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1. Indefinite integral 

Introduction. 

In practical situations, we may be interested to know the position of an object 

at an instant, when velocity of the object at that instant is given. That is if s(t) is the 

displacement of an object in time (t) and we know 
𝑑𝑠

𝑑𝑡
. 

How can we find the displacement at time (t)? How do we find the velocity of 

a moving object, when its acceleration and initial velocity is known? These three 

problems involve the process of finding the function whose derivative is given. 

Integration and differentiation are a pair of inverse operations. So far, from a given 

function, we have been finding its derivative but the question arises: what is the 

function whose derivative is known? If the derivative of a function is given, then the 

function itself is called anti-derivative or integral. For example: 

Consider the function f(x) = x4 then its derivative is given by f ‘(x) = 4x3. The 

question arises: given f ‘(x) = 4x3 what is f(x)? 

1.1. - Indefinite Integrals as the Anti-derivative. 

Consider the following example: Let f(x) = cos 3x, let us find a function F(x) such that  

𝑑

 𝑑𝑥
(𝐹(𝑥)) = cos 3𝑥.  

We know that 
𝑑

𝑑𝑥
(sin 3𝑥) = 3 cos 3𝑥             

𝑑

𝑑𝑥
(

1

3
sin 3𝑥) = cos 3𝑥.  

Here 𝐹(𝑥) =
1

3
sin 3𝑥. In other words we say that the integral cos 3𝑥 is  

1

3
sin 3𝑥. 

Let us define integral of a function in general as follows. 

Let F(x) be a function such that 

 
𝑑

𝑑𝑥
[𝐹(𝑥)] = 𝑓(𝑥),  

then F(𝒙) is called an integral of 𝑓(𝑥), with respect to (x). But 



 
𝑑

𝑑𝑥
[𝐹(𝑥) + 𝐶] = 𝑓(𝑥).  

In general, integral of 𝑓(𝑥) is 𝐹(𝑥)+C, where C is called the constant of integration.  

In symbols we write this as ∫ 𝒇(𝒙)𝒅𝒙 = 𝑭(𝒙) + 𝑪 

List of the standard integrals.  

1. ∫ 𝑥
𝑛

𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝐶 

2. ∫
𝑑𝑥

𝑥
= 𝑙𝑛 |𝑥| + 𝐶 

3. ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶 

4. ∫ 𝑎𝑥𝑑𝑥 =
𝑎𝑥

𝑙𝑛 𝑎
+ 𝐶 

5. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 = −𝑐𝑜𝑠 𝑥 + 𝐶 

6. ∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑠𝑖𝑛 𝑥 + 𝐶 

7. ∫ 0𝑑𝑥 = 𝑐  

8. ∫ 𝑘𝑑𝑥 = 𝑘𝑥 + 𝐶           

9. ∫ ln 𝑥 𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶 

10. ∫
𝑑𝑥

𝑥 ln 𝑥
= ln|ln 𝑥| + 𝐶 

11. ∫ log𝑏 𝑥 𝑑𝑥 = 𝑥
ln 𝑥 − 1

ln 𝑏
+ 𝐶 

12. ∫
𝑑𝑥

√𝑎2 − 𝑥2
= arcsin

𝑥

𝑎
+ 𝐶 



13. ∫
− 𝑑𝑥

√𝑎2 − 𝑥2
= arccos

𝑥

𝑎
+ 𝐶 

14. ∫ 𝑡𝑔 𝑥𝑑𝑥 = − ln|cos 𝑥| + 𝐶 

15. ∫ 𝑐𝑡𝑔 𝑥𝑑𝑥 = 𝑙𝑛|sin 𝑥| + 𝐶 

 

1.2. - Indefinite Integral Geometrical Interpretation. 

Let 𝑓(𝑥) = 3𝑥2                 ∫ 𝑓(𝑥)𝑑𝑥 = 𝑥3 + 𝐶 

Note that for different values of (C) we get different integrals. But all these 

integrals are very similar geometrically. 

 

 

The function y = x3 + C represent a family of integrals. The above figure 

shows different curves of the integral function y = x3 + C. These curves fill the co-

ordinate plane without overlapping. These curves together constitute the indefinite 

integrals. 

If we draw a line x = a perpendicular to X-axis. Then the curves y = x3 + C 

have slopes. The slopes of the tangent at P1, P2, P3, P4 and P5 are equal. This 

indicates, the tangents to these curves are parallel at these points. 



1.3.  - Indefinite integral properties. 

1.  Let f(x) be a real value differentiable function, then 

 
𝒅

𝒅𝒙
∫ 𝒇(𝒙)𝒅𝒙 = 𝒇(𝒙)                                              ∫ 𝒇′(𝒙)𝒅𝒙 =  𝒇(𝒙) + 𝑪 

 

Proof: Let F(x) be any anti- derivative of f(x)  

 
𝑑

𝑑𝑥
[𝐹(𝑥)] = 𝑓(𝑥) → ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 →

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] =

𝑑

𝑑𝑥
[𝐹(𝑥) + 𝐶] →

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] = 𝑓(𝑥).  

Similarly, we know that  

𝑓′(𝑥) =
𝑑

𝑑𝑥
[𝑓(𝑥)] → ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑥) + 𝐶, where C is the constant of integration. 

2. Two indefinite integrals with the same derivative lead to the same family 

of curves and so they are equivalent.   

 

Proof: Let the two indefinite integrals be:∫ 𝑓(𝑥)𝑑𝑥  and ∫ 𝑔(𝑥)𝑑𝑥.  

Given:
𝑑

𝑑𝑥
∫ 𝑓(𝑥) 𝑑𝑥 =

𝑑

𝑑𝑥
∫ 𝑔(𝑥)𝑑𝑥 →

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥] = 0 →

∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥 = 𝐶 

             Where C is any number.  

             ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔(𝑥)𝑑𝑥 + 𝐶1 𝑜𝑟 ∫ 𝑔(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶2 → the family of curves 

are identical. 

3. ∫[𝒇(𝒙) + 𝒈(𝒙)]𝒅𝒙 = ∫ 𝒇(𝒙)𝒅𝒙 + ∫ 𝒈(𝒙)𝒅𝒙 

 

Proof: By property 1, we have 

 

 
𝑑

𝑑𝑥
[∫(𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = 𝑓(𝑥) + 𝑔(𝑥)]                                                                     

(a) 



 

Also we have  

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥] =

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] +

𝑑

𝑑𝑥
[∫ 𝑔(𝑥)𝑑𝑥] = 𝑓(𝑥) + 𝑔(𝑥)            

(b) 

From (a) and (b) we have 

𝑑

𝑑𝑥
[∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥] =

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥] → 

∫[𝑓(𝑥) + 𝑔(𝑥)] = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 

4. For any real number k, ∫ 𝑘𝑓(𝑥)𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥 

 

By property 1,we have 

 

                                           
𝑑

𝑑𝑥
∫ 𝑘𝑓(𝑥)𝑑𝑥 = 𝑘𝑓(𝑥)                                                        

(c)  

 

                                  
𝑑

𝑑𝑥
[𝑘 ∫ 𝑓(𝑥)𝑑𝑥] = 𝑘

𝑑

𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] = 𝑘𝑓(𝑥)                                    

(d) 

 

From (c) and (d) we have 

𝑑

𝑑𝑥
∫ 𝑘𝑓(𝑥)𝑑𝑥 =

𝑑

𝑑𝑥
[𝑘 ∫ 𝑓(𝑥)𝑑𝑥] → ∫ 𝑘𝑓(𝑥)𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥 

Note:  that while using property (2), we can express two equivalent integrals by 

writing without mentioning constant 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔(𝑥)𝑑𝑥 

   More generally, combining property (2) and property (3), we can write   



∫[k1f1(x) + k2f1(x) + k3f3(x) + ⋯ + knfn(x)]dx

= k1 ∫ f1(x)dx + k2 ∫ f2(x)dx + ⋯ + kn ∫ fn(x)dx 

Where f1, f2, ….fn are functions and k1, k2, …kn are real numbers.   

 Example: Write an anti -derivative of (sin2x - 4e3x ) using method of inspection.   

𝑑

𝑑𝑥
(cos 2𝑥) = − sin 2𝑥(2) → −

1

2

𝑑

𝑑𝑥
(cos 2𝑥) = sin 2𝑥 →

𝑑

𝑑𝑥
(−

1

2
cos 2𝑥) = sin 2𝑥 

The anti derivative of (sin2x) is (−
1

2 
𝑐𝑜𝑠 2𝑥) 

Similarly              
𝑑

𝑑𝑥 
(𝑒3𝑥) = 3𝑒3𝑥 →

1

3

𝑑

𝑑𝑥
𝑒3𝑥 = 𝑒3𝑥 → 4𝑒3𝑥 =

4

3

𝑑

𝑑𝑥
(𝑒3𝑥) 

Multiplying both sides by 4 and interchanging RHS and LHS 

4𝑒3𝑥 =
𝑑

𝑑𝑥
(
4

3
𝑒3𝑥) 

The anti-derivative of 4𝑒3𝑥  is 
4

3
𝑒3𝑥 . The anti-derivative of sin 2𝑥 − 4𝑒3𝑥 is 

−
1

2
cos 2𝑥 +

4

3
𝑒3𝑥 

1.4. - Comparison between differentiation and integration. 

1. Both are operations on functions.    

2. Both are linear. This is because of the following: 

d

dx
[f1(x)f2(x)] =

d

dx
f1(x) +

d

dx
f2(x) 

And 

∫[𝑓1(𝑥) + 𝑓2(𝑥)]𝑑𝑥 = ∫ 𝑓1(𝑥)𝑑𝑥 + 𝑓2(𝑥)𝑑𝑥 

 The constant can be taken outside the differential as well as integral sign as shown 

below: 



𝑑

𝑑𝑥
[𝑘(𝑥)] = 𝑘

𝑑

𝑑𝑥
𝑓(𝑥) 

And 

∫ 𝑘𝑓(𝑥)𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥 

3. We have already seen that not all functions are differentiable. Similarly, all 

functions are not integrable. We will learn about non-differentiable and non-

integrable functions in our higher classes. 

4. The derivative of a function, when it exists is a unique function. The integral of a 

function is not so. However, it always differs by a constant only. 

5. When a polynomial function P is differentiated, the result is a polynomial whose 

degree is 1 less than the degree of P. When a polynomial function P is integrated, the 

result is a polynomial whose degree is 1 more than that of P.  

6. We can speak of the derivative of a function at a point. We never speak of the 

integral of a function at a point, we speak of the integral of a function over an interval 

on which integral is defined. 

7. The derivative of a function has a geometrical meaning, namely, the slope of the 

tangent to the corresponding curve at the point. Similarly, indefinite integral of a 

function represents geometrically, a family of curves placed parallel to each other 

having parallel tangents at the points of intersection of the curves of the family with 

the lines orthogonal to the axis representing the variable of integration. 

8. The derivative is used for finding some physical quantities like the velocity of a 

moving particle, when the distance traversed at any time t is known. Integral is used 

to find the distance travelled on time t when velocity at time t is known n.  

9. Differentiation is a process involving limits, so is integration. 



10. The process of differentiation and integration are inverses of each other.   In the 

earlier section we have found the integral (anti-derivative) of a function by 

inspection. For a given function f, it may be difficult to find F such that 

𝑑𝐹

𝑑𝑥
= 𝑓(𝑥)  or      [∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)] 

Therefore we need to learn different methods of integration in this section. The three 

different methods of integration, we learn are 

 1. Method of substitution   

2. Integration using partial fraction.    

3. Integration by parts. 

1.5. -  Integration by Substitution. 

Integration of the form 

∫(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 

Let ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶   

Consider     ∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 

Put 𝑔(𝑥) = 𝑡 

Differentiating g(x) with respect to t, we have 

𝑔′(𝑥)𝑑𝑥 = 𝑑𝑡 

∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 = ∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑡) + 𝐶 = 𝐹(𝑔(𝑥)) + 𝐶 

Note: 

By the above  ∫ 𝑓(𝑎𝑥 + 𝑏)𝑑𝑥 =
1

𝑎
𝐹(𝑎𝑥 + 𝑏) + 𝐶 

Example: 



Integrate the following function (2𝑥3 + 1)4𝑥2 

Suggested answer: 

If      2𝑥3 + 1 = 𝑢; 𝑑𝑢 = 6𝑥2𝑑𝑥; 𝑥2𝑑𝑥 =
1

6
𝑑𝑢 

∫(2x3 + 1)4x2dx =
1

6
∫ u4du =

1

6

u5

5
=

u5

30
=

1

30
(2x3 + 1)5 + C 

1.6. - Integration using trigonometric identities. 

When the integrand consists of trigonometric function, we use suitable trigonometric 

identities to simplify the function so that it can be integrated. Few identities are given 

below. 

𝑠𝑖𝑛2𝑥 =
1 − cos 2𝑥

2
 

𝑐𝑜𝑠2𝑥 =
1 + cos 2𝑥

2
 

       𝑠𝑖𝑛3𝑥 =
3 sin 𝑥 − sin 3𝑥

4
 

       𝑐𝑜𝑠3𝑥 =
cos 3𝑥 + 3 cos 𝑥

4
 

sin 𝐴 cos 𝐵 =
1

2
[sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵)] 

sin 𝐴 sin 𝐵 =
1

2
[cos(𝐴 − 𝐵) − cos (𝐴 + 𝐵)] 

𝑐𝑜𝑠𝐴 𝑐𝑜𝑠 𝐵 =
1

2
[cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵)] 

Example: 

Integrate the function:  sin 5𝑥 sin 3𝑥 

Suggested answer: 



                 ∫ sin 5𝑥 sin 3𝑥 𝑑𝑥 =
1

2
∫(cos 2𝑥 − cos 8𝑥)𝑑𝑥 =

1

2
(

1

2
sin 2𝑥 −

1

8
sin 8𝑥) =

1

4
sin 2𝑥 −

1

16
sin 8𝑥 + 𝐶 

Example: 

Integrate the function:𝑐𝑜𝑠2𝑥 

Suggested answer: 

∫ 𝑐𝑜𝑠2𝑥𝑑𝑥 = ∫
1 + cos 2𝑥

2
𝑑𝑥 =

1

2
∫ 𝑑𝑥 + ∫ cos 2𝑥𝑑𝑥 =

1

2
𝑥 +

1

4
sin 2𝑥 + 𝐶 

1.7. -  Integration by Partial fractions. 

Before using this technique of integration, let us recall what we have learnt about 

partial fraction.  

Rational function. 

 If P(x) and Q(x) are two polynomials in x, then the ratio of two polynomials, 
𝑃(𝑥)

𝑄(𝑥)
 is 

called a rational function, where 𝑄(𝑥) ≠ 0 

Proper rational function 

If the degree of the numerator of the rational function is less than that of the 

denominator, the rational function is called a proper rational function. 

2x+3

x2+5x+7
 is a proper rational fraction. 

Improper rational function. 

If the degree of the numerator is greater than the degree of the denominator in a 

rational fraction, then the rational function is called improper rational function. Like 

the case of improper fractions reducible to an integer added to a proper fraction, 

improper rational function can be reduced as a sum of a polynomial and a proper 

rational function. 



In other words, if 
𝑃(𝑥)

𝑄(𝑥)
 is improper rational function, then 

𝑃(𝑥)

𝑄(𝑥)
= 𝑇(𝑥) +

𝑃1(𝑥)

𝑄(𝑥)
 

Where T(x) is a polynomial and  
𝑃1(𝑥)

𝑄(𝑥)
 is a proper rational function. 

Partial fractions. 

Any proper rational function 
𝑃(𝑥)

𝑄(𝑥)
  can be expressed as sum of rational fractions, each 

having a factor of Q(x). Each such fraction is known as Partial fraction. 

Rule for integrating. 

1. Let 
P(x)

Q(x)
  be rational function. If 

P(x)

Q(x)
  is improper, divide P(x) by Q(x). Let T(x) 

be the quotient and P1(x) be the remainder, then  

 

𝑃(𝑥)

𝑄(𝑥)
= 𝑇(𝑥) +

𝑃1(𝑥)

𝑄(𝑥)
 

 

Where T(x) is a polynomial and  
𝑃1(𝑥)

𝑄(𝑥)
 is a proper rational function. 

2. Resolve the proper rational function 
𝑃1(𝑥)

𝑄(𝑥)
  in to partial fractions. 

3. Write 
𝑃1(𝑥)

𝑄(𝑥)
  as a sum of partial fractions. 

4. Write  
𝑃(𝑥)

𝑄(𝑥)
 as the sum of T(x) and the sum of partial fractions. Integrate each 

part of the right hand side. This gives the required integral. 

 

Note that if  
𝑃(𝑥)

𝑄(𝑥)
  is a proper rational fraction step 1 need not be performed. 

 



The following table indicates the simpler partial fractions associated to proper 

rational functions. 

№ Form of the rational 

fraction 

Form of the partial fraction 

1 𝑝𝑥 + 𝑞

(𝑥 − 𝑎)(𝑥 − 𝑏)
, 𝑎 ≠ 𝑏 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑏)
 

2 𝑝𝑥 + 𝑞

(𝑥 − 𝑎)2
 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑎)2
 

3 𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)
 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑏)
+

𝐶

(𝑥 − 𝑐)
 

4 𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)2(𝑥 − 𝑏)
 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑎)2
+

𝐶

(𝑥 − 𝑏)
 

5 𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)3(𝑥 − 𝑏)
 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑎)2
+

𝐶

(𝑥 − 𝑎)3

+
𝐷

(𝑥 − 𝑏)
 

6 𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)(𝑥2 + 𝑏𝑥 + 𝑐)
 

𝐴

(𝑥 − 𝑎)
+

𝐵𝑥 + 𝑐

𝑥2 + 𝑏𝑥 + 𝑐
 

 

In the above table A, B, C and D are real numbers to be determined suitably. 

Example: 

Integrate the following rational fraction ∫
𝑥3+𝑥+1

𝑥2−1
 

Suggested answer: 

Divide the numerator by the denominator, since the rational fraction is improper. 

                                
𝑥3+𝑥+1

𝑥2−1
= 𝑥 +

2𝑥+1

𝑥2−1
                                            (1) 

Resolve 
2𝑥+1

𝑥2−1
  into partial fraction as follows 



                                  
2𝑥+1

 𝑥2−1
=

2𝑥+1

(𝑥−1)(𝑥+1)
=

𝐴

(𝑥−1)
+

𝐵

(𝑥+1)
                      (2) 

→
2𝑥 + 1

(𝑥 − 1)(𝑥 + 1)
=

𝐴(𝑥 + 1) + 𝐵(𝑥 − 1)

(𝑥 − 1)(𝑥 + 1)
→ 2𝑥 + 1 = 𝐴(𝑥 + 1) + 𝐵(𝑥 − 1) 

Put x =1, A = 3/2; 

Put x = -1, B = ½ 

Substitution the values of A and B in (2) we have 

2𝑥 + 1

 𝑥2 − 1
=

3

2(𝑥 − 1)
+

1

2(𝑥 + 1)
 

From (1) we have 

∫
𝑥3+𝑥+1

𝑥2−1
𝑑𝑥 = ∫ (𝑥 +

3

2(𝑥−1)
+

1

2(𝑥+1)
) 𝑑𝑥 = ∫ 𝑥𝑑𝑥 +

3

2
∫

1

𝑥−1
𝑑𝑥 +

1

2
∫

1

𝑥+1
𝑑𝑥 =

𝑥2

2
+

3

2
ln(𝑥 − 1) +

1

2
ln(𝑥 + 1) + 𝐶  

1.8.  - Integration by parts. 

Let u and v be two differentiable function of a single independent variable x. We 

have 

 

𝑑

𝑑𝑥
(𝑢𝑣) =

𝑢𝑑𝑣

𝑑𝑥
+

𝑣𝑑𝑢

𝑑𝑥
 

 

𝑢
𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑢𝑣) −

𝑣𝑑𝑢

𝑑𝑥
 

 

Integrating both sides, we have 

 

∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥 = ∫

𝑑

𝑑𝑥
(𝑢𝑣)𝑑𝑥 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥 

 



                                                            ∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥                       (1)  

 

Let 𝑢 = 𝑓(𝑥),
𝑑𝑣

𝑑𝑥
= 𝑔(𝑥) 

 

Then 
𝑑𝑢

𝑑𝑥
= 𝑓′(𝑥), 𝑣 = ∫ 𝑔(𝑥)𝑑𝑥 

 

(1) Can be written as 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓(𝑥) ∫ 𝑔(𝑥)𝑑𝑥 − ∫(∫ 𝑔(𝑥)𝑑𝑥)𝑓′(𝑥)𝑑𝑥) 

 

Note: 

∫ 𝒇(𝒙)𝒈(𝒙)𝒅𝒙 = 𝒖𝒗 − ∫ 𝒗𝒅𝒖 

 

Note: 

1. While integration by parts, the proper choice of first function and second 

function is significant 

2. Integrating by parts may not be applicable to product of functions in all cases. 

In some cases the product of two functions may not be integrable. 

3. While finding the integral of the second function we do not add constant of 

integration. We need not add a constant of integration to the second function as 

it gets cancelled in the final results. 

4. Sometimes, even if the integral is not a product of two functions, the method of 

integration by parts can be used. 

 

Example: 

Let us integrate  𝑥𝑠𝑖𝑛 𝑥  

Suggested answer: 



If 𝑢 = 𝑥, 𝑑𝑣 = sin 𝑥 𝑑𝑥, 𝑡ℎ𝑒𝑛 𝑑𝑢 = 𝑑𝑥, 𝑣 = ∫ 𝑑𝑣 = ∫ sin 𝑥 𝑑𝑥 = − cos 𝑥 

∫ 𝑥 sin 𝑥 𝑑𝑥 = − 𝑥𝑐𝑜𝑠 𝑥 + ∫ cos 𝑥 𝑑𝑥 = −𝑥𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛𝑥 + 𝐶 

Example: 

Let us integrate  
ln 𝑥

𝑥2
 

Suggested answer: 

If 𝑢 = ln 𝑥, 𝑑𝑣 =
𝑑𝑥

𝑥2
,   𝑡ℎ𝑒𝑛   𝑑𝑢 =

𝑑𝑥

𝑥
, 𝑣 = ∫ 𝑑𝑣 = ∫

𝑑𝑥

𝑥2
= ∫ 𝑥−2𝑑𝑥 = −

1

𝑥
 

∫
ln 𝑥

𝑥2
𝑑𝑥 = −

ln 𝑥

𝑥
+ ∫

1

𝑥

𝑑𝑥

𝑥
= −

ln 𝑥

𝑥
+ ∫ 𝑥−2𝑑𝑥 = −

ln 𝑥

𝑥
−

1

𝑥
+ 𝐶 

1.9. - Some Special Types of integrals 

Following are few special integrals, which can be integrated by using integration by 

parts 

Prove that 

∫ √𝑥2 − 𝑎2𝑑𝑥 =
𝑥

2
√𝑥2 − 𝑎2 −

𝑎2

2
𝑙𝑜𝑔 |𝑥 + √𝑥2 − 𝑎2| + 𝐶 

Proof: 

Let 𝐼 = ∫ √𝑥2 − 𝑎2𝑑𝑥 

Taking 1 as the second function and integrating by parts, we have 

𝐼 = ∫ √𝑥2 − 𝑎2 . (1)𝑑𝑥 = √𝑥2 − 𝑎2 ∫ 𝑑𝑥 − ∬ 𝑑𝑥.
1

2√𝑥2−𝑎2
. (2𝑥). 𝑑𝑥 = 𝑥√𝑥2 − 𝑎2 −

∫
𝑥2

√𝑥2−𝑎2
. 𝑑𝑥 = 𝑥√𝑥2 − 𝑎2 − ∫

(𝑥2−𝑎2)+𝑎2

√𝑥2−𝑎2
= 𝑥√𝑥2 − 𝑎2 − ∫ √𝑥2 − 𝑎2𝑑𝑥 +

∫
𝑎2

√𝑥2−𝑎2
𝑑𝑥 → 𝐼 = 𝑥√𝑥2 − 𝑎2 − 𝐼 + 𝑎2 ∫

1

√𝑥2−𝑎2
𝑑𝑥 → 2𝐼 = 𝑥√𝑥2 − 𝑎2 +



𝑎2𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| + 𝐶1 → 𝐼 =
𝑥

2
√𝑥2 − 𝑎2 +

𝑎2

2
𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| +

𝐶1

2
=

𝑥

2
√𝑥2 − 𝑎2 +

𝑎2

2
𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| + 𝐶 ,where 𝐶 =

𝐶1

2
 

Prove that 

∫ √𝑥2 − 𝑎2𝑑𝑥 =
𝑥

2
√𝑥2 − 𝑎2 +

𝑎2

2
𝑙𝑜𝑔 |𝑥 + √𝑥2 − 𝑎2| + 𝐶 

Proof: 

Let 𝐼 = ∫ √𝑥2 − 𝑎2 𝑑𝑥 

Taking 1 as the second function and integrating by parts, we have  𝐼 =

∫ √𝑥2 − 𝑎2 (1)𝑑𝑥 = √𝑥2 − 𝑎2 ∫ 1. 𝑑𝑥 − ∫(∫ 1. 𝑑𝑥)
1

2√𝑥2−𝑎2
. 2𝑥 = 𝑥√𝑥2 − 𝑎2 −

∫
2𝑥2𝑑𝑥

2√𝑥2−𝑎2
= 𝑥√𝑥2 − 𝑎2 − ∫

𝑥2

√𝑥2−𝑎2
𝑑𝑥 = 𝑥√𝑥2 − 𝑎2 − ∫

(𝑥2+𝑎2)−𝑎2

√𝑥2−𝑎2
𝑑𝑥 =

𝑥√𝑥2 − 𝑎2 − ∫ √𝑥2 − 𝑎2𝑑𝑥 + 𝑎2 ∫
1

√𝑥2−𝑎2
𝑑𝑥 → 𝑥√𝑥2 − 𝑎2 − ∫ √𝑥2 − 𝑎2𝑑𝑥 +

𝑎2 ∫
1

√𝑥2−𝑎2
𝑑𝑥 → 𝐼 = 𝑥√𝑥2 − 𝑎2 − 𝐼 + 𝑎2 ∫

1

√𝑥2−𝑎2
𝑑𝑥 → 2𝐼 = 𝑥 √𝑥2 − 𝑎2 +

𝑎2𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| + 𝐶1 → 𝐼 =
𝑥

2
√𝑥2 − 𝑎2 −

𝑎2

2
𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| +

𝐶1

2
=

𝑥

2
√𝑥2 − 𝑎2 −

𝑎2

2
𝑙𝑜𝑔|𝑥 + √𝑥2 − 𝑎2| + 𝐶, 𝑤ℎ𝑒𝑟𝑒 𝐶 =

𝐶1

2
 

Integral of the form 

∫ √𝑎𝑥2 + 𝑏𝑥 + 𝐶 𝑑𝑥 

Method: 

The quadratic expression ax2 + bx + c can be expressed in the form a(x2 ±A2) by the 

method of completing the square. The integrals can be evaluated by using the special 

integrals. 

∫(𝑝𝑥 + 𝑞)√𝑎𝑥2 + 𝑏𝑥 + 𝐶 



Let  𝐼 = ∫ 𝑝𝑥 + 𝑞) √𝑎𝑥2 + 𝑏𝑥 + 𝐶 

Put 𝑝𝑥 + 𝑞 = 𝐿
𝑑

𝑑𝑥
(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑀      (1) 

Find the values of the constants L and M by comparing the coefficients of like 

powers of x on both sides. 

Substitute 𝑝𝑥 + 𝑞 = 𝐿
𝑑

𝑑𝑥
(𝑎𝑥2 + 𝑏𝑥 + 𝐶) + 𝑀  𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐼 

The integrals in the form are easily integrable. 

Example: 

Evaluate the integral ∫ √3 − 2𝑥 − 𝑥2𝑑𝑥 

Suggested answer: 

∫ √3 − 2𝑥 − 𝑥2𝑑𝑥

= ∫ √3 − (2𝑥 + 𝑥2)𝑑𝑥

= ∫ √3 − (𝑥2 + 2𝑥 + 1 − 1𝑑𝑥 = ∫ √4 − (𝑥 + 1)2𝑑𝑥, 𝑝𝑢𝑡 𝑥 + 1 = 𝑡 

  𝑑𝑥 = 𝑑𝑡 

= ∫ √22 − 𝑡2𝑑𝑡 =
1

2
𝑡√4 − 𝑡2 +

4

2
𝑠𝑖𝑛−1

𝑡

2
+ 𝐶

=
1

2
(𝑥 + 1)√3 − 2𝑥 − 𝑥2 + 2𝑠𝑖𝑛−1 (

𝑥 + 1

2
) + 𝐶 

Summary 

𝐼𝑓 
𝑑

𝑑𝑥
{𝐹(𝑥) + 𝐶} = 𝑓(𝑥)  𝑡ℎ𝑒𝑛  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 

f(x) is called the integrand, F(x) is called the particular integral and C the constant of 

integration. 



𝐼𝑓 ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶    𝑡ℎ𝑒𝑛  ∫ 𝑓(𝑎𝑥 + 𝑏)𝑑𝑥 =
𝐹(𝑎𝑥 + 𝑏)

𝑎
+ 𝐶  

∫(𝑓(𝑥) ± 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 

∫ 𝐾𝑓(𝑥)𝑑𝑥 = 𝐾 ∫ 𝑓(𝑥)𝑑𝑥, 𝐾 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

1.10. - Method of substitution: 

If the integrand f(x) of the integral is not in an integral form the variable of 

integration x is changed to a suitable variable z by substitution and on differentiation 

and simplification, the new integral is found integrable. 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓[𝜙(𝑧)] 𝜙′𝑑𝑍   𝑤ℎ𝑒𝑛 𝑥 = 𝜙(𝑧) 

∫ 𝑓(𝑥)𝑑𝑥 = ∫
𝑔′(𝑥)

𝑔(𝑥)
   𝑡ℎ𝑒𝑛  ∫ 𝑓(𝑥)𝑑𝑥 = log 𝑔(𝑥) + 𝐶 

Standard integrals 

∫
1

𝑎2 − 𝑥2
𝑑𝑥 =

1

2𝑎
𝑙𝑜𝑔 |

𝑎 + 𝑥

𝑎 − 𝑥
| + 𝐶 

∫
1

𝑥2 − 𝑎2
𝑑𝑥 =

1

2𝑎
𝑙𝑜𝑔 |

𝑥 − 𝑎

𝑥 + 𝑎
| + 𝐶 

 

∫
1

𝑎2 − 𝑥2
𝑑𝑥 =

1

𝑎
𝑡𝑎𝑛−1 (

𝑥

𝑎
) + 𝐶 

Evalution of ∫
1

𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 

By method of completing squares ax2 + bx + c is expressed as A2 - X2 or X2 - A2 or 

A2 + x2 and the integral reduces to 



∫
1

𝑎2 − 𝑥2
𝑑𝑥  𝑜𝑟  ∫

1

𝑎2 + 𝑥2
𝑑𝑥   𝑜𝑟  ∫

𝑑𝑥

𝑥2 − 𝑎2
 

which can be evaluated using the standard integrals. 

Evalution of  𝐼 =
𝑝𝑥+𝑞

𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 

Method: 

𝑆𝑡𝑒𝑝1. 𝐿𝑒𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐿
𝑑

𝑑𝑥
(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) + 𝑀 𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐿 𝑎𝑛𝑑 𝑀 

𝑆𝑡𝑒𝑝2. 𝐼 = 𝐿 ∫

𝑑
𝑑𝑥(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟)⁄

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
+ 𝑀 ∫

1

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
  

𝑆𝑡𝑒𝑝3.  𝐼 = 𝐿𝑙𝑜𝑔(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑀 ∫
1

𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 

Step 4: The second integral can be evaluated by method completing squares. 

Standard integrals 

∫
1

√𝑎2 − 𝑥2
𝑑𝑥 = 𝑠𝑖𝑛−1 (

𝑥

𝑎
) + 𝐶 

∫
1

√𝑥2 − 𝑎2
𝑑𝑥 = 𝑙𝑜𝑔 |𝑥 + √𝑥2 − 𝑎2| + 𝐶 

∫
1

√𝑥2 + 𝑎2
𝑑𝑥 = 𝑙𝑜𝑔 |𝑥 + √𝑎2 + 𝑥2| + 𝐶 

𝐸𝑣𝑎𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓  ∫
𝑑𝑥

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
 

By method of completing squares ax2 + bx + c is expressed as A2+ X2 or X2 - A2 and 

the integral reduces to 

 



∫
𝑑𝑥

√𝑎2 − 𝑥2
   𝑜𝑟  ∫

𝑑𝑥

√𝑎2 + 𝑥2
   𝑜𝑟  ∫

𝑑𝑥

√𝑥2 − 𝑎2
 

which can be evaluated using the standard integrals. 

𝐸𝑣𝑎𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓  𝐼 = ∫
𝑝𝑥 + 𝑞

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 

Method: 

𝑆𝑡𝑒𝑝1. 𝐿𝑒𝑡 𝑝𝑥 + 𝑞 = 𝐿
𝑑

𝑑𝑥
(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑀  𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐿 𝑎𝑛𝑑 𝑀 

𝑆𝑡𝑒𝑝 2. 𝐼 = ∫
2𝑎𝑥 + 𝑏

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 + 𝑀 ∫

1

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥

= 2𝐿√𝑎𝑥2 + 𝑏𝑥 + 𝑐 + 𝑀 ∫
1

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 

Step 3: The second integral can be evaluated by method of completing squares. 

 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚  ∫
1

𝑎𝑠𝑖𝑛𝑥 + 𝑏𝑐𝑜𝑠𝑥 + 𝑐
𝑑𝑥,

𝑑𝑥

𝑎 + 𝑏𝑐𝑜𝑠𝑥
,

𝑑𝑥

𝑎 + 𝑏𝑠𝑖𝑛𝑥
 

Method 

𝑆𝑡𝑒𝑝 1. 𝑃𝑢𝑡 tan
𝑥

2
= 𝑡, sin 𝑥 =

2𝑡

1 + 𝑡2
, cos 𝑥 =  

1 − 𝑡2

1 + 𝑡2
, 𝑑𝑥 =

2𝑑𝑡

1 + 𝑡2
 

𝑆𝑡𝑒𝑝 2. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙  𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 ∫
𝑑𝑡

𝐴𝑡2 + 𝐵𝑡2 + 𝑐
 

Step 3: Resulting integral is evaluated by method of completing squares. 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 ∫
𝑎1 cos 𝑥 + 𝑏1 sin 𝑥

acos 𝑥 + 𝑏𝑠𝑖𝑛 𝑥
𝑑𝑥 

Method 



𝑆𝑡𝑒𝑝 1. 𝑃𝑢𝑡 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐿(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) + 𝑀
𝑑

𝑑𝑥
(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) 

Step 2: Determine L and M 

𝑆𝑡𝑒𝑝 3. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡𝑜  𝐼 = 𝐿 ∫ 1𝑑𝑥 + 𝑀 ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 

Step 4: Integral = Lx + M log (a cos x + bsinx) 

Integration by partial fractions: 

𝑆𝑡𝑒𝑝 1. 𝐿𝑒𝑡 
𝑓(𝑥)

𝑔(𝑥)
𝑏𝑒 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐼𝑓 
𝑓(𝑥)

𝑔(𝑥)
 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑝𝑒𝑟 𝑡ℎ𝑒𝑛 𝑑𝑖𝑣𝑖𝑑𝑒 𝑓(𝑥)𝑏𝑦 𝑔(𝑥)𝑎𝑛𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 

𝑓(𝑥)

𝑔(𝑥)

= 𝑞(𝑥)

+
𝑟(𝑥)

𝑔(𝑥)
 𝑤ℎ𝑒𝑟𝑒 𝑞(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑟(𝑥)𝑖𝑠 𝑡ℎ𝑒𝑟𝑒𝑚𝑎𝑖𝑑𝑒𝑟 𝑎𝑛𝑑 

𝑟(𝑥)

𝑔(𝑥)
 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠. 

𝑆𝑡𝑒𝑝 2. 𝑅𝑒𝑠𝑜𝑙𝑣𝑒 
𝑟(𝑥)

𝑔(𝑥)
 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

𝑆𝑡𝑒𝑝 3. 𝑊𝑟𝑖𝑡𝑒 
𝑓(𝑥)

𝑔(𝑥)
= 𝑞(𝑥) + 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 

𝑟(𝑥)

𝑔(𝑥)
 

Step 4: Integrate each part on the right hand side to obtain the required integrals. 

Integration by parts 

∫ 𝑢𝑣𝑑𝑥 = 𝑢 ∫ 𝑣𝑑𝑥 − ∫ (∫ 𝑣𝑑𝑥) (
𝑑𝑢

𝑑𝑥
) 𝑑𝑥 

In words: Integral of the product of two functions 

= (1𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 2𝑛𝑑)

− ∫(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 2𝑛𝑑)
𝑑

𝑑𝑥
(1𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)𝑑𝑥 



If the integrand is the product of two functions of different types then their order is 

determined by the word ILATE where 

I = Inverse trigonometric, L = Logarithmic, A = Algebraic, T = Trigonometric, E = 

Exponential 

In the integrand, the first function is the function which comes first in the word 

ILATE. However, there is no rigid rule in this that you have to select the first 

function in this order. 

Standard integrals 

∫ √𝑎2 − 𝑥2𝑑𝑥 =
𝑥

2
√𝑎2 − 𝑥2 +

𝑎2

2
𝑠𝑖𝑛−1

𝑥

𝑎
+ 𝐶 

∫ √𝒙𝟐 + 𝒂𝟐 𝑑𝑥 =
𝑥

2
√𝒙𝟐 + 𝒂𝟐 −

𝒂𝟐

𝟐
𝒍𝒐𝒈 {𝒙 + √𝒙𝟐 + 𝒂𝟐} + 𝑪 

∫ √𝒙𝟐 − 𝒂𝟐 𝑑𝑥 =
𝑥

2
√𝒙𝟐 − 𝒂𝟐 −

𝒂𝟐

𝟐
𝒍𝒐𝒈 {𝒙 + √𝒙𝟐 − 𝒂𝟐} + 𝑪 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 ∫ √𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑑𝑥 

Step 1: By method of completing squares 

√𝑎𝑥2 + 𝑏𝑥 + 𝑐 = √𝐴2 ± 𝑥2    𝑜𝑟  √𝑥2 − 𝐴2 

Step 2: Use standard and integrals and evaluate 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝐼 = ∫(𝑝𝑥 + 𝑞)√𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑑𝑥 

Step 1: put px + q = L (2ax + b) + M and determine L and M. 

𝑆𝑡𝑒𝑝 2. 𝐼 = 𝐿 ∫(2𝑎𝑥 + 𝑏)√𝑎𝑥2 + 𝑏𝑥 + 𝑐  𝑑𝑥 + 𝑀 ∫ √𝑎𝑥2 + 𝑏𝑥 + 𝑐  𝑑𝑥

= 𝐿
2

3
(𝑎𝑥2 + 𝑏𝑥 + 𝑐)3 2⁄ + 𝑀 ∫ √𝑎𝑥2 + 𝑏𝑥 + 𝑐  𝑑𝑥 



Step 3: Second integral on the right hand side can be evaluated by method of 

completing squares. 

2. Definite Integral 

Let f be a continuous non-negative function defined on a closed interval [a, b]. Since 

the value of the function is non- negative, the graph of the function is a curve above 

X-axis. Let the graph of the curve be as shown in the figure. 

 

figure (a) 

The question is how we find the area under the curve y = f(x) bounded by the X-axis 

and the lines x = a and x = b. This region is shaded in the graph. 

To understand this problem easily let us consider three special such functions. 

1. Let  𝑓(𝑥) = 2        𝑥 ∈ [1,2] 

This function is continuous, non-negative in the interval [1, 2], which is shown in the 

figure. 



 

Being a rectangular region, the area of f(x) = 2 bounded by X- axis, x = 1 and x = 2 is 

given by base X height, the height being equal to 
𝑓(2)+𝑓(1)

2
 

Base=(2-1)=1 unit, height =2 unit 

2. Consider the function 𝑓(𝑥) = 𝑥, 𝑥𝜖[0,1] 

 

This region is triangular above the axis bounded by x = 0 and x = 1. 

The area of this region is given by  
1

2
× 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡    or   𝑏𝑎𝑠𝑒 × (

1

2
ℎ𝑒𝑖𝑔ℎ𝑡) 

𝐴𝑟𝑒𝑎 = (1 − 0) × [
1

2
× (𝑓(1) + 𝑓(0))] =

1

2
  square units 

3. Consider the function 𝑓(𝑥) = 𝑥  𝑓𝑜𝑟  𝑥 ∈ [1,3] 



 

 

The region under the centre bounded by X - axis, x = 1 and x = 3 is a trapezium, 

where area is given by (3 − 1) × [
1

2
(𝑓(3) + 𝑓(1))]  (Since the area of the trapezium 

=𝑏𝑎𝑠𝑒 ×
1

2
  (the sum of the parallel sides)). 

In all the three cases, we have seen that, the area of the regions are obtained by 

multiplying the base with average height of the curve.1 

Using this fact, how can we find the area under the curve in figure (a) above? 

The base is the length of the domain interval [a, b] = b - a. Now our problem is to 

find the average height of the curve. This is indeed the average value of the function 

in the interval [a, b]. 

2.1. - Average Value of a Function in an Interval 

We can take the value of f at a (i.e., f(a)) as first estimate for average value of the 

function. 

 



Divide [a, b] into two equal parts such that ℎ =
𝑏−𝑎

2
  then the second estimate of the 

average value of the function can be taken as second estimate of the average value of 

the function can be taken as 
𝑓(𝑎)+𝑓(𝑎+ℎ)

2
  (see the above figure) 

Clearly the second estimate of the average value is better than the first estimate. 

 

If we divide the interval into three equal parts such that ℎ =
𝑏−𝑎

3
 then the improved 

estimate for the average value of f(a) is  
𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)

3
  (see the above figure) 

In this process, if we divide the closed interval [a, b] into more and more equal parts, 

and take the average of functional values at these points, we are closer to the average 

value of the function in closed interval [a, b]. 

Let us divide the closed intervals to n equal parts, then the average value of the 

function is 
𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)+⋯.+𝑓(𝑎+(𝑛−1)ℎ)

𝑛
                                    (1) 

where ℎ =
𝑏−𝑎

𝑛
  as shown in the figure below 

 



For larger value of n, equation (1) will be appropriate estimate for the average value 

of the function in the given closed interval. With this discussion, we can define 

average value of f in [a, b] 

lim
𝑛→∞

𝑓(𝑎) + 𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ)+. . +𝑓[𝑎 + (𝑛 − 1̅̅ ̅̅ ̅̅ ̅)ℎ]

𝑛
 

Note that as 𝑛 → ∞, ℎ → 0, 𝑛ℎ → 𝑏 − 𝑎 

Therefore the area under the curve y = f(x) bounded by X-axis, x = a and x = b. = 

base x average height  = (𝑏 − 𝑎) × lim
𝑛→∞

𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)+..+𝑓[𝑎+(𝑛−1̅̅ ̅̅ ̅̅ )ℎ]

𝑛
=

lim
𝑛→∞

(𝑏−𝑎)

𝑛
× [𝑓(𝑎) + 𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ)+. . +𝑓(𝑎 + (𝑛 − 1̅̅ ̅̅ ̅̅ ̅)ℎ] = lim

ℎ→0
ℎ[𝑓(𝑎) +

𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ)+. . +𝑓(𝑎 + (𝑛 − 1)ℎ)] 

where 𝑛ℎ → 𝑏 − 𝑎 

2.2. - Definite Integral 

Let f (x) be a single valued continuous function defined in the interval [a,b] where b > 

0 and let the interval [a,b] be divided into n equal parts each of length h, so that nh = 

b - a; then we define 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim ℎ[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + (𝑎 + 2ℎ) + ⋯ + 𝑓(𝑎 + (𝑛 − 1)ℎ)] 

when 𝑛 → ∞, ℎ → 0 𝑎𝑛𝑑 𝑛ℎ → 𝑏 − 𝑎 

Thus, ∫ 𝑓(𝑥)𝑑𝑥 = lim
ℎ→0

ℎ ∑ 𝑓(𝑎 + 𝑟ℎ)𝑛−1
𝑟=0

𝑏

𝑎
 

where  𝑛 → ∞ 𝑎𝑠 ℎ → 0  and remains equal to b-a. We call ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
 as the definite 

integral of f(x) between the limits a and b. 

The method of evaluating  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  by using the above definition is called 



integration from first principles. 

2.3. - Definite Integral Through Area of Triangles 

The definition,   

∫ 𝑓(𝑥)𝑑𝑥 = (𝑏 − 𝑎) lim
𝑛→∞

1

𝑛
[𝑓(𝑎) + 9𝑎 + ℎ) + 𝐴 + 𝑓(𝑎 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ℎ)]

𝑏

𝑎
      (2) 

where ℎ =
𝑏−𝑎

𝑛
  can be explained in another way also. We rewrite above definition as 

∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

[ℎ𝑓(𝑎) + ℎ𝑓(𝑎 + ℎ) + 𝐴 + ℎ𝑓(𝑎 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ℎ)], ℎ =
𝑏−𝑎

𝑛

𝑏

𝑎
    (3) 

Here the first term is hf (a). It is the area of the rectangle marked as 1 in figure below 

(because h and f (a) are the adjacent sides of this rectangle). Similarly, the second 

term hf (a+h) is the area of the rectangle marked as 2 in the figure below. 

 

Thus, [ℎ𝑓(𝑎) + ℎ𝑓(𝑎 + ℎ) + ⋯ + ℎ𝑓(𝑎 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ℎ)],  is the sum of the areas of these 

n rectangles marked in above figure. The union of these rectangles is approximately 

the region between the curve and the x-axis. When n is larger, the number of 

rectangles is more, and the approximation is closer. Therefore if we take the limit as 

𝑛 → ∞  we obtain that  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 as in equation (2) is the area of the region 

bounded by the curve y = f(x) and the lines y = 0, x = a and x = b. 

If we take the right end-points instead of the left, then also, we get the same areas as 

the limit of areas of unions of some other rectangles. 



  

This explains that  ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
 as in 

  ∫ 𝑓(𝑥)𝑑𝑥 = (𝑏 − 𝑎) lim
𝑛→∞

1

𝑛
[𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ) + 𝑓(𝑏)]

𝑏

𝑎
, ℎ =

𝑏−𝑎

𝑛
  

is the area of the same region. 

Note that any one of the processes, viz., taking the left hand end-points or the right 

hand end-points will be sufficient for calculating the desired area. 

Terminology 

We have the following terminology associated with the symbol 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

 

 

Remark 

The value of the definite integral of a function over any particular interval depends on 



the function and the interval, but not on the variable of integration that we choose to 

represent the independent variable. If the independent variable is denoted by t or u 

instead of x, we simply write the integral as  

∫ 𝑓(𝑡)𝑑𝑡   𝑜𝑟   ∫ 𝑓(𝑢)𝑑𝑢   instead of   ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

 

Hence, the variable of integration is called a dummy variable. 

Example:  

Integrate the following definite as limit of sums: 

∫(𝑥 + 𝑒2𝑥)

4

0

𝑑𝑥 

Solution: 

We are given that a = 0, b = 4    ℎ =
4−0

𝑛
=

4

𝑛
    𝑜𝑟 𝑛ℎ =  4 

By definition    ∫ 𝑓(𝑥)𝑑𝑥 = lim
ℎ→0

ℎ[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + ⋯ + 𝑓(𝑎 +
𝑏

𝑎

(𝑛 − 1̅̅ ̅̅ ̅̅ ̅)ℎ)] ∫ (𝑥 + 𝑒2𝑥)𝑑𝑥 = lim
𝑛→0

ℎ[𝑓(0) + 𝑓(0 + ℎ) + 𝑓(0 + 2ℎ) + ⋯ + 𝑓(0 +
4

0

(𝑛 − 1)ℎ)] = lim
ℎ→0

ℎ[(0 + 𝑒) + (ℎ + 𝑒2ℎ) + (2ℎ + 𝑒2(2ℎ)) + (3ℎ + 𝑒3(2ℎ)) +

⋯ ((𝑛 − 1)ℎ + 𝑒(𝑛−1)2ℎ)] = lim
ℎ→0

ℎ [ℎ[1 + 2 + 3 + ⋯ (𝑛 − 1) + (1 + 𝑒2ℎ +

(𝑒2ℎ)2 + (𝑒2ℎ)3 + ⋯ (𝑒2ℎ)𝑛−1)]] = lim
ℎ→0

[
ℎ2𝑛(𝑛−1)

2
+ ℎ (

1−(𝑒2ℎ)
𝑛

1−𝑒2ℎ )] = lim
ℎ→0

[
42−𝑛ℎ2

2
−

(1 − 𝑒8)
1

2𝑥
1−𝑒2ℎ

2ℎ

] =
16

2
− (1 − 𝑒8)lim

ℎ→0
(

2ℎ

1−𝑒2ℎ) (
1

2
) =

16

2
− (1 − 𝑒8)

1

2
=

16

2
−

1

1
−

𝑒8

2
=

15−𝑒8

2
 

 



2.4. - Area function 

We have already defined, for a continuous function f(x) on a closed interval [a, b] 

∫ 𝑓(𝑥)𝑑𝑥    
𝑏

𝑎
as the area of the region bounded by the curve y = f(x), X-axis and x= a 

and x = b.  

 

 

 

Let 𝑥 ∈ [𝑎, 𝑏],  we defined the area function 

𝐴(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥

𝑥

𝑎

 

In other words, area of the shaded region is a function of x. The function A(x) is 

shown in figure below. 

 

 



 

This area function A (x) is the anti derivative of f(x). That is f(x) = A'(x). We state 

fundamental theorems of integral calculus without proof as they are beyond syllabus. 

2.5. - First Fundamental Theorem of Integral Calculus 

Let f(x) be a continuous function on the closed interval [a, b]. Let the area function 

A(x) be defined by  𝐴(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥    for  𝑥 ≥ 𝑎
𝑥

𝑎
 then      𝐴′(𝑥) =

𝑓(𝑥)  for all  𝑥 ∈ [𝑎, 𝑏] 

 

2.6. - Second Fundamental Theorem of Integral Calculus 

Let f(x) be a continuous function defined on an interval [a,b]. 

If ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)  𝑡ℎ𝑒𝑛   ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎
[𝐹(𝑥)]𝑎

𝑏 = 𝐹(𝑏) − 𝐹(𝑎)    is called the 

definite integral or   f(x) between the limits a and b. This statement is also known as 

'fundamental theorem of calculus'. 

Let   ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶     then   ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 

Note: From the above two theorem, we infer the following ∫ 𝑓(𝑥)𝑑𝑥 = 
𝑏

𝑎
 

(Anti derivative of the function f(x) at b)  

- (Anti derivative of the function f(x) at a)  

(ii) The fundamental theorem of integral calculus shows a close relationship between 

differentiation and integration 

(iii) These theorems give an alternate method evaluating definite integral, without 

calculating the limit of a sum. 

Example: 

Evaluate the definite integral of the following 



∫ (2𝑠𝑒𝑐2𝑥 + 𝑥2 + 2)𝑑𝑥

𝜋/4

0

 

Solution: 

∫ (2𝑠𝑒𝑐2𝑥 + 𝑥2 + 2)𝑑𝑥 = 2 ∫ 𝑠𝑒𝑐2𝑥𝑑𝑥 + ∫ 𝑥2𝑑𝑥 + ∫ 2𝑑𝑥 = 2

𝜋/4

0

𝜋/4

0

𝜋/4

0

𝜋/4

0

[𝑡𝑎𝑛𝑥]0
𝜋/4

+ [
𝑥3

3
]

0

𝜋/4

+ [2𝑥]0
𝜋/4

= 2 (𝑡𝑎𝑛
𝜋

4
− tan 0) +

1

3
(

𝜋

4
)

3

− 0 + [
𝜋

2
− 0]

= 2 +
𝑥3

192
+

𝜋

2
 

We know that one of the most important method of evaluation of indefinite integral is 

method of substitution. While using method of substitution to evaluate definite 

integrals, following steps are involved. 

2.7. - Working rule for Evaluating Definite Integral with Suitable Substitution 

Suppose we have to evaluate the integral  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (1) Let t = g(x) is the suitable 

substitution. Differentiating, we get dt = g'(x) dx 

(2) Now the new variable is t. The upper limit b and the lower limit a are in terms of 

x. Change these limits to the new variable g (b) and g(a). 

(3) Write  ∫ 𝑓(𝑥)𝑑𝑥 = ∫
𝑓(𝑥)

𝑔′(𝑥)
𝑑𝑡

𝑔(𝑏)

𝑔(𝑎)

𝑏

𝑎
   and express   

𝑓(𝑥)

𝑔′(𝑥)
   in terms of t. 

(4) Integrate 
𝑓(𝑥)

𝑔′(𝑥)
     with respect to t. 

Find the value of the integral between the new limits g(a) and g(b). 

This gives integral of  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

 



1. ∫ 𝑓(𝑥)𝑑𝑥 = − ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

𝑎

𝑏

 

Proof: LHS = F(a) - F(b) = - [F(b) - F(a)] =− ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

2. ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎

𝑐

𝑏

𝑏

𝑎

 

Proof: LHS = F(b) - F(a) +F(c) - F(b) = F(c) - F(a) = ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥    𝑤ℎ𝑒𝑟𝑒  𝑎 < 𝑏 < 𝑐

𝑐

𝑏

𝑏

𝑎

𝑐

𝑎

 

Proof: RHS = F(b) - F(a) + F(c) - F(b) = F(c) - F(a)= ∫ 𝑓(𝑥)𝑑𝑥 = 𝐿𝐻𝑆
𝑐

𝑎
 

3. ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑎 + 𝑏 − 𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

Proof: Put a + b - x = t    -dx = dt when x = a, t = b  x = b, t = a 

𝑅𝐻𝑆 = ∫ 𝑓(𝑡)(−𝑑𝑡) = − ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑥)𝑑𝑥 = 𝐿𝐻𝑆

𝑏

𝑎

𝑏

𝑎

𝑎

𝑏

𝑎

𝑏

 

 

4. ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑎 − 𝑥)𝑑𝑥

𝑎

0

𝑎

0

 

Put a - x = t  -dx = dt , When x = 0, t = a   x = a, t = 0 

𝑅𝐻𝑆 = ∫ 𝑓(𝑡)(−𝑑𝑡) = − ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡

𝑎

0

0

𝑎

0

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

= 𝐿𝐻𝑆 



5. ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥

𝑎

0

𝑎

0

2𝑎

0

 

Proof:  𝑅𝐻𝑆 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥
𝑎

0

𝑎

0
= 𝐼1 + 𝐼2 

Let us evaluate I2 , let 2a - x = t  → −𝑑𝑥 = 𝑑𝑡  𝑜𝑟 − 𝑑𝑡 = 𝑑𝑥 

When x = 0, t = 2a , when x = a, t = a 

𝐼2 = ∫ −𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡

2𝑎

𝑎

𝑎

2𝑎

→ ∫ 𝑓(𝑥)𝑑𝑥  (changing the variable t to x)

2𝑎

𝑎

 

𝑅𝐻𝑆 = 𝐼1 + 𝐼2 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ( by property 2) = 𝐿𝐻𝑆

2𝑎

0

2𝑎

𝑎

𝑎

0

 

6. ∫ 𝑓(𝑥)𝑑𝑥 = {
2 ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

          𝑓(2𝑎 − 𝑥) = 𝑓(𝑥)

0                 𝑓(2𝑎 − 𝑥) = −𝑓(𝑥)               

2𝑎

0

               

Proof:𝐿𝐻𝑆 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥  (1)
2𝑎

𝑎

𝑎

0
 

Consider  ∫ 𝑓(𝑥)𝑑𝑥   𝑜𝑓  (1)
2𝑎

𝑎
 , when f (x) = f (2a - x) 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥

2𝑎

𝑎

2𝑎

𝑎

 

Put 2a-x = t,  -dx = dt, when x = a, t = a, x = 2a, t = 0  

∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥 = ∫ 𝑓(𝑡)(−𝑑𝑡) = − ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

𝑎

0

0

𝑎

0

𝑎

2𝑎𝑎

𝑎

 

𝐿𝐻𝑆 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 = 2 ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

𝑎

0

𝑎

0

 



When f (x) = -f (2a - x), proceeding as above.  This value will be equal to 

∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥 = − ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

2𝑎

𝑎

 

𝐿𝐻𝑆 = ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑓(𝑥)𝑑𝑥 = 0

𝑎

0

𝑎

0

 

 

Let y = f (x) be a curve. The area bounded by y = f (x), x-axis and the ordinates at x = 

a and x = b is given by  |∫ 𝑦𝑑𝑥
𝑏

𝑎
|   𝑜𝑟   |∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
| 

 

 

 

(ii) The area bounded by the curve x = f (y),y = axis and the abscissae at y = c and y 

= d is given by 

 



 

 

|∫ 𝑥𝑑𝑦

𝑑

𝑐

|    𝑜𝑟   |∫ 𝑓(𝑦)𝑑𝑦

𝑏

𝑎

| 

Note 1: The area bounded by the curves f(x) and g(x) and the ordinates x = a and x = 

b is given by 

|∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

| − |∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

| 

 



 

Note 2: If curve f (x) lies above the x-axis and g (x) lies below the x-axis then area 

bounded by f (x) and g (x) is  

|∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| + |∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
|  

 

Note 3: If f (a) and f (b) are opposite in sign then the curve crosses the x-axis say at c. 

Then the area bounded the curve f (x), x-axis and the ordinates x = a and x = b is 

|∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎

| + |∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐

| 

 

 



3. Double and triple integral 

3.1. - Moments and Center of Mass 

We have seen in first year calculus that the moments about an axis are defined by the 

product of the mass times the distance from the axis.   

        Mx  =  (Mass)(y)        My  =  (Mass)(x) 

If we have a region R with density function ρ(x,y), then we do the usual thing.  We 

cut the region into small rectangles for which the density is constant and add up the 

moments of each of these rectangles.  Then take the limit as the rectangle size 

approaches zero.  This will give us the total moment.   

3.2. - Definition of Moments of Mass and Center of Mass 

Suppose that ρ(x,y) is a continuous density function on a lamina R.  Then the 

moments of mass are  

𝑀𝑥 = ∬ 𝜌(𝑥, 𝑦)𝑦𝑑𝑦𝑑𝑥             𝑀𝑦 = ∬ 𝜌(𝑥, 𝑦)𝑥𝑑𝑦𝑑𝑥

𝑅𝑅

 

and if M is the mass of the lamina, then the center of mass is  

(𝑥̅, 𝑦̅) = (
𝑀𝑦

𝑀
,
𝑀𝑥

𝑀
) 

Example 

Set up the integrals that give the center of mass of the rectangle with vertices (0,0), 

(1,0), (1,1), and (0,1) and density function proportional to the square of the distance 

from the origin.  Use a calculator or computer to evaluate these integrals. 

Solution 



The mass is given by  

𝑀 = ∫ ∫ 𝑘(𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 =
2𝑘

3

1

0

1

0

 

The moments are given by 

𝑀𝑥 = ∫ ∫ 𝑘(𝑥2 + 𝑦2)𝑦𝑑𝑦𝑑𝑥        𝑎𝑛𝑑       𝑀𝑦 = ∫ ∫ 𝑘(𝑥2 + 𝑦2)𝑥𝑑𝑦𝑑𝑥

1

0

1

0

1

0

1

0

 

These evaluate to 

𝑀𝑥 =
5𝑘

12
        𝑎𝑛𝑑        𝑀𝑦 = 5𝑘/12 

It should not be a surprise that the moments are equal since there is complete 

symmetry with respect to x and y.  Finally, we divide to get 

        (x,y)  =  (5/8,5/8) 

This tells us that the metal plate will balance perfectly if we place a pin at (5/8,5/8) 

3.3. - Moments of Inertia 

We often call Mx and My the first moments.  They have first powers of y and x in 

their definitions and help find the center of mass.  We define the moments of inertia 

(or second moments) by introducing squares of y and x in their definitions.  The 

moments of inertia help us find the kinetic energy in rotational motion.  Below is the 

definition 

Suppose that ρ(x,y) is a continuous density function on a lamina R.  Then the 

moments of inertia are  



𝐼𝑥 = ∬ 𝜌(𝑥, 𝑦)𝑦2𝑑𝑦𝑑𝑥             𝐼𝑦 = ∬ 𝜌(𝑥, 𝑦)𝑥2𝑑𝑦𝑑𝑥

𝑅𝑅

 

3.4. - Surface Area 

Definition of Surface Area 

We can think of a smooth surface as a 

quilt flapping in the wind.  It consists of 

many rectangles patched together.  More 

generally and more accurately, let 

z  =  f(x,y) be a surface in R3 defined 

over a region R in the xy-plane.  cut the 

xy-plane into rectangles.  Each rectangle 

will project vertically to a piece of the 

surface as shown in the figure 

below.  Although the area of the 

rectangle in R is  

        Area  =  ∆y∆x 

The area of the corresponding piece of 

the surface will not be ∆y∆x since it is not a rectangle.  Even if we cut finely, we will 

still not produce a rectangle, but rather will approximately produce a 

parallelogram.  With a little geometry we can see that the two adjacent sides of  the 

parallelogram are (in vector form)  

        u  =  ∆x i + fx(x,y)∆x k  

and 

        v  =  fy(x,y)∆y i + ∆y k  



We can see this by realizing that the partial derivatives are the slopes in each 

direction.  If we run ∆x  in the i direction, then we will rise  fx(x,y)∆x in the k 

direction so that 

        rise/run  =   fx(x,y) 

Which agrees with the slope idea of the partial derivative.  A similar argument will 

confirm the equation for the vector v.  Now that we know the adjacent vectors we 

recall that the area of a parallelogram is the magnitude of the cross product of the two 

adjacent vectors.  We have 

|𝑣 × 𝑤| = |

𝑖 𝑗 𝑘

∆𝑥 0 𝑓𝑥(𝑥, 𝑦)∆𝑥

0 ∆𝑦 𝑓𝑦(𝑥, 𝑦)∆𝑦
|

= |−(𝑓𝑦(𝑥, 𝑦)∆𝑦∆𝑥)𝑖 − (𝑓𝑥(𝑥, 𝑦)∆𝑦∆𝑥)𝑗 + (∆𝑦∆𝑥)𝑘| 

= √𝑓𝑦
2(𝑥, 𝑦)(∆𝑦∆𝑥)2 + 𝑓𝑥

2(𝑥, 𝑦)(∆𝑦∆𝑥)2 + (∆𝑦∆𝑥)2

= √𝑓𝑦
2(𝑥, 𝑦) + 𝑓𝑥

2(𝑥, 𝑦) + 1 ∆𝑦∆𝑥 

This is the area of one of the patches of the quilt.  To find the total area of the surface, 

we add up all the areas and take the limit as the rectangle size approaches zero.  This 

results in a double Riemann sum, that is a double integral.  We state the definition 

below. 

Let z  =  f(x,y) be a differentiable surface defined over a region R.  Then its surface 

area is given by 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = ∬ √1 + 𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑅

 

Examples 



Example 

Find the surface area of the part of the plane  

        z  =  8x + 4y 

that lies inside the cylinder 

        x2 + y2  =  16 

 

Solution 

We calculate partial derivatives 

        fx(x,y)  =  8            fy(x,y)  =  4 

so that  

        1 + fx
2(x,y)  + fy

2(x,y)  =  1 + 64 + 16  =  81 

Taking a square root and integrating, we get  

∬ 9𝑑𝑦𝑑𝑥

𝑅

 



We could work this integral out, but there is a much easier way.  The integral of a 

constant is just the constant times the area of the region.  Since the region is a circle, 

we get
 

   
     Surface Area  =  9(16π)  =  144π 

 

In reality, since there is a square root in the formula, most surface area calculations 

require intensive integration skills or the use of a machine.  The prior example and 

the next example are not meant to deceive, but rather to show how the essence of 

surface area problems work without the integration difficulty clouding your 

understanding.
 

Example
 

Find the surface area of the part of the paraboloid 
 

   
     z  =  25 - x2 - y2 

 

that lies above the xy-plane.
 

                     

Solution 

We calculate partial derivatives 

        fx(x,y)  =  -2x            fy(x,y)  =  -2y 

so that  



        1 + fx
2(x,y)  + fy

2(x,y)  =  1 + 4x2 + 4y2  

At this point if we listen closely, we should hear a little voice pleading "Polar 

Coordinates".  We listen to its call and realize that the region is just the circle  

        r  =  5 

Now convert the integrand to polar coordinates to get 

∫ ∫ √1 + 4𝑟2𝑟𝑑𝑟𝑑𝜃

5

0

2𝜋

0

 

Now let 

        u  =  1 + 4r2         du  =  8rdr 

and substitute 

1

8
∫ ∫ 𝑢1/2𝑑𝑢𝑑𝜃 =

1

12
∫ 𝑢3/2|

1

101
≈ 530,95

2𝜋

0

101

1

2𝜋

0

 

4. Triple Integrals 

4.1 - Definition of the Triple Integral 

We have seen that the geometry of a double integral involves cutting the two 

dimensional region into tiny rectangles, multiplying the areas of the rectangles by the 

value of the function there, adding the areas up, and taking a limit as the size of the 

rectangles approaches zero.  We have also seen that this is equivalent to finding the 

double iterated iterated integral.  We will now take this idea to the next 

dimension.  Instead of a region in the xy-plane, we will consider a solid in xyz-

space.  Instead of cutting up the region into rectangles, we will cut up the solid into 

rectangular solids.  And instead of multiplying the function value by the area of the 

rectangle, we will multiply the function value by the volume of the rectangular 



solid.  We can define the triple integral as the limit of the sum of the product of the 

function times the volume of the rectangular solids. Instead of the double integral 

being equivalent to the double iterated integral, the triple integral is equivalent to the 

triple iterated integral. 

Let f(x,y,z) be a continuous function of three variables defined over a solid Q.  Then 

the triple integral over Q is defined as 

∭ 𝑓(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚 ∑ 𝑓(𝑥, 𝑦, 𝑧)∆𝑥∆𝑦∆𝑧

𝑄

 

where the sum is taken over the rectangular solids included in the solid Q and lim is 

taken to mean the limit as the side lengths of the rectangular solid.  This definition is 

only practical for estimating the triple integral when a data set is given.  When we 

have a symbolically defined function, we use an extension of the fundamental 

theorem of calculus which is just Fubini's theorem for triple integrals. 

4.2. - Theorem for Evaluating Triple Integrals 

Let f(x,y,z) be a continuous function over a solid Q defined by 

     a  <  x  <  b          h1(x)  <  y  <  h2(x)          g1(x,y)  <  z  <  g2(x,y) 

Then the triple integral is equal to the triple iterated integral. 

∭ 𝑓(𝑥, 𝑦, 𝑧) = ∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑔2(𝑥,𝑦)

𝑔1(𝑥,𝑦)

ℎ2(𝑥)

ℎ1(𝑥)

𝑏

𝑎𝑄

 

Remark:  As with double integrals the order of integration can be changed with 

care.  

Example 

Evaluate  



∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥
𝑄

  

Where  

        f(x,y,z)  =  1 - x 

and Q is the solid that lies in the first octant and below the plain  

        3x + 2y + z  =  6 

Solution 

The picture of the region  

             

The challenge here is to find the limits.  We work on the innermost limit first which 

corresponds with the variable "z".  Think of standing vertically.  Your feet will rest 

on the lower limit and your head will touch the higher limit.  The lower limit is the 

xy-plane or 

        z  =  0 

The upper limit is the given plane.  Solving for z, we get 

        z  =  6 - 3x - 2y 

Now we work on the middle limits that correspond to the variable "y".  We look at 

the projection of the surface in the xy-plane.  It is shown below. 



             

Now we find the limits just as we found the limits of double integrals.  The lower 

limit is just 

        y  =  0 

If we set z  = 0 and solve for y, we get for the upper limit 

        y  =  3 - 3/2 x 

Next we find the outer limits, corresponding to the variable "x".  The lowest x gets is 

0 and highest x gets is 2.  Hence  

        0  <  x  <  2 

The integral is thus 

∫ ∫ ∫ (1 − 𝑥)𝑑𝑧𝑑𝑦𝑑𝑥 = ∫ ∫ [𝑧 − 𝑥𝑧]0
6−3𝑥−2𝑦

𝑑𝑦𝑑𝑥

3−
3
2

𝑥

0

2

0

6−3𝑥−2𝑦

0

3−
3
2

𝑥

0

2

0

= 

= ∫ ∫ [(6 − 3𝑥 − 2𝑦) − (6𝑥 − 3𝑥2 − 2𝑥𝑦)]𝑑𝑦𝑑𝑥

3−
3
2

𝑥

0

2

0

= 

= ∫[

2

0

6𝑦 − 9𝑥𝑦 − 𝑦2 + 3𝑥2𝑦 + 𝑥𝑦2]0

3−
3
2

𝑥
𝑑𝑥 =

= ∫ (18 − 9𝑥 − 27𝑥 +
27

2
𝑥2 − 9 + 9𝑥 −

9

4
𝑥2 + 9𝑥2 −

9

2
𝑥3 + 9𝑥

2

0

− 9𝑥2 +
9

4
𝑥3) 𝑑𝑥 = 



= ∫ (9 − 18𝑥 +
45

4
𝑥2 −

9

4
𝑥3) 𝑑𝑥 =

2

0

 

= [9𝑥 − 9𝑥2 +
15

4
𝑥3 −

9

16
𝑥4]

0

2

= 3 

Example 

Switch the order of integration from the previous example so that dydxdz appears. 

Solution 

This time we work on the "y" variable first.  The lower limit for the y-variable is 

0.  For the upper limit, we solve for y in the plane to get 

        y  =  3 - 3/2 x - 1/2 z 

To find the "x" limits, we project onto the xz-plane as shown below 

         

The lower limit for x is 0.  To find the upper limit we set y = 0 and solve for x to get 

        x  =  2 - 1/3 z 

Finally, to get the limits for z, we see that the smallest z will get is 0 and the largest z 

will get is 6.  We get 

                0  <  z  <  6 

We can write 



∫ ∫ ∫ (1 − 𝑥)𝑑𝑦𝑑𝑥𝑑𝑧

6−
3
2

𝑥−
1
3

𝑧

0

2−
1
3

𝑧

0

6

0

 

4.3. - Mass, Center of Mass, and Moments of Inertia 

For a three dimensional solid with constant density, the mass is the density times the 

volume.  If the density is not constant but rather a continuous function of x, y, and x, 

then we can cut the solid into very small rectangular solids so that on each 

rectangular solid the density is approximately constant.  The volume of the rectangle 

is  

        ∆Mass  =  (Density)(∆Volume)  =  f(x,y,z) ∆x∆y∆z 

Now do the usual thing.  We add up all the small masses and take the limit as the 

rectangular solids get small.  This will give us the triple integral 

𝑀𝑎𝑠𝑠 = ∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

We are often interested in the center of mass of a solid.  For example when the 

NEAR satellite orbited around the asteroid Eros, NASA scientists needed to compute 

the center of mass of the asteroid.  Kepler told us that a stable orbit will always orbit 

in an elliptical orbit with the center of mass as one of the foci. 

  

 

The NEAR satellite orbiting around Eros 



We find the center of mass of a solid just as we found the center of mass of a 

lamina.  Since we are in three dimensions, instead of the moments about the axes, we 

find the moments about the coordinate planes.  We state the definitions from physics 

below. 

Definition:    Moments and Center of Mass 

Let ρ(x,y,z) be the density of a solid Q.  Then the first moments about the coordinate 

planes are 

𝑀𝑦𝑧 = ∭ 𝑥𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

𝑀𝑥𝑧 = ∭ 𝑦𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

𝑀𝑥𝑦 = ∭ 𝑧𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

and the center of mass is given by 

(𝑥,̅ 𝑦̅, 𝑧̅) = (
𝑀𝑦𝑧

𝑀
,
𝑀𝑥𝑧

𝑀
,
𝑀𝑥𝑦

𝑀
) 

Notice that letting the density function being identically equal to 1 gives the volume 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∭ 𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

Exercise 

Find the center of mass of the solid that lies below the paraboloid  



        z  =  4 - x2 - y2  

that lies above the xy-plane if the density of the region is given by  

        ρ(x,y,z)  =  x2 + 2y2 + z 

You may use your calculator or computer to evaluate the integrals. 

Just as with lamina, there are formulas for moments of inertial about the three 

axes.  They involve multiplying the density function by the square of the distance 

from the axes.  We have 

Definition:    Moments of Inertia 

Let ρ(x,y,z) be the density of a solid Q.  Then the first moments of inertia about the 

coordinate axes are 

𝐼𝑥 = ∭(𝑦2 + 𝑧2)𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

𝐼𝑦 = ∭(𝑥2 + 𝑧2)𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

𝐼𝑧 = ∭(𝑥2 + 𝑦2)𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

 

The Problem 

Let 

        f(x)  =  ax2 + bx + c 



If a,b, and c are chosen randomly from the interval [0,1], what is the probability that f 

has real roots? 

Solution 

This is equivalent to finding the volume of the solid that lies inside the unit cube that 

lies above the discriminate surface 

        z2  -  4xy  =  0 

(Here z is b, x is a, and y is c.) 

         

The thing to notice is that the outer limits of the triple integral is not the unit square 

since the surface rises above  z  =  1 for part of the square.  This mistake will lead to 

the answer of 1/9.  Instead it is the part of the unit square that does not lie above the 

curve 

        4xy  =  1 

which is shown below 



         

We will need to break this up into two integrals as follows 

∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥 + ∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥 =
5

36
+

ln 2

6

1

2√𝑥𝑦

1/4𝑥

0

1

1/4

1

√𝑥𝑦

1

0

1/4

0

 

The solution is approximately equal to .25 which is significantly greater than 1/9. 

4.4. - Triple Integrals in Cylindrical and Spherical Coordinates 

4.4.1. - Cylindrical Coordinates 

When we were working with double integrals, we saw that it was often easier to 

convert to polar coordinates.  For triple integrals we have been introduced to three 

coordinate systems.  The rectangular coordinate system (x,y,z) is the system that we 

are used to.  The other two systems, cylindrical coordinates (r,θ,z) and spherical 

coordinates (ρ,θ,ϕ) are the topic of this discussion.   

Recall that cylindrical coordinates are most appropriate when the expression  

        x2 + y2  

occurs.  The construction is just an extension of polar coordinates.   

        x  =  r cos θ        y  =  r sin θ        z  =  z 

Since triple integration can be looked at as iterated integration we have 



∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 = ∫ ∫ [ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑔2(𝑥,𝑦)

𝑔1(𝑥,𝑦)

] 𝑑𝑦𝑑𝑥 =

ℎ2(𝑥)

ℎ1(𝑥)

𝑏

𝑎

𝑔2(𝑥,𝑦)

𝑔1(𝑥,𝑦)

ℎ2(𝑥)

ℎ1(𝑥)

𝑏

𝑎

 

= ∫ ∫ [ ∫ 𝑓(𝑟𝑐𝑜𝑠 𝜃, 𝑟 sin 𝜃, 𝑧)𝑑𝑧

𝑔2(𝑟 cos 𝜃,𝑟 sin 𝜃)

𝑔1(𝑟 cos 𝜃,𝑟 sin 𝜃)

] 𝑟𝑑 𝑟𝑑𝜃

𝑟2(𝜃)

𝑟1(𝜃)

𝜃2

𝜃1

= ∫ ∫ ∫ 𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃, 𝑧)𝑟𝑑𝑧 𝑑𝑟 𝑑𝜃

𝑔2(𝑟 cos 𝜃,𝑟 sin 𝜃)

𝑔1(𝑟 cos 𝜃,𝑟 sin 𝜃)

𝑟2(𝜃)

𝑟1(𝜃)

𝜃2

𝜃1

 

This leads us the the following theorem 

Theorem:  Integration With Cylindrical Coordinates 

Let f(x,y,z) be a continuous function on a solid Q.  Then  

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 = ∭ 𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃, 𝑧)𝑟𝑑𝑧𝑑𝑟𝑑𝜃

𝑄𝑄

 

Example 

Find the moment of inertia about the z-axis of the solid that lies below the paraboloid  

        z  =  25 - x2 - y2  

inside the cylinder  

        x2 + y2  =  4 

above the xy-plane, and has density function 

        ρ(x,y,z)  =  x2 + y2 + 6z 



             

Solution     

By the moment of inertia formula, we have 

𝐼𝑧 = ∭(𝑥2 + 𝑦2)(𝑥2 + 𝑦2 + 2𝑧)𝑑𝑧𝑑𝑦𝑑𝑥

𝑄

 

The region, being inside of a cylinder is ripe for cylindrical coordinates.  We get  

𝐼𝑧 = ∫ ∫ ∫ 𝑟2(𝑟2 + 6𝑧)𝑟𝑑𝑧𝑑𝑟𝑑𝜃 = ∫ ∫[𝑟5𝑧 + 3𝑟3𝑧2]0
25−𝑟2

𝑑𝑟𝑑𝜃

2

0

2𝜋

0

25−𝑟2

0

2

0

2𝜋

0

 

∫ ∫(−125𝑟5 + 2𝑟7 + 1875𝑟3)𝑑𝑟𝑑𝜃 =
37384𝜋

3

2

0

2𝜋

0

 

4.4.2. - Spherical Coordinates 

Another coordinate system that often comes into use is the spherical coordinate 

system.  To review, the transformations are  

        x  =  ρ cosθ sinϕ        y  =  ρ sinθ sinθ        z  =  ρcosθ   

In the next section we will show that  

        dzdydx  =  ρ2 sinϕ dρdϕdθ  



This leads us to  

Theorem:  Integration With Spherical Coordinates 

Let f(x,y,z) be a continuous function on a solid Q.  Then  

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 = ∭ 𝑓(𝜌 cos 𝜃 sin ф, 𝜌 sin 𝜃 sin ф, 𝜌 cos ф)𝜌2 sin ф𝑑𝜌𝑑ф𝑑𝜃

𝑄𝑄

 

 

Example 

Find the volume of solid that lies inside the sphere  

        x2 + y2 + z2  =  2 

and outside of the cone 

        z2  =  x2 + y2  

             

  

Solution 

We convert to spherical coordinates.  The sphere becomes  

        𝜌 = √2 



To convert the cone, we add z2 to both sides of the equation 

        2z2  =  x2 + y2 +z2  

Now convert to 

        2ρ2cos2ϕ  =  ρ2  

Canceling the ρ2 and solving for ϕ we get 

       𝜙 = 𝑐𝑜𝑠−1 (
1

√2
) =

𝜋

4
   or  

7𝜋

4
 

In spherical coordinates (since the coordinates are  periodic) 

        7π/4  =  3π/4 

To find the volume we compute 

𝑉 = ∫ ∫ ∫ 𝜌2 sin ф 𝑑𝜌𝑑ф𝑑𝜃

√2

0

3𝜋/4

𝜋/4

2𝜋

0

 

Evaluating this integral should be routine at this point and is equal to  

                  8π 

     V  =                    

                   3 

 4.5. -Jacobians 

4.5.1. - Review of the Idea of Substitution 

Consider the integral 

∫ 𝑥 cos(𝑥2)𝑑𝑥

2

0

 



To evaluate this integral we use the u-substitution 

        u  =  x2  

This substitution sends the interval [0,2] onto the interval [0,4].  We can see that there 

is stretching of the interval.  The stretching is not uniform.  In fact, the first part 

[0,0.5] is actually contracted.  This is the reason why we need to find du. 

𝑑𝑢

𝑑𝑥
= 2𝑥   or   

𝑑𝑥

𝑑𝑢
=

1

2𝑥
 

   This is the factor that needs to be multiplied in when we perform the 

substitution.  Notice for small positive values of x, this factor is greater than 1 and for 

large values of x, the factor is smaller than 1.  This is how the stretching and 

contracting is accounted for.        

4.5.2.  - Jacobians 

We have seen that when we convert to polar coordinates, we use 

        dydx  =  rdrdθ 

With a geometrical argument, we showed why the "extra r" is included.  Taking the 

analogy from the one variable case, the transformation to polar coordinates produces 

stretching and contracting.  The "extra r" takes care of this stretching and 

contracting.  The goal for this section is to be able to find the "extra factor" for a 

more general transformation.  We call this "extra factor" the Jacobian of the 

transformation. We can find it by taking the determinant of the two by two matrix of 

partial derivatives. 

4.5.3. - Definition of the Jacobian 

Let   x = g(u,v)  and  y  =  h(u,v) be a transformation of the plane.  Then the Jacobian 

of this transformation is  



𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
= |

𝜕𝑥
𝜕𝑢⁄ 𝜕𝑥

𝜕𝑣⁄

𝜕𝑦
𝜕𝑢

⁄ 𝜕𝑦
𝜕𝑣

⁄
| =

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
 

Example  

Find the Jacobian of the polar coordinates transformation  

        x(r,θ)  =  r cos θ            y(r,θ)  =  r sin θ 

Solution 

We have 

𝜕(𝑥, 𝑦)

𝜕(𝑟, 𝜃)
= |

cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

| = 𝑟 𝑐𝑜𝑠2𝜃 + 𝑟𝑠𝑖𝑛2𝜃 = 𝑟 

This is comforting since it agrees with the extra factor in integration. 

4.6. - Double Integration and the Jacobian 

Theorem:  Integration and Coordinate Transformations 

Let  𝑇:  𝑅2   →   𝑅2 given by   x  =  g(u,v),     y  =  h(u,v)  be a transformation on the 

plane that is one to one from a region S to a region R.  If g and h have continuous 

partial derivatives such that the Jacobian is never zero, then  

∬ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑅

= ∬ 𝑓(𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣))) |
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
| 𝑑𝑢𝑑𝑣

𝑆

 

Remark:  A useful fact is that the Jacobian of the inverse transformation is the 

reciprocal of the Jacobian of the original transformation. 

|
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
| = 1

|
𝜕(𝑢, 𝑣)
𝜕(𝑥, 𝑦)

|
⁄  



This is a consequence of the fact that the determinant of the inverse of a matrix A is 

the reciprocal of the determinant of A. 

Idea of the Proof 

As usual, we cut S up into tiny rectangles so that the image under T of each rectangle 

is a parallelogram.   

 

We need to find the area of the parallelogram.  Considering differentials, we have 

        T(u + ∆u,v)    T(u,v) + (xu∆u,yu∆u) 

        T(u,v + ∆v)    T(u,v) + (xv∆v,yv∆v) 

Thus the two vectors that make the parallelogram are  

        P  =  gu∆u i + hu∆u j 

        Q  =  gv∆v i + hv∆v j 

To find the area of this parallelogram we just cross the two vectors. 

𝑃 × 𝑄 = |

𝑖 𝑗 𝑘
𝑥𝑢∆𝑢 𝑦𝑢∆𝑢 0
𝑥𝑣∆𝑣 𝑦𝑣∆𝑣 0

| = |𝑥𝑢𝑦𝑣 − 𝑥𝑣𝑦𝑢|∆𝑢∆𝑣 = |
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
| ∆𝑢∆𝑣 

and the extra factor is revealed. 

  



Example 

Use an appropriate change of variables to find the volume of the region below  

        z  =  (x - y)2  

above the x-axis, over the parallelogram with vertices (0,0), (1,1), (2,0), and (1,-1) 

             

Solution 

We find the equations of the four lines that make the parallelogram to be 

        y  =  x        y  =  x - 2        y  =  -x        y  =  -x + 2 

or 

        x - y  =  0        x - y  =  2        x + y  =  0        x + y  =  2 

The region is given by  

        0  <  x - y  <  2        and        0  <  x + y  < 2 

This leads us to the inverse transformation 

        u(x,y)  =  x - y        v(x,y)  =  x + y 

The Jacobian of the inverse transformation is     



𝜕(𝑢, 𝑣)

𝜕(𝑥, 𝑦)
= |

1 −1
1 1

| = 2 

Since the Jacobian is the reciprocal of the inverse Jacobian we get 

𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
=

1

2
 

The region is given by  

        0  <  u  <  2        and        0  <  v  < 2 

and the function is given by  

        z  =  u2  

Putting this all together, we get the double integral 

∫ ∫ 𝑢2 (
1

2
) 𝑑𝑢𝑑𝑣 = ∫ [

𝑢3

6
]

0

2

𝑑𝑣

2

0

2

0

2

0

 

∫
4

3
𝑑𝑣 =

8

3

2

0

 

4.7. - Jacobians and Triple Integrals 

For transformations from R3 to R3, we define the Jacobian in a similar way 

|
𝜕(𝑥, 𝑦, 𝑧)

𝜕(𝑢, 𝑣, 𝑤)
| = |

𝑥𝑢 𝑥𝑣 𝑥𝑤

𝑦𝑢 𝑦𝑣 𝑦𝑤

𝑧𝑢 𝑧𝑣 𝑧𝑤

| 

Example 

Find the Jacobian for the spherical coordinate transformation 

        x  =  ρcosθ sinϕ        y  =  ρ sinθ sinϕ        z  =  ρ cosϕ      



Solution 

We take partial derivatives and compute 

 

𝜕(𝑥, 𝑦, 𝑧)

𝜕(𝜌, 𝜃, ф)
= |

cos 𝜃 sin ф 𝜌 sin 𝜃 sin ф 𝜌 cos 𝜃 cos ф
sin 𝜃 sin ф 𝜌 cos 𝜃 sin ф 𝜌 sin 𝜃 cos ф

cos ф 0 −𝜌 sin ф
| = 

= |cos 𝜃 sin ф(−𝜌2 cos 𝜃𝑠𝑖𝑛2ф) + 𝜌𝑠𝑖𝑛𝜃𝑠𝑖𝑛ф(−𝜌 sin 𝜃𝑠𝑖𝑛2ф − 𝜌𝑠𝑖𝑛𝜃𝑐𝑜𝑠2ф)

+ 𝜌 cos 𝜃𝑐𝑜𝑠ф(−𝜌𝑐𝑜𝑠𝜃𝑐𝑜𝑠ф𝑠𝑖𝑛ф)| = 

= |−𝜌2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛3ф − 𝜌2𝑠𝑖𝑛2𝜃 sin ф(𝑠𝑖𝑛2ф + 𝑐𝑜𝑠2ф) − 𝜌2𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2 ф sin ф| 

= |𝜌2𝑠𝑖𝑛ф(𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2ф + 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2ф)|= 

= |𝜌2𝑠𝑖𝑛ф(𝑐𝑜𝑠2𝜃(𝑠𝑖𝑛2ф + 𝑐𝑜𝑠2ф) + 𝑠𝑖𝑛2𝜃)| = |𝜌2 sin ф(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃)|

= |𝜌2 sin ф| 

 

 

 


