

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра водных биоресурсов, аквакультуры и гидрохимии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

На тему Современное гидрохимическое состояние реки Нева

Исполнитель

Гущина Анастасия Сергеевна

(фамилия, имя, отчество)

Руководитель

старший преподаватель

(ученая степень, ученое звание)

Позднякова Альбина Искандеровна

(фамилия, имя, отчество)

«К защите допускаю»

Заведующий кафедрой

(подпись)

кандидат технических наук, доцент

(ученая степень, ученое звание)

Королькова Светлана Витальевна

«19» иши 2019 г.

Санкт-Петербург

PTT
«
,
(
« »
(
_ 2019

	5
1	8
1.1	8
1.2	11
1.3	16
1.3.1	10
1.4	
1.4.1	21
1.4.1.1	(1946) 21
1.4.1.2	. (1948 .)
1 4 1 2	
1.4.1.3	(1955 .)
1.4.2	23
1.5.1	
1.5.2	24
1.5.3	25
	23
1.5.5	
1.5.6	29
1.6 -	31
1.6.1	31
1.6.2	
1.6.2.1	31
1.6.2.2	32
1.6.2.3	34
1.6.3	34
1.6.3.1	
	36
2	39
2.1	39

,	
	40
()	42
	44
Ca^{2+} Mg^{2+}	45
	46
	47
	48
	51
	54
	55
	56
2017	56
()	56
	57
	58
	60
	61
	62
	64
2019	65
	65
()	67
) 68
<u>.</u>	
	71
	74
•	
	74
	2 :
	85

 87
 88
 88

•

2019 5,3 .

.

,

2017 ,

,

, 100

- 2017 2019 .

« »,

 HCO_3^- , Ca^{2+} Mg^{2+} ,

, 5 ·

- ,

:

1. ,

;

2.

;

4. ;

,

,

1 1.1

1/800 1 338 000 000 96,54% 35 000 000 - 68,7% 0,006 0,26 % [1]. 19179-73. () [2].

- , ,

.

1. 25 ° (7-12 °. 2. (pH), (pH< 7), (pH = 7)(pH> 7) pH 6,5 8,5. 3. 4. 20

5. (, , , , .).

6. 7. - 1000 / . 8. 0,3 (N 2), 9. ((NO_3^-) $(NH_4^+))$

1.2

	,	,
	•	
		,
	•	
	•	
	, , ,	
	, [1].	
	[1].	
	,	,
,		,
	,	•
	Г17.	,
	[1]:	
1)	,	— ⁺ , Na ⁺ , Mg ²⁺ , ²⁺ ,
1 ⁻ , SO ₄ ²⁻ ,	3 3;	
2)	- 2, N ₂ , H ₂ S, CO ₂ .;	
3)		, ;
4)	_	,
	,	,
,	, (,	
5)	,	_
	,	,
	;	

6) ([1]. 1). (1.

1	2	3
N ₂ , O ₂ , CO ₂ , CH ₄	H ₂ S, H ₂ , He, Ar,	NH_3 , SO_2 , 1 .

(,).

,

- 98% .

 $N_2,\,P,\\ S,\,K,\,Ca \qquad ,\qquad ,$

- [1]: 1.

,

· 2.

,

<10

-

,

,

[1].

5

(2).

2.

3		4	5	
	-			
Ag ⁺ , r,	, V,	r, I, F	, ²³⁸ U,	²³⁶ Ra,
p_{2+}^{2+}, Fe^{2+}, n		3-	⁸⁷ Rb,	220 Rn
			²³² Th, ⁴⁰	K, 210Po
	$Ag^{+}, r, o^{2+}, Fe^{2+}, n$	Ag^{+} , r, , V, $O_{O^{2+}}^{2+}$, $O_{O^{2+}}^{2+}$.	Ag^{+} , r, , V, r^{-} , r^{-} , r^{-}	Ag^{+} , r, , V, r^{-} , r

· , (

), ,

(1): $\frac{\text{Cl64}HCO_{3}36}{\text{M}_{15}\text{Rn}_{20}\text{H}_{2}\text{S}_{32}\text{CO}^{2}_{0,22}} \frac{\text{Na72Ca28}}{\text{Na72Ca28}}_{\text{T}_{46}, \text{D}_{880}}$ (1)

- ,

. , $<\!10~\%$. . ,

/ .

3/ 3/ .

1.3

- , , , , ₋

, , ,

[1].

,

,

, , .

· ,

,

. .

,

· : , , ,

•

,

[1]: 1. - , , ,

, , ,

2. ,

;

3. -

; ;

4.

,

5.

(1 - 4)

•

, , -

,

•

1.3.1

.

,

.

, « » .

,

, , ,

, / [1].

·

. ,

,

,

,

[1].

, Eh

,

[1]: /;); , - Cl⁻, SO₄²⁻, Na⁺, Ca²⁺

, 8 – 10%

,

1.4

1.4.1

_

(%) [3].

,

, . 1.

природные воды СУЛЬФАТНЫЕ (S) ХЛОРИДНЫЕ (СІ) ГИДРОКАРБОНАТНЫЕ (С) Mg Mg Ca Na Ca Mg Na Ca Na IV IIIIII II II II II

1. . . [3]

1.4.1.2 . . . (1948 .)

. . ,

-

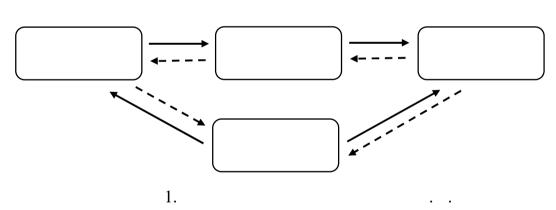
 $(rNa^{+} - rCl^{-})/rSO_{4}^{2-}$ $(rCl^{-} - rNa^{+})/rMg^{2+}$, %

, ,

[1].

: ,

. [1].


1.4.1.3 . . . (1955 .)

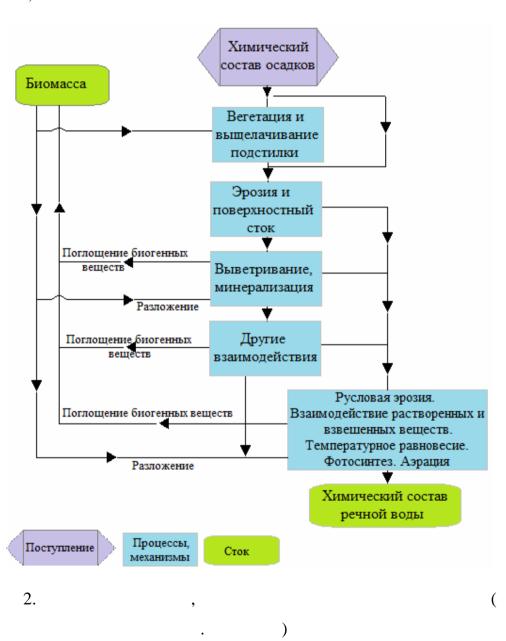
• •

,

[1].

· (. 1).

1. . .


1.4.2

.

- 1 /, . [1]. 1.5 1.5.1 [3]: 1. 2. 3. 4. 5.

1.5.2

1.5.3

; (-), , , , ,

, [3].

- , -

, , ,

,

,

,

,

. , ,

, [3]. -

,

, _

,

. ,

,

HCO₃⁻[3].

•

, , ,

.

[3]. 1.5.5

N/ ,

) [3]. (0,01 N/), [3]. / 10 /, 20 / [3]. 0,1 Fe/ Fe/,

1.5.6

 O_2 CO_2 . 12 2/. [3]. 2 -10 - 20 $_{2}$. 2 2 1 5 [3]. (pH) 6,5 - 8,5 6,8 7,4, 7,4 pН 8,2. pН

[3].

1.6	-		
1.6.1	•		
		•	,
	74 .	281 . 2,	
			(
-	,		,
),		
	5,18 . ² ,		
	[4].		
	,	-	_
		,	
2.	,	- ,	1439
	718 ² (50%)	[4].	

:

-.

, _ [4].

4 . 80^{-2} , 25%

[4].

[4].

1.6.2.2

. , [4].

3,5 ,

[4]. 2,5 25° -30° . [4]. $14 - 17^{\circ}$, [4]. **«** », +10°

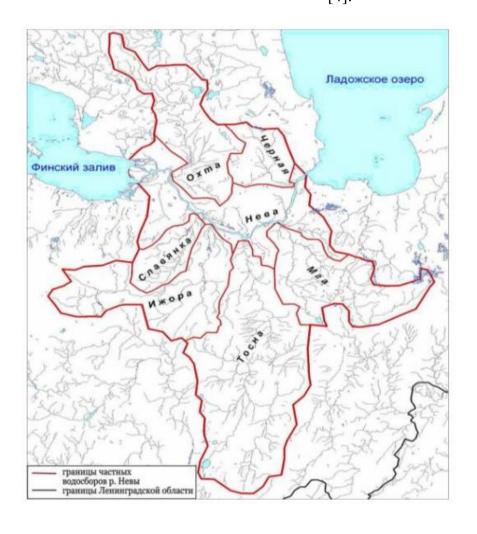
[4]. -8° -11°

1.6.2.3

· , , - . . .

, . . ,

, [4].


1.6.3

,

26 .

, : . , . , .

> 3 - , [4].

3. -

, [4]:

• , , , ,

• , - :

• ,

,

1.6.3.1

,

, . . .

	- (,). ,		() , 74
45	, [4].						
,		,					,
						[4]. 400	600
(1250). - 24	[4].				8 – 11	,
165	, [4].		·			,	
400		,		- 7,9	, -	, 50 –	150
		3,4	8,3				
			-	,	,		4,9
2,6	•				(230)

(3,5 8). [4]. (800) 2,6 [4]. - 6,2 - 400 8 - 12

38

[4].

2

2.1

(.4). : 59°57′11,0′′ N

30°21′16,9′′ E.

5

5.

		,	,	
		0		
06.11.17	17:30	+6	761	,3 /
20.11.17	19:00	+2	755	,1 /
27.11.17	18:30	+1	762	, 3 /
	1	1	I	I
24.04.19	8:40	+15	771	,7 /

2.2

-

,

•

· ,

[1].

; - ,

-,

.

•

,

 Ca^{2+} Mg^{2+}). 2.2.1

_ ,

- $Ca(HCO_3)_2$ $Mg(HCO_3)_2$.

« » [1]:

$$(HCO_3)_2$$
 $CaCO_3 + CO_2 + H_2O$ (2)

Mg(HCO₃)₂ Mg(OH)₂ + 2CO₂ (3)

•

 $Ca(HCO_3)_2 + 2HCl CaCl_2 + 2H_2O + 2CO_2$ (4)

_

HCl .

: (250),

25 .

(N = 0,1),

[5]:

(5)

Ca²⁺ Mg²⁺); V -HCl, (). V -2.2.2 Ca^{2+} Mg^{2+} , 2 (250 100 100 5 - 2 10 (0,05 N), [5]:

(6) (-/); V_1 — (); V_2 – (); 2 - Ca^{2+} Mg^{2+} 2.2.3 Ca^{2+} Mg^{2+} 1 30 2+. 2

2+

, pH

: 250 – 2

, 100 , 100 - 2 , 5 , , , 10 , ,

: (N = 0.05), NaOH (N =

0,02), . . .

•

$$N(Ca^{2+}) = \frac{V_1 \cdot C_1 \cdot 1000}{V_2} \tag{7}$$

 $:V_1-$, ;

1-;

 \mathbf{V}_2 -

:

$$N\mathbb{I}(Mg)^{2+} = \mathcal{H}_o - N(Ca^{2+}) \tag{8}$$

2.2.4

-

.

, H_2O CO_2 , [1].

 $HCO_3^- + H^- H_2CO_3 H_2CO_3 CO_2 + H_2O$ (9)

10 250 25 HCl, Na₂B₄O₇•10H₂O. [6]: (10) (- /), 1 — $V_{HCl}\,-\,$ C

2.2.5

V -

,

,

() 30 , = 540

, Y

[7].

: (6), (2), 5 (2) 10 , , 30 (6), ,

, H₃NO, 2,2-

 NH_3 .

2.2.6

,

(II) , (IV).

(IV)

,

[1].

 $Mn^{2+} + 2OH Mn(OH)_2$ (11)

 $2Mn(OH)_2+O_2 \quad 2MnO(OH)_2 \quad ($ -)(12)

 $MnO(OH)_2 + 2I + 4H_3O + Mn^{2+} + I_2 + 7H_2O$ (13)

 $I_2+2Na_2S_2O_3 Na_2S_4O_6+2NaI$ (14)

·

1

,

,

•

, N. C.O.

 $Na_2S_2O_3$ - , -

; 250 (2), 5 (4) 50 , 25 , , ,

(2), 1, ,

,

MnCl₂, KI, H_2SO_4 (1:4), (0,5%), $Na_2S_2O_3(N = 0.02)$, 5 [8]: $X = \frac{M * C_m * V_m * V * 1000}{V_2 * (V - V_1)}$ (15) $(/ ^3);$ $Na_2S_2O_3$; _m – V_{m} -(); $Na_2S_2O_3$, V -(); V_1 – MnCl₂ KI; V_2 – (8 /). 6. 5. , / / 5,

9	14 – 13	0,5-1,0
8	12 – 11	1,1 – 1,9
7 – 6	10 – 9	2,0 – 2,9
5 – 4	5 – 4	3,0 – 3,9
3 – 2	5 - 1 - 0	4,0 – 10
0	0	>10

2.2.7.

KMnO₄ 10 $KMnO_4($. 6). $C_2H_2O_4$ $KMnO_4 \\$ 250 (2 100 , 5 10 (2),), (2), 25 , (2), H_2SO_4 (1:3), KMnO₄, $C_2H_2O_4$, [9]: $X = \frac{(V_1 - V_2) \cdot K \cdot C \cdot 8 \cdot 5 \cdot 1000 \cdot K_p}{V}$ (16) : V_1,V_2 -KMnO₄;

$$Kp-$$
 ; $V-$, $(\);$ $8-$;

,

7.

5 –

7.

.

	\	1
()	, 2/
		5
		10
		20
		30
		40
		>40

6.

2.2.8

,

•

5,

- 20 ± 1 ° ,

.

.

,

, , 5 [10].

: 250

(2), 1 , 2 (2), 10 50 , , (3), ,

, , 10 , ,

•

.

[10]:
$$X = \frac{M * C_m * V_m * V * 1000}{50 * (V - V_1)}$$

 $: M- \\ : M- \\ (8 \ / \); \\ C_m- \\ (\ / \ ^3); \\ V_m- \\ (\); \\ V- \\ (\); \\ V_1- \\ MnCl_2 \ KI \\ (\).$

 $(/ ^3);$

2.2.9

(III),

[11]. -5400 , 2.3. 2.3.1 2.3.1.1

8.

8. HCl

•

	V	V (HCl),	V(HCl) ,
1	100	3,1	
2	100	2,3	2,6
3	100	2,4	

HCl, :

(19)

.

:

- (10 - /).

,

.

2.3.1.2

, 6 2017,

,

9.

9.

	V	ν,	Ν ,	V
	,		/	,
1	100	5,0	0,02	4,6
2	100	4,2		

, 1 2

:

(21)

2017

0,92 - /:

2.1.4.1074-01

, 7,0 - / [12].

(0,92 < 2 °).

2.3.1.3

6.11.2017

10.

10.
$$Ca^{2+} \quad Mg^{2+}.$$

	V ,	V ,	N ,	V ,
			/	
1	100	1,2	0,02	1,2
2	100	1,2		

2017 :

$$N(Ca^{2+}) = \frac{V_1 * C_1 * 1000}{V_2} = \frac{1,2 \text{ MJ} * 0,02 \frac{\text{MOJB}}{J}}{100 \text{ MJ}} * 1000 = 0,24 \text{ MF} \frac{9\text{KB}}{J}$$
(23)

2+

$$Ca^{2+}$$
 Mg^{2+} (<1,5 - /).

2.1.4.1074-01

[12].

2.3.1.4

(20.11.2017)

11.

11. 2017

•

7	, ,	N(),	V _() ,	N(HCl)	V _(HCl) ,	
		- /		/		HCO ₃ -, /
1	100	0,05	0,6	0,05	1,7	0,55

, -

2017 :

 $= 0.55 \quad \text{HCO}_3/$ (25)

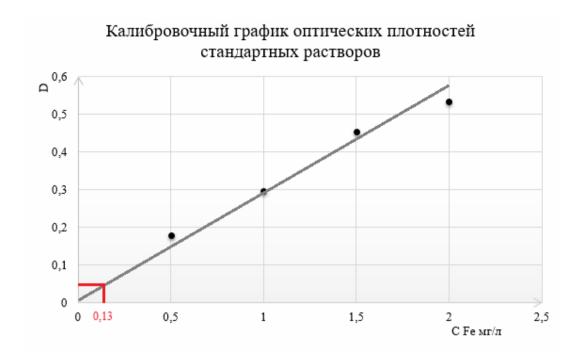
2.1.4.1074 -01,

 $0.3 \quad \text{HCO}_{3}/ \quad [12].$ $0.55 \quad \text{HCO}_{3}/$

,

2.3.1.5

20.11.2017


. 12.

12.

	V,	Fe, /	D	K	K
1	2,5	0,5	0,178	2,81	
2	5,0	1,0	0,297	3,37	
3	7,5	1,5	0,455	3,30	3,31
4	10,0	2,0	0,534	3,75	
5 (0,17	0,038	3,42	
)					

(7)

.

7.

: (26)

2.1.4.1074 -01, 0,3 / [12].

0,13 Fe / ,

2.3.1.6 2017

13.

13.

. . .)

V ,	V-2,	N(),	V ,	O ₂ ,
		/		(/)
122,34	120,34	0,02	9,4	8,74

2017 8,74 / :

$$X = \frac{M * C_m * V_m * V * 1000}{V_2 * (V - V_1)} = \frac{8 * V_m * 0.02 \frac{MOJLb}{n} * 1000}{(V - V_1) * 1.429} = \frac{111.9 * V_m}{V - V_1} = \frac{111.9 * 9}{122.34 \text{ MJ}} = \frac{111.9 * 9}{122.34 \text{ MJ}}$$

1,429 - 1 (t = 0 °C, 760

 ${
m O}_2$

0 15 /. , ,

,

,

6 /, 2(8,74 /)

[13].

,

9-10 /).

2.3.1.7

(27.11.2017)

14.

14. 2017

, 2017 :

$$X = \frac{(V_1 - V_2) \cdot C * K * 8 * 5 * 1000}{V} = \frac{(5,2 \text{ мл} - 1,6 \text{ мл}) * 0,02 \frac{\text{моль}}{\pi} * 0,997 * 8 *}{100}$$

$$= 28,71 2/$$
 (28)

2.1.4.1074-01

•

- 20 30 ₂/).

2.3.2 2019

2.3.2.1

15.

	V ,	N(),	V ,	2,	O_2 ,
		/		/	(/)
1	292,88	0,02	4,5	14,49	13,53
2	295,89		3,9	12,56	

:

(29)

:

(30)

2

(31)

, (

>9 /).

2.3.2.2 ()

2019 16.

5 .

. , 201

•

:

3,3

2,6

2,4

0,02

301,91 301,91

302,91

2

3

= 51,84 2/

68

2,59

10,70

8,43 7,78 (32)

5

1) (2, 3):

(33)

(34)

(35)

5

(36)

2019 : (37)

2.1.5.980-00. 2.1.5. 5 ₂/ , 2 17.1.5.02 -80 5 ₂/ [14], [15]. 4 2,1 / . 5 (2,59 2/) 5 2-2,9 $_{2}/$). 2.3.2.4 18. 18. 0,092 1 50 2 436 0,093 66

3 ,

20

2.4

•

22 .

[16].

- ,

15 49 ,

, , ,

•

, - -

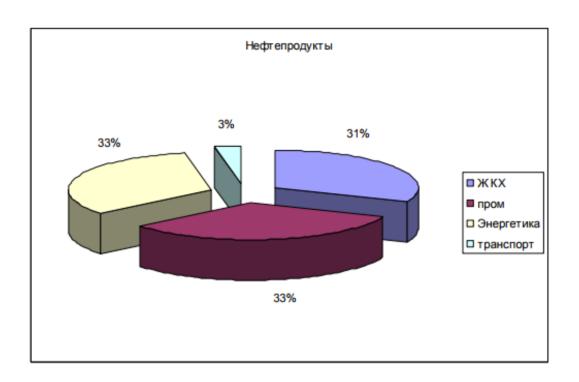
2006 -

(), 52.24.643-2002

« »,

.

, 4 - « » « ». 0,025


, ,

250 ,

, « » .

. 8

[17].

8. . [17]

,

-« » 3.1

19.

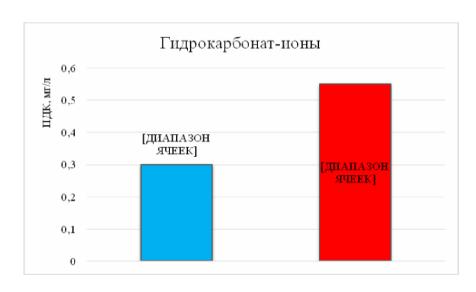
	0,92	- /	7,0	2.1.4.1074-
-	0,55	/	0,3	2.1.4.1074-
	0,55	/	0,3	2.1.4.1074-
	0,13	/	0,1	
				13.12.2016 N 552 (. 12.10.2018)
	o = .			
	8,74	/	>6,0	13.12.2016 N 552 (. 12.10.2018)
			>4	17.1.5.02-80, 2.1.5.980-
			5,0	00. 2.1.5. 2.1.4.1074-
	28,71	/		01

	15,0	2.1.5.980-
	30,0	00. 2.1.5.

				T
	13,53	/	>6,0	13.12.2016 N 552
	- ,		7 - 7 -	(. 12.10.2018)
			_	17.1.5.02-80,
			>4	2.1.5.980-
			/4	00. 2.1.5.
			5.0	
	71 04	,	5,0	2.1.4.1074-
	51,84	/		01
			15,0	2.1.5.980-
			30,0	00. 2.1.5.
				2.1.5.980-
			2,0	00. 2.1.5.
			•	
5	2,59	/	2,1	
3	7		_,_	13.12.2016 N 552
				(. 12.10.2018)
			4.0	17.1.5.02-80
			4,0	
			20	2.1.4.1074-
	66			01
			5	2.1.4.1116-
				02

:

 Ca^{2+} Mg^{2+}

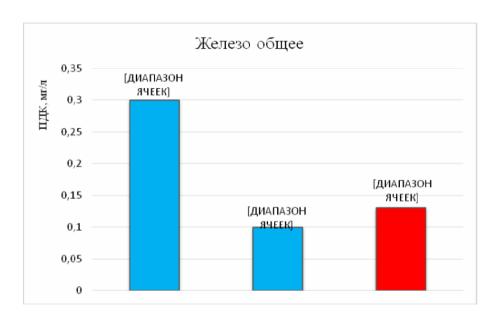


9.

2.1.4.1074-01

• ,

(0,55 > 0,3 /) (. 10).



10.

2.1.4.1074-01

2.1.4.1074-01

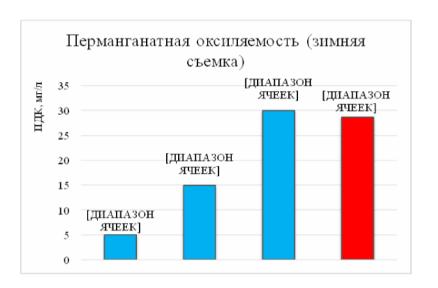
(0.13 > 0.1 Fe/) (.11).



11.

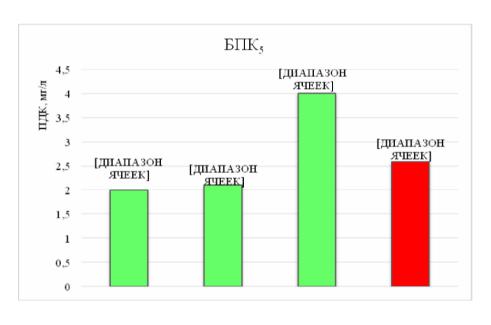
2017 . 2019

6.


, 17.1.5.02-80

13.

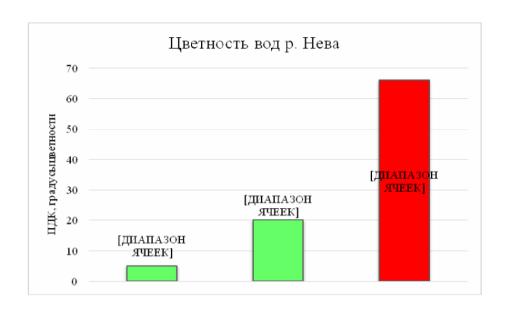
2017



• 5(2,59 2/)
,
2.1.5.980-00
(2,0 2/). 5

(= 2,1 2/).

(6).



16. 5,

• (66 °
) 2.1.4.1116-02
2.1.4.1074-01 (5 °

, 20 °) (. 17),

.

1.2

- . .

:

КВЭ (иона) =
$$\frac{\text{кол} - \text{во вещ} - \text{ва} * 100}{\Sigma$$
ионов

(38)

$$=Ca^{2+}+Mg^{2+}+HCO_3^{-}+CO_3^{2-}=0.24+0.68+0.55+2.6=4.07$$
 (39)

$$(^{2+}) = \frac{0.24 * 100}{4.07} = 5.90 \text{ M} \frac{3\text{KB}}{\pi}$$
 (40)

$$(Mg^{2+}) = \frac{0.68 * 100}{4.07} = 16.71 \frac{MЭКВ}{M}$$
 (41)

$$(HCO_3^-) = \frac{0.55 * 100}{4.07} = 13.51 \frac{MЭКВ}{\Lambda}$$
 (42)

$$(CO_3^{2-}) = \frac{2.6 * 100}{4.07} = 63.88 \frac{M \ni KB}{n}$$
(43)

•

$$(Ca^{2+}+Mg^{2+}) = 5.90 + 16.71 = 22.61$$
 (44)

$$(HCO_3^- + CO_3^{2-}) = 13.51 + 63.88 = 77.39$$
 (45)

,

. .

1				0 5		0_7		0 9	0
10	9	8	7	6	5	4	3	2	1
20	19	18	17	16	15	14	13	12	11
30	29		27	26	25	24	23	22	21
40	39	38	37	36	35	34	33	32	31
50	49	48	47	46	45	44	43	42	41
60	59	58	57	56	55	54	53	52	51
70	69	68	67	66	65	64	63	62	61
80	79	78	77	76	75	74	73	72	71
90	89	88	87	86	85	84	83	82	81
100	99	98	97	96	95	94	93	92	91

18.

(, $^{Mg}_{II}$), $^{3-}<$ $^{2+}+$ $Mg^{2+}<$ $^{3-}$ + SO_4^{2-} .

. .

- ,

(2).

2.1.4.1074 -01, (0, 1 Fe/).

- $(0,55 > 0,3 \text{ HCO}_3^{-7})$.

,
(28,71 $_2$ /), (51,84)

(2,59 2/), (= 2,0 2/)

```
( = 2,0   2/ ),
                                                (
                                                      = 4,0
              17.1.5.02-8).
                                66°,
                                                      20°
                                 2.1.4.1074 -01
        2.1.4.1116-02,
         5 °
                                                           II
(
                2).
         (
                                                             30
                                           3,44 / .
         «
```

, , ,

•