

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра экологии и биоресурсов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(Магистерская диссертация)

На тему Динамика поступления биогенных элементов в Чудское озеро со стоком реки Эмайыги

Исполнитель Максимова Ксения Сергеевна **Руководитель** доктор химических наук, профессор Фрумин Григорий Тевелевич

«К защите допускаю»

Заведующий кафедрой к.г.н., доцент Дроздов Владимир Владимирович

«07» ишп 2019 г.

BDJJLol

« >>

«

___2019 .

	3
1	5
2.	13
3.	24
4.	27
,	
5.	49
	64
	68
	69

.

. « » - ,

,

)

1.

2.

3.

4.)

5.

1 - . [1].

1.1

(.-2).

,

- ,

_

, - -

.

- . 20%

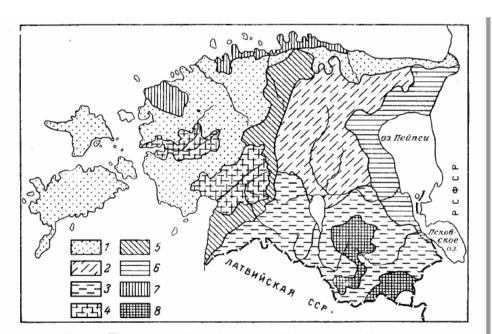


Рис. 3. Почвенные районы Эстонской ССР (по А. И. Лиллема)

I — типичные дерново-карбонатные (рихковые) и заболоченные почвы; 2 — дерново-карбонатные выщелоченные и оподзоленные почвы; 3 — дерново-подзолистые почвы; 4 — дерново-глеевые и поймейные (наносные) почвы; 5 — подзолистые, дерново-подзолисто-глеевые и болотные почвы; 6 — подзолистые, подзолистые почвы (морских побережий); 8 — дерново-подзолистые эродированные почвы (конечных морен)

. 2, (. . .)[3].

,

· ,

- - .

1.2

55° 59° .

-, ,

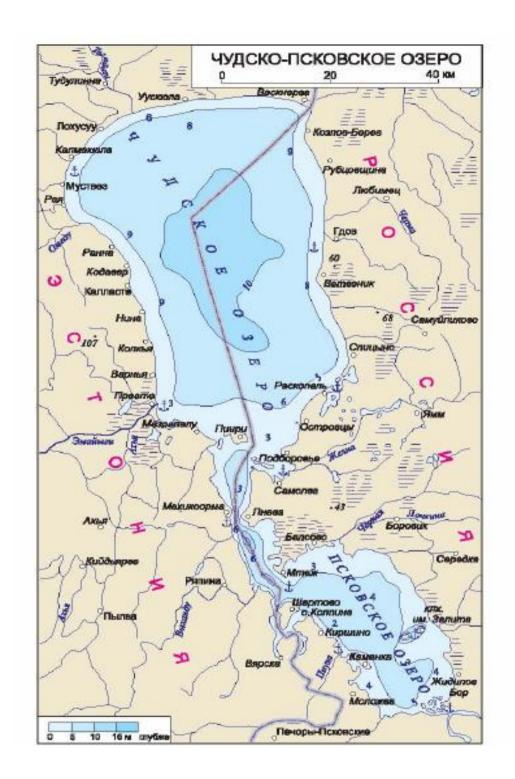
[2]. $+4,5^{0}$.

125-150 ,

178 10 .

1,4 . 80%.

600 . 640 .


- (16-21%), -

(12-16%) [2].

•

[2,10,11]. [2]. 2-3 10° [2]. 1.3 (. 2). 47800 2,

4 – - [1].

```
(S)
        2613 <sup>2</sup>.
                                                                 S
 3550 <sup>2</sup>. S
. ( . 4)
                                     96
                                                              50
                                 — 16,6
   — 7,5
                                                                             30
                                 __0
                                 );
  (
                                                                   (
                                                                             ).
                                    200—300
                             22
                                                                            7,8
                                     (
                                                                   2,5
                5,5
                                                          4,2
 1-2
```

•

,

· —

•

2. 2.1 70% 18%), (10%), (. [4] **« >>** (), .). 2.2

, .

3- (NO_3^-) – NO_3 NO_3 - NO₃--(NH⁺₄), (NO_2) (NO_3) (NH⁺₄), (NH_4^+) NH_{4}^{+} $N0_3$ (NH_4^+) (NH_{4}^{+} . NH_{4}^{+}

 NH_{4}^{+} NH_{4}^{+} NH_{4}^{+} (Nitrosomonas), NH_{4}^{+} NO⁻2, NH^{+} (NH₄NO₃, KNO₃ .). (Nitrobacter) NO_{3} . $NO_3^ N_2$ 2•

,

(Clostridium pasteurianum, Azotobacter), /), NO_2^- /). NO_2^- . $NO_3^ NO_3^-$

- NO₃⁻- [5].

, NO_3 , NH_4 ⁺).

· ,

,

2.3

,

,

· ,

,

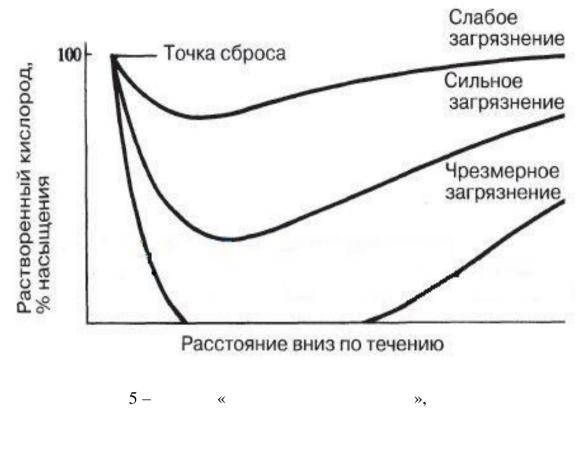
, ()

-

: -

: ,

, [6].


2.4

(

, , , ,

). « »

Изобилие фитопланктона на поверхности водоема препятствует проникновению в него солнечных лучей, поэтому нехватка кислорода объясняется лишением надонных растений фотосинтеза (рис. 5).

[8].

Фитопланктон имеет очень короткий жизненный цикл. Он быстро размножается, но также быстро отмирает. Всё это ведет к скоплению детрита. При отмирании фитопланктон достигает глубинных зон. Там он служит пищей для редуцентов, которые также потребляют кислород, понижая процент его содержания в воде. В конечном итоге, кислорода в воде может не остаться, тогда редуценты продолжают жизнь путем анаэробного брожения. Они могут жить до тех пор, пока для питания остается детрит.

В результате, на глубине количество растворенного кислорода резко уменьшается, а у поверхности запасы кислорода из-за процесса фотосинтеза фитопланктона могут быть высокими [9].

Эвтрофикация является основной причиной как антропогенных, так и природных факторов. Факторы отличаются своей интенсивностью, и механизмом работы отдельных процессов.

•

•

, . .

-

.

,

;

•

,

, -

(,)

(). (). [9]. 2.5

•

. [10]. (N : P) < 10,(N : P) > 17,N :P = 10 - 17 -N 100 :P — 30 - 40; , — 15 - 25; — 12 - 18 (3 - 5) [11]. 3 8% 60).

, 60% « » 40% - « »[12]. 3.

().

(4.1) [13]:

 $Q = 0,0315 \cdot C \cdot R , \qquad (3.1)$ $Q - ; C - , \cdot {}^{-3}; R - , \cdot {}^{-3}/.$

()

(1).

1.

	, / 3		, / 3
P-PO ₄	200	PO ₄ ³⁻	613
N-NO ₃	9000	NO ₃	40000
N-NH ₄	400	NH ₄ ⁺	514
N-NO ₂	20	NO ₂	66

(r), . (. 2)

2.[14].

2 -

	:
0.1 - 0.3	(-0.1) – (-0.3)
0.3 - 0.5	(-0.3) – (-0.5)
0.5 - 0.7	(-0.5) – (-0.7)
0.7 – 0.9	(-0.7) – (-0.9)
0.9 – 0.99	(-0.9) – (-0.99)

- ,

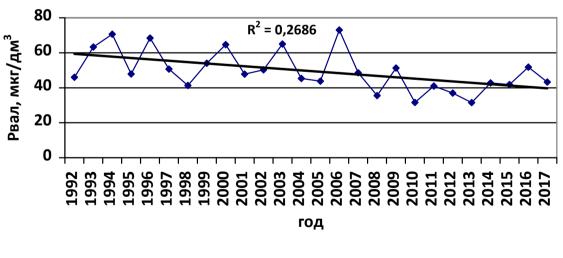
•

•

,

·

. (


4

,

4.1

3 -. -³

	P , · -3		P , · -3
1992	46	2005	43,8
1993	63,3	2006	73,0
1994	70,6	2007	48,6
1995	47,9	2008	35,5
1996	68,4	2009	51,3
1997	50,7	2010	31,6
1998	41,3	2011	41,0
1999	54,0	2012	37,0
2000	64,7	2013	31,5
2001	47,8	2014	42,8
2002	50,3	2015	41,8
2003	65,0	2016	51,8
2004	45,3	2017	43,3

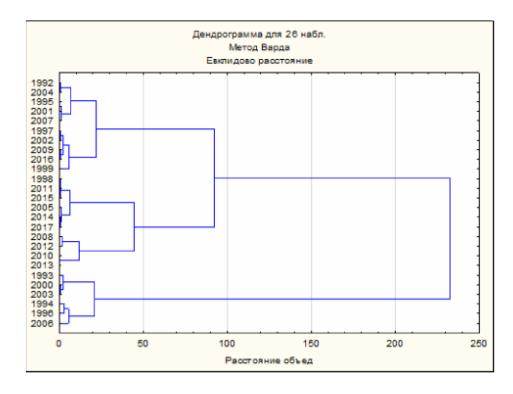
6 - (-)

 $R^{2} = 0,2686,$ R = 0,51.

1992 . 2017 .

« ».

Проанализировав рисунок 6 можно сказать, что в период с 1992 по 2017 годы максимальная концентрация фосфора валового наблюдалась в 2006 году. В последующие годы концентрация в реке снизилась.


(, , ,), ... 3 ,

•

7.

4.

7.

7 – ,

Таблица 4 — Максимальные, минимальные и средние значения среднегодовых концентраций фосфора валового

	1	2	3
, / 3	45	32	63
, / 3	54	44	73
, / 3	49	39	67

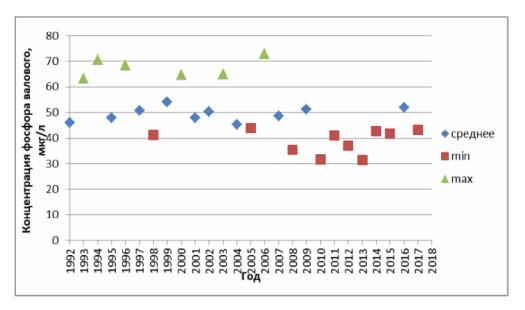


Рисунок 8 – График временной изменчивости фосфора валового

,

1993 - 1996, 2000 - 2003 2010-2013 , 1992, 1995 -2005

5 - . ,

	PO ₄ ³⁻ , / ³		PO ₄ ³⁻ , / ³
1992	12,00	2005	6,00
1993	23,33	2006	13,30
1994	30,83	2007	6,60
1995	12,92	2008	9,50
1996	23,54	2009	20,25
1997	10,17	2010	11,60
1998	7,33	2011	20,00
1999	14,67	2012	13,25
2000	13,17	2013	9,75
2001	7,83	2014	14,25
2002	8,50	2015	14,00
2003	14,67	2016	21,33
2004	5,50	2017	8,75

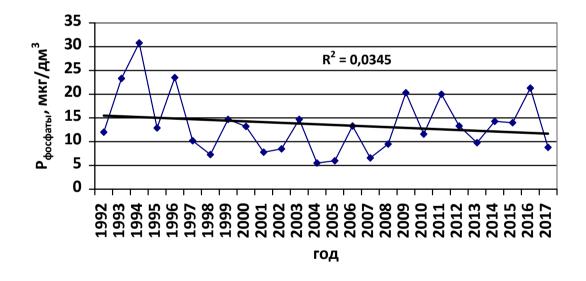


Рисунок 9 Межгодовая динамика концентраций фосфатов в реке Эмайыги (прямая линия – линия тренда)

$$R^2 = 0.0345,$$

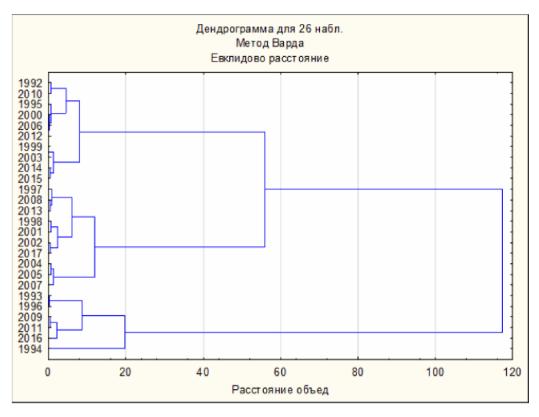
9, $R = 0.19.$

1992 . 2017 . «

».

Проанализировав рисунок 9, можно сказать следующее: максимальная концентрация фосфатов была в 1994 году (30,8 мкг/дм ³), а минимальная в 2004 году (5,5 мкг/дм ³). Поступление фосфатов со стоком реки Эмайыги не имеет резких колебаний в течение всего периода наблюдений. Также можно проследить следующую тенденцию: в период с 1992 по 1994 годы концентрация фосфатов возрастает, затем она уменьшается.

(, ,), . . . 3


,

.

10.

. 6.

11.

10-

(* . – (),)

,

3 .

·

6 – ,

	1	2	3
, / 3	12	6	20
, / 3	15	10	31
, / 3	13	8	23

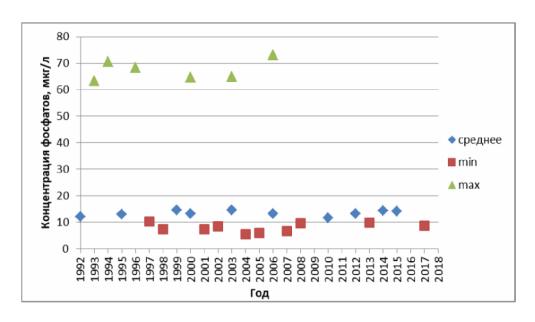


Рисунок 11 – График временной изменчивости концентраций фосфатов

,

1993 - 1994, 2000 - 2006

2004-2005 , 1992, 1992-2000

•

4.2 Анализ среднегодовых концентраций соединений азота валового, нитратов и нитритов

7 --3 ,

	N , / 3		N , / 3
1992	1800	2005	1880
1993	2208	2006	1867
1994	1928	2007	2980
1995	1546	2008	2725
1996	2049	2009	1900
1997	2033	2010	1320
1998	1693	2011	1818
1999	1462	2012	2380
2000	1728	2013	1408
2001	1593	2014	2175
2002	2005	2015	2288
2003	2335	2016	2783
2004	2083	2017	1975

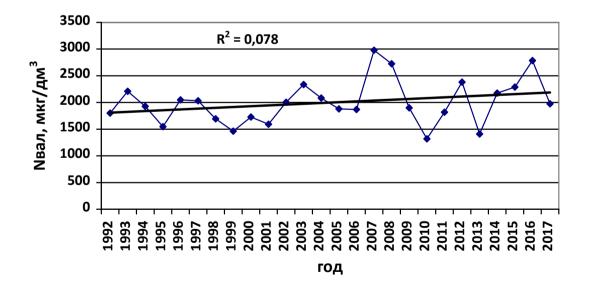


Рисунок 12 Межгодовая динамика концентраций азота валового в реке Эмайыги (прямая линия – линия тренда)

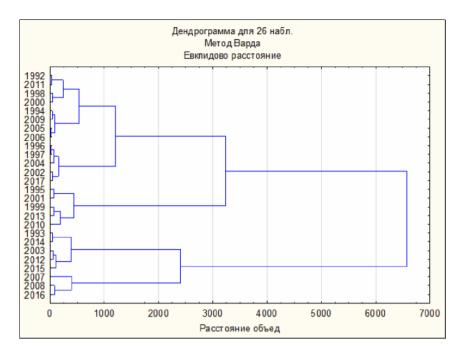
 $R^2 = 0.078,$ 12, R = 0.28.

1992 . 2017 . «

».

Проанализировав рисунок 12, можно сказать, что максимальная концентрация азота валового была в 2007 году (2980 мкг/дм ³), а в 2010 году она была минимальна (1320 мкг/дм ³). Также можно проследить следующую тенденцию: в период с 1992 по 1993 годы концентрация азота валового возрастает, затем она в 1993 году уменьшается, с 2005 года по 2007 год концентрация сильно возрастает, затем концентрация азота валового с 2008 по 2010 годы идет на убывание.

(, ,), . . . 3


,

•

13.

. 8.

14.

13 – ,

, , , 3 .

.

8 – ,

	1	2	3
, / 3	1693	1320	2175
, / 3	2083	1593	2980
, / 3	1905	1466	2512

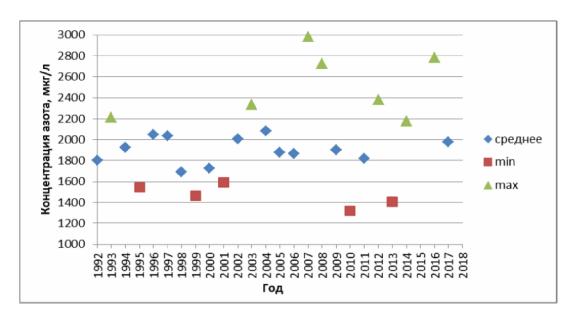
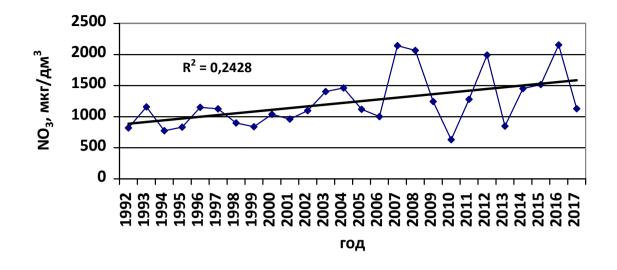



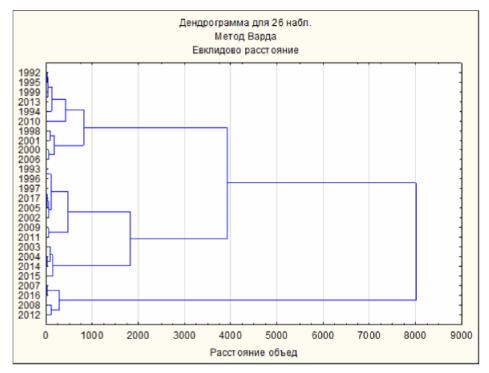
Рисунок 14 – График временной изменчивости азота валового

Проанализировав полученные данные, можно сказать следующее, что концентрация азота валового была высокой в 2007, 2016 и 2008 годах, низкой - в 2010 и 2013 годы, в остальные годы концентрация оставалась на среднем уровне.

9 -. -³

	N 3 · -3		N 3 · -3
1992	820	2005	1120
1993	1158	2006	1001
1994	775	2007	2144
1995	832	2008	2065
1996	1151	2009	1245
1997	1127	2010	630
1998	900	2011	1280
1999	840	2012	1993
2000	1038	2013	848
2001	962	2014	1453
2002	1098	2015	1518
2003	1405	2016	2155
2004	1463	2017	1130

Проанализировав рисунок 15, можно сказать, что максимальная концентрация нитратов была в 2016 году (2155 мкг/дм 3), а в 2010 году она была минимальна (630 мкг/дм 3).

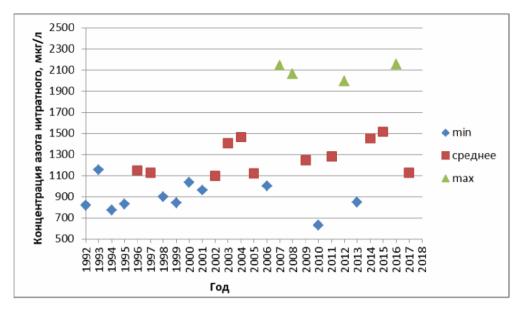

Также можно проследить следующую тенденцию: в период с 2006 по 2007 годы концентрация нитратов значительно возрастает, аналогично с 2010 по 2012 годы.

(, , ,), . . . 3 ,

,

,

10. 17.


16 – ,

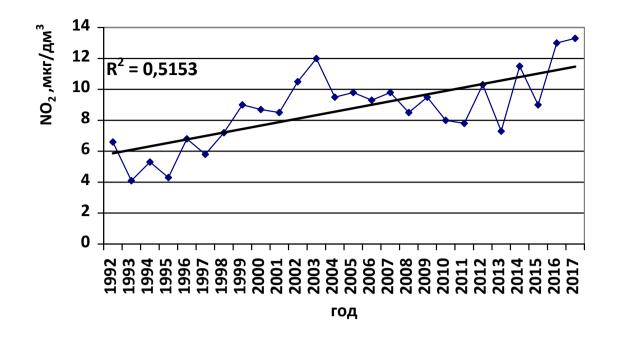
, , , , . . .

.

10 – ,

	1	2	3
, / 3	630	1098	1993
, / 3	1158	1518	2155
, / 3	891	1272	2089

17 –

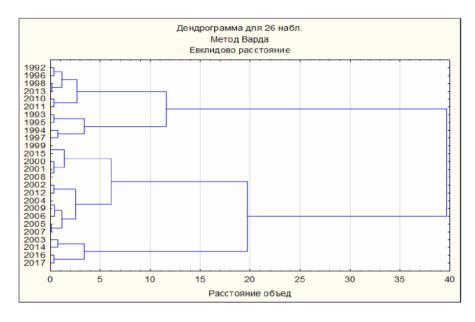

,

2007 -2008 , 2012 2016

, - 1994, 2010 2013 ,

, 11-

	N 2 · -3		N 2 · -3
1992	6,6	2005	9,8
1993	4,1	2006	9,3
1994	5,3	2007	9,8
1995	4,3	2008	8,5
1996	6,8	2009	9,5
1997	5,8	2010	8,0
1998	7,2	2011	7,8
1999	9,0	2012	10,3
2000	8,7	2013	7,3
2001	8,5	2014	11,5
2002	10,5	2015	9,0
2003	12,0	2016	13,0
2004	9,5	2017	13,3

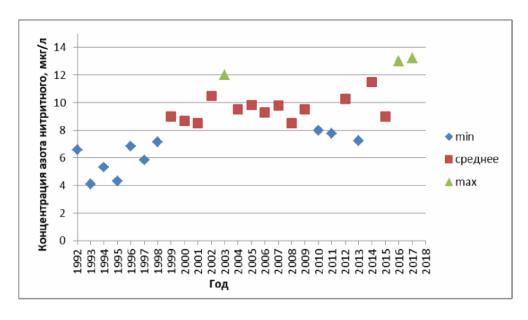


На рисунке 18 максимальная концентрация нитритов была в 2003 году (12,0 мкг/дм 3), а в 1993 году она была минимальна (4,1 мкг/дм 3).

Также прослеживается тенденция: возрастания концентрации нитритов.

, (, ,), . . . 3 , .

20.

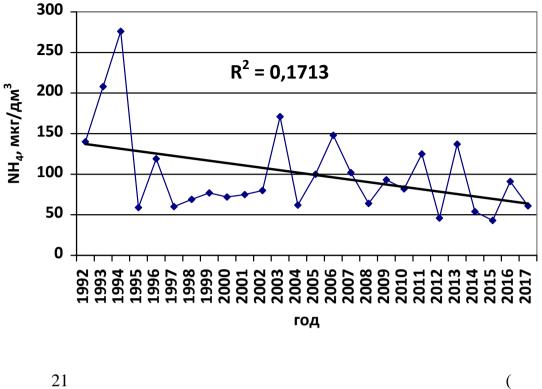

19 – ,

,

3 .

12 – ,

	1	2	3
, /	4	9	12
, /	8	12	13
, /	6	10	13



20 –

 NO_2 2016-2017 2003

1993-1995 .,

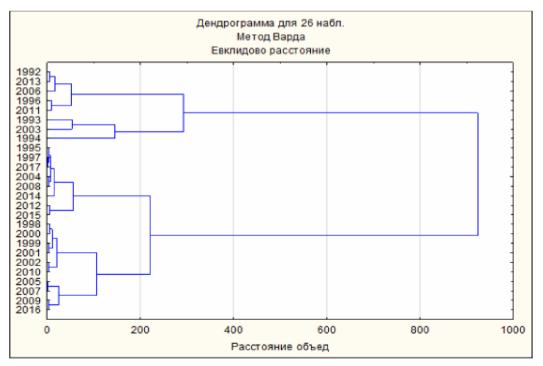
	N 4 ⁺ , / 3		N 4 ⁺ , / 3
1992	140	2005	100
1993	208	2006	148
1994	276	2007	102
1995	59	2008	64
1996	119	2009	93
1997	60	2010	82
1998	69	2011	125
1999	77	2012	46
2000	72	2013	137
2001	75	2014	54
2002	80	2015	43
2003	171	2016	91
2004	62	2017	61

$$R^{2} = 0.1713,$$

$$R = 0.41.$$

$$1992 . 2017 .$$

На рисунке 21 максимальная концентрация аммония была в 1994 году (276 мкг/дм 3), а в 2015году она была минимальна (43 мкг/дм 3).


Также можно прослеживается тенденция: возрастания концентрации аммония в период с 1992 по 1994 г., и резкое снижение в 1994 году.

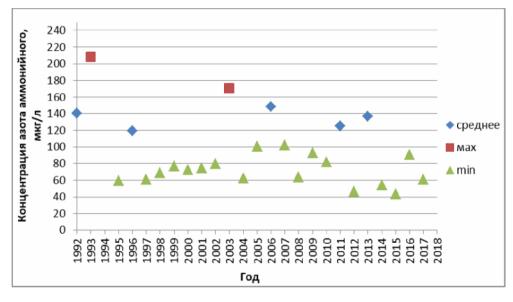
(, , ,), ... 3 ,

,

14.

23.

22-


(* . – (),)

,

3 .

14 – ,

	1	2	3
, /	119	171	43
, /	148	276	102
, /	134	218	72

23 –

1993 2003 ,

1992, 1996 2006 , 2011 2013

, : 1992-2017 . (. .)

1332 2017 . (. .)

(15).

1992 -2017 .

		/	
	/ 3 , ,		
PO ₄ ³⁻	13,6	45,1	
NO ₂	8,7	7,6	
NO ₃	1237	32,3	
NH ₄ ⁺	101	5	

5.1

. 16 -

	, Q,		, Q,
1992	92,6	2005	93,1
1993	93,5	2006	83,4
1994	133,5	2007	77,8
1995	101,1	2008	88,6
1996	62,6	2009	136,2
1997	79,1	2010	85,4
1998	94,2	2011	93,0
1999	115,2	2012	87,5
2000	107,0	2013	62,1
2001	86,0	2014	58,7
2002	96,2	2015	72,4
2003	96,0	2016	114,7
2004	100,3	2017	88,9

.

1994 . 2009 .

140 (16).

. . . .

	, Q, 4 (/)
	7
1992	24,2
1993	34,4
1994	58,3
1995	27,3 21,6
1996	21,6
1997	15,9
1998	16,7
1999	31,3
2000	21,8
2001	14,1
2002	16,2
2003	21,7
2004	12,2
2005	12,7
2006	15,2
2007	10,6
2008	23,7
2009	53,8
2010	31,3
2011	45,4
2012	31,3
2013	19,2
2014	19,6
2015	24,3
2016	47,2
2017	18,0

18 -

, /

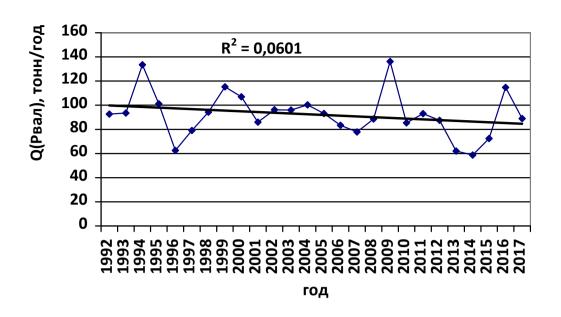
	, Q, N (/)	
1992	3625	
1993	3259	
1994	3647	
1995	3262	
1996	1877	
1997	3176	
1998	3859	
1999	3119	
2000	2859	
2001	2866	
2002	3833	
2003	3450	
2004	4609	
2005	3994	
2006	2132	
2007	4770	
2008	6802	
2009	5049	
2010	3567	
2011	4123	
2012	5628	
2013	2776	
2014	2988	
2015	3965	
2016	6161	
2017	4062	

19 - . .

/

	1		
	, Q, N 3 (/)		
1992	1651		
1993	1709		
1994	1466		
1995	1755		
1996	1054		
1997	1760		
1998	2051		
1999	1793		
2000	1717		
2001	1730		
2002	2100		
2003	2076		
2004	3237		
2005	2379		
2006	1143		
2007	3432		
2008	5154		
2009	3308		
2010	1702		
2011	2904		
2012	4712		
2013	1671		
2014	1995		
2015	2631		
2016	4770		
2017	2324		

20 - .

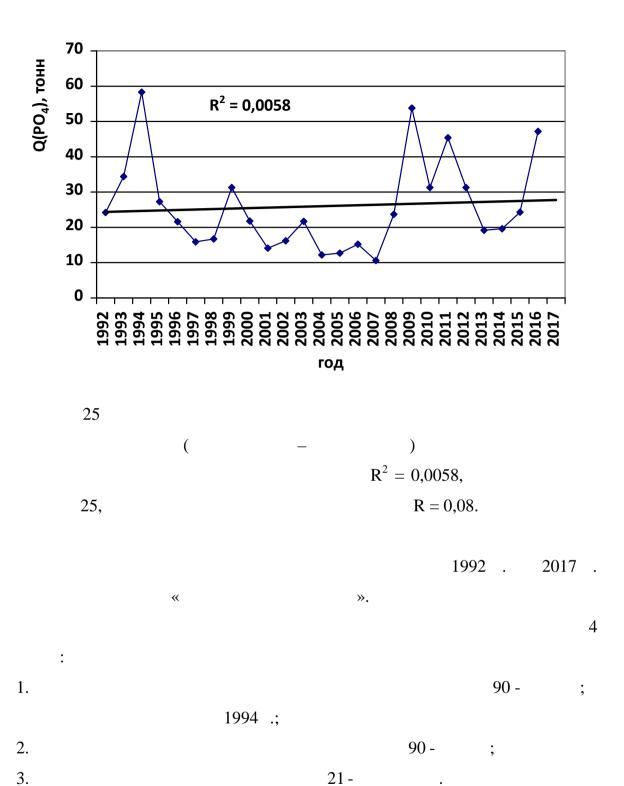

,		
	$\begin{pmatrix} & & & & \\ & & & & \\ N & {}_4^+(& & / & \end{pmatrix}$	
1002		
1992	282	
1993	307	
1994	522	
1995	125	
1996	109	
1997	94	
1998	156	
1999	163	
2000	120	
2001	134	
2002	152	
2003	252	
2004	137	
2005	213	
2006	169	
2007	163	
2008	159	
2009	246	
2010	220	
2011	284	
2012	109	
2013	269	
2014	74	
2015	75	
2016	200	
2017	125	

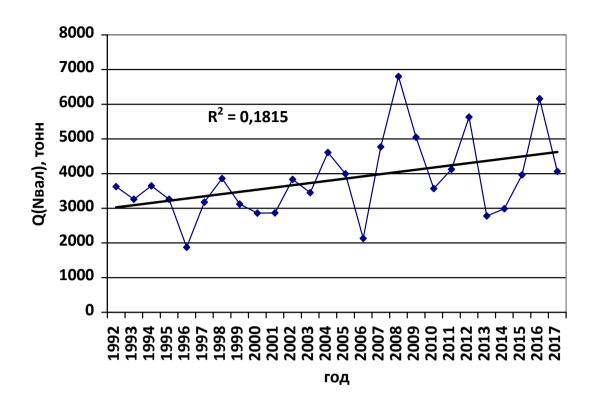
187 / . —522 / 1994 , —74 2014 .

21 - . .

/	
/	

	1		
	, Q, N 2 (/)		
1992	13,3		
1993	6,0		
1994	10,1		
1995	9,1		
1996	6,3		
1997	9,1		
1998	16,3		
1999	19,2		
2000	14,3		
2001	15,3		
2002	20,1		
2003	17,7		
2004	21,0		
2005	20,9		
2006	10,6		
2007	15,7		
2008	21,2		
2009	25,2		
2010	21,6		
2011	17,6		
2012	24,2		
2013	14,3		
2014	15,8		
2015	15,6		
2016	28,8		
2017	27,2		

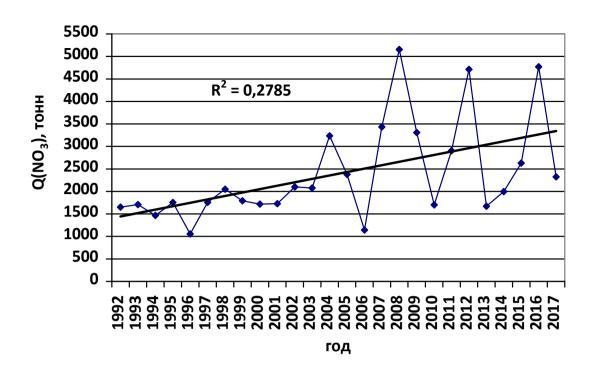



24 (-) $R^2 = 0,0601,$ R = 0,25.

1992 .

1994 2009 ., 140 . 1996, 2013 2014 .,

60

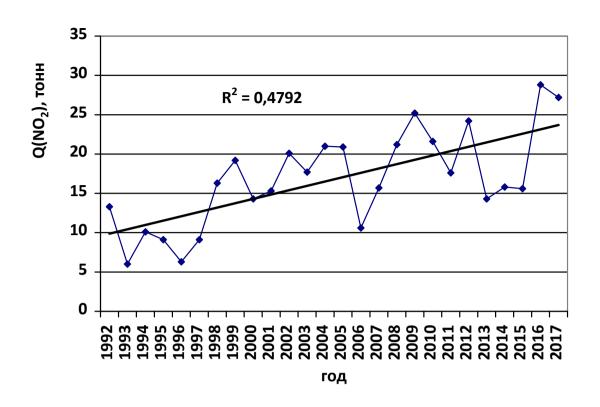

26 (-) $R^2 = 0.1815,$ R = 0.43.

1992 . 2017 . «

26 2008 2016

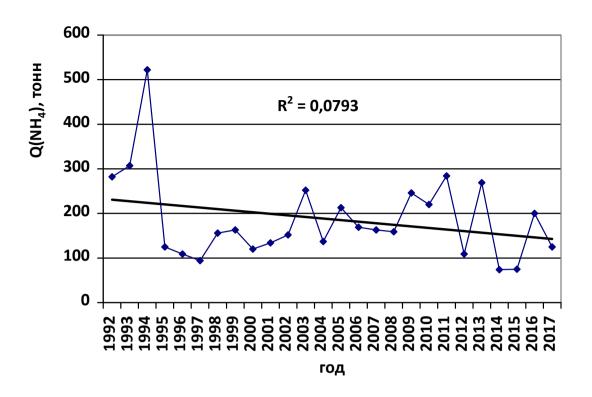
. 1996 . 2006 .,

2013 .



27 (-) $R^{2} = 0.2785,$ R = 0.53.

1992 . 2017 . «


27 2009, 2012

2016 . 1996 2006 .

 $NO_2^- 2009 2016$

1993 1996 ., 10 .

29, R = 0.28.

1992 . 2017 .

« ».

90- ,

22.

[15]

	T	T
	1992-2017 .,	
P	92,3	
PO ₄ ³⁺	25,7	
N	3825	
NO ₃	2393	
NO ₂	16,8	
NH ₄ ⁺	187	

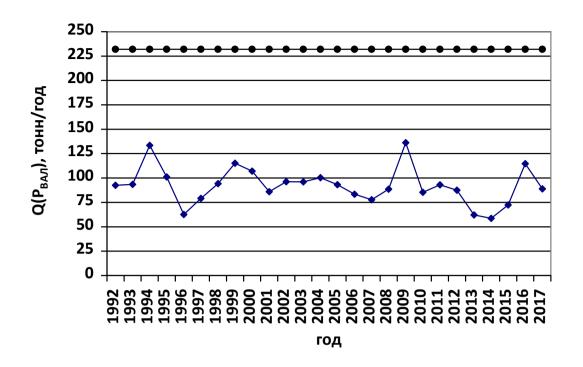
,

. ,

•

[15] $(L, /^2)$,

(,):


 $L = 0.025 \cdot {}^{0.6} \tag{2}$

= 8,3 , 2611 2 .

L = 232 / .

232 .

(30).

30, 1992 .

2017 .

1992-2017 . 92,3 ,

39,8%

c **«** 1992 2017 (

.

1.

2.			3
	(, «	,).
3.		2006 .	1992 2017
4.	/ ³),	·	1994 (30,8 2004 (5,5 / ³).
		:	1992 1994
5.		N	2007 (2980 / 3),
	2010		$(1320 / ^3).$
			: 1992 1993
		, 2005	, 1993 2007 2008 2010
	,		2000 2010
6.	/ ³),	2010	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			: 2006 2007
		2010 2012	,
7.			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8.	:		1994 (276 / ³),
2	2015		$(43 / ^3).$

1992 1994 1994 ., 3). 1. 1994 . 2009 . 140 (19). 92,3 / . -58,72014 . 2. 2009 . - 53,8 - 27 / . 3. -6802 . N *−* 3825 / . 4. 2393 / 2008 5154 -10541996

1.		1992-2017		(.) ,
2.		1992	2017	. (,
	, 32,3 –	5 –	45,1	,	7,6 –
3.	, 52,5		2017		
		92,3	,	2 5,7	,
3825		, 2393	, 16,8		187
4.	·	,	232	,	
5.			1992 . 201		
		1992 39,8%	-2017 .	92,3	,

- Псковско-Чудское озеро. Научные редакторы: Тармо Тимм, Анто Раукас,
 Юта Хаберман, Аго Яани. Тарту: Издательство Eesti Loodusfoto», 2012. 495
- Кондратьев С.А. Формирование внешней нагрузки на водоемы: проблемы моделирования. – СПб.: Наука, 2007. – 253 с.
- Геология СССР. Том XXVIII. Эстонская ССР. Геологическое описание и полезные ископаемые, Изд-во "Недра", 1960, с. 24
- 4. 13 Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.З., Михайличенко Н.И. Общая химия. Биофизическая химия. Химия биогенных элементов. М.: Высшая школа, 1993. 560 с.
- 14. Алекин О.А. Основы гидрохимии / Л. Гидромет., 1970. 444 с.
- Кошель П.А. круговорот фосфора в природе // Журнал «Химия». 2007. -№9.
- Бокрис О. М. Химия окружающей среды //М.: Химия. 1982. С. 670.
- Экология и экономика природопользования: Учебник для вузов / Под ред. проф. Э.В. Гирусова, проф.В.Н. Лопатина, 2-е изд., перераб. и доп. -М.: ЮНИТИ-ДАНА, Единство, 2003. 519с.
- Шилькрот Г.С. Причина антропогенного эвтрофирования водоемов. Общая экология. Биогеоценология. Гидробиология. Т.2. Антропогенное эвтрофирование водоемов [текст] / Г.С.Шилькрот. М., 1975. С. 61-99.
- 10. Экология и экономика природопользования: Учебник для вузов / Под ред. проф. Э.В. Гирусова, проф.В.Н. Лопатина, 2-е изд., перераб. и доп. -<u>М</u>.: ЮНИТИ-ДАНА, Единство, 2003. 519c.
- Дмитриев В.В., Фрумин Г.Т. Экологическое нормирование и устойчивость природных систем. Учебное пособие / СПб, 2004г.
- Академия наук СССР Комиссия по разработке проблем охраны природных вод. Антропогенное эвтрофирование природных вод. Материалы Третьего всесоюзного симпозиума Москва сентябрь, 1983. - Черноголовка, 1985. - 312 с.

- 13. Фрумин Г.Т., Германова А.В. Динамика поступления биогенных элементов в Финский залив со стоком российских рек // Финский залив в экосистеме Северо-Запада России. Сборник научных трудов. СПб.: ИПК «Прикладная экология», 2012. С. 185-200.
- Россолимо Л.Л. Антропогенное эвтрофирование водоемов / Л.Л.Россолимо. М.: 1975. Общая экология. Биоценология. Гидробиология.
 Т.2.: ВИНИТИ, 1975 137 с.
- 15. Vollenweider, R.A., Tech. Rep. Organiz. Econom.Cooper. Devel., 1968, vol.