PFFMB
«
*
- ()
(, ,) «
()
(, ,)
«»2018 .

	3
	4
1	6
1.1	8
1.2	11
1.3	14
1.4	27
2	. 28
3	35
3.1	35
3.2	50
4	
	67
4.1	67
4.2	76
4.3	
	89
	94
	99

,

•

,

, ,

.

1.

2.

3.

4.

5.6.

.

, 33 -101-2003.

-,

_

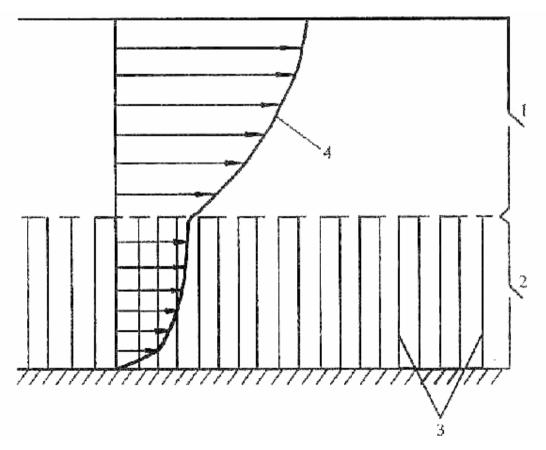
.

,

.

,

· .


, , ;

, 1.1. .

,

. , ,

, - ,

1.1 –

1 – ;2 – ;4 – 3 – [1, 2]. 1.1 1.5 – 2.0 .

, (),

),

. .

.

•

 $n = \frac{b}{\sqrt[4]{Fr * I * \sqrt[3]{I}}}, \quad (1.1)$

n- ; b- ,

 $; Fr - \qquad ; I -$

. .

 $n_{1}3 = [n_{1}0^{\uparrow}2 ((1-d_{\downarrow}p \vee (\alpha_{1}\Gamma + (182h^{\dagger}(1/3) \alpha_{\downarrow}\Gamma d_{\downarrow}p h_{1}p))/(2g K(Re * K10))]^{\uparrow}(-3)))$

 1^{-2}). n_3

.

• ,

,

•

B. .

n,

,

. . ,

,

,

·

$$\lambda_{3} = \lambda_{0} \left(1 - d_{D} \sqrt{\alpha_{\Gamma}} \right) + k_{\Lambda} \alpha_{\Gamma} d_{D} h_{P}, \tag{1.3}$$

 $_{0}$ — ; d_{p} — ; k — ; h_{p} —

[1, 2].

1.2 . .

. .

. .

(V) ().

(),

 $\rho ghI = \rho \frac{V_p^2}{2} S_{\text{M}} C_D k_{\text{B}} \frac{1}{M_p^2}. \tag{1.4}$

 $V = f(h_p, d_p) -$

 $;\mathcal{C}_{D-}$ $;\overset{k}{k}_{\mathbf{B}-}$

« » .

,

. ,

, $d_{
m p}$, $C_{m D}$,

S , C_D

 k_{B}

:

$$\rho ghI = \frac{\lambda}{8} \rho V^2, \qquad (1.5)$$

$$\lambda = 4 \frac{V_{\rm p}^2}{V^2} S_{\rm M} C_D k_{\rm B} \frac{1}{M_{\rm p}^2}.$$
 (1.6)

:

$$V_{\mathbf{p}} = \frac{Q}{\omega},\tag{1.7}$$

$$\omega$$
 , , $V = V_{\rm D}$, .

$$\lambda_{3} = 4 \frac{V_{\rm p}^{2}}{V^{2}} S_{\rm M} C_{D} k_{\rm B} \frac{1}{M_{\rm p}^{2}}.$$
 (1.8)

$$\frac{M_{\rm p}^2}{S_{\rm m}C_Dk_{\rm B}} =$$
 (1.9)

$$\lambda_3 = \frac{4}{j^2}.\tag{1.10}$$

 $m{j}$,

j

:

$$\rho ghI = \frac{\lambda_3}{8} \rho V_{\mathbf{p}}^2 = \frac{1}{2j^2} \rho V_{\mathbf{p}}^2. \tag{1.11}$$

 $V_{\mathbf{D}} = \sqrt{2}u_{\bullet}j. \tag{1.12}$

,

1.10 1.12. , ,

[3].

1.3 . .

() 1956 –

1958 , , ,

. (Q,)

, . .

:

1) ; 2) .

,

. . .

_ . ,

,

,

,

· (« »)

· _

· ,

•

-

,

,

,

« » 0.5, 1, 2, 4, 6, 8, 10

12 , , , , . . . -

, 2.5 .

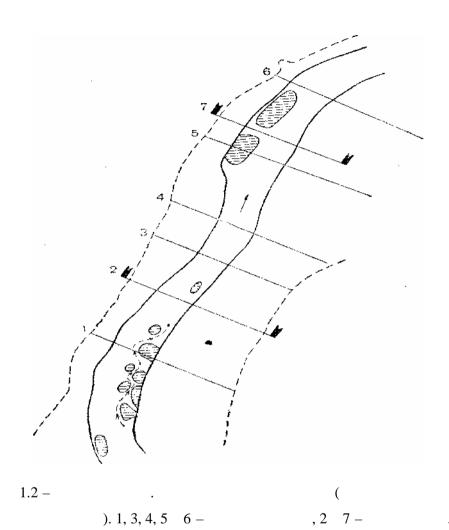
, ,

, , ,

. ,

•

1.3 , , , ,

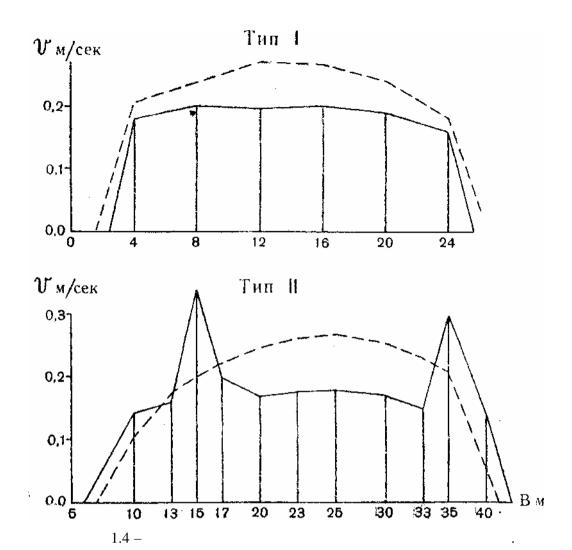

,

, ,

, 30° 45°,

40°.

, , , 10°.



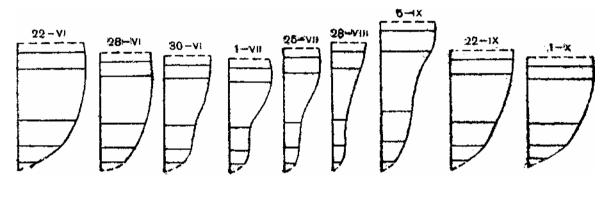
1.3 –

,

(1.4).

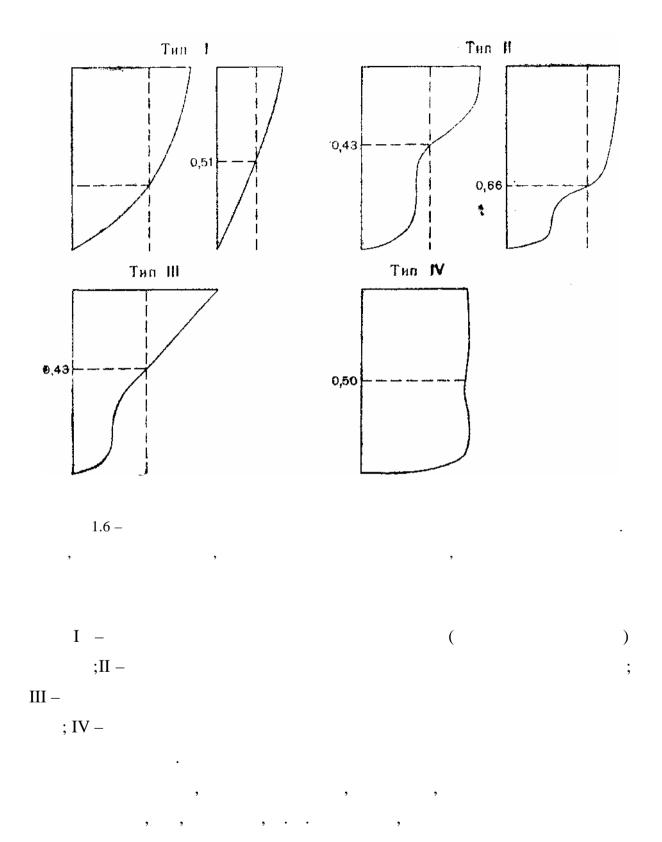
, , ,

,


:

,

,


,

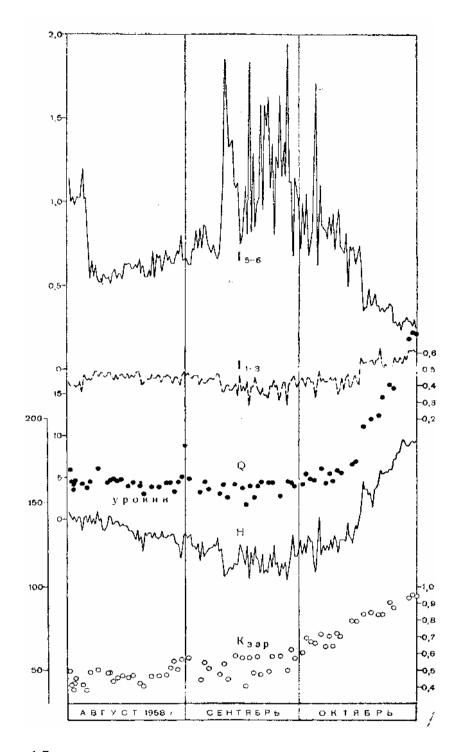
(1.5).

1.5 –

4 , (1.6).

n = 0.005 n = 3.75; n = 0.0067 n = 5.50; n = 0.200. , n = 0.060

1.74 4.86.


0.040 0.210, . . 5 .

,

();

;
,
,

8 20 . 6 292 1). 300 120 180 - 10 · 1.7 1. 2. 65 (127 192), $0.2^{-0}/_{00}$. 2.0 1 2 3.

1.7 – , , ,

4 : 1. 2. 3.

) 4. 0.3) 5. [6, 7]. 26 1.4

,

·

1.

[(Re)]. Re

- ;

-

2.

3.

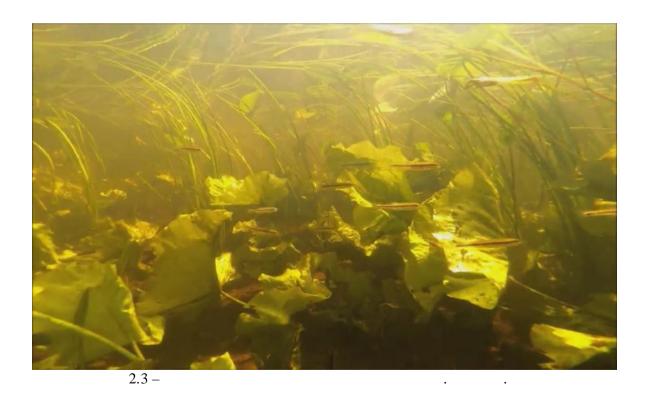
, , , ,

1.

2.

3.

4.



)),), ((),). 29 23 18 3 2

1

19 2.4), - 9 5 3 2.5).

, 5 , . 4 , 2 – , , , (2.6 – 2.8). 1 . , 2 ,

, 1 –

,

.

() (2.9),

(), (), (), (),

), - (

2.9-

,

·

,

3.1

.

[19],

. (

, « »

,

)), (() ()

```
), ,
                        (
                                                                                  )
        [19].
             ).
                               ».)
«
```

•

)) ()

,

() (1-3) (), (40 **« >>** 32

```
[20].,
                 (
                     80
                 . [20]
                                                                   )
                                                             0.6 1.1
                        )
```

,

().

. –

•

) () (

())), ()

) (), ((() () (

(

44

)

() ()) **« >>**) **« >>** ()

) (()). (()),

)).

(. .). [21],)

), (().)) ()

3.2 k-) ()

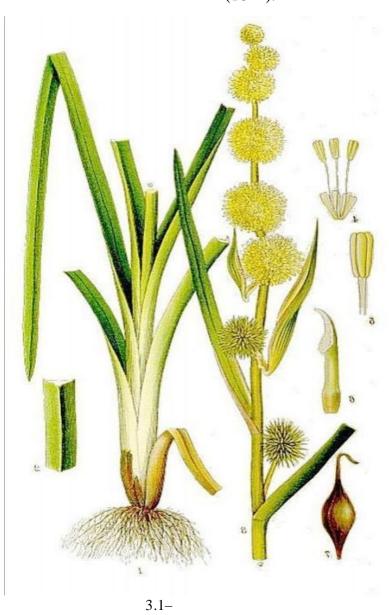
, ,

 $F_D = C_D * \rho_W * \frac{U_0^2}{2} * A_C,$ (3.1) F_D _ *C*_D - ρ_w – U – A_C – (3.1) D),

		()	Re								
		,	(3. .[22]	1).		(3.1)	D	Re.				,
D	()								2		
	,	10			,	,						
		,				,				150	,	,
60 /		,				_		0.8	1.8			20 20
2005										,		2004
		,		,	,				(),		
	2005	,		•	,					,,		

4 8 1.6, (15 20 12 3 6.1 ³/ 5.2 0.18 / . 3- $\frac{h_l}{h} = 0.35 * exp * \left(0.33 * \frac{\rho_{TS}}{\rho_w} * 10^4\right).$ (3.2)

 ho_{w} - .


,

```
2 -
       80
                       2
                                               )
                                                       1.5 2
. [23]
             0.2 /
                         0.1 1 / .
                               (
                                F_s
                             Re_L < 5^* 10^5:
```

$$F_s = 0.664 * \rho_w * \vartheta * U * Re_L^{\frac{1}{2}} * B, \tag{3.3}$$

$$ReL = \frac{U \cdot L}{\vartheta} \tag{3.4}$$

$$\vartheta = 1 * \frac{10^{-6} \text{m}^2}{\text{c}} \text{ (10}^0 \text{)}.$$

 $Re_L=2 \cdot 10^5$

..

$$\frac{F_s}{A_P} = 0.12 * \frac{N}{m^2}.$$

 $F_D (3.1)$

(3.5)

, 0.2 / 20 35 ,

0.3 1.

$$\frac{F_D}{A_P} = 2.05 \div 11.5 * \frac{N}{m^2}$$

 F_B

g

$$F_B = g * V_m * (\rho_w - \rho_m).$$
 (3.6)

; V_m ρm = 998 / 3 -

.

$$\frac{F_B}{A_P} = 2.3 * \frac{N}{m^2}$$

 F_E

()

. F_E

:

$$F_E = EI * L * \left(\frac{K}{L}\right)^2. \tag{3.7}$$

K – ;

EI –

I E.

EI $, \qquad EI \qquad 1.44 * 10^{-5} Nm^2.$

1 0.01

1 0.01

 $\frac{F_E}{A_P} = 0.71 * \frac{N}{m^2}$.

,

2-

 C_D . :

$$b \cdot l \cdot \sin(90 - \Phi) = (\sin[\Phi])^2 \cdot 0.5 \cdot C_D \cdot \rho_W \cdot d \cdot l \cdot U^2,$$
 (3.8)

$$b = g * (\rho_w - \rho_m) * A_x, \tag{3.9}$$

$$b = d \cdot t, \tag{3.10}$$

g ,

 A_x - ;

 ρ_{w} - (645 / ³);

l – ;

d - ;

t – (0.5);

 $m{U}$ – (,

,

 $C_D = \frac{2 * g * (\rho_w - \rho_m) * \sin(90 - \Phi)}{\rho_w * (\sin[\Phi)]^2 * U^2}.$ (3.11)

(3.11)

, ,

. (3.11)

0.18 /) 0.42 (0.15 /).

,

:

 $C_D = \frac{g \cdot S + \frac{du' \cdot w'}{dz}}{0.5 \cdot A \cdot u^2}.$ (3.12)

S _ :

 $u^{\cdot}w^{\cdot}$ - ;

A – ;

u – .

, C_DA , 3-

•

, . 3.2

	XX ,	30- ,	
	,	, (Q,),	
	30 -	,	
	= f(t).	,	
	- <i>J</i> (<i>t</i>).	Q = f(H).	
	· «	»	,
,	,	,	
,		,	
, [25]	, ,	[24].	,
. [25],	,		
	t		, H
(–),		

 $H = A \cdot (t - B)^n. \tag{3.13}$

,

,

Q = f(H)

; ,

, , - ,

, ,

().

,

. . [26]

, .

.

, . . .

, , -

. , « ».

1.0, = f(t),[27]. [28],) **« »**. **« « >>** [29] = f(H).

. . [30].

=f(H), , , ,

,

30- , , , ,

,

, ,

,

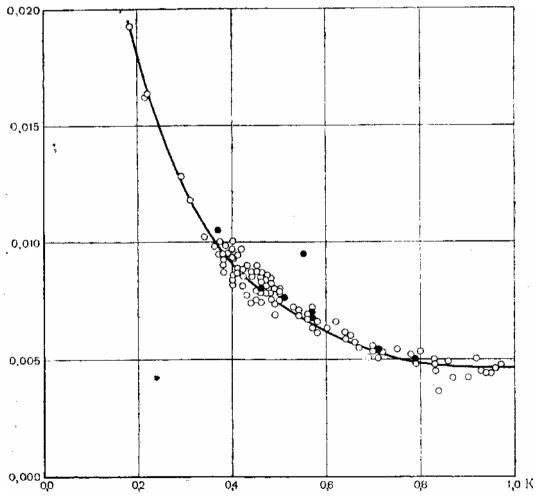
23 (, 1951 .)

 $= f(H) \qquad \qquad = f(I)$

;

- 0.10 1.0.

, ,


•

,

3.1 1957 - 1958

1.0 0.6; 0.5 - 0.2

6

3.1 –

,

;

.

,

•

.

•

,

,

4

4.1

.

(4.1-4.4).

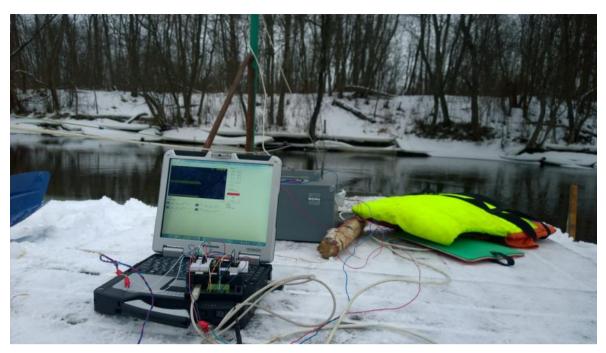
4.2 – . (: 05.06.2017)

4.3 – . (:18.07.2017)

4.4 – . (: 22.08.2017)

,

•

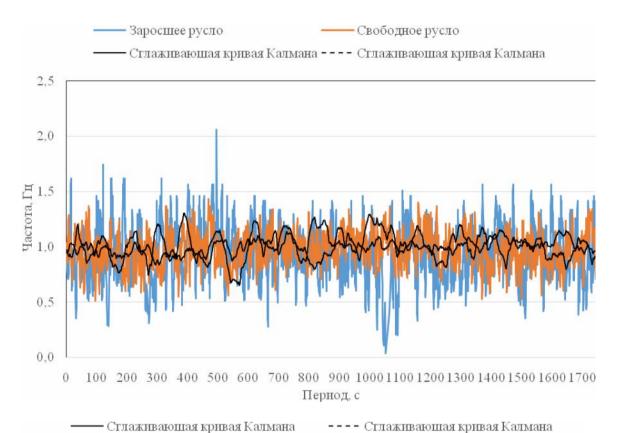

•

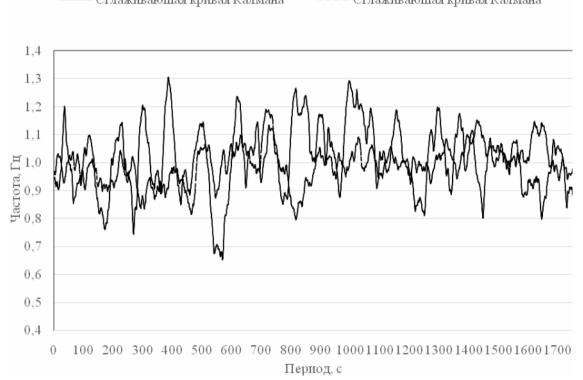
VellemanPCS10 ,

21- -1 ()(4.5).

30 . .txt,

4.1.




4.5 –

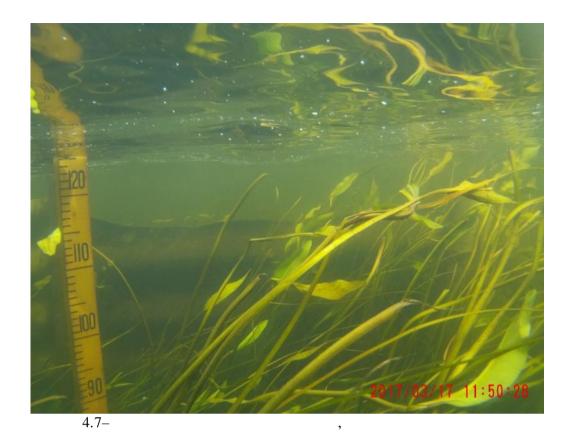
4.1 –

Time/s	CH1/V	CH2/V	CH3/V	CH4/V
0,00	1,553	1,129	1,565	1,553
0,01	1,553	1,129	1,565	1,553
0,02	1,553	1,129	1,576	1,541
0,03	1,553	1,129	1,565	1,541
0,04	1,553	1,141	1,565	1,541
0,05	1,553	1,141	1,576	1,541
0,06	1,553	1,141	1,565	1,541
0,07	1,553	1,141	1,565	1,541
0,08	1,553	1,141	1,576	1,541
0,09	1,553	1,141	1,565	1,541
0,10	1,553	1,141	1,576	1,541

(4.6).

.

.

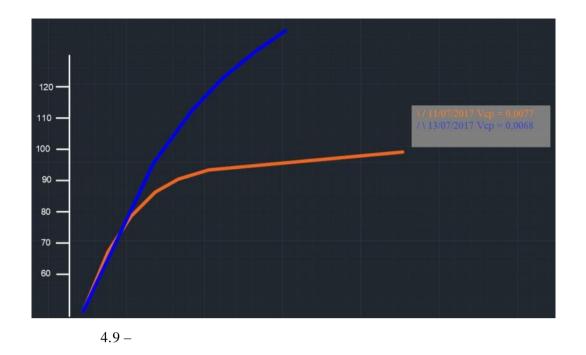

; -,

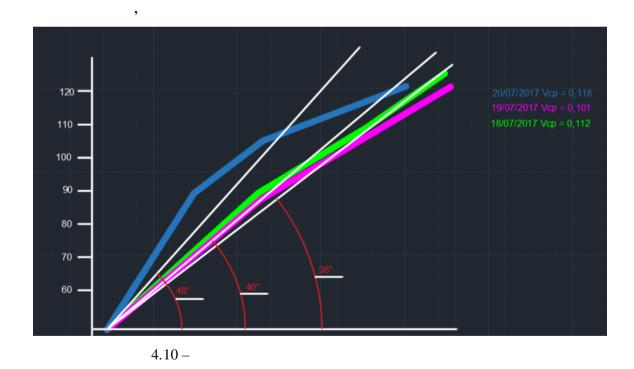
·
-

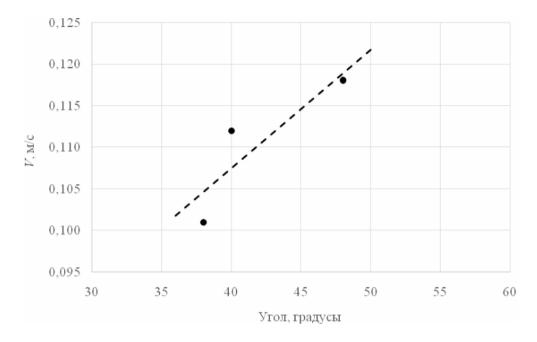
· ,

·

- GoProHero 3
10 .
-21 .



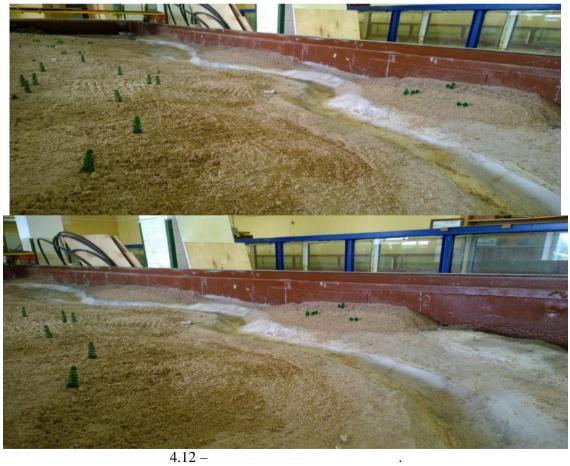

, 4.8).


4.8).

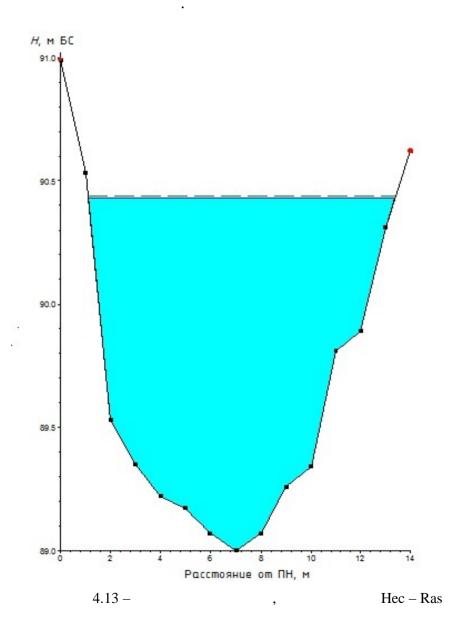
4.8 -

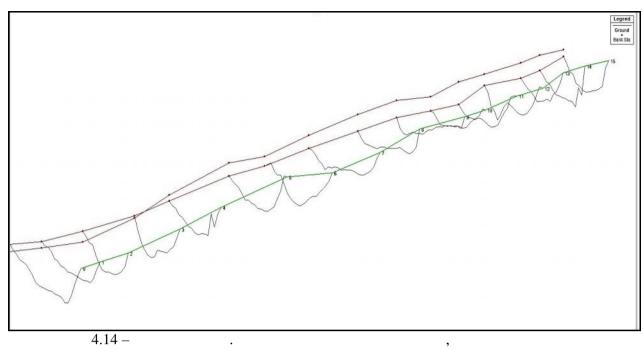
AutoCAD

4.11 –


,

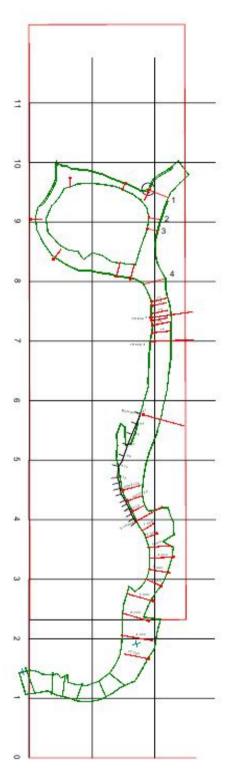
4.2


) $Q = f(H), \qquad , \qquad ,$


2016

1:75 (4.12).

Hex – Ras,



Hec – Ras

15 (4.15). HEC-RAS

,

, 0.046.

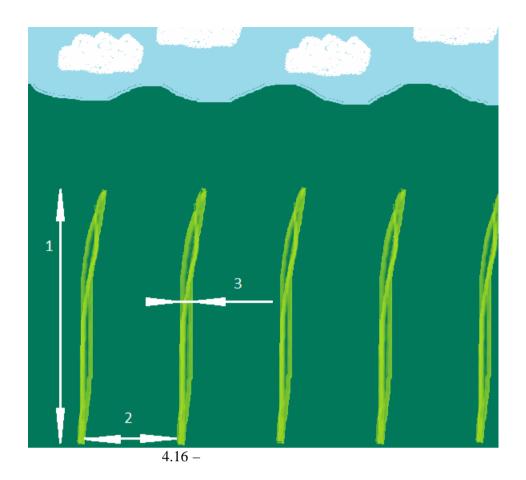
4.15 –

	Q , $^3/$	Н,	I	V , /	, 2
	1	89.92	0.00011	0.16	6.32
	2	90.04	0.00025	0.26	7.60
15	5	90.46	0.00037	0.4	12.44
	10	91.12	0.00030	0.47	21.37
	15	91.68	0.00026	0.52	29.12
	1	89.92	0.00011	0.15	6.57
	2	90.04	0.00025	0.25	7.97
14	5	90.46	0.00034	0.37	13.37
	10	91.12	0.00027	0.44	22.51
	15	91.68	0.00025	0.50	30.27
	1	89.92	0.00079	0.31	3.20
	2	90.03	0.00147	0.47	4.23
13	5	90.44	0.00107	0.57	8.79
	10	91.11	0.00057	0.59	17.06
	15	91.67	0.00044	0.62	24.28
	1	89.92	0.00010	0.14	7.28
	2	90.03	0.00021	0.23	8.85
12	5	90.45	0.00026	0.33	15.16
	10	91.11	0.00021	0.38	26.37
	15	91.67	0.00017	0.41	36.39
	1	89.92	0.00007	0.12	8.14
	2	90.03	0.00016	0.21	9.71
11	5	90.44	0.00022	0.31	15.88
	10	91.11	0.00020	0.37	26.69
	15	91.67	0.00017	0.41	36.71
	1	89.91	0.00079	0.29	3.48
	2	90.02	0.00135	0.43	4.66
10	5	90.43	0.00084	0.48	10.33
	10	91.10	0.00040	0.47	21.13
	15	91.66	0.00028	0.49	30.62
	1	89.9	0.00101	0.33	3.07
	2	90.00	0.00199	0.49	4.04
9	5	90.42	0.00131	0.51	9.73
	10	91.10	0.00035	0.42	23.62
	15	91.66	0.00022	0.42	35.38
	1	89.85	0.01106	0.58	1.72
	2	89.85	0.04266	1.15	1.75
8	5	90.41	0.00083	0.45	11.23
	10	91.1	0.00029	0.42	24.07
	15	91.66	0.00021	0.43	34.73
	1	89.49	0.04678	0.89	1.13
	2	89.71	0.00247	0.45	4.45
7	5	90.4	0.00022	0.28	17.69
	10	91.1	0.00013	0.31	32.68
	15	91.66	0.00011	0.33	45.04

	4.2	T	T	T == :	2
	Q , $^3/$	Н,	I	V , /	,
	1	89.49	0.04678	0.89	1.13
	2	89.71	0.00247	0.45	4.45
7	5	90.4	0.00022	0.28	17.69
	10	91.1	0.00013	0.31	32.68
	15	91.66	0.00011	0.33	45.04
	1	89.39	0.00011	0.15	6.47
	2	89.71	0.00012	0.19	10.33
6	5	90.4	0.00010	0.22	22.35
	10	91.1	0.00008	0.27	36.87
	15	91.66	0.00008	0.31	48.66
	1	89.38	0.00293	0.45	2.23
	2	89.7	0.00072	0.36	5.53
5	5	90.4	0.00027	0.33	15.11
	10	91.09	0.00020	0.38	26.66
	15	91.65	0.00016	0.41	36.76
	1	89.32	0.00202	0.44	2.27
	2	89.68	0.00076	0.37	5.35
4	5	90.39	0.00030	0.34	14.62
	10	91.08	0.00021	0.39	25.68
	15	91.65	0.00019	0.43	34.66
	1	89.33	0.00007	0.14	7.39
	2	89.69	0.00007	0.17	11.65
3	5	90.39	0.00008	0.24	21.15
	10	91.08	0.00010	0.32	30.87
	15	91.65	0.00011	0.39	38.73
	1	89.32	0.00012	0.17	5.9
	2	89.68	0.00012	0.21	9.49
2	5	90.39	0.00012	0.27	18.25
	10	91.08	0.00014	0.36	27.96
	15	91.64	0.00015	0.42	35.81
	1	89.31	0.00141	0.36	2.81
	2	89.68	0.00042	0.29	6.96
1	5	90.39	0.00018	0.28	17.76
	10	91.08	0.00013	0.33	30.26
	15	91.64	0.00012	0.37	40.37
	1	89.32	0.00006	0.12	8.19
	2	89.68	0.00006	0.15	13.26
0	5	90.39	0.00006	0.19	26.16
	10	91.08	0.00006	0.24	41.29
	15	91.64	0.00006	0.28	53.65

0.025.

4.3 –


	Q , $^3/$	Н,	I	V , /	, 2
	1	89.88	0.00004	0.17	5.81
	2	89.98	0.00010	0.29	6.86
15	5	90.17	0.00027	0.55	9.04
	10	90.54	0.00035	0.74	13.43
	15	90.9	0.00032	0.82	18.31
	1	89.87	0.00004	0.17	6.02
	2	89.98	0.00010	0.28	7.18
14	5	90.17	0.00027	0.52	9.58
	10	90.54	0.00031	0.69	14.47
	15	90.9	0.00028	0.77	19.49
	1	89.87	0.00034	0.36	2.79
	2	89.96	0.00069	0.56	3.58
13	5	90.13	0.00143	0.95	5.28
	10	90.5	0.00101	1.06	9.45
	15	90.87	0.00069	1.07	14.0
	1	89.87	0.00004	0.15	6.65
	2	89.97	0.00009	0.25	7.96
12	5	90.15	0.00023	0.47	10.62
	10	90.52	0.00025	0.61	16.36
	15	90.89	0.00021	0.67	22.46
	1	89.87	0.00003	0.13	7.51
	2	89.97	0.00006	0.23	8.84
11	5	90.15	0.00017	0.44	11.48
	10	90.52	0.00021	0.59	17.04
	15	90.89	0.00019	0.66	22.86
	1	89.87	0.00037	0.33	3.00
	2	89.95	0.00064	0.51	3.94
10	5	90.12	0.00129	0.84	5.93
	10	90.49	0.00078	0.89	11.2
	15	90.87	0.00052	0.88	17.12
	1	89.86	0.00044	0.37	2.69
	2	89.94	0.00087	0.58	3.46
9	5	90.09	0.00191	0.99	5.06
	10	90.48	0.00122	0.93	10.79
	15	90.87	0.00049	0.8	18.72
	1	89.79	0.01408	0.97	1.03
	2	89.85	0.01265	1.15	1.74
8	5	89.96	0.01078	1.46	3.42
	10	90.47	0.00071	0.81	12.4
	15	90.86	0.00037	0.76	19.66
	1	89.49	0.01405	0.89	1.12
	2	89.54	0.01231	1.11	1.81
7	5	89.92	0.00072	0.62	8.05
	10	90.48	0.00020	0.52	19.25
	15	90.87	0.00015	0.54	27.68

1	2
- 4	

	7.5				
	Q , $^3/$	Н,	I	V , /	, 2
	1	89.30	0.00005	0.18	5.50
	2	89.44	0.00010	0.29	6.97
6	5	89.92	0.00011	0.37	13.5
	10	90.48	0.00010	0.42	23.94
	15	90.87	0.00009	0.47	32.13
	1	89.27	0.00364	0.77	1.30
	2	89.40	0.00264	0.82	2.43
5	5	89.91	0.00047	0.63	7.94
	10	90.47	0.00025	0.62	16.23
	15	90.86	0.00020	0.66	22.68
	1	89.13	0.00695	1.01	0.99
	2	89.35	0.00186	0.81	2.47
4	5	89.89	0.00052	0.65	7.65
	10	90.46	0.00028	0.64	15.67
	15	90.85	0.00023	0.68	21.9
	1	89.16	0.00005	0.18	5.60
	2	89.37	0.00007	0.25	7.86
3	5	89.90	0.00007	0.35	14.43
	10	90.46	0.00008	0.45	22.18
	15	90.85	0.00009	0.54	27.64
	1	89.16	0.00008	0.23	4.40
	2	89.36	0.00012	0.32	6.28
2	5	89.90	0.00012	0.42	11.9
	10	90.46	0.00013	0.52	19.23
	15	90.85	0.00013	0.61	24.68
	1	89.08	0.01198	1.16	0.86
	2	89.34	0.00131	0.65	3.09
1	5	89.89	0.00027	0.51	9.87
	10	90.46	0.00017	0.53	19.02
	15	90.85	0.00014	0.58	26.06
	1	89.10	0.00006	0.18	5.50
	2	89.35	0.00006	0.23	8.67
0	5	89.89	0.00006	0.30	16.71
	10	90.46	0.00006	0.36	27.71
	15	90.85	0.00006	0.41	36.25

,

,

,

, (1), (2) (3).

, 25 ,

$$C = \frac{1}{n} \cdot h^{\frac{1}{6}} \tag{4.1}$$

:

$$(4.2)$$

 $g - = 9.81 / ^2; -$

$$\lg(1000\lambda) = 0.9$$

$$1000\lambda = 6.3$$

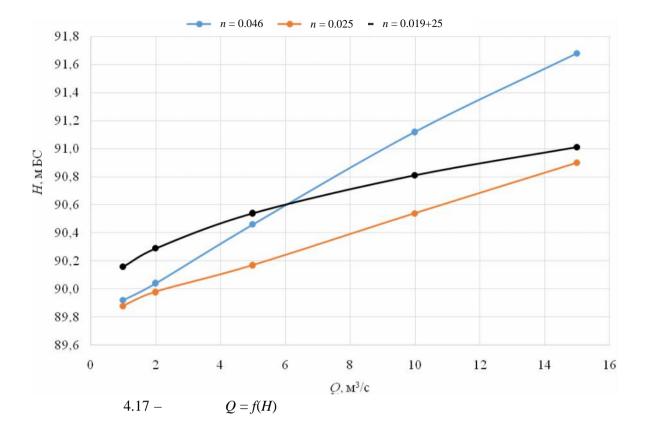
$$\lambda \equiv 0.0063$$

(4.2):

$$C = \sqrt{\frac{2 * 9.81}{0.0063}} = 55.8.$$

$$(4.1), n = 0.019.$$

4.4 -


	Q , $^3/$,	Н,	I	V , /	, 2
	1	89.25	90.16	0.00002	0.16	6.12
	2	89.25	90.29	0.00004	0.27	7.50
15	5	89.25	90.54	0.00011	0.48	10.38
	10	89.25	90.81	0.00019	0.73	13.67
	15	89.25	91.01	0.00026	0.92	16.32
	1	89.11	90.16	0.00002	0.16	6.36
	2	89.11	90.28	0.00005	0.25	7.89
14	5	89.11	90.54	0.00010	0.45	11.1
	10	89.11	90.81	0.00017	0.68	14.74
	15	89.11	91.01	0.00023	0.86	14.74
	1	89.78	90.07	0.00704	1.23	14.74
	2	89.78	90.16	0.00617	1.49	14.74
13	5	89.78	90.36	0.00537	1.84	14.74
	10	89.78	90.57	0.00475	2.14	14.74
	15	89.78	90.73	0.00450	2.39	14.74
	1	88.96	90.11	0.00002	0.15	14.74
	2	88.96	90.20	0.00006	0.26	14.74
12	5	88.96	90.37	0.00015	0.49	14.74
	10	88.96	90.59	0.00026	0.74	14.74
	15	88.96	90.89	0.00023	0.82	14.74
	1	89.29	90.11	0.00002	0.14	14.74
	2	89.29	90.20	0.00004	0.23	14.74
11	5	89.29	90.37	0.00011	0.45	14.74
	10	89.29	90.59	0.00020	0.70	14.74
	15	89.29	90.89	0.00019	0.79	14.74
	1	89.71	90.11	0.00023	0.34	14.74
	2	89.71	90.19	0.00043	0.53	14.74
10	5	89.71	90.34	0.00092	0.90	14.74
	10	89.71	90.53	0.00119	1.23	14.74
	15	89.71	90.84	0.00068	1.17	14.74
	1	89.61	90.10	0.00027	0.38	14.74
	2	89.61	90.18	0.00055	0.60	14.74
9	5	89.61	90.31	0.00134	1.06	14.74
	10	89.61	90.48	0.00213	1.47	14.74
	15	89.61	90.84	0.00090	1.15	14.74
	1	89.83	90.04	0.00814	0.97	14.74
	2	89.83	90.10	0.00730	1.15	14.74
8	5	89.83	90.21	0.00622	1.46	14.74
	10	89.83	90.46	0.00189	1.30	14.74
	15	89.83	90.84	0.00056	1.03	14.74
7	1	89.46	89.74	0.00812	0.89	14.74
	2	89.46	89.79	0.00709	1.10	14.74

5	89.46	89.97	0.00249	1.10	14.74
10	89.46	90.49	0.00029	0.70	14.74
15	89.46	90.85	0.00017	0.69	14.74

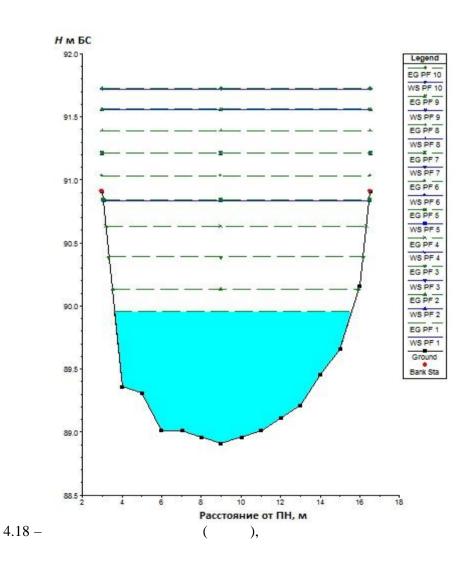
		4.4				
	Q , $^3/$,	Н,	Ι	V , /	, 2
6	1	88.66	89.53	0.00003	0.19	14.74
6	2	88.66	89.65	0.00007	0.30	14.74
6	5	88.66	90	0.00011	0.46	14.74
6	10	88.66	90.5	0.00010	0.52	14.74
6	15	88.66	90.86	0.00009	0.56	14.74
5	1	89.23	89.48	0.00397	0.96	14.74
5	2	89.23	89.59	0.00360	1.08	14.74
5	5	89.23	89.96	0.00073	0.89	14.74
5	10	89.23	90.48	0.00032	0.81	14.74
5	15	89.23	90.83	0.00023	0.83	14.74
4	1	89.10	89.37	0.00450	1.05	14.74
4	2	89.10	89.47	0.00418	1.28	14.74
4	5	89.10	89.94	0.00079	0.93	14.74
4	10	89.10	90.46	0.00037	0.84	14.74
4	15	89.10	90.82	0.00026	0.86	14.74
3	1	88.47	89.41	0.00003	0.18	14.74
3	2	88.47	89.52	0.00006	0.29	14.74
3	5	88.47	89.96	0.00007	0.42	14.74
3	10	88.47	90.48	0.00007	0.53	14.74
3	15	88.47	90.83	0.00008	0.63	14.74
2	1	88.75	89.41	0.00005	0.23	14.74
2	2	88.75	89.52	0.00011	0.37	14.74
2	5	88.75	89.95	0.00012	0.52	14.74
2	10	88.75	90.47	0.00012	0.63	14.74
2	15	88.75	90.83	0.00013	0.72	14.74
1	1	89.09	89.33	0.00705	1.17	14.74
1	2	89.09	89.45	0.00377	1.12	14.74
1	5	89.09	89.94	0.00042	0.71	14.74
1	10	89.09	90.46	0.00020	0.68	14.74
1	15	89.09	90.82	0.00016	0.71	14.74
0	1	88.50	89.28	0.00006	0.22	14.74
0	2	88.50	89.49	0.00006	0.28	14.74
0	5	88.50	89.95	0.00006	0.37	14.74
0	10	88.50	90.47	0.00006	0.44	14.74
0	15	88.50	90.83	0.00006	0.49	14.74

Q = f(H)

(4.17).

?

 $V = C\sqrt{hI}, \tag{4.3}$

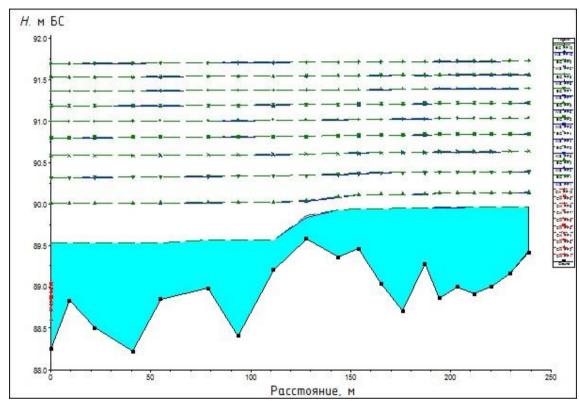

(4.3)

$$V = \frac{h^{\frac{2}{3}}I^{\frac{1}{2}}}{n}. (4.4)$$

(4.4)

n:

$$\frac{n}{\sqrt{I}} = \frac{h^{\frac{2}{3}}}{V}.\tag{4.5}$$

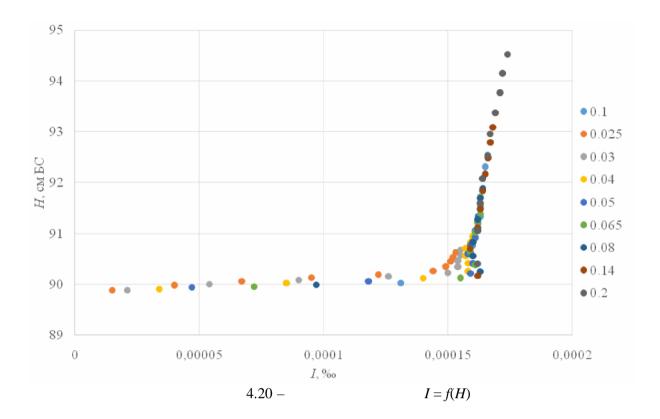

C Hec – Ras

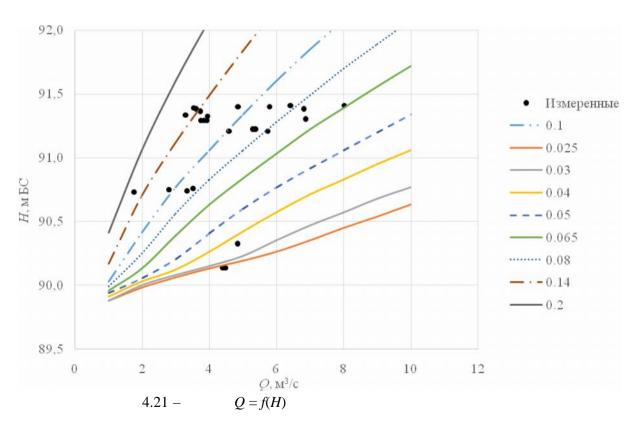
.

,

 $1 10^{-3}/$,

(4.19).




4.19 –

.

I = f(H)

Q = f(H) (4.20 - 4.21).

4.20,

,

.

Q = f(H) (4.21),

0.065 0.16,

33 -101-2003.

•

i. 1.

2.

3.

4.

5.

6.

•

; -

-; .

•

29 , 23 , 18 . 3 2 .

· · ·

.

VellemanPCS10 , 21- -1 ().

,

,

2017

· , -

, .

, . .

Hec-Ras.

Hec-Ras :

-.

• -

n . 0.065 0.16,

,

,

•

,

,

,

```
1.
             . 2003.
          . 107-117
     ».
     2.
                                                             , 1989 – . . 210
     3.
                                . .
                               , 1988. - 456.
     4.
                                                     , 1989. – 288 .
     5.
               ,2011.-504 .
     6.
                                                .– 1960. –         .77. –
                                                                       .74-85
     7.
                                                         11.
1961.
     8.
     2, 1961.
     9.
                . ., 1910.
     10.
                                                      , ., 1951.
     11.
          , .,1955.
```

. . . , , , , 1963.

- 16. Straus . W. Control of Weeds on Irrigation systems. 1949.
- 17. Järvelä, J., Flow resistance in environmental channels: Focus on vegetation, Helsinki University of Technology Water Resources Publications, TKK -VTR-10, Espoo, 2004, 54 pp.
 - 18. King ., Wisjer Ch. Hydraulics. London, 1927
- 19. Tal M, Paola C. 2007. Dynamic single-thread channels maintained by the interactions of flow and vegetation. *Geology* 35: 347-350. DOI. 10.1130/G23260A.1
- 20. Mohrig D, Heller PL, Paola C, Lyons WJ. 2000. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). *GSA Bulletin* 112(12): 1 787-1803.
- 21. Egozi R, Ashmore P. 2009. Experimental analysis of braided channel pattern response to increased discharge. *Journal of Geophysical Research* 114: F02012. DOI. 10.1029/2008JF001099
- 22. Statsner A. 1996. A simulation model for meandering rivers. *Water Resources Research* 32(9): 2937-2954.

pattern response to increased discharge. Journal of George	physical Res	search 114:
F02012. DOI. 10.1029/2008JF001099		
24		
. IV		
, . IV, 1933.		
25		
(), ,	. IV	
, . IV, 1933		
26		
. , 7, 1940.		
27		
,	•	
, 9, 1940.		
28		
. , 10, 1951.		
29		
. , 1951.		
30		
. , 1951		
31		
. , 50/51, 1932.		
32		
. , 1947.		
33. Västilä K. Flow-plant-sediment interactions:	Vegetative	resistance
modeling and cohesive sediment processes. Helsinki, 2015.		
34		
•	1988, 1.	

23. Egozi R, Ashmore P. 2009. Experimental analysis of braided channel

	35.							
	1001	2						
	1991	, 3.						
	36.							
		•		•	-	•		,
1997	, 2.							
	37.							
.:	, 197	74)						
	38.							
		,		, 1993,	2.			
	39.						_	
	, 2004.							
	40. Vale	entina B	oscolo: E	ffects of	in-stream veg	getation on h	nydraulic r	esistance
in reg	gulated ri	vers, U	niversità d	legli Stu	di di Padova,	Corso di La	urea Magi	strale in
Ingeg	gneria Civ	ile. Abo	erdeen, Ju	ly 2014				
	41.						,	
					, 19.			
	42.					-		
https:	://ru.wikij	oedia.or	g/wiki/					
1	43.	•					_	
http:/		mhmans	sv.ru/uploa	ad/iblock	/f79/f79e6a6e	08d6c4e4b0	b07c77559	9906a6.
pdf.			J					
par.	44.			_	-https://ru.w	ikinedia org	/wiki/	(
		6.05.20	18)		пиры, / та. ч	mipeara.org	/ \\ 1111 /	(
	45.	0.03.20	10)					
https:		adia ar	· ~/wil=:/			_		_
nups	://ru.wikip	eura.or	g/WIKI/	1. 4	4m a //m:1-' · · ·	dia ar-/1	: /	
	46.	•	-		tps://ru.wikipe		1/	
	47.		_	-http	s://ru.wikiped	ia org/wiki/		

48. - https://ru.wikipedia.org/wiki/ _ _ _

https://ru.wikipedia.org/wiki/

49.