

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра экологии и биоресурсов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

На тему: Сравнительный анализ распределения микромусора на морских побережьях России и Франции

Исполнитель Полякова Вера Александровна

Руководитель к.г.н., доцент Ершова Александра Александровна

«К защите допускаю» Заведующий кафедрой

(подпись)

к.г.н, доцент

Дроздов Владимир Владимирович

«17» UHOMA 2019r.

Санкт-Петербург

		2
1	:	4
1.1		4
1.1.1		ε
1.1.2		7
1.1.3	:	7
1.1.4		8
1.2		14
1.3		19
1.3.1		20
1.3.2		21
1.4		22
1.4.1	MSFD - The Marine Strategy Framework Directive	22
1.4.2	(1982) ()
1.4.3		
1.4.4		
1.4.5		
1.5		
1.5.1		
1.5.2		
1.5.3		
1.5.4		
2 -		
2.1		
2.2		
3		
3.1		
3.2		
4		54
4.1		54

	60
	62
	63
	. ,
	,
	•
,	,
	,
	,
·	,
·	,
	,
	,
	,
	,
,	

, ,

•

•

•

2.

3.

4.

5.6.

7.

_

_

1 :

1.1

.

•

,

•

.

, , ,

. ,

,

, ,

•

:

- , , , , , , , 80%

20% 250

;

, ;

· , , . . .

· — ,

, .

.

· ,

- . . , , 30 . .

, , 70 .

,

1.1.1

, ,

,

,

(),

1.1.2

1.1.3

1982

1972 1971 1974 200 5000 (WWF - World Wildlife Fund) WWF . [9] 1.1.4 . [10] **« »**. 2 «7*-***».**

. 0,5

,

, , 80%

;); (,

. , ,

. [10]

,

· .

•

• - , , , ,

•

•

• ,

•

(73/78)

V.

,

· -

,

,

•

,

, :

```
)
                            )
                            )
1.
                                      «
                                                  (
```

```
(
      2.
      3.
              )
      4.
```

7 6,4 20-30 1-5 80-500).

. .), (). [11] 1.1.5 . [11]

14

1.2

```
60 -80%
                                                                 1,5
1950
              245
                                                2050
                                2008
                                                    (2008 .)
               25
       5,3
                                       . [16]
                                                  (
                                                             ).
               (
                   ):
                                                                                ):
                                                                                ):
                                                                        (
                                                                               ):
                                                                 ):
                                                  (
                                                                                )
                      )
                                                       (<5
                                                              ),
```

()

, , , .[22]

•

, - -

. ,

,

,

,

344 , , ,

, 92 .

.

· ".
;

,

59 % 59% 92 6 9 , 4,5), (). [23]

•				,
,		·		
,			,	
,				•
,	7-	,		,
30 000				
,		,	,	,
				. [21]
» -		(« -
	-	,		
	,		- ,	
,				

, 43 36 . [2] (), (), ().). [30] 1.3.1

, , :

,

, , ,

,

. ,

« »

50 ,

, , , . [15]

1.3.2

-.

,

,

. [12] 1.4 1.4.1 MSFD - The Marine Strategy Framework Directive

· 2020 , . . .

« *

,

(MSFD)

MSFD

(GES – Goo	od Enviro	nmental St	atus)			2020
		, GES	(Good	Environmental	Status	_
)		,			
2020 .						
				MSFD		
				,		
		2		:		
•						,
	,		,			
			:			
_						
•						
ı						
•	,					
	-		GES.			
				,		
GES.						
						CE
•		,				GE

III) 1994 XII 192-237), 1.4.3 (1972 .) **«** 1975 . 1996 **« ».**

1.4.4

45

2006

,	73/78/97 -				
	(1973 .),		19	78 .	
	. , , 152	,	V 2013	:	99%
	·	,			
	1.4.5				
-		,			
,	15	().
[16] 1.5					
			25	- 1998 .	
	,	,	,	,	

MSFD « »

,

,

(Fulmarus).

. [14]

(2000–2006 .)

. 609 100 -

51 , 335 1 31 . , 2006 10

4 . 100-, (100). 1

, 50 (20).

, 353 200 , 38 200,

•

(2000–2006 .)

,

):).). 2017) (OSPAR Marine Litter Regional Action Plan)

2015 2017 82%. 1.5.1 2012

Guidelines on Survey and Monitoring of Marine Litter")

(The MED POL Programme (the marine pollution assessment and control component of MAP))

("UNEP/IOC Operational

. [14] 1.5.2 1992 XV(BS IMAP - Black Sea Integrated Monitoring and Assessment Programme). **BSIMAP BSIMAP** DPSIRR (Driver-Pressure-Stressor-Impact-Response-Recovery), 5 (BS SAP - Black sea Strategic Action Plan), 1996 2009 **BSIMAP** 2013 - 2018 **«** MSFD» (MSFD). **BSIMAP** MSFD,

) **MSFD BSIMAP** BS SAP 2009 (Black sea Strategic Action Plan). BS SAP 2009 (Black sea Strategic Action Plan) (EcoQO - Ecological Quality Objective): EcoQO 1: EcoQO 2: EcoQO 3: EcoQO 4: EcoQO 4. [14] (BSC - Black Sea 2016 Commission) (BSIMAP) 2017-2022 BSC. [13] 1.5.3 (HELCOM - Baltic Marine

Environment Protection Commission - Helsinki Commission)

2013				
••,				
•			(MSFD).	,
	_	(CORE	SET)	
(HELCOM MORE)	GE S			
	•			
,			•	
,				20
120	, ,		,	
	29/2,			
	(, 2008).		
	,		,	
		,	1	,
100				
			3 2	2013 .

2025 . [14] 2017 **».** (RAP ML - The OSPAR Marine Litter Regional Action Plan).); . [13] 1.5.4 (), 2007 (2009 .)

>> 2011. 23) (. 1). 1 – 23

).
).
,
/ 100 / 2,

 (. . 2).
 3 (1)

 50 . 2 (

 100)
 2,5 50 . 1

 (10) .

2 —

. [17]

2 -

2.1

.

1 -2 . . [4] 1 ° C 12 ° C 16 ° C 22-26 ° C. (.3). 225 000 ², 15 525 (4735). 3 – 100 (160 40 (65)

35

15 000

(4550

), . [31]) 20 (6) (3,5) 12 (113 70)

36

. [3]

		- Ch	nâtelaillo	on-Plage.				-	,
	-	-	-		-			,	
			,	,			75	5 736	
•	,			«	»		,		
(,).			,			,		,
1972	-				,			,	
34-		,	,		20	005	, -		1985
	-								
	,							1970	,
	1971	,	-	. [7]					

,

_ '

,

, - 104 ,

. [6]

2.2

, (.4)

4 –

,

, ,

, . — 398 , 29 500 ². 70-75 — , — — 18-

, , -

, 2-3 ‰.

. (. 5) 9,5 - 3-4 6 1 . 5 – 21 15 400 2. 3 5 . 6.4 . 500 1%, (). 6-8 / 1-5

39

6.6 .

,

.

, . [33]

,

, , 10 5-7

(,)

· ,

[].

, .

,

. [.] (

,

, (,).

[].

· -

. [33]

3

3.1

```
100 »
                                               «
                          «
                                             OSPAR» (OSPAR
2010),
                      «
(Marlin 2011).
          (> 25 )
                                                (5 - 25 )
          (<5)
8-10
                                             - (2–5 )
(5–25
                                            ( . 7
).
                          Frame ( . ),
             2014
                         Rake ( . ),
            2015
                          2016
```

GPS. 100 1 **« >>** (OSPAR 2010). Frame-(). 2 . 8). 8 – 2)

```
» (MSFD TSG
                            Excel.
ML 2013)
        6
/
                                                                       (0),
             (1),
                            (2),
                                         (3)
                                                              (4).
                             4
     ),
                   )
                   frame-
                                                 603
                                                         945
(63,9%).
                              frame-
                                                                   ),
       (
                                       )
                                                            (50
                           83,6%
                                    97,2%.
                                                                    (~5)
                                                       64%
                                           30
                                        (31%)
                                                  (55%)
                                    ( 3 - 4
                                                        ).
```

, Frame Rake- 30 , 100 m- . , (2

- , 100-- . , 100-

, - - - .

100 .

Frame-

,

),). (4 10 40)().).

> 25

TSG-ML.

10 10 1 2. T1 (. 9) T2 3 T1). 2 (1), 1) 2)

. () : 1.)((). 2.). 3. Excel 3.2 2018 11 (. 10), 300-

,

```
10 –
                                                      2018)
                                                                     2019
                                                   (La plage des Minimes)
(Châtelaillon-Plage)(
                      . 11)
          11 –
                                                            2019)
                                             (
                                                     .12
                                                                        ).
                       .13
                                          )
                 ).
                                                 30
                                                                        1
                  50
                                              60
```

. (.14) 14-.15 1 (90%). 1 1(). 2 2 50 (. 16) 2 30%) (2 1.2.(. (.17

1 (1) 2 (2) 18 19). 2 1 (). 2 2.1(). 2 2.1 (10%). . (.20) 20 – 1 .21 2). 2 1. (.22 10

1 2 3 3.1). 300-.23) . (23 – 300-300-- 30% 4.1 (). (Chatelaillon plage), 10

. 24 (

)

. (.25) 25 – .26 26 .27-28) 5.1 5). . (.29) 29 – 1 30). 6.1 (6

).

4
4.1
,
,
,
,
,
,
,
,
,

- - -

QGIS 1. 1 -. ().

. (2)

300 - .

,

2 –

,

- 300- .

,

3 4 .

-

3 –

. . ,

.

. , . . .

. 75% ,

22%).

,

».

«

300-

.

,

,

_ .

,

•

- , , , ,

.

•

- ,

•

, , , ,

•

•

•

. (

7 **« >>** 60 **« >>**

.

, -

,

,

.

1 2.
/ [4]
2 /
[2] <u>-</u> <u>https://blog.laveritesurlescosmetiques.com/inquietant-pollution-microplastique-</u>
oceans-lacs-rivieres-cosmetiques-egalement-cause/[2]
[3] Encyclopedia Britannica: Bay of Biscay https://www.britannica.com/place/Bay-of-Biscay
[5] https://tresordesregions.mgm.fr/Mdir.php?p=cant.php&cl=Antioche®ion=54
[6] Ifremer Morphologie et Hydrodynamique comparées des pertuis charentais [] URL: https://archimer.ifremer.fr/doc/2008/acte-4036.pdf
[7] Wikipédia l'encyclopédie libre. La Rochelle [] URL https://fr.wikipedia.org/wiki/La_Rochelle#Enseignement_et_recherche
[9] [] URL https://www.kp.ru/guide/zagrjaznenie-mirovogo-okeana.html
[10] UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter Regiona Seas Reports and Studies No. 186 IOC Technical Series No. 83
[11] Mirco Haseler1Monitoring methods for large micro- and meso-litter and applications at Baltic beaches/ Gerald /Schernewski, Arunas Balciunas, Viktorija Sabaliauskaite/2017
[12] National Oceanic and Atmospheric Administration Ocean & coasts education resources : https://www.noaa.gov/education/resource_collections/ocean-coasts-education-resources/ocean-pollution
[13] MSFD Technical Group on Marine Litter, Annual Meeting 2017Gdansk, Poland on 8.+ 9.6.2017 Meeting report [] URL https://mcc.jrc.ec.europa.eu/documents/TG_ML_Meeting/MSFD_TGMarine_Litter_meeting_report_Gdansk2017_a.pdf
[14] RS scientific and policy reports/ MSFD Technical Subgroup on Marine Litter
Guidance on Monitoring of Marine Litter in European Seas 2013

[16-17] FINAL REPORT OF BALTIC MARINE LITTER PROJECT MARLIN -LITTER MONITORING AND RAISING AWARENESS 2011 - 2013

RecearchGate - Pathways for degradation of plastic polymers floating in the marine environment – : https://www.researchgate.net/publication/280034178

[23] Plastic pollution / Hannah Ritchie and Max Roser/ Our world in data - : https://ourworldindata.org/plastic-pollution

[31] http://scharks.ru/oceans/75-biskai_A/index.shtm

[22]

https://www.notre-planete.info/actualites/2024-dechets_oceans

http://maldeseine.free.fr/documents%20granules/RAPPORT_version_WEB.htm https://goodspb.livejournal.com/3018200.html

http://elib.rshu.ru/files_books/pdf/img-090540.pdf

- 18 Andrady, A. (2011) Microplasites in the marine environment. Mar. Pollut. Bull. 62, 1596-1605.
- 15 Faure, F., de Alencastro, F. (2014) Evaluation de la pollution par les plastiques dans les eaux de surface en Suisse. Rapport mandaté par l'Office fédéral de l'environnement.
- 12 Zbyszewski, M., Corcoran, P.L., Hockin, A. (2014) Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40, 288-299
- 21 Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E. (2004) Lost at se a: Where is all the plastic? Science, 304, 838
- 30 Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J. (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3, 2363

1

						,
0	2	0	0	22	0	24
0	0	0	0	87	0	87
0	0	0	0	0	0	0
0	2	0	0	109	0	111

1.2 -

2

						,
0	142	0	0	0	0	142
0	141	0	0	0	1	142
0	85	0	3	0	8	96
0	368	0	3	0	9	380

2 -

1

						,
0	4	0	1	0	3	8
5	15	0	2	2	1	25
0	6	0	0	2	2	10
5	25	0	3	4	6	43

2.1 -

						,
0	52	0	0	1	4	57
19	44	3	0	0	24	90
48	50	0	1	0	22	121
67	146	3	1	1	50	268

1 -

						,
0	105	0	0	0	0	105
0	104	0	0	0	1	104
0	35	0	0	0	1	36
0	244	0	0	0	0	245

3.1 -

2

						,
0	28	0	0	0	0	28
0	64	0	0	0	2	66
0	19	0	0	0	0	19
0	111	0	0	0	2	113

4 -

1 300-

						,
0	3	0	0	2	14	19
0	4	2	0	0	14	20
2	2	0	1	0	0	5
2	9	2	1	2	28	44

4.1 -

2 300-

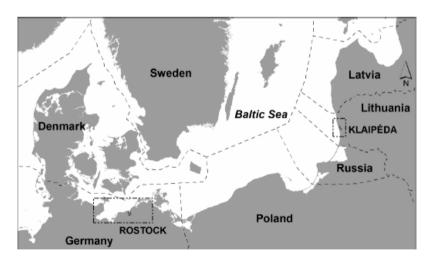
						,
0	0	0	1	2	3	3
0	5	0	0	0	1	1
0	7	0	3	0	3	3
0	12	0	4	2	7	7

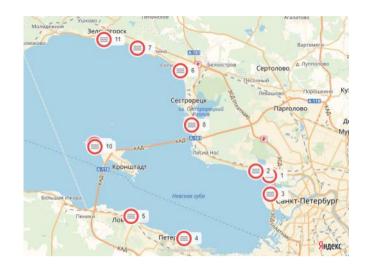
5 -

						,
0	14	0	0	0	0	14
0	23	0	0	0	0	23
0	11	0	0	0	0	11
0	48	0	0	0	0	48

1

						,
0	15	0	0	0	0	15
0	25	0	0	0	0	25
0	17	0	0	0	0	17
0	57	0	0	0	0	57

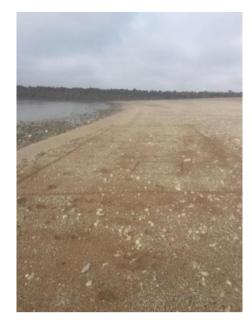

6 -


1

						,
0	8	0	1	1	0	10
2	11	3	2	38	0	56
0	5	7	0	12	0	24
0	24	10	3	51	0	90

6.1 -

						,
0	6	0	0	71	2	79
0	2	0	0	94	7	103
5	2	0	0	4	0	11
5	10	0	0	169	9	193


9 –

12 –

13 –

17 –

19 – 2

21- 1 -

22 - 2 -

26 –

300-	21.06.18	14:00- 16:00	21	2	2	4	5	35	0	(
	22.06.18	14:14- 15:27	151	72	3	5	4	56	0	
	11.07.18	11:30- 14:30	34	5	0	220	3	9	0	
	11.01.19	11:08- 18:40	370	0	0	109	3	0	9	4
-	10.03.19	14:30- 18:00	355	0	0	0	0	2	1	
	16.03.19	12:20- 17:30	105	0	0	0	0	0	0	