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1. Indefinite integral

Introduction.

In practical situations, we may be interested to know the position of an object

at an instant, when velocity of the object at that instant is given. That is if s(t) is the

displacement of an object in time (t) and we know %-

How can we find the displacement at time (t)? How do we find the velocity of
a moving object, when its acceleration and initial velocity is known? These three
problems involve the process of finding the function whose derivative is given.
Integration and differentiation are a pair of inverse operations. So far, from a given
function, we have been finding its derivative but the question arises: what is the
function whose derivative is known? If the derivative of a function is given, then the

function itself is called anti-derivative or integral. For example:

Consider the function f(x) = x* then its derivative is given by f ‘(x) = 4x3. The

question arises: given f ¢(x) = 4x3 what is f(x)?
1.1. - Indefinite Integrals as the Anti-derivative.

Consider the following example: Let f(x) = cos 3x, let us find a function F(x) such that

% (F(x)) = cos 3x.
We know that — (sin3x) = 3 cos3x > 2L (l sin 3x) = cos 3x.
dx dx 3
Here F(x) = isin 3x. In other words we say that the integral cos 3x is %sin 3x.

Let us define integral of a function in general as follows.

Let F(x) be a function such that

~[F(0)] = f(x),

then F(x) is called an integral of f(x), with respect to (x). But



d

~[F(x) +C] = f(x).
In general, integral of f(x) is F(x)+C, where C is called the constant of integration.
In symbols we write this as [ f(x)dx = F(x) + C

List of the standard integrals.

n xn+1
1.fx dx = +C
n+1

dx
2.j—=ln|x|+C
X

3.jexdx=e"+C
X

+C
Ina

4.jaxdx=
5.jsinxdx= —cosx+C

6.jcosxdx=sinx+C
7.j0dx=c
8.jkdx=kx+C

9.jlnxdx:xlnx—x+C

dx
10.[ =In|lnx| +C
xInx

Inx—1

C
Inb +

11.flogbxdx =X

X
= arcsin—+ C

12[ dx
Je-x a



—dx

13, | —
w/aZ — x2

X

= arccos—+ C
a

14..[ tg xdx = —In|cosx| + C

15..[ ctg xdx = In|sinx| + C

1.2. - Indefinite Integral Geometrical Interpretation.
Let f(x) =3x? = [f(x)dx=x3+C

Note that for different values of (C) we get different integrals. But all these

integrals are very similar geometrically.

1

The function y = x® + C represent a family of integrals. The above figure
shows different curves of the integral function y = x* + C. These curves fill the co-
ordinate plane without overlapping. These curves together constitute the indefinite

integrals.

If we draw a line x = a perpendicular to X-axis. Then the curvesy = x3 + C
have slopes. The slopes of the tangent at P;, P2, Ps, P, and Ps are equal. This

indicates, the tangents to these curves are parallel at these points.



1.3. - Indefinite integral properties.

1. Let f(x) be a real value differentiable function, then

= [ f@dx = f(x) Jf(dx = f(x)+C

Proof: Let F(x) be any anti- derivative of f(x)
ZIF@)] =f@) - [ f()dx = F(x) + € > ([ f(x)dx] = = [F(x) + C] >
[ f(0)dx] = f ().
Similarly, we know that
f'(x) = :—x [f(x)] = [ f'(x)dx = f(x) + C, where C is the constant of integration.
2. Two indefinite integrals with the same derivative lead to the same family

of curves and so they are equivalent.

Proof: Let the two indefinite integrals be: [ f(x)dx and [ g(x)dx.
Given: L[ f@)dx =< glx)dx > = [f f(x)dx — [ g(x)dx] = 0 -
Jf@)dx — [ glx)dx = C

Where C is any number.

[ f(x)dx = [ g(x)dx + C, or [ g(x)dx = [ f(x)dx + C, — the family of curves

are identical.

3. JIf®) +g(0)ldx = [ f(x)dx + [ g(x)dx

Proof: By property 1, we have

%[f(f(x) + g(x))dx = f(x) + g(x)]
(a)



Also we have

ff(x)dx + [ g(x)dx] = ff(X)dx fg(X)dx f(x) +gx)
(b)

From (a) and (b) we have

| [1re0+ goonax] = L[ [ oo+ [ gar] -

J1re0+ 9@ = | feax+ [ geax

4. For any real number k, [ kf(x)dx =k [ f(x)dx

By property 1,we have

= kf@dx = kf ()

L[k f fOdx] = k- [f f()dx] = kf (x)
(d)

From (c) and (d) we have

d d
afkf(x)alx = a[kff(x)dx] —>fkf(x)dx = kff(x)dx

Note: that while using property (2), we can express two equivalent integrals by

writing without mentioning constant

[ reax = [ geax

More generally, combining property (2) and property (3), we can write



j [k fy (5 + Koy () + Kafy (%) + -+ knfa (0]dx
=k f f, (x)dx + k, j f,(x)dx + -+ knjfn(x)dx

Where fy, f,, ....f, are functions and ki, ko, ...k, are real numbers.

Example: Write an anti -derivative of (sin2x - 4e®) using method of inspection.

1d d
Tx (cos2x) = —sin2x(2) » — > Ix (cos 2x) = sin2x — Tx (— 5 €0S 2x) = sin 2x

The anti derivative of (sin2x) is (— 21 cos 2x)

. d 1d 4d
Similarly — (e3%) = 3e3% 5 =—e3% = 3% 5 4¢3 = —-— (&3%)
dx 3dx 3dx

Multiplying both sides by 4 and interchanging RHS and LHS

The anti-derivative of 4e3* is §e3x . The anti-derivative of sin2x — 4e3* is
—%cos 2x + 363"

1.4. - Comparison between differentiation and integration.

1. Both are operations on functions.

2. Both are linear. This is because of the following:

d _d d
dx [f; O, ()] = &ﬁ (x) + &fZ x)

And

f fG0 + f(0ldx = f AL dx + (0 dx

The constant can be taken outside the differential as well as integral sign as shown
below:



d I . d
— k@] = k—f ()

And

fkf(x)dx = kjf(x)dx

3. We have already seen that not all functions are differentiable. Similarly, all
functions are not integrable. We will learn about non-differentiable and non-

integrable functions in our higher classes.

4. The derivative of a function, when it exists is a unique function. The integral of a

function is not so. However, it always differs by a constant only.

5. When a polynomial function P is differentiated, the result is a polynomial whose
degree is 1 less than the degree of P. When a polynomial function P is integrated, the

result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative of a function at a point. We never speak of the
integral of a function at a point, we speak of the integral of a function over an interval

on which integral is defined.

7. The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at the point. Similarly, indefinite integral of a
function represents geometrically, a family of curves placed parallel to each other
having parallel tangents at the points of intersection of the curves of the family with

the lines orthogonal to the axis representing the variable of integration.

8. The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time t is known. Integral is used

to find the distance travelled on time t when velocity at time t is known n.

9. Differentiation is a process involving limits, so is integration.



10. The process of differentiation and integration are inverses of each other. In the
earlier section we have found the integral (anti-derivative) of a function by

inspection. For a given function f, it may be difficult to find F such that

3_5 =f(x) or [ f(x)dx = F(x)]

Therefore we need to learn different methods of integration in this section. The three

different methods of integration, we learn are
1. Method of substitution

2. Integration using partial fraction.

3. Integration by parts.

1.5. - Integration by Substitution.

Integration of the form

[ (e @ax

Let [ f(x)dx = F(x) + C
Consider [ f(g(x))g'()dx
Putg(x) =t
Differentiating g(x) with respect to t, we have

g'(x)dx = dt

| Fla)g'@ax = [ frde=F©) + ¢ = F(g(0) + ¢

Note:
By the above [ f(ax + b)dx = %F(ax +b)+C

Example:



Integrate the following function (2x3 + 1)*x?

Suggested answer:
If 2x341=uwdu=6x?dx;x*dx = %du

1 1u® u® 1
j(Zx3 + 1)*x2dx =5Ju4du =c T 35" %(ZX?’ +1)>+C

1.6. - Integration using trigonometric identities.

When the integrand consists of trigonometric function, we use suitable trigonometric

identities to simplify the function so that it can be integrated. Few identities are given

below.
. 1 — cos2x
sin“x = ———
2
5 1+ cos2x
COS“X = ———
2
3 3sinx — sin 3x
sin°x =
4
3 cos 3x + 3 cosx
co0s°x =
4
: 1 . .
sinAcosB = 5 [sin(A — B) + sin(4 + B)]
o 1
sinAsinB = 5 [cos(A — B) — cos(A + B)]
1
cosA cos B = 5 [cos(A — B) + cos(A + B)]
Example:

Integrate the function: sin 5x sin 3x

Suggested answer:



[ sin5xsin3x dx = %f(cos 2x — cos 8x)dx = %(% sin 2x —%sin 8x) =
1. 1.
—-sin2x ——sin8x + C
4 16
Example:

Integrate the function:cos?x

Suggested answer:

1+ cos2x 1 1 1
fcoszxdx=jde=§fdx+fC052xdx=Ex+Zsin2x+C

1.7. - Integration by Partial fractions.

Before using this technique of integration, let us recall what we have learnt about

partial fraction.

Rational function.

If P(x) and Q(x) are two polynomials in X, then the ratio of two polynomials, % IS

called a rational function, where Q(x) # 0
Proper rational function

If the degree of the numerator of the rational function is less than that of the

denominator, the rational function is called a proper rational function.

2X+3
X2 +5%+7

Is a proper rational fraction.

Improper rational function.

If the degree of the numerator is greater than the degree of the denominator in a
rational fraction, then the rational function is called improper rational function. Like
the case of improper fractions reducible to an integer added to a proper fraction,
improper rational function can be reduced as a sum of a polynomial and a proper

rational function.



In other words, if 22 ( ) is improper rational function, then

x)

P() x)
0 TP om

Py(x)

o) IS a proper rational function.

Where T(x) is a polynomial and

Partial fractions.

P(x)

Any proper rational function e can be expressed as sum of rational fractions, each

having a factor of Q(x). Each such fraction is known as Partial fraction.

Rule for integrating.

1. Let% be rational function. If% Is improper, divide P(x) by Q(x). Let T(x)

be the quotient and P1(x) be the remainder, then

P() Py(x)
™ T m

Py (x)

( : is a proper rational function.

Where T(x) is a polynomial and 2

Py (x)

2. Resolve the proper rational function ) in to partial fractions.

3. Write (( )) as a sum of partial fractions.

4. Write Ex; as the sum of T(x) and the sum of partial fractions. Integrate each
part of the right hand side. This gives the required integral.

Note that if #

7 x; is a proper rational fraction step 1 need not be performed.



The following table indicates the simpler partial fractions associated to proper

rational functions.

Ne Form of the rational | Form of the partial fraction
fraction
+
! e ,a#Db 4 + 5
(x—a)(x —b) (x—a) (x—>b)
2 px +q A N B
(x — a)? (x—a) (x—a)?
3 px% +qx +71 A B C
+ +
(x —a)(x — b)(x — ¢) x—a) (x—-b) (x—c)
4 px?+qx+r A B C
+ ~+
(x —a)?(x —b) x—a) (x—a) (x—Db)
5 px% +qx +7r A B C
+ 2T 3
(x —a)3(x — b) x—a) (x—a) x-a)
LD
(x —b)
6 px% +qx +7r A . Bx +c
(x —a)(x? + bx +¢) (x—a) x*+bx+c

In the above table A, B, C and D are real numbers to be determined suitably.

Example:

x3+x+1

Integrate the following rational fraction [

x2-1
Suggested answer:

Divide the numerator by the denominator, since the rational fraction is improper.

x3+x+1 2x+1
x2-1 _-x.+-x2—1 (1)
2x+1 . . .
Resolve into partial fraction as follows

x%-1



2x+1 2x+1 _ A B
x2-1  (x=1)(x+1) (x—1) (x+1)

(2)

2x +1 _Ax+1)+B(x-1)
_)(x—l)(x+1)_ x—Dx+1

-2x+1=Ax+1)+B(x—1)

Put x =1, A = 3/2;
Putx=-1,B=%
Substitution the values of A and B in (2) we have

2x+1 3 N 1
x2—1 2(x—1) 2(x+1)

From (1) we have

s 3 ! _ 3 gt gy =2
f x2-1 dx_f(x+2(x—1)+2(x+1))dx_Ide+2fx—1dx+2fx+1dx_ 2+

“In(x — 1) +3In(x + 1) + €
1.8. - Integration by parts.

Let u and v be two differentiable function of a single independent variable x. We

have

d ( )_udv vdu

dx YV T dx T ax
dv B d () vdu

Y Tax T

Integrating both sides, we have

fdvd_fd( ) fdud
udxx— dxuvx vdxx



fuZ—dezuv—fv%dx (1)
d
Letu = f(x),7; = 9(x)

Then Z—Z = f'(x),v = [ g(x)dx

(1) Can be written as

[ rgedx = £ [ gz~ [ ([ a@ans @ax

Note:

[ reogax = uv — [ vau

Note:

1. While integration by parts, the proper choice of first function and second
function is significant

2. Integrating by parts may not be applicable to product of functions in all cases.
In some cases the product of two functions may not be integrable.

3. While finding the integral of the second function we do not add constant of
integration. We need not add a constant of integration to the second function as
it gets cancelled in the final results.

4. Sometimes, even if the integral is not a product of two functions, the method of

integration by parts can be used.

Example:
Let us integrate xsin x

Suggested answer:



If u =x,dv =sinx dx,thendu = dx,v = [ dv = [sinx dx = —cosx
fxsinxdx=—xcosx+fcosxdx= —xcos x + sinx + C

Example:
Let us integrate 1;1_2x

Suggested answer:

Ifu=lnx,dv=d—f, then duzd—x,vzfdvz d—gzczfx‘zdxz—l
X X X X

Inx Inx 1dx Inx 5 Inx 1
—dx = —— f——=——+fx‘ dx=————4+C

X X X X X X x

1.9. - Some Special Types of integrals

Following are few special integrals, which can be integrated by using integration by

parts
Prove that
2
X a
f x? —a?dx = E\/xz —a? —7log |x +/x2 — a2| +C
Proof:

Let/ = [Vx2Z — a%dx

Taking 1 as the second function and integrating by parts, we have
I=[vVxZ—a%.(1)dx = Vx2 —a? [ dx — [[ dx. \/7
dr = xVx? — a2 — [EElE — 3T g? - [Vx? - aldx +

VxZ-a?
dx > =xVx?2—a?2—-1+a?| dx - 21 = xVx? —a? +

(2x).dx = xVx? — a? —

f x
Vx2—a?

f a2 1
11x2_a2 1/x2_a2



2
a’log|x +Vx2 —a?|+C, > I =§\/x2 — a? +a?log|x +Vx2 — a?| +%=
2
ngZ —a? +a7log|x +Vx2 —a?| + C ,where C = %

Prove that
x a?
j\/xz—azdx=§ x2—a2+7log|x+\/x2—a2|+6

Proof:

Let] = [Vx2 —a?dx

Taking 1 as the second function and integrating by parts we have I =
[Vx2 —a?2(D)dx =Vx?2 —a? [1.dx— [(J 1. dx) s==.2x =xVx? —a* -

2x2dx R x2 R (x2 +a2) —a? .
fz = =xVx*—a —f = dx = xVx f e dx =

xVx? —a? — [Vx? —a?dx +a* [

\/%azdxaxm—f\/de+
azf\/lej x—>I-xW—I+a2fﬁ dx —» 2] = xVx2 —a? +

azlog|x+m|+Cl—>1=§m—a7log|x+\/W|+%:

gm—%zlog|x+m| + C,where C =%

Integral of the form

f\/ax2+bx+Cdx

Method:

The quadratic expression ax? + bx + ¢ can be expressed in the form a(x? +A?) by the
method of completing the square. The integrals can be evaluated by using the special

integrals.

j(px+q)\/ax2+bx+C



Let I = [px+q)Vax?+bx+C
Put px + q =L:—x(ax2+bx+c)+M (1)

Find the values of the constants L and M by comparing the coefficients of like

powers of x on both sides.
Substitute px + q = L;—x (ax® + bx + C) + M in the integral I

The integrals in the form are easily integrable.

Example:

Evaluate the integral [ V3 — 2x — x2dx

Suggested answer:
j \/3 — 2x — x?%dx

= j\/3 — (2x + x?)dx

:f\/B—(x2+2x+1—1dx=j\/4—(x+1)2dx,putx+1=t

dx = dt
=j\/22—t2dt=lt 4—t2+§sin‘1£+C
2 2 2
1 x+1
=§(x+1)\/3—2x—x2+25in‘1( 5 )+C
Summary

If ;—x{F(x)+C}=f(x) then Jf(x)dx=F(x)+C

f(x) is called the integrand, F(x) is called the particular integral and C the constant of

integration.



Ifff(x)dx —F(xX)+C then ff(ax +bydx = F@XED) Lo

[0 £ g0dx = [ f@dx £ [ gudx

ij(x)dx =K f f(x)dx, K is constant

1.10. - Method of substitution:

If the integrand f(x) of the integral is not in an integral form the variable of
integration X is changed to a suitable variable z by substitution and on differentiation

and simplification, the new integral is found integrable.

[ r@ax = [ fio@n¢'az whenx = 62

g'(x)
(x)dx = then j (x)dx =logg(x)+C
J 1 9 4 89
Standard integrals
j 1 dx = 1 l a+x +C
@z —x2 ¥ 7249 [ =%

J 1 P —1l x—a+C
-2 724" Ik ¥a

1
ax?+bx+c

Evalution of [

By method of completing squares ax? + bx + ¢ is expressed as AZ - X2 or X% - A2 or

A? + x? and the integral reduces to



1 p 1 p dx
faz—xz xor fa2+x2 xoor fxz—az

which can be evaluated using the standard integrals.

px+q

Evalutionof | = ————
ax<+bx+c

Method:

d
Stepl. Let numerator = L— (Denominator) + M and determine L and M

dx
Y i (Denominat 1
Step2.1 = Lj x( eno.mma or) + MJ |
Denominator Denominator
Step3. I = Llog( 2+b+)+Mj L d
ep3. I = Llog(ax x+c X
p g ax? +bx +c

Step 4: The second integral can be evaluated by method completing squares.

Standard integrals

j;dxzsin‘1 (£)+C
Vaz — x2 a
j;dleog x+x?—a?l+C

1
dx = [ a2 2
f o azdx log [x ++a*+x*|+C

dx
+bx+c

Evalution of f\/ >
ax

By method of completing squares ax? + bx + ¢ is expressed as A%+ X2 or X? - A% and

the integral reduces to



f dx f dx f dx
—— OTr —— OTr ——
Va2 — x? va? + x? Vx2 — q?
which can be evaluated using the standard integrals.

X+
Evalution of I = P a dx

vax?2 + bx + ¢

Method:

d
Stepl.Let px + q = La (ax? + bx + ¢) + M and determine L and M

2ax + b 1
Step 2.1 = dx+Mf dx
Vax? + bx + c Vax? + bx + ¢

1
=2L\/ax2+bx+c+MJ dx
Vax2 + bx + ¢

Step 3: The second integral can be evaluated by method of completing squares.

1 dx dx
, dx, ) ,
asinx + bcosx + ¢ a + bcosx a + bsinx

Integral of the form f

Method
x _ 2t 1—t? 2dt
Step 1.Puttan§ =t,sinx = g tz,cosx = g tz,dx = 172
Step 2. Int l d toth J at
ep 2.Integral reduces to the form  TEE T

Step 3: Resulting integral is evaluated by method of completing squares.

Int L of th jalcosx+blsinxd
ntegral o e form X
g f f acos x + bsin x

Method



d
Step 1. Put Numerator = L(Denominator) + M — (Denominator)

dx
Step 2: Determine L and M
Step 3.Integral reduce to I = fld +Mf
f (x)
Step 4: Integral = Lx + M log (a cos x + bsinx)
Integration by partial fractions:
f(x) . .
Step 1. Let be a ration function
g(x)
If f(x) is not proper then divide f(x)by g(x)and express in the form —— f(x)
g(x) g(x)
=q()
r(x) X) . . .
( ) where q(x) is the quotient, r(x)is theremaider and FIO) into partial fractions
Step 2. Resolve ~2 into partial fracti
ep 2. Resolve into partial fractions
P g(x) P
Step 3. Write f(x) = q(x) + sum of partial functions of r)
' g(x) g(x)

Step 4: Integrate each part on the right hand side to obtain the required integrals.

Integration by parts

[ = [ v~ [ ([ vae) ()

In words: Integral of the product of two functions
= (1st function)(Integral of 2nd)

d
— f(lntegral of 2nd) I (1st function)dx



If the integrand is the product of two functions of different types then their order is
determined by the word ILATE where

| = Inverse trigonometric, L = Logarithmic, A = Algebraic, T = Trigonometric, E =

Exponential

In the integrand, the first function is the function which comes first in the word
ILATE. However, there is no rigid rule in this that you have to select the first

function in this order.

Standard integrals

2

X a X
j a? — x2dx = E\/az — x2 +?Sl’n_1a+ C

2
j\/xz + a?dx =£\/x2 + a? —%log{x+ x2 +a2}+C

2

2
j x%? —a?dx =§\/x2 —a? —a—log{x+\/x2 —a2}+C

2

Integral of the form f\/axz + bx + cdx

Step 1: By method of completing squares

\/ax2+bx+c=\/A2 +x%2 or \x?— A?

Step 2: Use standard and integrals and evaluate

Integral of the formI = f(px + q)\/ax2 + bx + c dx

Step 1: put px + g =L (2ax + b) + M and determine L and M.

StepZ.I=Lj(2ax+b)\/ax2+bx+c dx+MJ\/ax2+bx+c dx

2
=L§(ax2+bx+c)3/2+MJ\/ax2+bx+c dx



Step 3: Second integral on the right hand side can be evaluated by method of

completing squares.
2. Definite Integral

Let f be a continuous non-negative function defined on a closed interval [a, b]. Since
the value of the function is non- negative, the graph of the function is a curve above

X-axis. Let the graph of the curve be as shown in the figure.

¥

y = f{x)

_

figure (a)

The question is how we find the area under the curve y = f(x) bounded by the X-axis

and the lines x = a and x = b. This region is shaded in the graph.
To understand this problem easily let us consider three special such functions.
1. Let f(x) =2 x € [1,2]

This function is continuous, non-negative in the interval [1, 2], which is shown in the

figure.



1 height

base

Being a rectangular region, the area of f(x) = 2 bounded by X- axis,x =1and x = 2 is

f)+f(D)
2

given by base X height, the height being equal to
Base=(2-1)=1 unit, height =2 unit

2. Consider the function f(x) = x, xe[0,1]

¥

This region is triangular above the axis bounded by x = 0 and x = 1.
The area of this region is given by % X base X height or base X (% height)
Area = (1 —-0) X E X (f(l) + f(O))] = % square units

3. Consider the function f(x) = x for x € [1,3]



The region under the centre bounded by X - axis, x =1 and x = 3 is a trapezium,

where area is given by (3 — 1) X E (fQ3) + f(l))] (Since the area of the trapezium

=base X % (the sum of the parallel sides)).

In all the three cases, we have seen that, the area of the regions are obtained by

multiplying the base with average height of the curve.l1
Using this fact, how can we find the area under the curve in figure (a) above?

The base is the length of the domain interval [a, b] = b - a. Now our problem is to
find the average height of the curve. This is indeed the average value of the function

in the interval [a, b].
2.1. - Average Value of a Function in an Interval

We can take the value of f at a (i.e., f(a)) as first estimate for average value of the

function.
Y
_f“’l/
I
._‘: h= béﬂ
B £
= g
=
I
! 1 x
o a a+h b




Divide [a, b] into two equal parts such that h = bz;a then the second estimate of the

average value of the function can be taken as second estimate of the average value of

f(a)+f(a+h)
2

the function can be taken as (see the above figure)

Clearly the second estimate of the average value is better than the first estimate.

/
\

f{a+h)
fa+2h)

f{a)

a a+h a+2h b

If we divide the interval into three equal parts such that h = b%athen the improved

fla)+f(a+h)+f(a+2h)

. (see the above figure)

estimate for the average value of f(a) is

In this process, if we divide the closed interval [a, b] into more and more equal parts,
and take the average of functional values at these points, we are closer to the average

value of the function in closed interval [a, b].

Let us divide the closed intervals to n equal parts, then the average value of the
f@)+f(a+h)+f(a+2h)+---+f(a+(n—-1)h) (1)

n

function is

where h = b;—a as shown in the figure below

“\\:{mzh] /b
(a+h) a+{n-1}h



For larger value of n, equation (1) will be appropriate estimate for the average value
of the function in the given closed interval. With this discussion, we can define

average value of fin [a, b]

fim f@+fla+h)+ f(a+2h)+..+f[a+ (n—1)h]

n—oo n

Note thatasn > oo,h - 0, nh—>b —a

Therefore the area under the curve y = f(x) bounded by X-axis, x =aand x = b. =

base X average height = (b—a) x lim [/ @tht/ar2hr./larn-Dh] _

n—oo n

11m —>< [f(a)+ f(a+h) + fla+2n)+..+f(a+ (n—1)h] = llm h(f (a) +

f@a+h)+ f(a+2h)+..+f(a+ (n—1)h)]
wherenh - b —a
2.2. - Definite Integral

Let f (x) be a single valued continuous function defined in the interval [a,b] where b >
0 and let the interval [a,b] be divided into n equal parts each of length h, so that nh =

b - a; then we define
jf(x)dx =limh[f(a)+ f(a+h)+ (a+2h)+ -+ f(a+ (n—1)h)]
whenn - oo,h > 0and nh - b —a

Thus, [ f(x)dx = lim A 2723 f (a +Th)

where n — o as h — 0 and remains equal to b-a. We call f;f(x)dx as the definite

integral of f(x) between the limits a and b.

The method of evaluating fab f(x)dx by using the above definition is called



integration from first principles.
2.3. - Definite Integral Through Area of Triangles

The definition,

7 f)dx = (b - a) 7]Li_)r£10% [f(@)+9a+Rh) +A+fla+n—1R)] (2

b— . . . e .
where h = Ta can be explained in another way also. We rewrite above definition as

2 Feo)dx = lim [Af (@) + hf (@ +h) + A+ hf(a +n=1Th)]h = =2 @3
Here the first term is hf (a). It is the area of the rectangle marked as 1 in figure below
(because h and f (a) are the adjacent sides of this rectangle). Similarly, the second

term hf (a+h) is the area of the rectangle marked as 2 in the figure below.

Thus, [Af (@) + hf (a + h) + .-+ hf (a + n — 1h)], is the sum of the areas of these
n rectangles marked in above figure. The union of these rectangles is approximately
the region between the curve and the x-axis. When n is larger, the number of
rectangles is more, and the approximation is closer. Therefore if we take the limit as

n — ool we obtain that fabf(x)dx as in equation (2) is the area of the region

bounded by the curve y = f(x) and the linesy =0, x =aand x = b.

If we take the right end-points instead of the left, then also, we get the same areas as

the limit of areas of unions of some other rectangles.



_ y=ix} -

X

a+h
a+2h
o

This explains that f:f(x)dx as in

2 FGodx = (b—a) lim 2[f(a+h) + f(a+2h) + f(B)], h = =2
Is the area of the same region.

Note that any one of the processes, viz., taking the left hand end-points or the right

hand end-points will be sufficient for calculating the desired area.
Terminology

We have the following terminology associated with the symbol

jbf(x)dx

Upper limit of

integration
-‘“‘--ﬂ_t__l — f{x] is integrand

-

Integral sign —"‘lll flx)dx =—— xis the variable of integration

B

a
Lower limit of — v

integration t Integral of ffromato b

Remark

The value of the definite integral of a function over any particular interval depends on



the function and the interval, but not on the variable of integration that we choose to
represent the independent variable. If the independent variable is denoted by t or u

instead of x, we simply write the integral as

b b b
ff(t)dt or Jf(u)du instead of Jf(x)dx

Hence, the variable of integration is called a dummy variable.
Example:

Integrate the following definite as limit of sums:

4
j(x + e?*)dx
0

Solution:

4-0 4

We are giventhata=0,b =4 hszn ornh = 4

Bymmmmn_ﬁfuym=g%hvuo+fm+hyk~+fw+
(= Dh)] [ (x + e**)dx = lim R[f(0) + f(O +h) + f(O+2R) + -+ f(0 +
(n—1Dh)] =limh[(0 +e) + (h+e*") + (2h + e?@V) + (3h + £3CM) +

e ((n—1h+ e D21)] = limh|h[1+2+3+-(Mm-1)+ 1+ el +

(€)% + (e2)® + - (] = Jim (200 (L2 )] = i [h )

1—e2h 2

e —1 | =10 (1 — ) 2h \(1\ _16 g _ o8yl _16_1_¢° _
{ e)Zx—l_eZh]_z (1 e)}zl—rg(l—ezh)(z)_z A-eD);=5-1-7=
2h

15—e8
2




2.4. - Area function

We have already defined, for a continuous function f(x) on a closed interval [a, b]
f;f(x)dx as the area of the region bounded by the curve y = f(x), X-axis and x=a

and X = b.

0.0

Let x € [a, b], we defined the area function

Ax) = j FG)dx

In other words, area of the shaded region is a function of x. The function A(x) is

shown in figure below.

0.0



This area function A (x) is the anti derivative of f(x). That is f(x) = A'(x). We state

fundamental theorems of integral calculus without proof as they are beyond syllabus.
2.5. - First Fundamental Theorem of Integral Calculus

Let f(x) be a continuous function on the closed interval [a, b]. Let the area function
A(X) be defined by A(x)= f:f(x)dx for x = a then A(x) =
f(x) forall x € [a,b]

2.6. - Second Fundamental Theorem of Integral Calculus
Let f(x) be a continuous function defined on an interval [a,b].
If [ f(x)dx =F(x) then [, f(x)dx =[F(x)];=F(b)-F(a) is called the

definite integral or f(x) between the limits a and b. This statement is also known as

‘fundamental theorem of calculus'.
Let [f(x)dx =F(x)+C then [ f(x)dx=F(b)~F(a)
Note: From the above two theorem, we infer the following fff(x)dx =

(Anti derivative of the function f(x) at b)

- (Anti derivative of the function f(x) at a)
(if) The fundamental theorem of integral calculus shows a close relationship between

differentiation and integration

(iif) These theorems give an alternate method evaluating definite integral, without

calculating the limit of a sum.
Example:

Evaluate the definite integral of the following



/4

f (2sec?x + x? + 2)dx
0

Solution:
/4 T/4 T/4 /4
j (2sec?x + x? + 2)dx = ZJ sec?xdx + J x2dx + f 2dx =2 [tanx]g/4
0 0 0 0
X3 . T 1 ,m\3 T
il /4 _ - ~(2) — Z_
+!3L + [2x], 2(1:an4 tan0)+3(4) O+[2 0]
PSR
7192 2

We know that one of the most important method of evaluation of indefinite integral is
method of substitution. While using method of substitution to evaluate definite

integrals, following steps are involved.

2.7. - Working rule for Evaluating Definite Integral with Suitable Substitution

Suppose we have to evaluate the integral f‘f f(x)dx (1) Let t = g(x) is the suitable

substitution. Differentiating, we get dt = g'(x) dx

(2) Now the new variable is t. The upper limit b and the lower limit a are in terms of

X. Change these limits to the new variable g (b) and g(a).

. b 9 f(x) fe) -
(3) Write fa f(x)dx = 9@ 50 dt and express oy in terms of t.

f(x)

(4) Integrate pores with respect to t.

Find the value of the integral between the new limits g(a) and g(b).

This gives integral of ff f(x)dx



a b
1.Jf(x)dx = —Jf(x)dx
b a
Proof: LHS = F(a) - F(b) = - [F(b) - F(a)] =— fff(x)dx
b c c
Z.Jf(x)dx+ff(x)dx = ff(x)dx
a b a
Proof: LHS = F(b) - F(a) +F(c) - F(b) = F(c) - F(a) = facf(x)dx
c b c
ff(x)dx = Jf(x)dx+Jf(x)dx where a<b<c
a a b
Proof: RHS = F(b) - F(a) + F(c) - F(b) = F(c) - F(a)= [ f(x)dx = LHS
b b
3.ff(x)dx = jf(a + b —x)dx
Proof: Puta+b-x=t -dx=dtwhenx=a,t=b x=Db,t=a

a a b b
RHS = | f(t)(—dt) =—| f(t)dt = | f(t)dt = | f(x)dx = LHS
/ Jrou=Jrou-]

4.ff(x)dx=ff(a—x)dx
0 0

Puta-x=t -dx=dt, Whenx=0,t=a x=a,t=0

RHS = aff(t)(—dt) = —aff(t)dt= Off(t)dt = Off(x)dx = LHS



2a a a
S.bf f(x)dx = Ojf(x)dx+0ff(2a—x)dx

Proof: RHS = foaf(x)dx + foaf(Za —x)dx =1 +1,
Let us evaluate I, ,let2a-x=t - —dx =dt or —dt = dx

Whenx=0,t=2a,whenx=a,t=a

2a

a 2a
I, = f —f(t)dt = j f®)dt -» J f(x)dx (changing the variable t to x)
2a a a

a 2a 2a
RHS =1L +1I, = jf(x)dx + f f(x)dx = j f(x)dx ( by property 2) = LHS
0 a 0

2a a
6. | fadx = { 2! fydx f2a=x)=f0
: 0 fRa-x=-f(

Proof:LHS = [\ f()dx + [ f(x)dx (1)

Consider [ f(x)dx of (1), whenf(x) =T (2a-x)
2a 2a
j f(x)dx =j fQRa —x)dx

Put2a-x =t, -dx =dt, whenx=a,t=a,x=2a,t=0

2aa 0

f fa—x)dx = ff(t)(—dt) = —fof(t)dt = faf(t)dt = jaf(x)dx
a a a 0 0

LHS = ff(x)dx+ff(x)dx = fo(x)dx
0 0 0



When f (x) = -f (2a - x), proceeding as above. This value will be equal to

2a a
! fQRa—x)dx = —Ojf(x)dx

LHS = | f(x)dx— | f(x)dx =0
Jree=]

Lety =f (x) be a curve. The area bounded by y = f (x), x-axis and the ordinates at x =

aand x = b is given by |ff ydx| or |fff(x)dx|

&Y

y=f(x)

¥

(8] X=a x=h

(if) The area bounded by the curve x = f (y),y = axis and the abscissae aty = c and y

=d is given by



AY

y=d
x=f(y)
y=c —
X
) -
a b
f xdy| or f f(y)dy
c a
Note 1: The area bounded by the curves f(x) and g(x) and the ordinates x =a and x =
b is given by
b b
[ reax| - |[ geax
a a
AY
/”f{x}

™ 2
/g{x}

[a] X=a x=h

kg




Note 2: If curve f (x) lies above the x-axis and g (x) lies below the x-axis then area
bounded by f (x) and g (X) is

|2 Feodx] + [ g(x)dx|

AY

fx)

'ih-c

Note 3: If f (a) and f (b) are opposite in sign then the curve crosses the x-axis say at c.

Then the area bounded the curve f (x), x-axis and the ordinates x =aand x = b is

b
+ j f(x)dx

ff(x)dx




3. Double and triple integral
3.1. - Moments and Center of Mass

We have seen in first year calculus that the moments about an axis are defined by the

product of the mass times the distance from the axis.
Mx = (Mass)(y) My = (Mass)(x)

If we have a region R with density function p(x,y), then we do the usual thing. We
cut the region into small rectangles for which the density is constant and add up the
moments of each of these rectangles. Then take the limit as the rectangle size

approaches zero. This will give us the total moment.
3.2. - Definition of Moments of Mass and Center of Mass

Suppose that p(x,y) is a continuous density function on a lamina R. Then the

moments of mass are
M= [[ pGeyydyax my = [[ pCoyyxdyax
R R

and if M is the mass of the lamina, then the center of mass is

Example

Set up the integrals that give the center of mass of the rectangle with vertices (0,0),
(1,0), (1,1), and (0,1) and density function proportional to the square of the distance
from the origin. Use a calculator or computer to evaluate these integrals.

Solution



The mass is given by
11
2k
M = Jfk(xz + y?)dydx = 3
00
The moments are given by

k(x? + y*)xdydx

[l
o .
o .

11
M, = jfk(xz +y?)ydydx and M,
00

These evaluate to

S5k

M, =—
* 12

and M, =5k/12

It should not be a surprise that the moments are equal since there is complete

symmetry with respect to x and y. Finally, we divide to get

(x,y) = (5/8,5/8)
This tells us that the metal plate will balance perfectly if we place a pin at (5/8,5/8)
3.3. - Moments of Inertia

We often call My and My the first moments. They have first powers of y and X in
their definitions and help find the center of mass. We define the moments of inertia
(or second moments) by introducing squares of y and x in their definitions. The
moments of inertia help us find the kinetic energy in rotational motion. Below is the

definition

Suppose that p(x,y) is a continuous density function on a lamina R. Then the

moments of inertia are



I = j f p(x,y)y*dydx I, = f j p(x,y)x*dydx
R R

3.4. - Surface Area
Definition of Surface Area

We can think of a smooth surface as a

quilt flapping in the wind. It consists of

z = f(x¥)

many rectangles patched together. More
generally and more accurately, let

z = f(x,y) be a surface in R® defined

over a region R in the xy-plane. cut the
xy-plane into rectangles. Each rectangle
will project vertically to a piece of the

surface as shown in the figure

below. Although the area of the

rectangle in R is

Area = AyAX

The area of the corresponding piece of

the surface will not be AyAx since it is not a rectangle. Even if we cut finely, we will
still not produce a rectangle, but rather will approximately produce a
parallelogram. With a little geometry we can see that the two adjacent sides of the

parallelogram are (in vector form)

c
1

AX i + (X, y)AX kK
and

v = f(X,y)Ay i + Ay k



We can see this by realizing that the partial derivatives are the slopes in each
direction. If we run Ax in the i direction, then we will rise fi(X,y)Ax in the k

direction so that
rise/run = f(X,y)

Which agrees with the slope idea of the partial derivative. A similar argument will
confirm the equation for the vector v. Now that we know the adjacent vectors we
recall that the area of a parallelogram is the magnitude of the cross product of the two
adjacent vectors. We have
i k
lvxw|=|Ax 0 f.(xy)Ax
0 Ay f,(x,y)Ay

= |~ (f (e, y)AyAx)i = (f(x, y)Aydx)j + (AyAx)k|

= \/ff (x, ¥) (AyAx)? + £2(x,y) (AyAx)? + (AyAx)?

= nyz (6, y) + f2(x,) + 1 AyAx

This is the area of one of the patches of the quilt. To find the total area of the surface,
we add up all the areas and take the limit as the rectangle size approaches zero. This
results in a double Riemann sum, that is a double integral. We state the definition
below.

Let z = f(x,y) be a differentiable surface defined over a region R. Then its surface

area is given by

Surface Area = ff \/1 + f2(x,y) + f7(x, y)dydx

Examples



Example
Find the surface area of the part of the plane
Z = 8x+4y

that lies inside the cylinder

x2+y? = 16

AP
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Solution
We calculate partial derivatives
fixy) = 8 fy(x,y) = 4
so that
1+f2(xy) +f2(xy) = 1+64+16 = 81
Taking a square root and integrating, we get

[[ s

R



We could work this integral out, but there is a much easier way. The integral of a
constant is just the constant times the area of the region. Since the region is a circle,
we get

Surface Area = 9(16n) = 144xn

In reality, since there is a square root in the formula, most surface area calculations
require intensive integration skills or the use of a machine. The prior example and
the next example are not meant to deceive, but rather to show how the essence of
surface area problems work without the integration difficulty clouding your

understanding.
Example

Find the surface area of the part of the paraboloid

z = 25-x%-y?

that lies above the xy-plane.

Solution
We calculate partial derivatives

fu(xy) = -2x fy(x,y) = -2y

so that



1+f2(xy) +f2(xy) = 1+4x%+4y?

At this point if we listen closely, we should hear a little voice pleading "Polar

Coordinates™”. We listen to its call and realize that the region is just the circle

Now convert the integrand to polar coordinates to get

2T 5

j j\/l + 4r2rdrdf
0 0

Now let
u=1+4r? du = 8rdr

and substitute

211 101 2T

1 1 101

—_ 1/2 = —_ 3/2 ~

8jJu dud = — [ u/?| " ~ 530,95
0 1 0

4. Triple Integrals
4.1 - Definition of the Triple Integral

We have seen that the geometry of a double integral involves cutting the two
dimensional region into tiny rectangles, multiplying the areas of the rectangles by the
value of the function there, adding the areas up, and taking a limit as the size of the
rectangles approaches zero. We have also seen that this is equivalent to finding the
double iterated iterated integral. We will now take this idea to the next
dimension. Instead of a region in the xy-plane, we will consider a solid in xyz-
space. Instead of cutting up the region into rectangles, we will cut up the solid into
rectangular solids. And instead of multiplying the function value by the area of the

rectangle, we will multiply the function value by the volume of the rectangular



solid. We can define the triple integral as the limit of the sum of the product of the
function times the volume of the rectangular solids. Instead of the double integral
being equivalent to the double iterated integral, the triple integral is equivalent to the

triple iterated integral.

Let f(x,y,z) be a continuous function of three variables defined over a solid Q. Then

the triple integral over Q is defined as

f j flx,y,z) = limz f(x,y,z)AxAyAz
Q

where the sum is taken over the rectangular solids included in the solid Q and lim is
taken to mean the limit as the side lengths of the rectangular solid. This definition is
only practical for estimating the triple integral when a data set is given. When we
have a symbolically defined function, we use an extension of the fundamental

theorem of calculus which is just Fubini's theorem for triple integrals.

4.2. - Theorem for Evaluating Triple Integrals

Let f(x,y,z) be a continuous function over a solid Q defined by
a<x<bh hi(x) <y < hy(x) g1(X,y) <z < ga(X,y)

Then the triple integral is equal to the triple iterated integral.

b ha(x) g2(x,y)

f f flx,y,2z) = f f f f(x,y,z)dzdydx
Q

a hi(x) g1(x.y)

Remark: As with double integrals the order of integration can be changed with

care.
Example

Evaluate



[, ey, z)dzdydx

Where
f(x,y,z) = 1-x

and Q is the solid that lies in the first octant and below the plain
3X+2y+z =6

Solution

The picture of the region

The challenge here is to find the limits. We work on the innermost limit first which
corresponds with the variable "z". Think of standing vertically. Your feet will rest
on the lower limit and your head will touch the higher limit. The lower limit is the

xy-plane or

The upper limit is the given plane. Solving for z, we get
Z=6-3x-2y

Now we work on the middle limits that correspond to the variable "y". We look at

the projection of the surface in the xy-plane. It is shown below.



Now we find the limits just as we found the limits of double integrals. The lower

limit is just
y=20

If we set z =0 and solve for y, we get for the upper limit
y = 3-3/2x

Next we find the outer limits, corresponding to the variable "x". The lowest x gets is

0 and highest x gets is 2. Hence
0<x<?2

The integral is thus

23— x6 3x— Zy 3——x

2
j f j (1 —-x)dzdydx = J [z — xz], 187372 dydx =

0 0

23——x

j j [(6 —3x — 2y) — (6x — 3x? — 2xy)]dydx =
0
2
3—§x
= f[6y—9xy—y2 +3x%y +xy?], * dx =
0

2
27 9 9

=j(18—9x—27x+7x2—9+9x—1x2+9x2—§x3+9x

0

9
—9x2% + Zx3> dx =



2
9

f —18x+—x ——x)dxz
4

0

[9x—9x +—x ——x ]

Example
Switch the order of integration from the previous example so that dydxdz appears.
Solution

This time we work on the "y" variable first. The lower limit for the y-variable is

0. For the upper limit, we solve for y in the plane to get
y =3-32x-1/212

To find the "x™ limits, we project onto the xz-plane as shown below

The lower limit for x is 0. To find the upper limit we set y = 0 and solve for x to get
X =2-1/3z2

Finally, to get the limits for z, we see that the smallest z will get is 0 and the largest z

will get is 6. We get
0<z<6

We can write
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4.3. - Mass, Center of Mass, and Moments of Inertia

For a three dimensional solid with constant density, the mass is the density times the
volume. If the density is not constant but rather a continuous function of x, y, and x,
then we can cut the solid into very small rectangular solids so that on each
rectangular solid the density is approximately constant. The volume of the rectangle

IS
AMass = (Density)(AVolume) = f(X,y,z) AXAyAz

Now do the usual thing. We add up all the small masses and take the limit as the

rectangular solids get small. This will give us the triple integral

Mass = j f f(x,y,z)dzdydx
Q

We are often interested in the center of mass of a solid. For example when the
NEAR satellite orbited around the asteroid Eros, NASA scientists needed to compute
the center of mass of the asteroid. Kepler told us that a stable orbit will always orbit

in an elliptical orbit with the center of mass as one of the foci.

The NEAR satellite orbiting around Eros



We find the center of mass of a solid just as we found the center of mass of a
lamina. Since we are in three dimensions, instead of the moments about the axes, we

find the moments about the coordinate planes. We state the definitions from physics

below.
Definition: Moments and Center of Mass

Let p(X,y,z) be the density of a solid Q. Then the first moments about the coordinate

planes are

M,, = j f j xp(x,y,z)dzdydx
Q

Mee = [[[ oy, 21dzdyax
Q

M,, = jff zp(x,y,z)dzdydx
Q

and the center of mass is given by

Myz sz Mxy)

@%@=<M'M'M

Notice that letting the density function being identically equal to 1 gives the volume

Volume = j j j dzdydx
Q

Exercise

Find the center of mass of the solid that lies below the paraboloid



Z =4-x2-y?

that lies above the xy-plane if the density of the region is given by
p(X,y,2) = X2+ 2y?+72

You may use your calculator or computer to evaluate the integrals.

Just as with lamina, there are formulas for moments of inertial about the three
axes. They involve multiplying the density function by the square of the distance

from the axes. We have
Definition: Moments of Inertia

Let p(x,y,z) be the density of a solid Q. Then the first moments of inertia about the

coordinate axes are

I, = Jf (v? + z¥)p(x,y,z)dzdydx
Q

I, = jf (x% + z%)p(x,y,2z)dzdydx
Q

I, = Jﬂ(xz + y2)p(x,y,z)dzdydx
Q

The Problem
Let

f(x) = ax*+bx+c



If a,b, and c are chosen randomly from the interval [0,1], what is the probability that f

has real roots?
Solution

This is equivalent to finding the volume of the solid that lies inside the unit cube that

lies above the discriminate surface
72 - 4xy = 0

(Herezisbh,xisa,andyisc.)

/”\\\
The Surfacez = 1 and z° -4z =0
2
15
1
05 = 2
0 = v
0.2 0.2
0406 < s 4
¥ 08 0.8 X

The thing to notice is that the outer limits of the triple integral is not the unit square
since the surface rises above z = 1 for part of the square. This mistake will lead to
the answer of 1/9. Instead it is the part of the unit square that does not lie above the

curve
4xy = 1

which is shown below



0 02 04 0B 0B |

We will need to break this up into two integrals as follows

1/4 1 1 11/4x

In 2
jfjdzdydx—k ]] jdzdydx———k—
0 0 xy 1/4 0

The solution is approximately equal to .25 which is significantly greater than 1/9.
4.4. - Triple Integrals in Cylindrical and Spherical Coordinates
4.4.1. - Cylindrical Coordinates

When we were working with double integrals, we saw that it was often easier to
convert to polar coordinates. For triple integrals we have been introduced to three
coordinate systems. The rectangular coordinate system (X,y,z) is the system that we
are used to. The other two systems, cylindrical coordinates (r,0,z) and spherical

coordinates (p,0,0) are the topic of this discussion.

Recall that cylindrical coordinates are most appropriate when the expression
X2 + y2

occurs. The construction is just an extension of polar coordinates.
X =rcoso y = rsinf Zz=12

Since triple integration can be looked at as iterated integration we have



b ha(x) g2(xy) b ha(X) 1 g2(x¥)

_[ j f f(x,y,2z)dzdydx = f f J f(x,y,2)dz|dydx =

a hi(x) g1(x,y) a hi(x) Lg1(xy)

92 rz(e) gz(rcosersme)

f(rcos 6,rsin0,z)dz|rd rd6

91 r1(9) gl(rcosersme)
6, 12(0) gx(rcosB,rsinb)

= f f J f(rcos8,rsinf,z)rdz dr d6
61 m(0) g41(rcosf,rsinf)

This leads us the the following theorem
Theorem: Integration With Cylindrical Coordinates

Let f(x,y,z) be a continuous function on a solid Q. Then

ﬂ f(x,y,z)dzdydx = ﬂ f(rcos8,rsin@,z)rdzdrdf
Q Q

Example

Find the moment of inertia about the z-axis of the solid that lies below the paraboloid
z = 25-x%-y?

inside the cylinder
X*+y? =4

above the xy-plane, and has density function

p(X,y,2) = x> +Yy?+ 6z



Solution

By the moment of inertia formula, we have

I, = ﬂ (x% +y2)(x% + y? + 2z)dzdydx
Q

The region, being inside of a cylinder is ripe for cylindrical coordinates. We get

2w 2 25-r2 21 2
I, = j j f r2(r? + 62z)rdzdrd6 = j j[rsz +3r322]235 " drde
0 0 0 0 0
2w 2
37384n
j j(—125r5 + 2r7 + 1875r3)drdf = 3
0 0

4.4.2. - Spherical Coordinates

Another coordinate system that often comes into use is the spherical coordinate

system. To review, the transformations are
= p cosH sing y = psind sind = pcoso
In the next section we will show that

dzdydx = p?sing dpdpdd



This leads us to
Theorem: Integration With Spherical Coordinates

Let f(x,y,z) be a continuous function on a solid Q. Then

ﬂ- f(x,y,z)dzdydx = U f(pcosBsind,psinbsind,p cos d)p? sin pdpddpdo
Q Q

Example

Find the volume of solid that lies inside the sphere
X2+y2+72 =2

and outside of the cone

Solution

We convert to spherical coordinates. The sphere becomes

p =12



To convert the cone, we add z? to both sides of the equation
272 = X2 + Y2 +72

Now convert to
2p%c0os%p = p?

Canceling the p? and solving for ¢ we get

In spherical coordinates (since the coordinates are [ periodic)
/4 = 3n/4
To find the volume we compute

21 3m/4 /2

sz j jpzsincl)dpdcl)de

0 m/4 0

Evaluating this integral should be routine at this point and is equal to

4.5. -Jacobians
4.5.1. - Review of the Idea of Substitution

Consider the integral

2

jxcos(xz)dx

0



To evaluate this integral we use the u-substitution
u = x?

This substitution sends the interval [0,2] onto the interval [0,4]. We can see that there
Is stretching of the interval. The stretching is not uniform. In fact, the first part

[0,0.5] is actually contracted. This is the reason why we need to find du.

du dx 1
—=2x Oof —=—
dx du 2x

This is the factor that needs to be multiplied in when we perform the
substitution. Notice for small positive values of x, this factor is greater than 1 and for
large values of x, the factor is smaller than 1. This is how the stretching and

contracting is accounted for.

4.5.2. - Jacobians

We have seen that when we convert to polar coordinates, we use
dydx = rdrd6

With a geometrical argument, we showed why the "extra r" is included. Taking the
analogy from the one variable case, the transformation to polar coordinates produces
stretching and contracting. The "extra r" takes care of this stretching and
contracting. The goal for this section is to be able to find the “extra factor" for a
more general transformation. We call this "extra factor" the Jacobian of the
transformation. We can find it by taking the determinant of the two by two matrix of

partial derivatives.
4.5.3. - Definition of the Jacobian

Let x=g(u,v) and y = h(u,v) be a transformation of the plane. Then the Jacobian

of this transformation is



0 y) |au /au| oxay oxoy

o(u,v) ay/au 6y/av "~ Oudv Odvou

Example

Find the Jacobian of the polar coordinates transformation
X(r,0) = rcos6 y(r,0) = rsino

Solution

We have

6(x,y)= cos@ —rsin@
a(r,0) sinf rcosé@

=1 cos%0 + rsin?0 =r

This is comforting since it agrees with the extra factor in integration.
4.6. - Double Integration and the Jacobian
Theorem: Integration and Coordinate Transformations

Let T: R > R’givenby x = g(uyv), y = h(uyv) be atransformation on the

plane that is one to one from a region S to a region R. If g and h have continuous

partial derivatives such that the Jacobian is never zero, then

jj £, y)dydx = jf oG o) o) |30 duav

Remark: A useful fact is that the Jacobian of the inverse transformation is the
reciprocal of the Jacobian of the original transformation.

ixy) /
a(u,v) I(u,v)
“r | a(x,y)




This is a consequence of the fact that the determinant of the inverse of a matrix A is
the reciprocal of the determinant of A.

Idea of the Proof

As usual, we cut S up into tiny rectangles so that the image under T of each rectangle
Is a parallelogram.

(u,v +iw) (u +hu,v +iw)

(u,v)

u +i, v .
(z¥)

We need to find the area of the parallelogram. Considering differentials, we have

T(u+ Auv)  T(u,v) + (X,Au,y,Au)
T(uv +Av) T(uv) + (X,AV,yyAV)

Thus the two vectors that make the parallelogram are

P

guAu i + h,Au j

Q

gvAV i + hyAv |

To find the area of this parallelogram we just cross the two vectors.

Lok a(x,y)
PxQ = [x,Au yAu 0] = |x,p, — xpyy|Audv = 9 |AuAv
X,Av  y,Av 0 (u,v)

and the extra factor is revealed.



Example
Use an appropriate change of variables to find the volume of the region below
z = (x-y)

above the x-axis, over the parallelogram with vertices (0,0), (1,1), (2,0), and (1,-1)

Solution
We find the equations of the four lines that make the parallelogram to be
y = X y = X-2 y = -X y = -X+2
or
x-y =20 X-y =2 x+y =10 X+y =2
The region is given by
0 <x-y<?2 and 0 <x+y <2
This leads us to the inverse transformation
u(xy) = x-y  v(xy) = x+y

The Jacobian of the inverse transformation is



d(u, v) _
a(z,;):H 11|:2

Since the Jacobian is the reciprocal of the inverse Jacobian we get

d(x,y) 1

o(u,v) 2

The region is given by

O<ucx<? and 0<v<2
and the function is given by

z = U

Putting this all together, we get the double integral

2 2 2 2
1 us
2( I el
Jju (2>dudv J[6 dv
00 0 0
2
J4d _8
3% 73
0

4.7. - Jacobians and Triple Integrals

For transformations from R3 to R3, we define the Jacobian in a similar way

a (x' y, Z) xu xv xW
—[=1u v Iw
d(u,v,w) z, 7, 7,

Example
Find the Jacobian for the spherical coordinate transformation

= pcoso sind = psind sing = p COS¢



Solution

We take partial derivatives and compute

cosfsind psinfsind pcosbcosd

d(x,y,2) O : )

TP RS sinfsing pcosfsind psinBcosdp| =
(p,0,$) cos ¢ 0 —p sin

= |cos 8 sin (—p? cos Bsin?P) + psinbsind(—p sin Osin’$ — psinbcos?Pp)
+ p cos Bcosd(—pcosbOcosdsind)| =

= |—p?cos?0sin3Pp — p?sin?0 sin p(sin?P + cos?Pp) — p%cos?Hcos? P sin P|
= |p%sind(cos?0sin?Pp + sin?0 + cos?Ocos?Pp)|=

= |p?sind(cos?0(sin®d + cos?d) + sin?0)| = |p? sin ¢(cos?0 + sin?0)|
= |p?sin |



