

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

филиал в г.Туапсе

Кафедра «Метеорологии и природопользования»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по направлению подготовки 05.03.06 Экология и природопользование (квалификация – бакалавр)

На тему «Пути снижения негативного воздействия на окружающую среду предприятия транспортного комплекса (на примере АО «Туапсинское автотранспортное предприятие»)»

Исполнитель Меднова Ольга Николаевна

Руководитель к.г.н., доцент Аракелов Микаэл Сергеевич

«К защите допускаю»
Заведующий кафедрой

кандидат сельскохозяйственных наук, доцент

Цай Светлана Николаевна

«<u>19</u>» Inhape 2018 г.

Филиал Российского государственного гидрометеорологического университета в г. Туапсе

НОРМОКОНТРОЛЬ ПРОЙДЕН

«ДБ » декабря 20 (7 г.

Маучен до подпися расших овка подписи

Туапсе 2018

PFFMS
« »
· *
05.03.06
(-)
« (« »)»
,
«
,
«»2018 .
2018

3	•••••	
		1
6		
		1.1
		1.1
6		
		1.2
12		
,		1.3
17		
«		2
22	»	
22		2.1
22		
		2.2
27		
33		2.3
		3
» 43		«
«		3.1
43	»	
	_	3.2
47		J. <u>L</u>
47		
55	•••••	
E#		

, ,

•

, ,

•

· · · , , , .

« - » , ,

,

.

, .

« »,

•

»

· : ;

,

,

58 , 16 2

1.1

.

47 . .

10,5 , 13,6 [12, .87].

2 -3

, 26,5 -13,5 - .

7,5 . , 80 . 3 .

2016

. –

. - 2,5

[5, .106].

). 01.01.2017 , (2015 2314065 - 2257469), 2032199 (2015 - 2013477 , 01.01.2015 1943388). 76,37%, (96,62%) [23, .126]. 10,18%, : 3,5 45,70% (78,73% -); 3,5, - 24,91 % 12 55,59% -(); - 23,29% (12 63,67% -).

> , 4 112790 ,

								, .	
		14104,7	1534,6	37,5	79,6	1440,2	57,8	26,3	10929,1
		1519,8	169,3	4,4	8,6	156,2	6,2	2,8	1172,3
		562,2	62,7	1,6	3,2	57,9	2,3	1,03	433,5
%		3,99	4,09	4,27	4,02	4,02	3,98	3,92	3,97
%		36,99	37,03	36,36	37,21	37,07	37,10	36,79	36,98
		12,5	1,1	0,03	0,1	1,3	0,05	0,02	10,0
%		2,22	1,75	1,88	3,13	2,25	2,17	1,94	2,31
		11,8	1,1	0,02	0,1	1,2	0,05	0,02	9,4
%	1	2,10	1,75	1,25	3,13	2,07	2,17	1,94	2,17
		7,0	0,6	0,02	0,04	0,7	0,03	0,01	5,6
%	1	1,25	0,96	1,25	1,25	1,21	1,30	0,97	1,29
		7,9	0,7	0,02	0,04	0,8	0,03	0,01	6,3
%	-	1,41	1,12	1,25	1,25	1,38	1,30	0,97	1,45
		71,8	6,4	0,2	0,38	7,4	0,3	0,13	57,0
%	-	12,77	10,2	12,50	11,88	13,30	13,04	12,62	13,15

2

	19,4	1,7	0,04	0,1	2,0	0,1	0,03	15,5
- %	3,45	2,71	2,5	3,13	3,45	4,35	2,91	3,58
	20,5	1,8	0,04	0,1	2,1	0,1	0,04	16,3
- %	3,65	2,87	2,5	3,13	3,63	4,35	3,88	3,76
	8,3	0,7	0,02	0,04	0,8	0,04	0,01	6,6
% -	1,48	1,12	1,25	1,25	1,38	1,74	0,97	1,52
	8,8	0,8	0,02	0,05	0,9	0,04	0,01	10,9
% -	1,57	1,28	1,25	1,56	1,55	1,74	0,97	2,51

() 2016 2015 (

-) [17, .168]

				, -	. /	-		
2015	550,2	61,4	1,5	3,1	56,6	2,3	1,01	424,3
2016	562,2	62,7	1,6	3,2	57,9	2,3	1,03	433,5
2015	12,5	1,1	0,03	0,1	1,3	0,05	0,02	10,0
2016	12,5	1,1	0,03	0,1	1,3	0,05	0,02	10,0
2015	11,8	1,1	0,02	0,1	1,2	0,05	0,02	9,4
2016	11,8	1,1	0,02	0,1	1,2	0,05	0,02	9,4
2015	7,0	0,6	0,02	0,04	0,7	0,03	0,01	5,6
2016	7,0	0,6	0,02	0,04	0,7	0,03	0,01	5,6
2015	7,9	0,7	0,02	0,04	0,8	0,03	0,01	6,3
2016	7,9	0,7	0,02	0,04	0,8	0,03	0,01	6,3
2015	71,8	6,4	0,2	0,38	7,4	0,3	0,13	57,0
2016	71,8	6,4	0,2	0,38	7,4	0,3	0,13	57,0
2015	19,4	1,7	0,04	0,1	2,0	0,1	0,03	15,5
2016	19,4	1,7	0,04	0,1	2,0	0,1	0,03	15,5
2015	20,5	1,8	0,04	0,1	2,1	0,1	0,04	16,3
2016	20,5	1,8	0,04	0,1	2,1	0,1	0,04	16,3
2015	8,3	0,7	0,02	0,04	0,8	0,04	0,01	6,6
2016	8,3	0,7	0,02	0,04	0,8	0,04	0,01	6,6
2015	8,8	0,8	0,02	0,05	0,9	0,04	0,01	7,0
2016	8,8	0,8	0,02	0,05	0,9	0,04	0,01	10,9

:

- 433,5 (2015 - 424,3) .

```
0,4 . /
          - 62,7 ( 2015 - 61,4) .
       1,6 . /
       - 1,6 ( 2015 - 1,5)
       - 3,2 ( 2015
                        - 3,1) .
       0,01 . /
     - 57,9 ( 2015 - 56,6)
 0,2
     . /
- - 2,3 ( 2015
                - 2,3) .
 0,01 . /
- - 1,03 ( 2015
                 - 1,01) .
 0,2 . /
                          (3,99%)
                 40%
                                     [25, .88].
                               -3»
   [21, .49].
```

2016 2015 69,861 (5,42%). (), - 3» **«** 4»;

_			;		,
_		,	;		
_				•	
-	,	- ,	() , , ,		;
_	;		,		;
_				;	,
	_				

1.2

•

```
[6, .128].
                                                                                 (N_2,
O_2, CO_2, H_2O, H_2)
                                    (CO, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S,
          . .).
                                                                        300
                                      7
                                               [24, .93].
                                                      (
                                                                   ),
                                                          20 / {}^{3}; 4
                                             (5 / ^3, 3 .) -
                            2 / ^{3}, 3
                       [1, .131].
                   () (0,00015 / {}^3, 1 .) -
           3,4-
                           0,007
               0,018
                                               4 / <sup>3</sup>, 3 .),
                                                                 0,005 / ^3, 1
[11, .167].
```

```
9
                                    95
                                   (7,5
                   (44,5),
                                          ),
        ), (21),
   (7,4
                                   (6
                                          ),
                   (2,8
                                ), ()
        (3,4),
                                          (1,3)
           (1,1).
    ),
            - (
                  ).
       10-15
                  1 .
          2 (
                        )
                        300
                                      2,
                                 2.
3600
          [20, .127].
                    (
                           20 - 30
                )
         40-50
       80
                                          0,1
              1
```

- NO_x . NO NO_2 . NO

 NO_2 ,

NO $_2$ - 0,085 / 3 .

- SO₂ -

, 0,0017

0,04

,

 $$\rm SO_2$$ $$\rm 50\text{-}98$ / $^3.$ $$\rm SO_2\text{-}0,5$ / 3, $$\rm -0,05$ / $^3.$

- Pb. ,

30 [3, .92]. : 200 () $0,2 / ^3$.

16

[22, .143].

 NO_{x}

70 14 3/ 3 -10 [7, .169]. 1.3

, ,

. 3

3

, /1000 [15, .159]

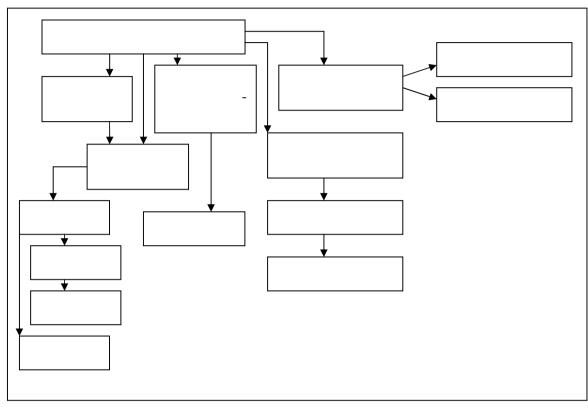
	_	_	_	_	_	_
	1111	2410	5312	677	5320	260
	9,3	21,8	31,2	69,1	94,5	146,3
	791,1	2818,9	1246,5	1632,2	363,8	766,7
NOx	270,3	59,5	20,1	82,2	309,2	633,9
SO2	27,9	33,1	24,3	26,5	81,4	169,3
СН	341,1	425,9	480,5	762,2	516,8	709,0
	4,5	5,3	3,7	3,7	ı	-
MnO_x	0,01	0,03	0,05	0,1	0,13	0,2
CH ₃ COCH ₃	4,4	10,3	14,8	32,7	39,6	61,4
С4Н9ОН	11,8	27,7	39,6	87,7	106,4	164,7
С2Н5ОН	12,4	29,1	41,6	92,1	111,8	173,0
	1,0	2,3	3,3	7,3	8,9	13,7
CH3COO(CH ₂)3CH3	12,0	28,3	40,5	89,6	108,7	168,2
CH3COOC2H5	1,7	4,0	5,5	12,6	15,3	23,7
6 5 3	37,4	87,9	125,8	278,5	338,1	523,2
6 6(3)2	2,2	5,2	7,4	16,4	19,9	30,8
	2,8	4,8	9,7	21,2	25,7	39,7
	0,2	0,4	0,8	1,7	2,1	3,2
, - /1000	173,7	204,5	148,3	145,1	110,2	219,4
, /1000	0,57	0,96	1,94	4,25	5,15	7,96

() -() -((); [19, .178]. (SO_x) -(NaOH) -[18, .110]. [4, .167].).), 3-10

0,3-0,5 1,5-2 [14, .129]: 80 -85 [8, .160].

,

,


,

,

,

[10, . 153].

2 **«** 2.1 **«** 2010 (») 26 **«** , .14. **«**); **«** . 1.

. 1.

20 16 30 7

20 14 ., :

);

- 8

);

, ,) – 18 .

20 15-2016 .

. 4.

 \sim 2015 – 2016 .²

/		2015	2016	•	
1),	10,00	10,00	0,00	100,00%
2	,	4 594,00	5 386,00	792,00	117,24%
3	, .	37,00	30,00	-7,00	81,08%
4	./ .	124162,16	179533,33	55371,17	144,60%
5	, ./	124,16	179,53	55,37	144,60%
6	,	42,42	69,59	27,17	164,03%
7	, .	1569,70	2087,70	518,00	133,00%
8	,	3056,00	6105,00	3049,00	199,77%
9	,	66,52	113,35	46,83	170,40%
10		1538,00	-719,00	-2257,00	-46,75%
11	, %	33,48	-13,35	-46,83	-39,87%
12	,	410,00	425,00	15,00	103,66%
13	,	2184,00	997,00	-1187,00	45,65%
14	, ./ .	11,20	12,67	1,47	113,10%
15	, ./ .	0,09	0,08	-0,01	88,42%
16	./ .	11,08	14,17	3,09	127,85%
17		1301,00	149,00	-1152,00	11,45%
18		1293,00	1273,00	-20,00	98,45%
19	, %	50,15%	10,48%	-0,40	20,89%
20	, %	49,85%	89,52%	0,40	179,60%
21	, %	99,39%	854,36%	7,55	859,65%
22		177,10%	378,76%	2,02	213,87%

```
2015-
2016 .
     1)
                                                                 (
    )
                                        2015
                                                  (+17%)
            2
                  ! –
     2)
     3)
      2016
      5 386
                                            1
                                 1,13
                      2016
     2016
                       719
                                      64%,
                    39%
                                                     20 15
                          2016
                                            8,5
«
                 >>
                                              . 2)
```

```
किंद्र के किंद्र
                                                                       (8)
                                              14
        (12)
                                                                        1
1 -
                                ; 2 –
                                                                   ; 3 –
                                                                                ; 4-
                                                                   ; 7 –
                                      ; 6-
                    »; 5 –
8 –
                                ; 10, 12 –
                                                                   ; 13 –
               ; 9 –
                                                          ; 11 –
                               ; 14 –
                                                                  3
                    . 2.
                                                                ( . 5):
                            «
                                                   >>
                              - 61 .;
```

			5
		«	» ⁴
			. /
3307	18		51138
66	8		48210
172412	5		42954
433110	19		73014
433360	11		70891
6522	18		98103
5410	24		98976
6363	14		54659
5423	4		51109
65055	6		73342
(-80)	40		600 *

2.2

• ,

, ,

•

« ».

, 200 - .

- - ,

,

,

.

--;

- ; - ·

- « -300»; -

· - , , ,

 $\begin{array}{ccc} & & & \\ & & \\ & & \\ \end{array};$

; - ,

-;

, , .

,

,

150 5 (₁₂- ₁₉). - 720 / , - 480 / - 950 / (), **- 40**, 1 / . 0,1 () $2^{-3}/$. **«** 94,3%.

, , , .

-

.

 11^{-3} , -10^{-3} .

-.

-

. 10 60 .

.

, , .

- - 20 . - - 33

- - 115 . - - 133 .

- -432 .

·

() 2^{3} . 0,8 2

, , 22 .

, 15, 1. - 0,172374 / . . 6.

6 « »⁵

			-	-	-
		-	, 3	, %	, 3
« - » d 1600	10293		178,9	94,3	10,2

« - » d 1600.

135,811 . / ., – 115 ;

133 ; -432 .

.

3,3 . $^{3}/$ (9,51 $^{3}/$., - 150 $^{3}/$.

,

,

:

• ______

	/ 3	/ 3
	750	150
	20,7	0,5
	1500	800
	4	2
	6	0,5
	400	300
N-NH ₄	10,3	4,5
	100	65

,

•

,

. (1)

2.3

« 100 . 120 11 **« >>** (), () 26 (- 0,021;): - 0,13; -0,30;0,0022; -0,49;- 0,014; () - 0,0042; - 0,11; 31 – 0,31. *−* 0,012; - 0,00089;): -0,000095;-0,49;-0,17;

0,055; - 0,0064; () - 0,0017; - 0,098; -0,0051; 31 - 0,17.**« >> «** : (

•

« » .

,

, (

),

,

» . 8.

8

7

	1-
	500 - 2000
5:	40-60
:	200-600
:	10-30
	200-500

4 - .

260 , 8-

-

4,05 $^{3}/$.

5,46 $^{3}/$:

« » . 9.

9

		1	2	3		/ 3	•
20°	20°	<40°	-	-	<40°	<40°	
750	150	< 500	-	60	300	490	+
20,7	0,5	<20	19,5	1,69	4,29	12,09	+
8	8	6-8,5	-	-	6-8,5	8	
1500	800	1000	-	700	1000	1193	+
4	2	-	2,6	2	2	3,14	+
400	300	300	-	353,3	300	357	+
10,3	4,5	-	40	20	20	7,82	-
100	65	350	_	179,9	179,9	85,09	-

,

,

: - 8,1 ; -

7,15 ; -1,14 ; -1,19 .

,

. ,

.

·

».

« » : (1):

$$C_{NO2}/C_N = Mr_{NO2}/Mr_N \tag{1}$$

 C_N - , 3 ;

 Mr_{NO2} - , / ;

 $Mr_{NO2} = 14 + 16 \times 2 = 46$

 Mr_{N} - $\,$, $\,$ / $\,$, $Mr_{\,N} = 14$ $\,$ / $\,$.

 $C_N = 0.00085 \times 14 / 46 = 0.00025$ / ³

 $C_{H2S}/C_S=Mr_{H2S}/Mr_S$

 $C_{H2S} \; - \;$

- , $/^{3}$ C_{H2S}=0,0013 =

0,00065 / 3 ;

 C_S - , $\sqrt{3}$;

 Mr_{H2S} - , / ;

 $Mr_{H2S} = 32 + 2 = 34$

 $C_S = 32 \times 0,00065/34 = 0,00061$ / ³

,

, (2):

 $= \times V_t \times K, \tag{2}$

```
S, [ ./ ^3],
                                  N
               (
                         )
V_t-
                        V_t=0,125
                                                      , =864
 _{N}= 0,00025 × 0,125 × 864 = 0.0279 / ^{2}
 _{s}= 0,00061 × 0,125 × 864 = 0,066 / ^{2}
 _{N}=1 ./ ^{2} = 2,74 / ^{2} .
 _{s}=2 ./ ^{2}
                =5,48 / ^{2} .
K_N = 0.0279/2.74 = 0.0101
K_S = 0.00061/5,48 = 0.00011
 K_i = 0.0101 + 0.00011 = 0.0102 < 1
                                                              ),
    : 6
1
2
                                (
                                                                  ),
3
                                               1/3
                                                         ),
                                              1/3 - 2/3
4
              ),
5
                                                       2/3
                           ),
```

6 - .

- ;

- ,

_ .

(3):

 $I = (K_1 n_1 + K_2 n_2 + + K_i n_i)/N,$ (3)

I- ; Ki - ; $n_{\rm i}$ - ; N -

(4):

 $I = I/N_{i}, (4)$

 N_i – 3

, 10 – 18 ,

,

. 10. — 2,3.

- . 10

1									•
	1	2	3	4	5	6			
6	3	1	1	1	0	0	2	2	3
8	5	2	1	0	0	0	1,5	1	4
9	3	4	1	0	1	0	2,1	2	3
14	3	7	2	1	1	0	2,3	2	3
8	0	2	1	3	2	0	3,6	4	1
6	1	3	1	1	0	0	2,3	2	3

, « »,

, ,

,

4 - .

,

, .

,

15 -

30 .

25-35%,

,

,

·

,

,

. , ,

3 **«** 3.1 (); » 45 **«**

.

1, 2, , 4.

,

.

97

».

Bl, 2, , 4

 180° .

.

,

,

97 .

,

, ,

,

,

•

(5):

 $co = 10^{-3} \frac{q * L * A_3 * K_C}{t_B * 3,6},$

(5)

- , /;

-, = 57;

q -

L -

, ,

- , Kc = 1,4 ,

t (TO) - ;

 $t_B - 1$. (6): (6) n_{Ω} $q_{\mathbf{L}}$ q_{K} , / . = 67,3 / . $c_O = 10^{-3} \frac{67.3 * (0.15 + 0.2) * 57 * 1.4}{1 * 3.6} = 0.522 / .$ -01-91 20 2 . (7): $L_B =$ (7)

 L_B - , /; -01-91 , 20 / 3 ; - (5 /). $L_B = \frac{0,522*1000*3600}{20-5} = 125280^{-3}/$.

180°

3.2

(8):

$$= * + . (8)$$

.

- -

=1,1.

. 11 .

11

		•,	, .
14 - 46-8	2	29900	59800
400	2	54520	109040
-4	2	2950	5900
800	2	5332	10664
1000	2	6765	13530
	251,2 3	300	75360
40	2	8750	17500
16	32	486	15552
			307346

. 12.

12

11

			••,	, .
	251,2	2	360	90432
	5		430	2150
()	0,8	3	11000	8800
				101382

:

= 307346 * 1,1+101382 = 439462,6.

•

$$= \qquad * \qquad + \qquad , \tag{9}$$

- ;

- ;

- ,

= 1,1.

. 13

12

1 5× 2350 × 6000 1 560 120 67200 08 22 6 5× 1800 × 4000 1 300 36000 120 08 22 6 50×3- -08 22 6 0,25 120 120 103320

11

12

. 14.

14 13

		•,	, .
-	-	-	7150
10		400	4000
			11150

$$= 103320 * 1,1 + 11150 = 124802$$
.

= 3 + = 439462,6 + 124802 * 2 = 689066,6.

(10):

$$3 = N * C_{ac} * K_p * T * K_n. , (10)$$

, N = 2 .;*N* -

, = 50,5 .;

= 1,15;

= 1980 - .;

= 1,103;

3 = 2 * 50.5 * 1.15 * 1980 * 1.103 = 253664.6.

(11):

$$= 3 * /100,$$
 (11)

```
(12):
                   = 100 * /(365 - - -
                                                                   (12)
    = 104 , = 10 ;
                                = 28;
     = 100 * 30 / (365 - 104 - 10 - 28) = 13,45 \%;
    = 253664,6 * 13,45 / 100 = 34118.
 3 = (253664,6 + 34118) * 1,15 = 292900,3.
                    (13):
                                                                (13)
                        _3 = - ..,
                                 = 30,7 \%.
   _3 = 292900,3 * 30,7 / 100 = 89920,4.
                                           12
                                = 689066,6 * 0,12 = 82688.
                                                              (14):
                  Q_o = q * V * K_t * n * * ,
                                                                   (14)
                                                          q_0 = 21000
      q -
/1000 <sup>3</sup>;
                     , V = 10500^{-3};
 V -
                                             K_t = 1,34
 K_t -
                             ; n = 2;
 n -
                              = 8
                                                  =180
```

 $Q_o = 21000 * 10.5 * 1.34 * 2 * 8 * 180 = 851 * 10^6$. (15): $Q_B = q_B * V * K_t * n * T_n * ,$ (15) $q_{B} = 7250$ q_B -/1000 ; $Q_R = 7250 * 10.5 * 1.34 * 2 * 8 * 180 = 294 * 10^6$. (16): $_{o} = (Q + Q) * _{o},$ (16)= 0.000069 $= (851 * 10^6 + 294 * 10^6) * 0,000069 = 79005$. (17): $= * F_y * N_o / 1000,$ (17)=2024 ; , = 3.12 ./ * .; F_{y} - $F_{y} = 2100$; $N_{1} = 15 / 2;$ N -= 2024 * 3,12 * 2100 * 15/1000 = 198918,7. (18): (18)

51

= 860

 $= +3 + 3 + 3 + , \qquad (19)$

= 198918,7 + 292900,3 + 89920,4 + 79005 + 3216123,4 = 3878867,8.

, ,

•

•

· ,

, . 15.

- 1 · . - 366.

		,	,
((IV))	0,0044987	0,0414078
(II) ()	0,000731	0,0067288
()		0,0001878	0,0016285
()	0,000835	0,0081166
		0,08892	0,964491
(,)	0,0107111	0,1230148
		0,0026119	0,0232384

, 97 %

,

, 97 % (. 16).

, /	, /
0,964491	0,02893473
0,232384	0,00697152
1,196875	0,03590625

,

40 100 **« »**. 1. 2. (1)

55

3.

	-		100 .			
	120 .					11
	,			•		
4.		,			,	
		•	,			,

•

•

,

-

, ,

·

```
1.
                                                 ,2013.-213 .
2.
                                                             / . .
                                                             , 2014. –
                                          :
  213 .
3.
                                                                / . .
                                . - , 2013. – 280 .
4.
            , 2015. – 314 .
5.
                                                               :
                      - , 2013. – 388 .
6.
                                          , 2012. - 432 .
7.
                        :
         , 2014. - 233 .
8.
                         , 2015. – 311 .
                .:
9.
                                                           .:
          , 2012. - 240 .
10.
                                                   , 2013. - 224 .
11.
                       , 2013. - 350.
12.
                                                     / . .
                      .: . ., 2013. – 273 .
13.
                                      . .
                                 - , 2014. – 408 .
                                                              , 2015. -
14.
```

```
287 .
15.
           , 2014. - 207 .
16.
                                                   :
                           ,2015.-278 .
17.
          , 2014. - 295.
18.
                                                           .:
            . .
           \rightarrow, 2015. – 210 .
19.
                                                         . 4 -
       , 2013. - 535 .
20.
             , 2013. - 560.
                                            ,2012.-450.
21.
22.
                                                                  /
             . .
                                         ,2014.-280 .
                               . .:
23.
                                              », 2013. – 208 .
                                 «
24.
                     + 20»:
               «
                                                    .:
         ,2012.-278 .
25.
```

,2012.-239 .