях кривой) также зависит OT рассматриваемой задачи. Если исследуются условия засухи, то выбираются обеспеченности 1% и 0,5% для температуры июля. Для температуры января могут решаться задачи и анализа самых низких температур (обеспеченность 99% и 99,5%) и высоких (обеспеченность 1% и 0,5%), например, при оценке ожидаемого При использовании климата. программы потепления «Обеспеченность» следует иметь в виду, что она была разработана для гидрологических расчетов, где отсутствуют отрицательные предназначена работы значения и поэтому не для с отрицательными температурами и другими климатическими характеристиками, которые могут находиться в отрицательной области. Поэтому отрицательные температуры перед применением «Обеспеченность» следует перевести программы в положительную область, например, представив в градусах Кельвина или добавив константу.

аппроксимация Ha рис.2.16 верхней части кривой обеспеченности недостаточно эффективна, поэтому следует перейти к другой аппроксимации («Расчет», «Выполнить новый расчет»). Для нового расчета выбираем также распределение Крицкого-Менкеля и «Подбор отношения Cs/Cv пользователем». В результате подбора выбрано отношение Cs/Cv=1,5 при котором достигается наиболее эффективная аппроксимация эмпирического распределения аналитическим в верхней части кривой, как показано на рис.2.17.

Рис.2.17. Подобранная эффективная аппроксимация эмпирического распределения осадков января на метеостанции Няксимволь

После получения эффективной аппроксимации следует выйти из расчетного блока, нажав «Расчет» и затем «Переход к отчету». После этого формируется окно результатов расчета, как показано на рис.2.18, в котором слева приведены варианты выполненных расчетов, а справа – параметры распределения, соответствующие данному варианту.

Рис.2.18. Окно результатов расчетов по программе «Обеспеченность»

На следующем шаге следует выбрать вариант расчетов для просмотра и записи результатов, высветив требуемый вариант двойным щелчком мыши. После нажатия функции «Отчеты» для выбранного варианта открывается меню, в котором можно сформировать стандартный файл отчета в формате редактора Word, вызвать график аппроксимации, отредактировать его, если необходимо, и записать в буфер обмена или в файл, а также посмотреть таблицу ординат аналитической аппроксимации. В качестве примера в текст курсовой работы следует привести таблицы расчетов для одного из рядов. В табл. 2.7 – 2.9 приведены исходные данные, ординаты эмпирического распределения, параметры и квантили (расчетные значения) аналитической аппроксимации для многолетнего ряда осадков января на метеостаниии Няксимволь.

Таблица 2.7

.Nº	Год	Значени	Обеспечен	Значение ранжиров.	Год(Р)
		е,	ность Р(%)	MM	
		MM			
1	1891	10,5	0,952	60,0	1990
2	1893	2,13	1,905	59,0	1976
3	1894	5,70	2,857	55,7	1898
4	1895	6,89	3,810	54,5	2000
5	1897	39,0	4,762	51,0	1985
6	1898	55,7	5,714	49,7	1999
7	1899	31,9	6,667	46,2	1998
8	1900	16,4	7,619	45,0	1992
9	1901	14,0	8,571	44,0	1960
10	1902	5,70	9,524	43,8	1906
11	1903	18,8	10,476	43,8	1917
12	1904	29,5	11,429	42,6	2002
13	1906	43,8	12,381	42,0	2003
14	1907	0,940	13,333	40,2	2001
15	1908	14,0	14,286	39,0	1968
16	1909	15,2	15,238	39,0	1897
17	1910	17,6	16,190	38,0	1982
18	1911	10,5	17,143	37,0	1991
19	1912	20,0	18,095	37,0	1994
20	1913	17,6	19,048	35,5	1916

Исходные данные и характеристики эмпирического распределения	
(осадки января по метеостанции Няксимволь)	

.Nº	Год	Значени	Обеспечен	Значение ранжиров.	Год(Р)
		е,	ность Р(%)	MM	
		MM			
21	1914	31,9	20,000	35,0	1964
22	1915	28,3	20,952	35,0	1977
23	1916	35,5	21,905	35,0	1983
24	1917	43,8	22,857	34,0	1958
25	1923	10,5	23,810	34,0	1987
26	1924	10,5	24,762	34,0	1993
27	1925	24,7	25,714	33,0	1989
28	1926	20,0	26,667	33,0	2004
29	1928	25,9	27,619	32,0	1951
30	1930	8,08	28,571	31,9	1914
31	1931	21,2	29,524	31,9	1899
32	1932	18,8	30,476	31,0	1940
33	1933	18,0	31,429	31,0	1946
34	1934	6,00	32,381	31,0	1965
35	1935	14,0	33,333	30,0	1944
36	1936	27,0	34,286	30,0	1956
37	1937	7,00	35,238	30,0	1971
38	1938	22,0	36,190	29,5	1904
39	1939	22,0	37,143	29,0	1959
40	1940	31,0	38,095	28,3	1915
41	1941	26,0	39,048	28,0	1975
42	1942	21,0	40,000	27,0	1936
43	1943	8,00	40,952	27,0	1963
44	1944	30,0	41,905	27,0	1970
45	1945	16,0	42,857	27,0	1986
46	1946	31,0	43,810	26,0	1957
47	1947	21,0	44,762	26,0	1962
48	1948	18,0	45,714	26,0	1973
49	1949	15,0	46,667	26,0	1941
50	1950	16,0	47,619	25,9	1928
51	1951	32,0	48,571	24,7	1925
52	1952	18,0	49,524	24,0	1961
53	1953	17,0	50,476	24,0	1988
54	1954	18,0	51,429	23,0	1967
55	1955	17,0	52,381	23,0	1972
56	1956	30,0	53,333	23,0	1978
57	1957	26,0	54,286	23,0	1979
58	1958	34,0	55,238	23,0	1980
59	1959	29,0	56,190	22,0	1939
60	1960	44,0	57,143	22,0	1938
61	1961	24,0	58,095	21,2	1931

.№	Год	Значени	Обеспечен	Значение ранжиров.	Год(Р)
		е,	ность Р(%)	MM	
		MM			
62	1962	26,0	59,048	21,0	1947
63	1963	27,0	60,000	21,0	1942
64	1964	35,0	60,952	20,0	1912
65	1965	31,0	61,905	20,0	1926
66	1966	15,0	62,857	18,8	1932
67	1967	23,0	63,810	18,8	1903
68	1968	39,0	64,762	18,0	1948
69	1969	9,00	65,714	18,0	1933
70	1970	27,0	66,667	18,0	1954
71	1971	30,0	67,619	18,0	1952
72	1972	23,0	68,571	17,6	1910
73	1973	26,0	69,524	17,6	1913
74	1974	8,00	70,476	17,0	1955
75	1975	28,0	71,429	17,0	1953
76	1976	59,0	72,381	16,4	1900
77	1977	35,0	73,333	16,0	1945
78	1978	23,0	74,286	16,0	1950
79	1979	23,0	75,238	15,2	1909
80	1980	23,0	76,190	15,0	1981
81	1981	15,0	77,143	15,0	1966
82	1982	38,0	78,095	15,0	1949
83	1983	35,0	79,048	14,0	1908
84	1984	11,0	80,000	14,0	1935
85	1985	51,0	80,952	14,0	1901
86	1986	27,0	81,905	12,0	1995
87	1987	34,0	82,857	12,0	1997
88	1988	24,0	83,810	11,0	1984
89	1989	33,0	84,762	10,5	1891
90	1990	60,0	85,714	10,5	1911
91	1991	37,0	86,667	10,5	1924
92	1992	45,0	87,619	10,5	1923
93	1993	34,0	88,571	9,00	1969
94	1994	37,0	89,524	8,08	1930
95	1995	12,0	90,476	8,00	1974
96	1996	7,00	91,429	8,00	1943
97	1997	12,0	92,381	7,00	1937
98	1998	46,2	93,333	7,00	1996
99	1999	49.7	94,286	6,89	1895
100	2000	54.5	95,238	6,00	1934
101	2001	40,2	96,190	5,70	1902
102	2002	42,6	97,143	5,70	1894

.№	Год	Значени	Обеспечен	Значение ранжиров.	Год(Р)
		е,	ность Р(%)	MM	
		MM			
103	2003	42,0	98,095	2,13	1893
104	2004	33,0	99,048	0,940	1907

Таблица 2.8

Параметры аналитического распределения вероятности (осадки января по метеостанции Няксимволь)

N⁰	Характеристика	Значение характеристики
1	Тип распределения	Крицкого-Менкеля
2	Метод опред.параметров	подбор отношения Cs/Cv
3	Расчет с учетом поправок Cv и Cs/Cv	нет
4	Средняя ошибка Е1	0,132
5	Макс. отклонение анал.значения от	0,317
	эмпир. Е2	
6	Отношение Cs/Cv	1.5
7	Коэффициент Сv	0,518
8	Коэффициент Cs	0.777
9	Коэфф.автокорр.r(1)	0,359
10	Среднее	25,223

Таблица 2.9

Ординаты кривой аналитического распределения (осадки января по метеостанции Няксимволь)

N⁰	Обеспеченность	Коэффициент К	Значение
	P(%)		(мм)
1	0,001	4,170	105
2	0,01	3,665	92,4
3	0,03	3,404	85,9
4	0,05	3,278	82,7
5	0,1	3,110	78,4
6	0,3	2,817	71,1
7	0,5	2,680	67,6
8	1,0	2,481	62,6
9	3,0	2,135	53,8
10	5,0	1,958	49,4
11	10,0	1,705	43,0
12	20,0	1,413	35,6
13	25,0	1,309	33,0
14	30,0	1,215	30,7

15	40,0	1,060	26,7
16	50,0	0,928	23,4
17	60,0	0,802	20,2
18	70,0	0,677	17,1
19	75,0	0,615	15,5
20	80,0	0,546	13,8
21	90,0	0,391	9,87
22	95,0	0,287	7,25
23	97,0	0,231	5,81
24	99,0	0,146	3,69
25	99,5	0,110	2,78
26	99,7	0,096	2,43
27	99,9	0,058	1,48

Аналогичные расчеты по программе «Обеспеченность» выполняются для всех остальных рядов наблюдений в выбранном регионе. Основные результаты расчетов в виде нормы (среднего многолетнего значения) и квантилей обеспеченности 1% и 0,5%, соответствующих повторяемости 1 раз в 100 и 200 лет, заносятся в таблицу курсовой работы (пример табл. 2.10).

Таблица 2.10

Средние и расчетные значения осадков января на метеостанциях севера Западной Сибири

Код	Название	Широта	Долгота	Среднее	1%	0,5%
20674	Остров	73,5000	80,3000	28,4	169	214
	Диксон					
23146	Мыс	68,5000	73,6000	27,1	97,2	113
	Каменный					
23242	Новый Порт	67,7000	73,0000	19,5	87,3	105
23256	Тазовское	67,5000	78,7000	23,5	109	132
23330	Салехард	66,5000	66,5000	20,0	48,7	52,6
23365	Сидоровск	66,6000	82,3000	20,6	49,4	53,2
23552	Тарко-Сале	64,9000	77,8000	25,8	53,1	56,7
23631	Березово	63,9000	65,1000	22,8	53,0	57,2
23662	Толика	64,0000	82,1000	27,4	58,5	62,6
23724	Няксимволь	62,4000	60,9000	25,2	62,6	67,6
23734	Октябрьское	62,5000	66,1000	28,4	61,2	65,4
23849	Сургут	61,3000	73,5000	25,7	70,6	79,4

2.4. Пространственное обобщение климатических характеристик

Итогом расчетов в стационарных условиях является интерполяционная пространственная модель полученных климатических норм и расчетных климатических характеристик редкой повторяемости (1 раз в 100 и 200 лет). Для построения такой модели применяется или пространственный интерполятор ГИС MapInfo (5-ая Лабораторная работа в Практикуме по климатологии, часть 1), в котором реализован метод интерполяции по треугольникам, или пакет Surfer, в котором применяются разные методы интерполяции: кригинг, треугольников с линейной модифицированный интерполяцией, метод Шепарда, метол ближайшего соседа, полиномиальная регрессия, скользящего среднего и другие. Как для MapInfo, так и для пакета Surfer, входным файлом будет табл.2.10, переведенная в формат Excel. На рис.2.19-2.21 приведены результаты интерполяции норм осадков и осадков повторяемостью 1 раз в 100 и 200 лет для севера Западной Сибири, полученные с помощью интерполятора ГИС MapInfo. Следует отметить, что на рисунках необходимо также отображать и легенду с палитрой градаций цветов.

Рис.2.19. Пространственная модель средних многолетних осадков января (MapInfo)

Рис.2.20. Пространственная модель осадков января повторяемостью 1 раз в 100 лет (MapInfo)

Рис.2.21. Пространственная модель осадков января повторяемостью 1 раз в 200 лет (MapInfo)

На рис.2.22-2.24 показаны результаты интерполяции тем же методом треугольников в пакете Surfer.

Рис.2.22. Пространственная модель средних многолетних осадков января (Surfer)

Выводы по 2-ой главе

Анализ однородности эмпирических распределений Диксона осадков по статистическим критериям января И Смирнова-Граббса стационарности средних значений И и дисперсий их временных рядов по критериям Фишера И Стьюдента показал, что:

- из 12 эмпирических распределений только для одного случая (метеостанция Мыс Каменный) максимальный экстремум 1961 г. можно признать условно неоднородным при уровне значимости, соответствующем расчетному значению статистики критерия, равном 2,1%;

- по критерию Фишера из 12 рядов наблюдений нестационарными по дисперсиям оказались 5 рядов в основном на метеостанциях северной части рассматриваемой территории: Остров Диксон (резкое увеличение дисперсии с начала 1950х), Мыс Каменный (уменьшение дисперсии с конца 1960х, короткий ряд наблюдений с 1950 г.), Новый Порт (резкое увеличение дисперсии с 1950х), Тазовское (увеличение дисперсии с 1990х) и Няксимволь (рост с 1970х);

- по критерию Стьюдента из 12 рядов наблюдений нестационарными по средним (рост средних во 2-ой половине ряда

наблюдений) оказались 6 рядов на метеостанциях: Остров Диксон (резкое увеличение с 1950х), Новый Порт (резкое увеличение с 1950х), Салехард (резкое увеличение с 1940х), Тарко-Сале (резкое увеличение с 1950х), Березово (увеличение с 1950х) и Октябрьское (резкое увеличение с конца 1950х).

Из результатов оценки стационарности можно сделать вывод, что нестационарность дисперсий и средних значений имеет место в основном в 1950х и, скорее всего, обусловлена сменой регистрирующих приборов (дождемера на осадкомер системы Третьякова), что уменьшает выдуваемость твердых осадков и проявляется в основном на самых северных метеостанциях, где скорости ветра больше.

В связи с тем, что ряды осадков января достаточно слабо территории, восстановления пропусков связаны по для увеличения продолжительности рядов наблюдений И минимальное значение коэффициента корреляции было задано 0,65. Даже в этом случае из 12 рядов наблюдений привести к многолетнему периоду удалось всего 5 рядов и количество восстановленных лет для них варьирует от 10 (метеостанция Березово) до 37 (метеостанция Няксимволь). В среднем для 5 метеостанций ряды удалось удлинить на 18,6 года.

пункта наблюдений Для каждого как по рядам, приведенным к многолетнему периоду, так по рядам наблюдений, если восстановление не удалось осуществить, были рассчитаны распределений параметры расчетные климатические И характеристики редкой повторяемости 1 раз в 100 и 200 лет и результаты представлены на карте в виде пространственной интерполяционной модели. Установлено, что средние многолетние значения изменяются на рассматриваемой территории от 19,5 мм на метеостанции Новый Порт до 28,4 мм на метеостанциях Остров Диксон (северо-восток) и Октябрьское (юго-запад). Поэтому надежных закономерностей каких-либо норм осадков по территории не установлено. Вместе с тем осадки редкой повторяемости (1 раз в 100 и 200 лет) показывают закономерность их роста с запада на северо-восток: 48,7 и 52,5 мм в Салехарде и 169 и 214 мм на Острове Диксон.

58

3. Оценка климатических изменений

глава курсовой работы Третья посвящена оценке проявления современного изменения климата во временных рядах, что связано с построением нескольких моделей временных рядов, выбором из них наиболее эффективной и обобщение показателей нестационарных моделей по территории. Практически в данной главе осуществляется выполнение Лабораторной работы №1 из Практикума по климатологии Часть 2, но не для одной, а для всех метеостанций района на основе вычислительных программ, а также осуществляется обобщение показателей нестационарности по пространству средствами ГИС MapInfo (Лабораторная работа №5, Практикум по климатологии, Часть 1) и пакета Surfer, также как и предыдущей главе при построении пространственной модели для средних многолетних значений и расчетных климатических характеристик повторяемостью 1 раз в 100 и 200 лет.

3.1. Расчет параметров основных моделей временных рядов

Теоретические положения построения моделей временных рядов и выбора наиболее эффективной из них, приведены в Лабораторной работе №1 (Практикум по климатологии, Часть 2), там же в п.1.3.2 приведен алгоритм и описание базовой программы вычислительной для вычисления показателей эффективности нестационарных моделей. Базовая вычислительная программа называется TIMOD и предназначена для расчета показателей эффективности нестационарных моделей двух видов: линейного тренда (Дтр,%) и модели ступенчатых изменений (Дст,%) по отношению к модели стационарной выборки. Также в программе рассчитываются статистики критерия Фишера для этих двух показателей эффективности (Fтр и Fст) и коэффициент корреляции модели линейного тренда (Rтр). Программа ТІМОД работает с файлом, содержащим временные ряды для всех метеостанций рассматриваемого района.

Нестационарная модель считается эффективной, если Δtp или $\Delta ct \ge 10\%$ и нестационарная модель статистически значима, если Ftp или Fct больше их критических значений при уровне значимости α =5%. Отдельно для модели линейного тренда

оценивается статистическая значимость коэффициента корреляции Rтр, например, по Табл. 1 Практикума по климатологии, Часть 1.

Базовая вычислительная программа TIMOD вычисляет перечисленные показатели эффективности за весь период для каждого ряда наблюдений. Программа имеет следующие модификации:

- TIMOD1, в которой задается общий начальный год наблюдений для всех рядов в регионе;

- TIMOD2, в которой задается общий год ступенчатых изменений;

- TIMOD3, в которой задается как общий для всех рядов начальный год, так и одинаковый год ступенчатых изменений.

Последовательность расчета по программам следующая. Вначале по программе TIMOD выполняются расчеты за весь период наблюдений, который разный для каждого ряда и определяется наиболее повторяющийся период ступенчатых изменений. Далее в программе TIMOD2 задается выявленный общий год ступенчатых изменений и расчеты повторяются. Результаты расчетов по ТІМОД и ТІМОД2 сопоставляются для каждого ряда с целью оценки их устойчивости при задании одинакового для всех станций года ступенчатых изменений. Затем рассматривается моделирование только для современного периода. Для этого применяется программа TIMOD1 и начальный год например, наблюдений задается. 1960. По полученным результатам также устанавливается наиболее повторяющийся год ступенчатых изменений и затем вместе с начальным годом наблюдений (например, 1960 г.) он задается в программе TIMOD3. Таким образом, при расчете по четырем программам оценивается устойчивость параметров моделей во времени (при сравнении результатов расчетов по ТІМОД и ТІМОД1) и эффективность задания общей для всех рядов даты ступенчатых изменений.

Исходную информацию для программы TIMOD и ее модификаций следует представить в файле формата txt в виде трех полей: код станции, год, значение. Например:

25667 1925 15.6 25667 1927 18.2 25667 2017 16.9 25800 1900 11.5 25800 1901 13.2

25800 2017 17.1

Как следует из примера, год с отсутствием наблюдений исключается, и ряды метеостанций следуют друг за другом непрерывно, причем ряды располагаются так, чтобы код их метеостанций возрастал. После запуска программы TIMOD в командной строке по мере запроса следует задавать следующую информацию: имя исходного файла, общее число строк в файле и имя файла за записи результатов. В модификациях программы дополнительно следует задавать общий начальный год и год ступенчатых изменений.

В файл результатов записывается следующая информация по всем пунктам (пример):

38141	11.0	10.8	1.26	1.25	2.27	3.40 1997	1960	2016	57	0.46
38178	4.2	4.7	1.09	1.10	1.40	2.34 2005	1960	2016	57	0.29
38262	9.2	11.0	1.21	1.26	3.13	4.04 1975	1927	2016	90	0.42
38264	6.1	7.3	1.14	1.16	4.68	2.48 1972	1960	2016	57	0.35

.....

где на примере первой строки:

38141 – код метеостанции;

11.0 – отклонение модели тренда от стационарной модели в % (ΔTp ,%);

10.8 – отклонение модели ступенчатых изменений от стационарной модели в % ($\Delta c\tau$,%);

1.26 – расчетное значение статистики критерия Фишера при сравнении остаточных дисперсий стационарной модели и модели линейного тренда (Fтр);

1.25 – расчетное значение статистики критерия Фишера при сравнении остаточных дисперсий стационарной модели и модели ступенчатых изменений (Fcr);

2.27 – статистика критерия Фишера по сопоставлению дисперсий при разбиении ряда на две части по году ступенчатых изменений;

3.40 – статистика критерия Стьюдента по сопоставлению средних значений при разбиении ряда на две части по году ступенчатых изменений;

1975 – год ступенчатых изменений (Тст);

1927 – год начала наблюдений (Тнач);

2016 - год окончания наблюдений (Тк);

57 – число лет наблюдений (n);

0.46 – коэффициент корреляции модели линейного тренда (Rтр).

Файл с многолетними рядами наблюдений в формате txt формируется из базы данных ПК «Гидрорасчеты» для тех рядов, которые приведены к многолетнему периоду по программе «Аналог», и из исходного файла в формате Excel для тех рядов, которые не удалось привести к многолетнему периоду.

В качестве примера рассмотрим формирование исходного файла для программы TIMOD, состоящего из исходных и восстановленных осадков января по метеостанциям севера Западной Сибири. В связи с тем, что из 12 рядов наблюдений к многолетнему периоду удалось привести всего 5, за основу был взят файл исходных данных в формате Excel, который преобразован в файл, содержащий данные только осадков января, как показано на рис.3.1.

125 N	Microsoft Excel - jan.xls									
:81	Файл Пр	авка Вид	Вставка	Формат	Сервис Да	инные Окно	Справка			
in		6 61 4	ABS 68 1	C 105 199.		- 19 - 19	Σ + ∰	P : Ar	ial Cvr	• 10
	the sheet of				× 1 /	1 656				1001
		a 🗢 斗 I	2012		₩Ф Ответи	ть с изменения	ами Закон	чуить прове	DKY	
	E916	-	fx .							
	A	В	С	D	E	F	G	Н	1	J
1	20674	1917	6		1					
2	20674	1918	0							
3	20674	1919	2						_	
4	20674	1922	6						-	
5	20674	1923	13			-			-	
6	20674	1924	5			-				
7	20674	1925	8							
8	20674	1926	13							
9	20674	1927	3							
10	20674	1928	3							_
11	20674	1929	3						-	
12	20674	1930	6						-	-
13	20674	1931	. 0			-			-	
14	20674	1932	3							-
15	20674	1933	6						_	_
16	20674	1934	13							
17	20674	1935	6							
18	20674	1936	9							
19	20674	1937	11							
20	20674	1938	11							
21	20674	1939	13						-	
22	20674	1940	6			() · · · · · · · · · · · · · · · · · · ·			-	
23	20674	1941	11						_	
24	20674	1942	8		1					
25	20674	1943	27							
26	20674	1944	11							
27	20674	1945	6							
28	20674	1946	6							
29	20674	1947	5		-				-	
30	20674	1948	5						-	
31	20674	1949	6							
32	20674	1950	5		-					
33	20674	1951	13		-	-			-	-
34	20674	1952	75							-
35	20674	1953	77							
36	20674	1955	109							
37	20674	1956	62							

Рис.3.1. Исходные данные сумм осадков января по метеостанциям севера Западной Сибири

Экспорт рядов, приведенных к многолетнему периоду, осуществляется из соответствующей таблицы «Восстановленные данные» при нажатии функции «Файл», затем «Экспорт данных», «Записать в файл таблицу БД» и далее формирование полей таблицы и ее запись в файл формата Excel, как показано на Рис.3.2. При этом в окне «Настройка вывода полей» следует обязательно задать число требуемых цифр после запятой.

🔊 Гидрора			
Файл Работ	а с данными	🕨 Программы 🔛	Карта 🛕 Помощь
• Посты	🐱 Данные	наблюдений 🚧 Вс	сстановленные данные
_			
Reelate	1	1001 0001	
		1891 - 2004	Kon-bo = 104
Год	1	Погрешность, абс.	
1891	10.463	8.6	
1893	2.129	8.6	
1894	5.701	8.6	
1895	6.891	8.6	Редактирование формата экспорта данных 🛛 🗙 🗙
1897	39.033	8.6	The second se
1898	55.700	8.6	Настроика формата Настройка вывода полей
1899	31.891	8.6	
1900	16.415	8.6	Формат выходного файла
1901	14.034	8.6	The Alignment Except (Office 97 uppung)
1902	5.701	8.6	
1903	18.796	8.6	
1904	29.510	8.6	Выбор полей для записи в файл
1906	43.795	8.6	Доступные поля Выбранные поля
1907	0.939	8.6	Погрешность, абс. Год
1908	14.034	8.6	
1909	15.224	8.6	
1910	17.605	8.6	
1911	10.463	8.6	
1912	19.986	8.6	
1913	17.605	8.6	
1914	31.891	8.6	
1915	28.319	8.6	
1916	35.462	8.6	
1917	43.795	8.6	
1923	10.463	8.6	Изменить порядок вывода
1924	10.463	8.6	
1925	24.748	8.6	
1926	19.986	8.6	ОК Отмена Помощь
1928	25,938	86	

Рис.3.2. Запись таблицы ряда, приведенного к многолетнему периоду, в файл Excel

Затем из сформированного файла Excel восстановленный ряд копируется в файл с исходными данными и замещает соответствующий исходный ряд с учетом разницы в количестве строк. Аналогичным образом переводятся в файлы Excel остальные 4 ряда, приведенные к многолетнему периоду и замещают соответствующие исходные ряды. В результате будет сформирован файл в формате Excel, содержащий как исходные ряды наблюдений, если восстановление не было осуществлено, так и ряды, приведенные к многолетнему периоду. Сформированный файл Excel сохраняется в формате txt для дальнейшего расчета по программе ТІМОD. После расчета по программе ТІМОD результаты записываются в таблицу, которая помещается в курсовую работу. Для рассматриваемого примера осадков января на севере Западной Сибири результаты расчета по программе ТІМОD представлены в табл.3.1.

Таблица 3.1

код	Δтр,%	Δст,%	Fтp	Fcт	Тст	Тнач	Тк	n	Rтр
20674	5,4	17,5	1,12	1,47	1952	1917	2004	82	0,32
23146	12,8	17,5	1,32	1,47	1968	1951	1994	43	-0,49
23242	13,6	17	1,34	1,45	1955	1925	2004	75	0,5
23256	15,8	27,5	1,41	1,9	1991	1934	2004	67	0,54
23330	8,8	12,3	1,2	1,3	1939	1891	2004	107	0,41
23365	20,7	16,5	1,59	1,43	1983	1939	2004	66	0,61
23552	8	10,2	1,18	1,24	1954	1937	2004	68	0,39
23631	9,1	9,2	1,21	1,21	1973	1891	2004	112	0,42
23662	7,6	15,6	1,17	1,4	1958	1937	2004	68	0,38
23724	8,6	9,1	1,2	1,21	1956	1891	2004	104	0,41
23734	12,1	13,1	1,29	1,32	1959	1891	2004	112	0,48
23849	2.4	7.3	1.05	1.16	1912	1891	1990	97	0.22

Результаты оценки эффективности нестационарных моделей для многолетних рядов осадков января (север Западной Сибири)

В табл.3.1 ярким шрифтом выделены случаи эффективных нестационарных моделей (∆тр или ∆ст ≥10%), статистически значимых статистик критерия Фишера Fтр и Fct (оценка, например, по таблице 14 Практикума по климатологии, часть 1) и статистически значимых коэффициентов корреляции уравнения Rтр (оценка, например, по таблице 1 линейного тренда Практикума по климатологии, часть 1). Как следует из результатов, из 12 рядов модель линейного тренда эффективна в 5 случаях, в одном статистически значима, а коэффициенты корреляции уравнения тренда со временем статистически значимы для всех 12 рядов. Модель ступенчатых изменений эффективна в 9 случаях и статистически значима в 4х случаях. В среднем показатель линейного тренда Дтр=10,4% (при эффективности модели вариации от 2,4% на метеостанции Сургут до 20,7% на метеостанции Сидоровск), а модели ступенчатых изменений -14,4% (при вариации от 7,3% на метеостанции Сургут до 27,5% на

метеостанции Тазовское). Для эффективных нестационарных моделей установленный год ступенчатых изменений варьирует от 1939 до 1991 и в среднем равен 1958 г. Графики наиболее нестационарных моделей приведены на рис.3.3, где показаны годы ступенчатых переходов и линии средних значений осадков за каждый из двух стационарных периодов. В связи с тем, что для метеостанции Сидоровск (23365) наиболее эффективной оказалась модель линейного тренда, то в качестве первого ступенчатого изменения был добавлен еще и 1957 г.

Рис.3.3. Примеры нестационарных временных рядов сумм осадков января с разными годами ступенчатых изменений

Из анализа графиков нестационарных временных рядов следует, для них характерна модель ступенчатых изменений, причем даты ступенчатых изменений разные и видимо должны быть связаны с разными причинами. Так, на метеостанции Остров Диксон (20674) резкий рост среднего значения и дисперсии с 1952 г. связан, скорее всего, с заменой дождемера на осадкомер, вследствие чего потери твердых осадков за счет ветрового выдувания резко уменьшились. На метеостанции Тазовское (23256) резкое увеличение осадков произошло в 1991 г. и также связано с локальными причинами. На метеостанции Мыс

Каменный (23146) в 1968 г. произошло единственное из всех станций уменьшение осадков. На метеостанции Сидоровск (23365) можно отметить две даты последовательного ступенчатого роста осадков: 1957 г. и 1983 г. Для метеостанции Новый Порт (23242) резкий рост осадков с 1955 г., для метеостанции Толика (23662) рост с 1958 г. и для метеостанции Октябрьское (23734) с 1959 г. рост также, скорее всего, обусловлен сменой регистрирующих приборов, как и на метеостанции Остров Диксон. Практически из нестационарных моделей при статистически 11 значимом коэффициенте корреляции со временем для 6 из них дата ступенчатого роста осадков относится к 1950м годам. В связи с тем, что эти годы являются разными и нестационарность обусловлена локальными изменениями на каждой метеостанции, средний год ступенчатых изменений не задавался и расчеты по программе TIMOD2 не выполнялись.

Вместе тем. интерес с представляет насколько устойчивыми будут нестационарные модели, если рассматривать последний период наблюдений с 1960 г., когда смена приборов уже должна была завершиться. Поэтому были выполнены расчеты по программе TIMOD1, результаты которых представлены в табл. 3.2.

Таблииа 3.2

]	рядов осадков января при общем начале рядов наблюдений 1960 г.											
(север Западной Сибири)												
код	Δтр,%	Δст,%	Fтp	Fct	Тст	Тнач	Тк	Ν	Rтр			
20674	2,4	2,9	1,05	1,06	1972	1960	2004	42	-0,22			
23146	17,9	12,4	1,48	1,3	1970	1960	1994	34	-0,57			
23242	0,1	1,3	1	1,03	1971	1961	2004	44	-0,04			
23256	16,7	27,7	1,44	1,91	1991	1960	2004	45	0,55			

Результаты оценки эффективности нестационарных моделей для многолетних
рядов осадков января при общем начале рядов наблюдений 1960 г.
(север Западной Сибири)

код	Δтр,%	Δст,%	Fтр	Fст	Тст	Тнач	Тк	N	Ктр
20674	2,4	2,9	1,05	1,06	1972	1960	2004	42	-0,22
23146	17,9	12,4	1,48	1,3	1970	1960	1994	34	-0,57
23242	0,1	1,3	1	1,03	1971	1961	2004	44	-0,04
23256	16,7	27,7	1,44	1,91	1991	1960	2004	45	0,55
23330	0,4	2,5	1,01	1,05	1990	1960	2004	45	0,09
23365	9,3	12,3	1,22	1,3	1986	1960	2004	45	0,42
23552	3	7,1	1,06	1,16	1970	1960	2004	45	0,24
23631	3,9	4,8	1,08	1,1	1982	1960	2004	45	0,28
23662	0,5	2,4	1,01	1,05	1988	1960	2004	45	-0,1
23724	3,9	5,9	1,08	1,13	1985	1960	2004	45	0,28
23734	0,2	0,6	1	1,01	1975	1960	2004	45	0,07
23849	0,4	1,2	1,01	1,03	1978	1960	1990	31	0,09

Из результатов табл.3.2 следует, что за последний период наблюдений с 1960 г. нестационарными являются всего 3 ряда на метеостанциях: Мыс Каменный (23146), Тазовское (23256) и Сидоровск (23365). Эти ряды представлены на рис.3.3 и даты ступенчатого перехода от одних стационарных условий к другим в них существенно не изменились при уменьшении длины ряда. Так, для метеостанции Мыс Каменный (23146) дата ступенчатого перехода по данным за весь период наблюдений относится к 1968 г., а по данным последней части ряда – к 1970 г. Для метеостанции Сидоровск (23365) дата ступенчатого перехода 1983 г. на 1986 г., а для метеостанции Тазовское изменилась с (23256) дата не изменилась (в том и другом случаях – 1991 г.). Для остальных рядов, где нестационарность была обусловлена сменой измерительных приборов, с 1960 г. преобладающей является стационарная модель.

3.2. Пространственное обобщение полученных параметров нестационарных моделей по территории

пространственной распределенности Для оценки нестационарности следует выявленной построить интерполяционную рассчитанных пространственную модель стационарной модели, что осуществляется, отклонений ОТ например, интерполятором ГИС MapInfo или в пакете Surfer. Прежде всего, следует сформировать исходные таблицы в редакторе Excel по результатам расчетов (табл.3.1 и 3.2) с требуемыми полями для интерполяции, как показано в табл. 3.3 и 3.4

Таблица 3.3

		-	-			
Код	Название	Широта	Долгота	Δтр,%	Δст,%	Rтр
20674	Остров Диксон	73,5000	80,3000	5,4	17,5	0,32
23146	Мыс Каменный	68,5000	73,6000	12,8	17,5	-0,49
23242	Новый Порт	67,7000	73,0000	13,6	17	0,5
23256	Тазовское	67,5000	78,7000	15,8	27,5	0,54

Показатели нестационарных моделей осадков января на метеостанциях севера Западной Сибири за весь период наблюдений

23330	Салехард	66,5000	66,5000	8,8	12,3	0,41
23365	Сидоровск	66,6000	82,3000	20,7	16,5	0,61
23552	Тарко-Сале	64,9000	77,8000	8	10,2	0,39
23631	Березово	63,9000	65,1000	9,1	9,2	0,42
23662	Толика	64,0000	82,1000	7,6	15,6	0,38
23724	Няксимволь	62,4000	60,9000	8,6	9,1	0,41
23734	Октябрьское	62,5000	66,1000	12,1	13,1	0,48
23849	Сургут	61,3000	73,5000	2,4	7,3	0,22

Таблииа 3.4

Показатели нестационарных моделей осадков января на метеостанциях севера Западной Сибири за последний период наблюдений с 1960 г.

Код	Название	Широта	Долгота	Δтр,%	Δст,%	Rтр
20674	Остров Диксон	73,5000	80,3000	2,4	2,9	-0,22
23146	Мыс Каменный	68,5000	73,6000	17,9	12,4	-0,57
23242	Новый Порт	67,7000	73,0000	0,1	1,3	-0,04
23256	Тазовское	67,5000	78,7000	16,7	27,7	0,55
23330	Салехард	66,5000	66,5000	0,4	2,5	0,09
23365	Сидоровск	66,6000	82,3000	9,3	12,3	0,42
23552	Тарко-Сале	64,9000	77,8000	3	7,1	0,24
23631	Березово	63,9000	65,1000	3,9	4,8	0,28
23662	Толика	64,0000	82,1000	0,5	2,4	-0,1
23724	Няксимволь	62,4000	60,9000	3,9	5,9	0,28
23734	Октябрьское	62,5000	66,1000	0,2	0,6	0,07
23849	Сургут	61,3000	73,5000	0,4	1,2	0,09

Результаты интерполяции показателей эффективности нестационарных моделей за весь период наблюдений по данным табл.3.3 приведены на рис. 3.4, а за последний период времени с 1960 г. по данным табл.3.4 – на рис.3.5. При интерполяции оттенками красного цвета (красный, розовый, оранжевый) обозначаются градации $\Delta \ge 10\%$, а при интерполяции коэффициентов корреляции линейного тренда оттенками красного – статистические значимые

положительные Rтр, оттенками синего - статистические значимые отрицательные Rтр.

Рис.3.4. Пространственное распределение показателей нестационарных моделей за весь период наблюдений, где сверху вниз: $\Delta \text{тр},\%, \Delta \text{ст},\%$ и Rтр

Рис.3.5. Пространственное распределение показателей нестационарных моделей за период наблюдений с 1960 г., где сверху вниз: $\Delta \text{тр,}\%$, $\Delta \text{ст,}\%$ и Rтр

Выводы по 3-ей главе

В результате построения моделей временных рядов и оценки их эффективности получены следующие выводы для сумм осадков января на территории севера Западной Сибири:

1). Наиболее эффективной нестационарной моделью является модель ступенчатых изменений при среднем $\Delta ct=14,4\%$ (при вариации от 7,3% до 27,5%) для многолетнего периода и при среднем $\Delta ct=6,8\%$ (при вариации от 0,6% до 27,7%) для последнего периода с 1960 г., в то время как для модели линейного тренда средние $\Delta tp=10,4\%$ (при вариации от 2,4% до 20,7%) и $\Delta tp=4,9\%$ (при вариации от 0,1% до 17,9%) соответственно за весь и последний периоды.

2). За весь период наблюдений нестационарная модель эффективна (по Δст, Δтр и Rтр) для 11 из 12 временных рядов и статистически значима (по критерию Фишера) в 5 случаях. Причем выявлена нестационарность двух видов: резкое увеличение средних 1950x которая обусловлена значений в годах. сменой регистрирующих приборов (6 случаев), и увеличение (4 случая) или уменьшение (1 случай) осадков с датой ступенчатого перехода в другие годы, что вероятнее всего обусловлено индивидуальными особенностями наблюдений на каждой станции.

3). Моделирование временных рядов за последний период наблюдений, 1960 начиная с Γ. показало. что число нестационарных моделей резко уменьшилось и они эффективны только для трех рядов. Причем для метеостанции Мыс Каменный (23146) осадки резко уменьшились с 1970 г., а для метеостанций Тазовское (23256) и Сидоровск (23365) увеличились в 1991 г. и 1986 г. соответственно.

4). Построенные пространственные распределения показателей нестационарных эффективности моделей за весь период наблюдений (рис.3.4) свидетельствуют, что нестационарность проявляется практически на всей территории за исключением юга. Аналогичные пространственные распределения за последний период (рис.3.5) показывают, что нестационарные модели занимают уже небольшую область в северо-восточной части территории. Причем на севере-западе этой области на одной метеостанции имеет место резкое уменьшение осадков.

4. Статистическое моделирование климатических процессов и полей

Четвертая глава курсовой работы посвящена построению статистических моделей и анализу их параметров во времени также на основе сопоставления нестационарных моделей временных рядов с моделью стационарной выборки. В качестве статистических моделей рассматриваются два вида: модель внутригодовых колебаний и пространственная статистическая этой части курсовой молель. Фактически в работы осуществляется выполнение Лабораторной работы <u>№</u>2 ИЗ Практикума по климатологии, часть 2, но на основе применения вычислительных программ и дополнительно оцениваются виды моделей временных рядов рассчитанных параметров по программе ТІМОД. Теория построения внутригодовых и пространственных статистических моделей также изложена в Практикуме по климатологии Часть 2 и поэтому все обозначения параметров и коэффициентов моделей соответствуют приведенным в этом учебном пособии.

4.1. Расчет параметров линейной статистической модели внутригодовых изменений

Линейная статистическая модель внутригодовых колебаний представляет собой уравнение простой линейной регрессии, связывающее внутригодовые изменения каждого года (Y_{ij}) и климатическую (многолетнюю) функцию внутригодовых колебаний (Y_{cpi}) :

$$Y_{ij} = B_{1j} * Y_{cp\,i} + B_{0j}, \pm \varepsilon_{ij}, \tag{4.1}$$

где Y_{ij} - матрица исходных наблюдений, где i – номер месяца (или дня) внутри года, j – номер года; Y_{cpi} - средняя многолетняя функция годового хода; B_{lj} - коэффициент, характеризующий отличие амплитуды j-го годового хода от амплитуды среднего многолетнего годового хода; B_{0j} - коэффициент, характеризующий
отличие уровня годового хода *j*-го года от уровня среднего многолетнего годового хода; $\varepsilon_{i\,j}$ - отклонения от линии связи конкретных и многолетних условий, характеризующие составляющие композиционного процесса, масштаб которых меньше годового и могут быть представлены в виде их обобщенного показателя — стандартного отклонения (*S* ε_{j}), характеризующего интенсивность таких процессов для *j*-го года.

Для коэффициентов уравнения вычисления (4.1)программа INTRA, применяется вычислительная входными данными для которой является файл среднемесячных значений климатической характеристики за многолетний период в формате txt, как показано на рис.4.1 для сумм осадков января на Отсутствующие метеостанции Березово (23631). ланные наблюдений заполняются константой 9999. В первой строке файла следует поставить число фактических лет наблюдений.

109	10101010	1010	1010	12	101211	1235	127217	2002	1000	1210	101211	and the second second	100000000000000000000000000000000000000
23631	1891	11	12	3	18	34	29	42	76	51	18	9999	9999
23631	1892	9999	9999	9999	3	39	79	178	116	12	26	5	13
23631	1893	4	11	8	14	18	32	33	54	47	27	14	10
23631	1894	7	8	7	10	0	9	46	48	7	9	1	6
23631	1895	8	9999	4	1	1	7	34	40	23	9999	16	9999
23631	1896	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	34	16
23631	1897	35	14	17	13	20	38	34	52	30	26	17	ā
22621	1000	40	16	5	10	20	40	14	55	6	10	55	20
23031	1000	49	10	10	10	22	40	40	120	41	19	25	22
23031	1000	29	10	10	20	37	40	40	120	41	20	20	23
2303L	1900	10	4	21	28	104	110	09	82	24	20	24	18
23631	1901	14	10	13	30	24	24	114	59	36	20	22	28
23631	1902	7	30	17	15	19	45	46	124	96	23	41	27
23631	1903	18	19	17	5	24	19	43	68	90	64	19	15
23631	1904	27	6	3	3	97	109	114	92	39	31	39	28
23631	1905	9999	9999	31	19	27	52	92	9999	9999	9999	17	9999
23631	1906	39	13	61	18	33	141	40	67	55	21	17	16
23631	1907	3	9	11	14	24	35	37	80	12	31	13	10
23631	1908	14	13	17	22	145	88	35	25	30	33	35	7
23631	1909	15	6	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
23631	1910	17	6	24	23	48	63	113	75	61	28	16	20
23631	1911	11	18	30	41	72	52	57	53	64	38	48	16
23631	1912	19	12	23	50	39	61	67	62	32	12	20	21
23631	1013	17	6	19	6	36	84	29	53	58	22	37	38
22621	1014	20	10	16	14	24	30	56	22	57	21	25	17
22621	1015	26	22	22	20	45	02	108	20	60	27	20	20
23031	1016	20	10	10	17	40	55	57	2.9	60	45	20	29
23031	1017	20	10	14	16	42	14	16	19	70	40000	20000	29
23031	1010	0000	0000	6600	40	4.5	12000	40	4.9	12	2222	12	52
23031	1022	99999	99999	99999	99999	99999	99999	99999	99999	15	21	10	2.1
2303L	1922	9999	28	9999	9999	34	10	30	20	1/	12	21	12
23031	1923	11	10	1/	0	1/	18	90	38	29	45	51	19
23631	1924	11	4	13	8	28	34	122	19	50	25	40	10
23631	1925	23	26	19	(31	58	10	81	120	53	30	28
23631	1926	19	7	11	4	32	54	132	115	53	44	18	13
23631	1928	24	43	10	42	44	141	76	50	28	60	18	24
23631	1929	9999	18	36	72	35	96	151	123	19	36	12	8
23631	1930	9	9	33	24	24	94	43	44	44	13	19	51
23631	1931	20	4	19	16	43	123	47	38	50	40	33	20
23631	1932	18	17	27	19	84	73	57	53	57	59	37	22
23631	1934	9999	9999	9999	9999	9999	25	41	109	41	9999	9999	9999
23631	1935	17	20	5	25	39	80	44	121	38	41	17	22
23631	1936	26	38	14	8	25	16	33	23	63	52	30	16
23631	1937	10	9	12	16	42	66	61	11	80	36	13	13
23631	1938	18	17	21	44	109	103	56	71	33	15	62	20
23631	1939	24	20	11	43	54	62	60	83	76	41	21	26
23631	1940	10	10	10	60	25	65	112	36	51	16	49	16
23631	10/1	21	8	18	19	30	103	75	21	95	34	12	33
22621	1042	12	0	17	20	52	21	61	75	41	42	26	26
22621	1042	11	10	11	46	20	40	20	64	70	21	16	20
22621	1044	21	10	76	44	62	70	05	60	65	22	15	14
23031	1045	31	10	20	30	66	20	10	60	116	110	47	14 E
23031	1940	L1 E1	10	20	30	00	30	48	20	110	110	4/	2
25051	1940	20	58	24	58	21	21	52	29	T0	5/	52	20
23031	1947	20	10	24	24	52	33	69	54	39	26	3/	29
23631	1948	20	13	20	12	1/	95	145	39	21	55	24	20
23631	1949	22	24	6	27	40	81	38	86	44	34	19	24
23631	1950	16	38	22	25	49	59	184	150	43	31	13	20
23631	1951	24	7	23	39	62	37	144	17	77	35	24	26

Рис.4.1. Структура исходного файла для передачи в программу INTRA

После запуска программы INTRA следует последовательно задать следующее:

- имя исходного файла;

- минимальное число месяцев с данными (желательно не менее 10-11);

- имя файла для записи результатов.

В результате расчета по программе INTRA формируется файл результатов, содержащий последовательно 3 вида информации (рис.4.2):

- координаты многолетней функции внутригодового хода (12 чисел);

- координаты зависимости (4.1) за каждый год;

- рассчитанные ряды коэффициентов *B*_{1j}, *B*_{0j} и параметра *Sєj* за каждый год.

22 24492	18 77011	21 01149	26 95402	40.91860
ED 121E0	50.76000	EG E1049	52 74600	40.01000
32.13130	30.70000	JU. JI946	15.74099	42.00901
30.27907	23.89033			
1893				
23.34483	4.000000			
18.77011	11.00000			
21.01149	8.000000			
26 05402	14 00000			
40.01060	10.00000			
40.91860	18.00000			
52.13158	32.00000			
50.76000	33.00000			
56.51948	54.00000			
53 74699	47 00000			
42 68965	27 00000			
20. 37007	14.00000			
50.27907	14.00000			
25.89655	10.00000			
1894				
23.34483	7.000000			
18 77011	8 000000			
21 01149	7 000000			
21.01149	10 00000			
20.93402	10.00000			
40.91860	0.000000E+0	7		
52.13158	9.000000			
50 76000	46 00000			
23.34483 18.77011 21.01149	14.00000 22.00000 54.00000			
26.95402	39.00000			
50 12150	45 00000			
50.76000	34.00000			
50.76000	24.00000			
56.51948	42.00000			
53.74699	41.00000			
42.68965	23.00000			
20 27007	20,00000			
30.27907	35.00000			
25.89055	19.00000		121120000000000000000000000000000000000	
1893	1.057899	-16.38939	5.944745	
1894	0.6264851	-9.962241	13.47555	
1807	0 6732025	0 5630188	8 490172	
1000	6 90607115 07	36 76202	14 04500	
1998	-0.8009/ITE-02	20.70303	14.24322	
1899	0.8908336	-2.846340	6.635411	
1901	0.6926938	0.7529354	9.450948	
1902	1 237699	-10 21582	18 05032	
1002	1 270021	17 53035	10 72106	
1905	T. 3/ 283T	-11.12031	10.25190	
1906	0./1/44/5	9.778/64	ID 80121	

Рис.4.2. Результаты расчетов по программе INTRA

Результатами моделирования внутригодовых колебаний, которые представляются в данном разделе курсовой работы, являются графики:

- внутригодовой климатической функции (рис.4.3);

- связи между данными конкретных лет и климатической функцией в виде отдельных примеров (рис.4.4);

- многолетних рядов рассчитанных коэффициентов B_{1j} , B_{0j} и параметра *S* εj (рис.4.5).

Рис.4.3. Климатическая функция внутригодового хода месячных сумм осадков на метеостанции Березово

Рис.4.4. Примеры линейных взаимосвязей между средними многолетними осадками и осадками отдельных лет (метеостанция Березово)

Рис.4.5. Многолетние ряды коэффициентов *B*_{1j}, *B*_{0j} и параметра *Sɛj* (метеостанция Березово)

На графиках рис.4.5 в виде ярких прямых линий приводятся также средние многолетние значения. Также сами числовые значения рассчитанных коэффициентов и параметров приводятся в таблице (пример табл.4.1)

Таблица 4.1

вну	григодовых колеоании	для метеостанции ве	резово
Год	B _{1j}	B_{0j}	Sej
1893	1,057899	-16,3894	5,944745
1894	0,626485	-9,96224	13,47555
1897	0,673203	0,563019	8,490172
1898	-6,81E-02	26,76303	14,24522
1899	0,890834	-2,84634	6,635411
1901	0,692694	0,752935	9,450948
1902	1,237699	-10,2158	18,05032
1903	1,379931	-17,5284	18,23196
1906	0,712448	9,228264	16,80121
1907	1,093596	-17,124	14,35766
1908	0,881891	-3,23742	17,5184
1910	1,53437	-20,0796	8,203075
1911	1,080697	1,768932	12,44215
1912	0,981188	-1,39068	14,97684
1913	1,197023	-10,4423	15,38943
1914	0,776644	0,577444	10,60282
1915	0,941973	3,954491	17,07519
1916	1,31449	-9,1957	8,185579
1923	0,87582	-4,50065	18,77669
1924	0,687529	-1,97197	10,64515
1925	1,056546	-3,57159	16,86057
1928	0,801135	9,622171	16,10411
1930	0,949362	-1,13238	19,84031
1931	0,964572	-4,27657	6,624182
1932	1,342228	-5,96977	13,56226
1935	1,255947	-12,4934	11,49249
1936	0,410268	13,52016	15,01879
1937	1,338899	-18,6802	17,41994
1939	1,57237	-14,6329	8,425584
1940	0,81903	2,429575	17,98407
1941	1,339411	-13,5058	19,91138
1942	1,364395	-14,2048	13,55718
1943	1,273957	-10,5326	18,51087

Рассчитанные коэффициенты и параметры линейной статистической модели внутригодовых колебаний для метеостанции Березово

Год	B_{1j}	B_{0j}	Sej
1944	1,560389	-13,0239	16,1594
1946	-0,34522	42,99489	8,610223
1947	0,578951	13,87597	14,03401
1948	1,374716	-15,2045	17,05679
1949	1,405308	-14,7986	13,70129
1951	0,741768	7,275658	17,29314
1952	1,122846	-9,78714	17,29746
1953	1,163394	-8,28413	18,65462
1954	2,110322	-31,8266	8,704521
1955	1,248427	-4,54532	14,22369
1956	1,603291	-15,0245	12,80779
1957	0,804861	12,85337	17,83187
1958	1,304726	-2,41856	14,96101
1959	1,088952	-4,4525	13,17565
1960	0,86001	1,98455	16,49117
1961	0,136389	31,51697	13,82336
1962	1,340321	-1,316	13,71511
1963	0,400183	21,57527	14,19138
1964	0,613112	14,84825	17,73889
1965	1,232212	-7,39549	13,21134
1966	1,242178	-0,35939	20,79507
1967	1,403646	-8,15389	18,25792
1968	0,8921	5,481644	14,37473
1969	1,452637	-19,2226	14,12243
1970	0,882169	1,014942	6,84384
1971	0,593028	23,65372	23,80628
1972	1,378446	-7,08583	18,8105
1973	0,791776	6,935452	17,91014
1974	1,510253	-13,8834	12,26104
1976	1,087577	-7,3184	22,46106
1977	0,432982	21,59828	14,67797
1979	0,889893	5,811701	9,44895
1980	0,469807	12,40166	15,78033
1981	0,93157	1,857796	11,50498
1982	0,581734	24,87325	19,97848
1983	0,623139	23,82796	18,55355
1984	1,873316	-32,9934	18,68435
1985	1,265839	0,600407	15,21245
1986	1,75458	-22,6596	12,35356
1987	0,59519	11,6845	11,13459
1988	1,232036	-2,3183	12,60568
1989	0.870601	7.858677	18.35094
1990	1,157506	8,692768	10,30069

Год	B_{1j}	B_{0j}	Sej
1992	0,269936	25,15171	26,19328
1993	0,983115	-2,06385	16,45678
1995	1,397029	-5,57627	13,1993
1996	1,140468	-9,2148	14,25667
1997	0,462778	22,91491	24,14163
1998	1,09078	5,784	19,71242
1999	0,266549	31,29445	25,62005
2001	1,035698	8,18021	20,1131
2002	2,118381	-18,7964	17,24507
2003	0,698135	11,05922	16,21847
2004	0,207015	24,44064	12,27662

Как правило, коэффициенты B_{1j} и B_{0j} связаны обратной линейной зависимостью, что следует представить в виде графика и уравнения. В качестве примера на рис.4.6 показан такой график для коэффициентов модели внутригодовых колебаний месячных сумм осадков на метеостанции Березово. Зависимость между B_{1j} и B_{0j} является достаточно тесной с коэффициентом корреляции 0,9.

Рис.4.6. Обратная линейная зависимость между коэффициентами В1 и В0 и

4.2. Определение вида моделей временных рядов для параметров модели внутригодовых изменений

Для полученных последовательностей B_{1j} , B_{0j} и *S* εj строятся модели временных рядов по программе TIMOD, для чего формируется исходный файл, включающий 3 поля: код станции (в данном случае для коэффициента B_{1j} , можно задать код 11111, для $B_{0j} - 22222$ и для $S\varepsilon j$ -33333), год и значение. Пример исходного файла для дальнейшего моделирования по программе TIMOD приведен на рис.4.7.

11111 11111	1893 1894 1897 1897 1898 1901 1903 1906 1907 1908 1910 1911 1915 1914 1915 1916 1923 1924 1925 1928 1930 1931	$\begin{array}{c} 1, 057899\\ 0, 6264851\\ 0, 6732025\\ -6, 81E-02\\ 0, 8908336\\ 0, 6926938\\ 1, 237699\\ 1, 379931\\ 0, 7124475\\ 1, 09596\\ 0, 8818908\\ 1, 53437\\ 1, 080697\\ 0, 9811877\\ 1, 980697\\ 0, 9811877\\ 1, 197023\\ 0, 7766441\\ 0, 9419731\\ 1, 31449\\ 0, 8758199\\ 0, 6875287\\ 1, 056546\\ 0, 8011346\\ 0, 9493619\\ 0, 9645718\\ \end{array}$	
 111111 111111 111111 22222 22222 22222 22222 22222 22222 2222	2002 2003 2004 1893 1894 1897 1898 1899 1901 1902 1903 1906 1907 1908 1910 1911 1912	2.118381 0.6981348 0.2070151 -16.38939 -9.962241 0.5630188 26.76303 -2.84634 0.7529354 -10.21582 -17.52835 9.228264 -17.12397 -3.237419 -20.07958 1.768932 -1.390675	

Рис.4.7. Пример формирования исходного файла для программы ТІМОD, включающего ряды *В*_{1j}, *B*_{0j} и *S*_{Ej}

После расчета по программе TIMOD результаты записываются в таблицу, которая помещается в курсовую работу. В табл. 4.2 в качестве примера даны результаты моделирования параметров B_{1j} , B_{0j} и *S* εj для осадков января на метеостанции Березово.

Таблица 4.2

Результаты оценки эффективности нестационарных моделей для многолетних рядов *B*_{1i}, *B*_{0i} и *Sɛi* на метеостанции Березово (осадки января)

Парам.	Δтр,%	Δст,%	Fтp	Fcт	Тст	Тнач	Тк	n	Rтр
Bıj	0	1	1	1,02	1910	1893	2004	87	0,02
Boj	3,5	5,2	1,07	1,11	1957	1893	2004	87	0,26
Sej	5,9	5,3	1,13	1,11	1992	1893	2004	87	0,34

Как следует из результатов табл.4.2, в данном случае эффективные нестационарные модели отсутствуют, т.к. $\Delta < 10\%$. Если бы нестационарные модели имели место, то их временные ряды и вид нестационарной модели (ступенчатые изменения или тренд) следовало бы отразить на графиках, которые помещаются в текст курсовой работы. В данном случае в качестве примера на рис.4.8 приводится модель ступенчатых изменений для ряда *Sej*, который имеет наибольшее $\Delta Tp=5,9\%$ и $\Delta ct=5,3\%$ с годом ступенчатых изменений 1992 и статистически значимый RTp. На рис.4.8 проведены пунктирные линии средних за каждый из двух стационарных интервалов (первый до 1991 г. включительно, второй – с 1992 г.) и вертикальная линия в год ступенчатого роста.

Рис.4.8. Временной ряд параметра *S*є*j* и его аппроксимация моделью ступенчатых изменений для осадков января на метеостанции Березово

Судя по средним значениям, параметр *Sej* увеличился с 14,6 мм до 18,7 мм, т.е. интенсивность макросиноптических процессов несколько возросла (на 28%).

Общий вывод

Построение модели внутригодовых колебаний и исследование ее коэффициентов позволяет сделать вывод, что коэффициенты B_{1j} и B_{0j} (амплитуда годового хода и средние за год осадки) пока остаются стационарными, а интенсивность макросиноптических процессов несколько возросла, судя по параметру *S* εj , хотя этот рост пока и не является статистически значимым. Между коэффициентами B_{1j} и B_{0j} имеет место тесная обратная зависимость с коэффициентов корреляции R=0,9.

4.3. Расчет параметров пространственной статистической модели

Следующий вид рассматриваемой модели – это линейная статистическая пространственная модель. Теория модели и ее описание подробно даны в той же Лабораторной работе №2 из Практикума по климатологии, часть 2. Уравнение данной модели характеризует линейную связь между полем климатических характеристик каждого конкретного года и средним многолетним (климатическим) полем, что выражается зависимостью:

$$Y_{ij} = A_{1j}Y_{cpi} + A_{0j}, \ \pm E_{ij}, \tag{4.2}$$

где Y_{ij} – значение климатической характеристики на *i*-ой станции в *j*-ый год; Y_{cpi} – среднее многолетнее значение климатической характеристики на *i*-ой станции; A_{1j} , A_{0j} - коэффициенты уравнения, определяемые по МНК; E_{ij} - случайные отклонения.

При этом, коэффициент A_{Ij} характеризует градиент, а A_{0j} – уровень или положение пространственного поля. Случайные отклонения E_{ij} можно выразить через их стандарт S_{AEj} и этот параметр будет характеризовать внутреннюю неоднородность пространственного поля в каждый *j*-ый год.

Для вычисления коэффициентов A_{1j}, A_{0j} и параметра S_{AEj} применяется вычислительная программа SPACE, описание которой также приведено в Практикуме по климатологии, Часть 2. Структура исходного файла для расчета по программе SPACE аналогична той, которая была подготовлена для программы ТІМОД (п.3.1) и также необходимо, чтобы ряды наблюдений располагались порядке исходном файле увеличения в в пятизначных колов метеостаниий.

После запуска программы SPACE по запросу следует ввести следующую информацию:

- имя файла с данными,

- общее число строк в файле,

- самый ранний год начала наблюдений на станциях региона,

- самый последний год наблюдений на станциях региона,

- имя файла для записи результатов.

В полученном файле результатов будет представлена информация двух видов: координаты функции климатического поля (средние многолетние значения по каждой метеостанции) и рассчитанные многолетние ряды коэффициентов A_{1i}, A_{0i}, , а также коэффициенты корреляции R для параметра S_{AEi} уравнений связи поля каждого года со средним многолетним станций, использованных полем и число при построении уравнений каждого года (m). Пример файла результатов для полученных параметров пространственной модели осадков января на севере Западной Сибири приведен на рис.4.9.

В курсовую работу следует поместить график климатического пространственного поля в зависимости от широты метеостанции и таблицу, содержащую многолетние ряды рассчитанных параметров пространственной модели, как показано в качестве примера на рис.4.10 и в табл.4.3 для осадков января на территории севера Западной Сибири.

83

Ќз «м–л©]®¤=	1850	в⊖-Ґз-л© ј⊕¤=	2017	
1 3	28.39024	1917	2004	
2 2	27.13953	1917	2004	
3 1	19.52000	1917	2004	
4 3	23.52239	1917	2004	
5 3	20.01869	1891	2004	
6 2	20.64394	1891	2004	
7 1	25.80882	1891	2004	
8 3	22.78393	1891	2004	
9 3	27.43529	1891	2004	
10 1	25.22308	1891	2004	
11 2	28.35446	1891	2004	
12 3	25.68041	1891	2004	
1 1939 0.9	905 2.809	9.155 0.306	11	
2 1940 0.1	899 -11.287	7.747 0.353	11	
3 1941 0.1	389 7.331	9.536 0.131	11	
4 1942 1.1	145 -13.758	4.373 0.648	11	
5 1943 0.1	8/5 -9.6//	5.961 0.430	11	
6 1944 -0.1	153 28.118	12.681 -0.039	11	
/ 1945 0.0	022 8.759	4.049 0.018	11	
8 1946 1.	114 -0.272	14.225 0.246	11	
9 1947 0.0	0/1 11.231	0.108 0.040	11	
10 1948 0.0	U48 17.157	0.371 0.024	11	
12 1949 -0.0	504 45.477	9.785 -0.276	11	
12 1950 0.0	030 -3.900	10.888 U.328	12	
14 1052 0.1	032 7.930 070 00 076	16 040 0.137	12	
15 1052 2.1	5/0 -29.5/0	16 510 0.410	12	
16 1054 0	004 -30.939	9 260 0.439	11	
17 1055 0	20.001 200 27 127	25 045 0 262	12	
10 1056 2 1	110 20 202	17 594 0 440	11	
10 1057 0	770 11 947	11 994 0.196	11	
20 1958 1	251 0 508	6 921 0 495	11	
21 1050 61	812 -126 117	39 779 0 447	11	
22 1960 2	306 -32 923	10 003 0 559	11	
23 1961 3 4	443 -43 494	24 839 0 406	12	
24 1962 0	719 20.025	10.173 0.221	12	
25 1963 2.0	046 -25,560	6.239 0.724	12	
26 1964 1.0	685 -9.776	22.370 0.235	12	
77 1045 7	154 40 000	7 474 0 004	17	
Рис	49 Пример d	hайда результ	атов программ	ы SPACE

Рис.4.10. Функция климатического поля в зависимости от широты метеостанций для осадков января на территории севера Западной Сибири

Таблица 4.3

Год	A _{1j}	A ₀	SAE	R	m
1939	0,905	2,809	9,155	0,306	11
1940	0,899	-11,287	7,747	0,353	11
1941	0,389	7,331	9,536	0,131	11
1942	1,145	-13,758	4,373	0,648	11
1943	0,875	-9,677	5,961	0,43	11
1944	-0,153	28,118	12,681	-0,039	11
1945	0,022	8,759	4,049	0,018	11
1946	1,114	-0,272	14,225	0,246	11
1947	0,071	11,231	5,168	0,045	11
1948	0,048	17,157	6,371	0,024	11
1949	-0,864	45,477	9,785	-0,276	11
1950	0,63	-3,955	5,888	0,328	11
1951	0,532	7,935	12,328	0,137	12
1952	2,378	-29,376	16,948	0,41	12
1953	2,664	-36,959	16,51	0,459	12
1954	-0,257	26,681	8,369	-0,095	11
1955	2,209	-27,127	25,945	0,263	12
1956	2,112	-29,803	12,584	0,44	11
1957	0,77	11,847	11,884	0,186	11
1958	1,351	0,598	6,921	0,495	11
1959	6,812	-126,117	39,779	0,447	11
1960	2,306	-32,923	10,003	0,559	11
1961	3,443	-43,494	24,839	0,406	12
1962	0,719	20,025	10,173	0,221	12
1963	2,046	-25,56	6,239	0,724	12
1964	1,685	-9,776	22,37	0,235	12
1965	3,156	-49,802	7,474	0,804	12
1966	1,513	-8,395	10,268	0,427	12
1967	0,793	11,796	8,309	0,292	12
1968	0,859	-0,84	13,964	0,193	12

Показатели пространственной статистической модели осадков января на территории севера Западной Сибири

Год	A _{1j}	A_0	SAE	R	m
1969	0,748	-6,109	3,874	0,526	12
1970	-1,161	54,003	11,049	-0,319	12
1971	4,137	-65,037	16,569	0,625	12
1972	1,041	-4,715	4,685	0,58	12
1973	0,927	1,336	6,324	0,425	12
1974	1,185	-9,413	9,127	0,384	12
1975	2,571	-29,347	6,554	0,782	12
1976	1,957	-16,457	11,26	0,486	12
1977	1,046	-7,912	6,908	0,436	12
1978	1,981	-21,127	8,77	0,586	12
1979	1,652	-15,305	6,982	0,604	12
1980	1,565	-14,078	5,513	0,673	12
1981	3,255	-47,715	21,503	0,436	12
1982	-1,31	69,568	17,187	-0,237	12
1983	0,31	20,308	6,981	0,141	12
1984	0,653	4,984	5,444	0,358	12
1985	1,803	-12,494	11,637	0,444	12
1986	0,523	11,086	7,978	0,205	12
1987	0,774	12,333	7,995	0,296	12
1988	1,65	-9,252	13,701	0,36	12
1989	1,206	-0,442	7,042	0,481	12
1990	-0,362	30,304	16,826	-0,069	12
1991	0,562	23,989	12,996	0,143	11
1992	0,802	8,307	13,495	0,195	11
1994	-1,932	73,267	9,09	-0,567	10
1995	0,004	34,224	18,738	0,001	10
1996	-1,558	66,959	26,773	-0,194	10
1997	0,991	-0,347	11,921	0,271	10
1998	1,114	6,645	8,844	0,393	10
1999	-0,583	47,223	14,063	-0,139	10
2000	1,641	-12,897	15,481	0,338	10
2001	0,794	6,95	9,438	0,274	10
2003	3,047	-33,573	5,303	0,89	10
2004	0,103	25,532	12,754	0,027	10

4.4. Определение вида моделей временных рядов для параметров пространственной модели

Для коэффициентов и параметров пространственной статистической модели также оценивается вид модели их многолетних рядов, для чего применяется программа TIMOD. Аналогичным образом, как и в п.4.2, коды станций для коэффициентов A_I , A_0 , параметра S_{AE} и коэффициента R задаются произвольными, например 11111, 22222, 33333 и 44444. Таблицу результатов расчета по программе TIMOD следует привести в тексте курсовой работы, как показано в виде примера табл. 4.4.

Таблица 4.4

Результаты оценки эффективности нестационарных моделей для многолетних	ſ
рядов А1, Ао и SAE для осадков января на территории севера Западной Сибири	1

Парам.	Δтр,%	Δст,%	Fтp	Fct	Тст	Тнач	Τк	n	Rтр
A_{I}	0,6	5,1	1,01	1,11	1982	1939	2004	64	-0,11
Ao	2,3	9,4	1,05	1,22	1982	1939	2004	63	0,21
S_{AE}	0,3	3,6	1,01	1,08	1951	1939	2004	64	0,08
R	0,1	4,7	1	1,1	1990	1939	2004	64	-0,05

Как следует из результатов табл.4.4, стационарные модели эффективными являются наиболее ЛЛЯ всех параметров пространственной модели, но ближе всего к нестационарной модели ступенчатых изменений является временной ряд коэффициента A_0 , характеризующего среднее региональной значение осадков. Временные ряды показателей пространственной модели приводятся в курсовой работе с учетом установленных видов моделей в Табл.4.4, как показано в качестве примера на рис. 4.11 для осадков января на территории севера Западной Сибири.

Рис.4.11. Временные ряды коэффициентов *А*₁, *А*₀, параметра *S*_{AE} и коэффициента *R* для осадков января на территории севера Западной Сибири

Между коэффициентами A_1 и A_0 существует тесная обратная взаимосвязь (R=0,975), как показано на рис.4.12.

Рис.4.12. Зависимость между коэффициентами *A*₁ и *A*₀ пространственной модели осадков января на территории севера Западной Сибири

Общий вывод

Пространственная климатическая функция, как следует из практически не зависит от широты метеостанции Рис.4.10. (коэффициент корреляции R=0,04), т.е. зональная составляющая поля осадков отсутствует. Модели коэффициентов A_1, A_0 .И параметра S_{AE} можно отнести к стационарным, за некоторым ∆ст=9,4%, исключением, т.к. близко для ряда A_0 к нестационарному ряду при росте среднего регионального значения в 1982 г. Аналогичное уменьшение коэффициента А₁ также наблюдается в 1982 г., но оно не является существенным $(\Delta c_{T}=5,1\%).$

Литература

1. Лобанов В.А., И.А.Смирнов. А.Е.Шадурский. Практикум по климатологии. Часть 1. (учебное пособие). Санкт-Петербург, 2011. – 145 с.

2. Лобанов В.А., И.А.Смирнов. А.Е.Шадурский. Практикум по климатологии. Часть 2. (учебное пособие). Санкт-Петербург, 2012. – 180 с.

3. Лобанов В.А., А.Е.Шадурский Выделение зон климатического риска на территории России при современном изменении климата. Монография. Санкт-Петербург, издание РГГМУ, 2013. – 123 с.

4. Лобанов В.А., Тощакова Г.Г. Проявление современных изменений климата на территории Костромской области. Монография. ФГБУ «Костромской центр по гидрометеорологии и мониторингу окружающей среды», Кострома. 2013 – 171 с.

5. В.А.Лобанов Лекции по климатологии. Часть 2. Динамика климата. Кн.1. В 2 кн.: учебник. – СПб.: РГГМУ, 2016. - 332 с.

6.. Переведенцев Ю.П. Теория климата. Казанский государственный университет, 2009 – 503 с.

Учебное издание

Владимир Алексеевич Лобанов

Методические указания по выполнению курсовой работы:

«Оценка современных региональных изменений климатических характеристик»

Публикуется в авторской редакции. Ответственность за соблюдение законов об интеллектуальной собственности несет автор.

Подписано в печать 15.02.18. Формат 60×90 1/16. Гарнитура Times New Roman. Печать цифровая. Усл. печ. л. 5,78. Тираж 60 экз. Заказ № 645/1. РГГМУ, 195196, Санкт-Петербург, Малоохтинский пр., 98.