

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

«РОССИИСКИИ ГОСУДАРСТВЕННЫИ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра инженерной гидрологии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(магистерская диссертация)

На тему Уровенный режим разнотипных озер (на примере Ладожского озера и озера Ильмень)

Исполнитель	Гарманова Екатерина Леонидовна								
- All Manneson	(фамилия, имя, отчество)								
Руководитель	профессор, доктор географических наук								
# 5 pr Athric	(ученая степень, ученое звание)								
	Мякишева Наталия Вячеславовна								
	(фамилия, имя, отчество)								
«К защите допуск Завелующий кафо									
	едрой								
«К защите допуск Заведующий кафо	едрой (подпись)								
	доцент, кандидат технических наук								

Санкт–Петербург 2022

Оглавление

Введение	3
1 Физико-географическое описание	5
1.1 Местоположение	5
1.2 Геологическое строение и рельеф	6
1.3 Почвенный покров и растительность	7
1.4 Гидрографическая сеть и гидрология	9
1.5 Климатическая характеристика	10
2 Многолетняя изменчивость уровней озер	12
2.1 Методы исследований	12
2.2 Особенности многолетней изменчивости уровней озер	14
3 Внутригодовые колебания уровней воды озер	27
3.1 Методы исследований	27
3.2 Особенности внутригодового хода	29
3.3 Обобщение результатов анализа в терминах вероят	гностной
модели	37
4 Климат и увлажненность территории	39
4.1 Многолетняя изменчивость метеорологических показателей	39
4.2 Внутригодовые колебания метеорологических показателей	55
4.3 Увлажненность территории	61
Заключение	68
Библиографическая запись. Библиографическое описание	69
Приложения	71

Введение

Ладожское озеро – крупнейший пресноводный водоём Европы. Его объём составляет 837 км ³, площадь зеркала – 17872 км ², а максимальная глубина - 237 м. Площадь водосборного бассейна озера достигает 260 тыс. км ². В состав бассейна входят такие крупные озёра, как Онежское, Ильмень и Сайма, более 50 тыс. озер меньшего объёма и около 3500 рек с длиной русла более 10 км. Из Ладожского озера вытекает одна из самых многоводных рек континента – Нева, отличающаяся своеобразным водным режимом и в значительной степени определяющая гидроэкологический режим Финского залива Балтийского моря. Ладожское озеро относится к водоёмам замедленного водообмена. Период водообмена составляет один раз в 12 лет. Озеро судоходно, является частью водной магистрали, входящей в состав Волго-Балтийского водного пути и Беломорско-Балтийского канала.

Озеро Ильмень - уникальный природный объект. Его отличительной особенностью являются частые и сильные колебания уровня воды — до 7,4 м. Связано это с тем, что максимальная глубина озера составляет всего десять метров, а площадь водосбора в девяносто раз превышает площадь самого озера. В Ильмень впадает более 50 крупных и мелких рек, полноводность которых меняется в зависимости от сезона и погодных условий. Среди крупных впадающих рек - Ловать, Шелонь, Мста. Вытекает всего одна река — Волхов. Водообмен происходит 4 раза в год.

Водосбор озера Ильмень расположен в пределах экономически развитого Северо-Западного региона России, в котором интенсивно развивается сельское хозяйство, а также различные отрасли промышленности, а на самом озере водный транспорт.

Уровни озер не только фиксируют водные ресурсы территорий, но и являются интегральными показателями увлажненности водосборов и изменений климата на обширных пространствах. Также изменчивость уровня

воды в озерах отражает суммарное антропогенное влияние в их бассейнах, что может сказаться на судоходстве, рыболовстве и других промышленных отраслях экономики, а также на изменении качества воды и трофического статуса водных экосистем.

Поэтому, целью данной работы является изучение уровенного режима Ладожского озера и озера Ильмень.

Для достижения поставленной цели решались следующие задачи:

- 1. оценить вероятностные характеристики многолетней изменчивости уровней озер;
- 2. выявить особенности внутригодовой изменчивости уровней озер;
- 3. оценить увлажненность водосборов;
- 4. обобщить результаты анализа в терминах адекватной вероятностной модели.

Для решения поставленных задач использовались данные наблюдений за уровнями воды в Ладожском озере (д. Новосаратовка) и озере Ильмень (д. Войцы) с 1960–2017 гг. Для характеристики климата привлекались данные наблюдений за температурой воздуха и количеством атмосферных осадков на метеостанциях Сортавала и Старая Русса за тот же период. Для оценки увлажненности водосборов оценивался индекс Де-Мартона.

Для анализа многолетней изменчивости привлекались ряды среднегодовых значений и ежегодные последовательности средних месячных величин для характерных месяцев года. Для анализа внутригодовых колебаний использовались средние месячные значения.

Анализируемые процессы рассматривались как вероятностные полициклические процессы с основными энергонесущими зонами в диапазонах частот, соответствующих многолетним (T >1 года) и внутригодовым (T < 1 года) колебаниям. Ряды среднемесячных значений рассматривались как периодически коррелированные случайные процессы, а ряды среднегодовых - как случайные процессы.

1 Физико-географическое описание

1.1 Местоположение

Ладожское озеро расположено на северо-западе Европейской части России в Ленинградской области и республике Карелии. Является самым крупным пресноводным озером в Европе. Его площадь составляет 17,9 тыс. км² без включения в него островов, с островами его площадь составляет 18,3 тыс. км². Объем водной массы — 838 км³. Длина озера с юга на север — 219 км, а средняя ширина — 84 км, глубина озера приходиться до 230 м в северной части, к западу от острова Валаам, в южной части от 20м до 70м.

Озеро Ильмень расположено в пониженной части Приильменской низины в Новгородской области. Площадь озера в зависимости от уровня воды меняется от 733 км² до 2090 км², при среднем уровне составляет 982 км². Длина озера составляет около 45 км, а ширина достигает до 35 км, глубина озера до 10 м. Берега в основном низменные, заболоченные, местами — дельтовые, с множеством плоских пойменных островов и проток.

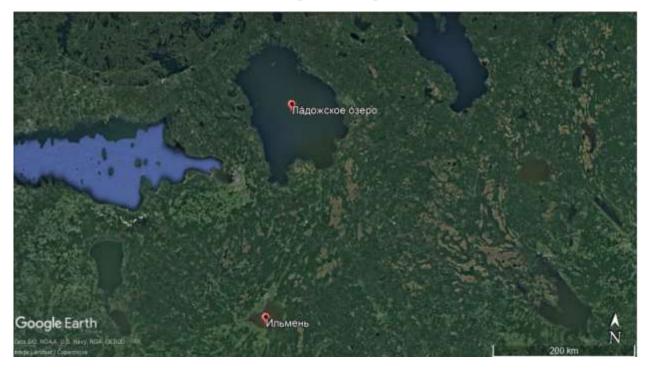


Рисунок 1.1 – Местоположение Ладожского озера и озера Ильмень

1.2 Геологическое строение и рельеф

Северная часть водосбора Ладожского озера расположена в пределах Балтийского кристаллического щита, южная – на Русской платформе. Кристаллический щит сложен дислоцированными породами архейского и протерозойского возраста. Докембрийские породы выходят на дневную поверхность и лишь местами прикрыты четвертичными осложнениями небольшой мощности. Для рельефа северной части водосбора характерно чередование скалистых сельговых гряд и межсельговых понижений, вытянутых с северо-запада на юго-восток. На территории Балтийского щита, в пределах северной части Ладожско-Онежского водораздела, значительную площадь занимает Западно-Карельская возвышенность, протянувшаяся в юго-восточном направлении. Ее средние высотные отметки колеблются в пределах 200-400 м. От Западно-Карельской возвышенности к Онежскому и Ладожскому озерам поверхность снижается до 90 - 100 м и начинает преобладать холмисторавнинный рельеф с высотами 30 – 70 м. Южная часть территории бассейна ладожского озера является областью распространения палеозойских отложений рельефом И отличается равнинным широким распространением аккумулятивных форм. Наибольшую площадь здесь занимает Ловать-Ильмень-Волховская низина. Эта часть водосбора представляет собой плоскую, слаботеррасированную равнину, лежащую в пределах 5 - 35 м.

Рельеф дна северной части озера отличается чередованием глубоких впадин и более мелководных участков. В южной части дно более ровное, к югу глубины уменьшаются. Грунты дна в северной части озера сложен алевритоглинистым илом достигающий толщину до 10 м во впадинах и 1 – 3 м на участках с меньшими глубинами.

Рельеф дна озера Ильмень представляет собой слабовогнутую плоскую впадину с пологими склонами. Большая часть дна озера покрыта мощным слоем ила. В центральной части мощность иловых отложений более 10 м.

Приильменская низменность отличается плоским рельефом и большой заболоченностью. Высота низменности над уровнем моря колеблется от 18 до 50 м. Наиболее понижена ее центральная часть, где располагается озеро Ильмень. Поверхность низменности сложена глинами и суглинками, песками и супесями. Окраины Приильменской низменности повышаются до 100 – 150 метров выше уровня моря. Здесь встречаются холмы и невысокие гряды. Приильменскую низменность опоясывают возвышенности, проходит граница бассейна озера. Их высоты достигают от 250 до 300 м над уровнем моря. С востока бассейн ограничен Валдайской возвышенностью, с - Судомской, Лужской, Вязовской запада юга И Бежаницкой возвышенностями, с севера – Тихвинской грядой.

1.3 Почвенный покров и растительность

На территории водосборного бассейна Ладожского озера распространены следующие процессы почвообразования: гумусонакопление (дерновый процесс), торфонакопление, оподзоливание, глееобразование.

Процесс гумусонакопление происходит в случаи высокого содержания в материнской породе щелочноземельных оснований и поступление органических веществ в почву при отмирании корневой системы травяной растительности.

Процесс торфонакопления идет в условиях постоянного избыточного увлажнения. Формирование болотных почв может идти в условиях избыточного атмосферного увлажнения (верховые болотные почвы) или за счет питания грунтовыми водами (низинные болотные почвы). На поверхности подзолистой или дерново-подзолистой почвы образуется торфянистый горизонт. В таких условиях идет сочетание болотного процесса, оподзоливания и оглеения.

Процесс оподзоливания развивается в почвах в условиях промывного типа водного режима под хвойными лесами. При разложении растительного опада образуются на поверхности почвы агрессивные органические кислоты. Под их воздействием идет интенсивное кислотное выветривание материнской породы и вынос с нисходящим током влаги продуктов распада минералов в нижние горизонты.

Процесс глееобразование идет в анаэробных условиях при застывании вод на поверхности почвы или выклинивании почвенно-грунтовых вод в толщу почвы. Из-за анаэробного распада органического веществав почве развиваются восстановительные процессы, которые увеличивают подвижность железа, марганца, азота, фосфора.

Большая протяженность бассейна Ладожского озера в меридиональном направлении определяет проявление зональности в растительном покрове. Водосбор расположен в зоне тайги и зоне смешанных лесов. Для территории наиболее распространены еловые леса.

В зоне тайги различаются три геоботанические подзоны: северная, южная и средняя. Северная тайга занимает северо-восточную часть водосбора Ладожского озера и северную и северо-восточную часть водосбора Онежского озера и ограничена 63° с. ш. Здесь произростают сосновые леса на высоких отметках, а на пониженных — темнохвойные разреженные еловые леса с примесью березы.

Южная тайга занимает большую часть водосбора Ладожского озера. Тип растительности является ельники-кисличники с примесью незначительного широколиственных пород деревьев, таких как, клен, вяза, липа. Значительное участие в травяно- кустарничковом ярусе присутствуют кислица, майник, мелкие папоротники.

В пределах средней тайги наиболее характерны ельники-черничники со сплошным покровом зеленых мхов и сомкнутым древостоем.

1.4 Гидрографическая сеть и гидрология

Водосборный бассейн Ладожского озера состоит из водосборов рек Свирь, Вуокса и Волхов, соединяющих Ладогу с озерама Онежское, Сайма и Ильмень.

Территория бассейна покрыта густой сетью водотоков, многочисленными озерами и болотами. Густота речной сети составляет в среднем 0,45 км⁻². Наиболее значительными водотоками являются реки Волхов, Свирь, Вуокса, Паша, Мста, Оять и Сясь. Часть рек берет начало из крупных озер, часть вытекает из малых озер. Небольшая часть водотоков берет начало из болотных массивов.

Реки бассейна Ладожского озера имеют смешанное питание с преобладание снегового, от 40 до 50% годового стока, с высоким половодьем, низкой зимней и летней меженью и подъемами уровня воды осенью под влиянием обложных дождей.

Озера занимают около 14% площади водосбора. Самые большие озёра - Онежское и Сайма. Наибольшая часть озер находится в системе реки Вуокса, в долине реки Свирь, в верховьях реки Сясь. Большинство озер имеет ледниковое происхождение. На востоке и юго-востоке территории представлены карстовые озера. В Карелии и в бассейне реки Волхов встречаются озера болотного типа. Большинство озер являются проточными.

Около 17% территории занято болотами. Их распространению способствует избыточная влажность, плоский рельеф и близкое к поверхности залегание грунтовых вод. Большая часть болот имеет площадь свыше 1000 га. Крупнейшими из них являются Зеленецкий Мох – 60,2 тыс. га в бассейне реки Сясь, Соколий и Гладкий Мох – 29,4 тыс. га, между реками Сясь и Паша.

1.5 Климатическая характеристика

Ладожское озеро расположено в умеренном поясе северного полушария. Величина годовой солнечной радиации в бассейне Ладожского озера составляет 290 — 420 кДж.см⁻² в год. Формирование климатических особенностей происходит под воздействием морских атлантических воздушных масс, континентальных масс умеренных широт и частых вторжений арктического воздуха. Заметное влияние на климатические условия оказывает и само озеро.

Погодные условия в регионе Ладожского озера определяются, прежде всего, циклонической деятельностью, которая способствует интенсивному обмену теплых и холодных воздушных масс, а также транспортировкой влаги с океанов на материк. Воздушные массы, приходящие с Атлантического океана, зимой приносят обильные снегопады и оттепели, а летом — дождливую и ветреную погоду.

Для озерной системы Ладоги характерно сглаживание экстремальных значений климатических характеристик, вследствие чего континентальные воздушные массы, проходя над озером, приобретают ряд черт, присущих морским воздушным массам.

Средняя температура воздуха в районе Ладожского озера по данным наблюдений составляет +3.2°С. Средняя температура самого холодного месяца (февраля) минус 8.8°С, самого теплого (июля) +16.3°С. Озеро покрыто льдом в среднем с февраля по май.

Среднее годовое количество осадков от 400 - 500 мм на северо-западе и до 600 мм на юге. Наименьшее количество осадков выпадает в феврале – марте (24 мм в месяц), наибольшее – в сентябре и составляет 58 мм в месяц. Преобладают юго-западные ветры, число штормов достигает 20 - 50 в год.

Карельский берег Ладоги наиболее теплый, с мягкой зимой. Отличается длительным вегетационным периодом и наибольшей продолжительностью безморозного периода.

Средняя температура воздуха в январе от -8 до -10°С, и июле около + 16°С, на безморозный период приходиться 120 — 130 дней, число дней со снежным покровом изменяется от 135 до 145 дней. Количество выпадающих за год осадков составляет 650 мм, из них 200 мм выпадает в вегетационный период.

Ильменский водосбор относится к зоне избыточного увлажнения. Количество осадков в прибрежных районов озера составляет 400 — 800 мм в год. В течение года преобладают южные и юго-западные ветры.

Покрывается льдом Ильмень в конце ноября. Из-за ветров, стоковых течений и разницы в глубинах ледостав на Ильмене в разных местах наступает не одновременно. Освобождается ото льда также не одновременно, обычно, в первых числах апреля вскрывается его северо-восточная часть, затем в течении семи дней в устьях крупных рек, и еще в течение трех дней остальная часть озера.

2 Многолетняя изменчивость уровней озер

2.1 Методы исследований

Для анализа многолетней изменчивости уровней озер применялись квантильный анализ, метод регрессии, фильтрация Баттерворта.

Квантильный анализ заключается в нахождении квантилей $X_{min}, X_{0.25}, X_{0.5}, X_{0.75}, X_{max}$ функции распределения F(x) данных в выборке. Алгоритм оценивания перечисленных характеристик следующий: X_{min} и X_{max} — минимальное и максимальное значения данных в выборке, $X_{0.5}$ — медиана. Если количества членов в выборке нечетное, то медиана — центральное значение выборки, если количество членов в выборке четное, то медиана — среднее между двумя центральными значениями. $X_{0.25}$ и $X_{0.75}$, характеризуют центр первой и второй половины выборки, соответственно. Наряду с перечисленными квантилями использовались их линейные комбинации:

размах в пределах выборки

$$R = X_{max} - X_{min}, (2.1)$$

интерквантильное расстояние

$$Q = X_{0.75} - X_{0.25}. (2.2)$$

Для $X_{0.25}$ и $X_{0.75}$ вводятся барьерные значения, X_{s} — верхний барьер и X_{t} — нижний барьер:

$$X_R = X_{0.75} + 1.5Q \tag{2.3}$$

$$X_H = X_{0.25} - 1.5Q (2.4)$$

Наряду с медианой, в качестве оценки центра распределения данных в выборке можно использовать среднее арифметическое m и трехсреднее значение T^* , а совместно с R и Q в качестве оценки масштаба распределения — дисперсию D и среднее квадратическое отклонение $\sigma = \sqrt{D}$. Сопоставление среднего m с медианой $X_{0.5}$ и σ с 0.74Q дает возможность получить предварительную информацию о типе и параметрах распределения данных в выборке.

Трёхсреднее значение оценивается по формуле

$$T^* = 0.25(X_{0.25} + 2 \cdot X_{0.5} + X_{0.75}) \tag{2.5}$$

Регрессионный анализ используется с двумя целями. Во-первых, для описания зависимости между переменными и определения причинной связи. Во-вторых, для построения прогнозных значений зависимой переменной. Мерой зависимости является величина коэффициента корреляции.

При регрессионном анализе рассматривается связь между одной зависимой переменной и несколькими другими независимыми переменными. Эта связь выражается с помощью математической модели. Выбор подходящей модели основывается как на статистических доводах, так и на основе содержательного смысла моделируемой зависимости.

С помощью коэффициента регрессии можно определить значение одной величины, зная значение другой. Для этих целей служит уравнение линейной регрессии, которое имеет вид:

$$Y = a + b X, \tag{2.6}$$

где X — значение независимой переменной, Y — значение зависимой переменной, a и b — параметры уравнения (a — коэффициент регрессии).

При наличии в структуре временных рядов трендов — медленно меняющихся, гладких функций, под которыми наиболее часто понимается переменное математическое ожидание случайного процесса, применяется фильтрация Баттерворта. Для выделения тенденций или трендов на повышение или понижение значений процесса на отрезках времени в несколько лет или десятилетий используется низкочастотная фильтрация.

Фильтры Баттерворта имеют максимально плоскую амплитудночастотную характеристику (АЧХ) в полосе пропускания и монотонную характеристику в полосе задержания. Квадрат АЧХ фильтра Баттерворта описывается выражением

$$H^{2}(\omega) = \frac{1}{1 + \left(\frac{\omega}{\omega_{c}}\right)^{2n}}$$
 (2.7)

где ω_c – граничная частота, n – порядок фильтра.

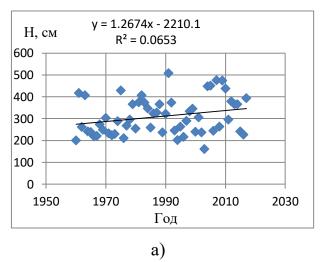
По мере возрастания порядка n фильтра Баттерворта коэффициент передачи в полосе пропускания все в большей степени приближается к единице, переходная область все в большей степени сужается, а в полосе задержания функция передачи все ближе подходит к нулю. При $n \to \infty$ АЧХ фильтра Баттерворта приближается к идеальной величине.

2.2 Особенности многолетней изменчивости уровней озер

В работе использовались данные наблюдений за уровнем воды Ладожского озера – д. Новосаратовка и озера Ильмень – д. Войцы, осреднённые для месячных и годовых интервалов (приложения A, Б). Временной период составил 58 лет с 1960 – 2017 годы.

Многолетняя изменчивость уровней воды в озёрах анализировалась по рядам средних годовых и экстремальных величин, а также ежегодных последовательностей значений для всех месяцев года. Средние годовые значения использовались для характеристики нормы и её изменчивости, экстремальные значения — для оценки максимальных и минимальных уровней. Ежегодных последовательностей значений для остальных месяцев привлекались для характеристики многолетней изменчивости в переходные сезоны года

Однородность рядов оценивалась при помощи стандартных критериев Стьюдента и Фишера (табл. 2.1, 2.2). Гипотеза об однородности по критерию Стьюдента не опровергалась для всех месяцев года, как для Ладожского озера, так и для озера Ильмень. По критерию Фишеру гипотеза об однородности опровергалась для трех месяцев (май – июль) для Ладожского озера, и для всех месяцев, кроме марта и ноября – для озера Ильмень. Выявленная неоднородность могла быть вызвана нарушением условий формирования речного притока в озёра и стока из них – основных составляющих водного баланса, в результате антропогенного воздействия на водосборы водоёмов и изза климатических изменений.


Таблица 2.1 – Проверка рядов на однородность

Критерий	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Сред год.	
	Ладожское озеро – д. Новосаратовка													
t*	-0,3	-0,4	-0,7	-0,97	-0,74	-0,61	-0,69	-0,66	-0,36	-0,08	-0,05	-0,05	-0,53	
t _{2α=5%}	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	
$H_0:X_1=X_2$	-	-	-	-	-	-	-	-	-	-	-	-	-	
F*	1,2	1,18	1,11	1,04	0,98	0,91	0,99	1,11	1,26	1,4	1,38	1,25	1,16	
$F_{2\alpha=5\%}$	2,13	2,13	2,13	2,13	0,47	0,47	0,47	2,13	2,13	2,13	2,13	2,13	2,13	
$H_0:D^*_1=D^*_2$	-	-	-	-	+	+	+	-	-	-	-	-	-	
				озе	ро Ил	ьмені	ь — д.	Войці	Ы					
t*	-1,2	-2,6	-4,37	-2,45	0,03	-0,23	-0,99	-1,1	-0,81	-0,25	-0,39	-0,37	-2,09	
$t_{2\alpha=5\%}$	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	
$H_0:X_1=X_2$	-	-	-	-	-	-	-	-	-	-	-	-	-	
F*	0,55	0,58	0,4	0,9	0,62	0,7	0,71	0,74	0,76	0,52	0,35	0,53	0,61	
$F_{2\alpha=5\%}$	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	
$H_0:D^*_1=D^*_2$	+	+	-	+	+	+	+	+	+	+	-	+	+	

Для оценки значимости линейных трендов использовался критерий выборочного коэффициента корреляции R. Гипотеза об отсутствии тренда не опровергалась при уровне значимости $2\alpha = 5\%$, если выполнялось условие $|R| < t_{2\alpha} \sigma_R$. Оценки значимости даны в табл. 2.2, а графики линейных трендов для изучаемых озер за январь и апрель - на рисунках 2.1 - 2.2, Дополнительная информация содержится в приложениях X, 3.

Таблица 2.2 – Оценка значимости линейных трендов

Стат. хар-ки	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Сред год.
Ладожское озеро – д. Новосаратовка													
R тренда	0,07	0,09	0,11	0,13	0,08	0,06	0,07	0,08	0,06	0,03	0,04	0,06	0,08
σ_R	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
$ R /\sigma_R$	0,50	0,70	0,83	0,99	0,60	0,46	0,55	0,59	0,44	0,24	0,29	0,46	0,62
t2a	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Значимость R	-	-	-	-	-	-	-	-	-	-	-	-	-
			озер	о Илн	мені	ь — д.	Вой	ЦЫ					
R тренда	0,26	0,35	0,40	0,24	0,00	0,03	0,12	0,15	0,11	0,06	0,09	0,09	0,27
σ_{R}	0,13	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
$ R /\sigma_R$	1,98	2,83	3,26	1,81	0,00	0,24	0,92	1,15	0,80	0,45	0,65	0,69	2,10
t2a	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Значимость R	-	+	+	-	-	-	-	-	-	-	-	-	+

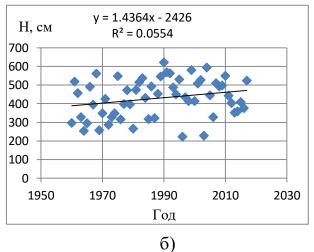


Рисунок 2.1 — Графики линейного тренда среднемесячных уровней воды оз. Ильмень — д. Войцы за 1960 - 2017 гг. (а — январь, б — апрель)

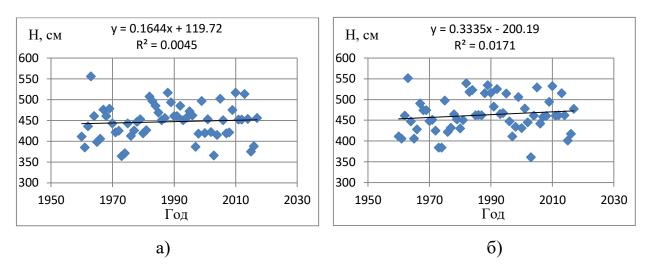


Рисунок 2.2 – Графики линейного тренда среднемесячных уровней воды Ладожского озера – д. Новосаратовка за 1960 – 2017 гг. (а – январь, б – апрель)

Графики средних годовых и экстремальных высот уровня Ладожского озера с нанесёнными на них квантильными диаграммами приведены на рис. 2.3 - 2.5. Аналогичная информация для озера Ильмень содержится на рис 2.6 - 2.8. Результаты квантильного анализа многолетней изменчивости анализируемых процессов также приведены в табл. 2.3, 2.4. Выполненный анализ позволил выделить годы с высоким и низким положением уровня воды в озёрах. Годы, для которых значения уровня воды выходили за квантиль $X_{0.75}$ считались многоводными, а годы со значениями уровня ниже квантили $X_{0.25}$ — маловодными. Годы, для которых значения уровня выходили за верхнюю и нижнюю границы, т.е. $X_{\rm B}$ и $X_{\rm H}$ считались экстремальными.

Таблица 2.3 – Статистические характеристики многолетней изменчивости уровней воды Ладожского озера – д. Новосаратовка за 1960 – 2017 гг.

	X_{min}	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X_{max}	R	Q	T*	X_{B}	X_{H}	m_{x}	σ	0,74Q
сред.год.	375	434	464	489	538	163	55,0	463	572	352	462	37,8	40,7
июнь	379	455	489	518	576	197	63,3	487	613	360	487	43,5	46,8
декабрь	363	416	448	468	562	199	51,5	445	545	339	444	42,3	38,1

Таблица 2.4 – Статистические характеристики многолетней изменчивости уровней воды озера Ильмень – д. Войцы за 1960 – 2017 гг.

	Xmin	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X _{max}	R	Q	T*	X_{B}	X_{H}	m _x	σ	0,74Q
сред.год.	245	314	336	362	464	218	48,7	337	435	240	341	49,8	36,0
май	354	475	522	572	670	316	96,5	523	717	331	517	71,7	71,4
октябрь	180	225	251	281	564	384	55,8	252	364	141	268	73,9	41,3

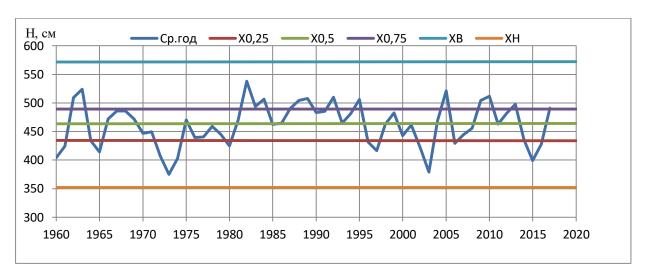


Рисунок 2.3 – Квантильная диаграмма средних годовых значений уровней воды Ладожского озера – д. Новосаратовка за 1960 – 2017 гг.

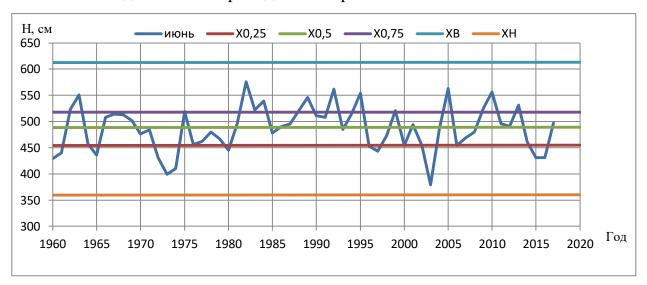


Рисунок 2.4 — Квантильная диаграмма средних месячных значений уровней воды Ладожского озера — д. Новосаратовка за 1960 — 2017 гг. (июнь)

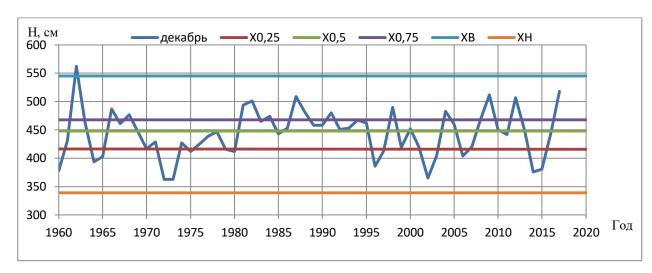


Рисунок 2.5 – Квантильная диаграмма средних месячных значений уровней воды Ладожского озера – д. Новосаратовка за 1960 – 2017 гг. (декабрь)

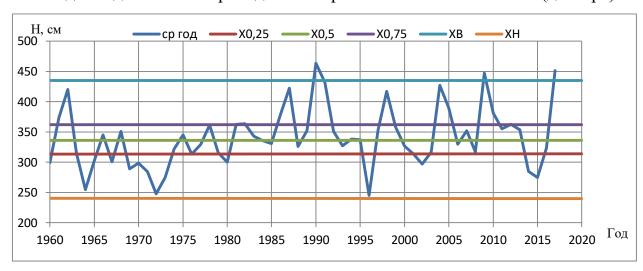


Рисунок 2.6 – Квантильная диаграмма средних годовых значений уровней воды озера Ильмень – д. Войцы за 1960 – 2017 гг.

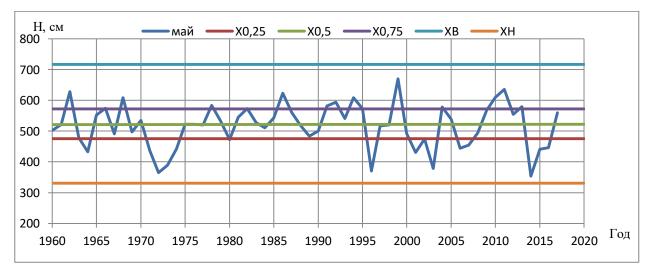


Рисунок 2.7 – Квантильная диаграмма средних месячных значений уровней воды озера Ильмень – д. Войцы за 1960 – 2017 гг. (май)

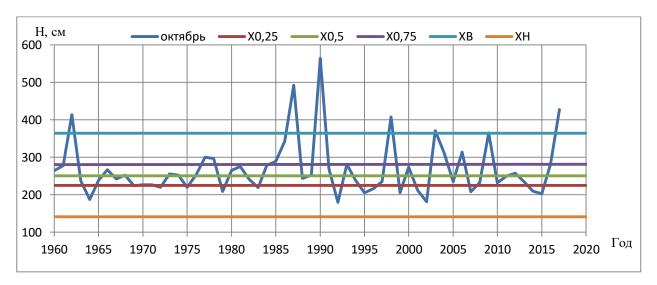


Рисунок 2.8 – Квантильная диаграмма средних месячных уровней воды озера Ильмень – д. Войцы за 1960 – 2017 гг. (октябрь)

Как показал квантильный анализ, встречаются годы экстремально высокого стояния уровней воды в период его минимальных значений. Для Ладожского озера это декабрь 1962 г. Для оз. Ильмень - 1990, 2009, 2017 гг. и октябрь1962, 1987, 1990, 1998, 2003, 2017 гг.

Годы высокого и низкого стояния уровней воды в озёрах представлены в графическом (рис. 2.9 - 2.14) и в табличном виде (табл. 2.5, 2.6).

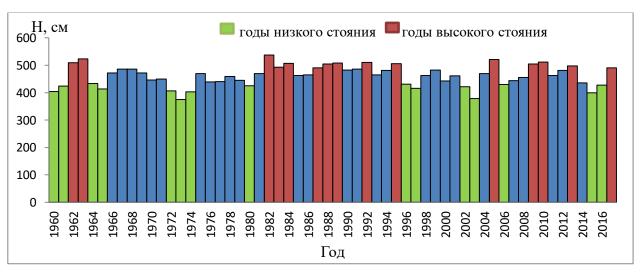


Рисунок 2.9 – Годы высокого и низкого стояния средних годовых уровней воды Ладожского озера

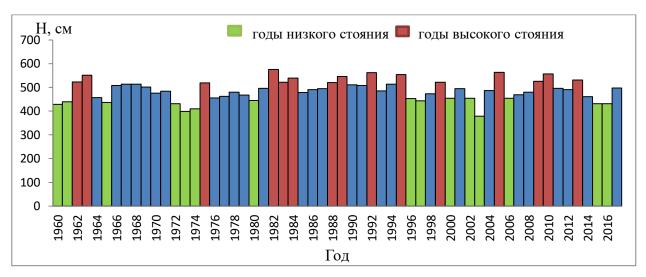


Рисунок 2.10 – Годы высокого и низкого стояния средних месячных уровней воды Ладожского озера (июнь)

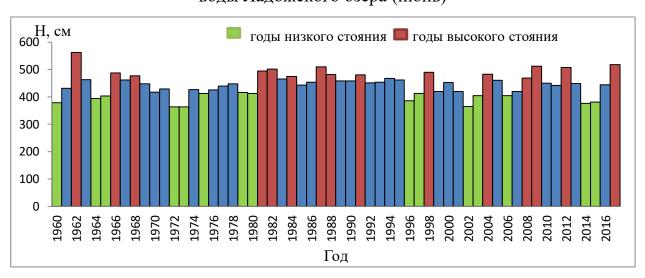


Рисунок 2.11 – Годы высокого и низкого стояния средних месячных уровней воды Ладожского озера (декабрь)

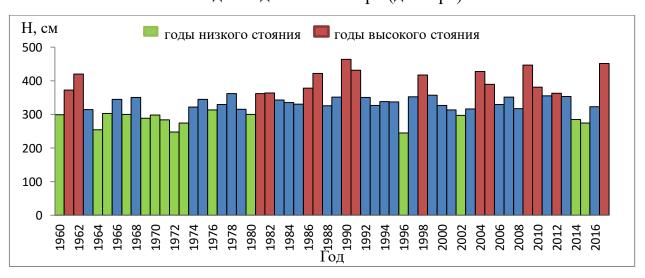


Рисунок 2.12 – Годы высокого и низкого стояния средних годовых уровней воды озера Ильмень

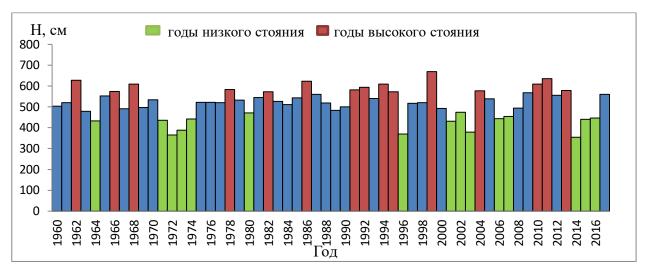


Рисунок 2.13 – Годы высокого и низкого стояния средних месячных уровней воды озера Ильмень (май)

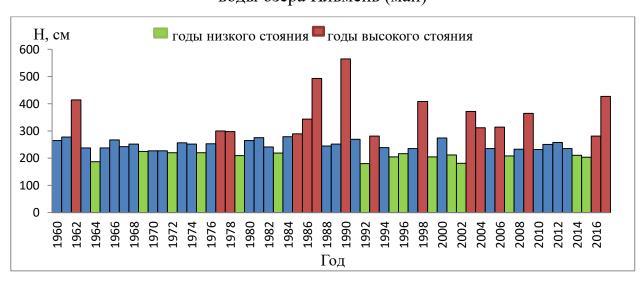


Рисунок 2.14 – Годы высокого и низкого стояния средних месячных уровней воды озера Ильмень (октябрь)

Таблица 2.5 – Годы высокого стояния уровней Ладожского озера и озера Ильмень

	Ладожское озеро	Озеро Ильмень
	1962,1963,1982,1983,1984,	1961,1962,1981,1982,1986,
Сред. год.	1987,1988,1989,1992,1995,	1987,1990,1991,1998,2004,
	2005,2009,2010 ,2013,2017	2005,2009,2010 ,2012,2017
Месяц	1962,1963,1975,1982,1983,	1962,1966,1968,1978,1982,
максимальных	1984,1988,1989,1992, 1995,	1986,1991,1992,1994, 1995 ,
уровней	1999 ,2005,2009,2010,2013	1999 ,2004,2010,2011,2013
Месяц	1962,1966,1968,1981,1982,	1962,1977,1978,1985,1986,
минимальных	1984,1987,1988,1991,1998,	1987,1990,1993,1998,2003,
уровней	2004,2008,2009,2012,2017	2004,2006,2009,2016,2017

Годы высокого и низкого положения уровней воды в озёрах наблюдаются синхронно по данным средних годовых значений и для месяцев максимальных величин.

Таблица 2.6 – Годы низкого стояния уровней Ладожского озера и озера Ильмень

	Ладожское озеро	Озеро Ильмень
	1960,1961, 1964,1965 ,1972,	1960, 1964,1965 ,1967,1969,
Сред. год.	1973,1974, 1980,1996 ,1997,	1970,1971,1972,1973,1976,
	2002,2003,2006,2015,2016	1980, 1996 ,2002,2014,2015
Месяц	1960,1961,1965, 1972,1973 ,	1964,1971, 1972,1973,1974,
максимальных	1974,1980,1996 ,1997,2000,	1980,1996 ,2001, 2002,2003 ,
уровней	2002,2003,2006 ,2015,2016	2006 ,2007,2014,2015,2016
Месяц	1960,1964,1965,1972,1973,	1964,1969,1972, 1975,1979 ,
минимальных	1975,1979 ,1980,1996,1997,	1983,1992,1995,1996,1999,
уровней	2002,2003,2006, 2014,2015	2001,2002,2007, 2014,2015

Годы низкого стояния уровней группируются в циклы продолжительностью от 2 до 3 лет и синхронно наблюдаются для Ладожского озера и озера Ильмень. Для среднегодовых значений это 1964,1965; для максимальных уровней — 2002, 2003 и 1972, 1973,1974; для минимальных уровней — 2014, 2015.

Для выделения периодов локальной нестационарности в рядах средних годовых уровней озёр использовалась низкочастотная фильтрация Баттерворта с частотой среза $\omega = 0.57$ рад/год (рис. 2.15, 2.16).

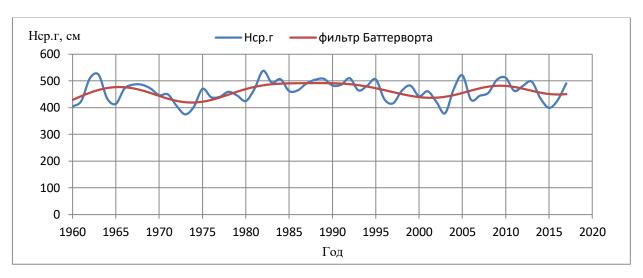


Рисунок 2.15 — Результаты низкочастотной фильтрации Баттерворта уровней воды Ладожского озера

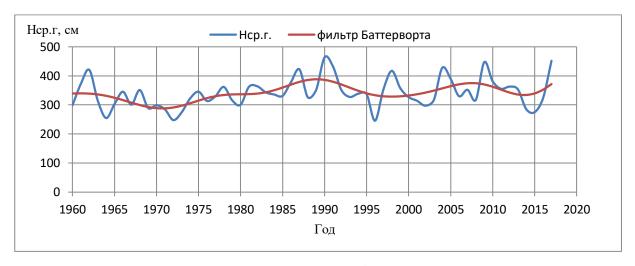


Рисунок 2.16 – Результаты низкочастотной фильтрации Баттерворта уровней воды озера Ильмень

Для Ладожского озера продолжительность цикла подъема составила от 6 до 8 лет: с 1960-1966 (6 лет), 1974-1991 (7), 2002-2010 (8), период спада наблюдался в 1966-1974 (8), 1991-2002 (11), 2010-2017 (7). Для озера Ильмень также наблюдались три цикла подъема и спада уровней воды. Периоды подъема проходили с 1970-1989 (19), 1998-2008 (10), 2013-2017 (4), период спада с 1960-1970 (10), 1989-1998 (9), 2008-2013 (5).

3 Внутригодовые колебания уровней воды озер

3.1 Методы исследований

Для анализа внутригодовых колебаний уровней воды озер использовались метод теории периодически коррелированных случайных процессов (ПКСП) и метод авторегрессии (AP).

Расчет внутригодового распределения уровня представляет собой количественную оценку распределения значений по сезонам, месяцам, а также по декадам и неделям внутри месяца. Выражается обычно в процентах или долях от годового (при сезонном и месячном распределении) уровня. Это позволяет иметь данные об уровнях в конкретные (календарные) отрезки времени. Для характеристики внутригодового хода уровня озер традиционно используются годовые гидрографы.

Характеристики ПКСП описывают так называемую повторяемость «в среднем» свойств гидрометеорологических процессов. Периодически коррелированный случайный процесс будет периодически нестационарным, в узком смысле, если инвариантны конечномерные распределения, и периодически коррелированным случайным процессом, если инвариантны математическое ожидание, дисперсия и корреляционная функция.

Оценки вероятностных характеристик периодически коррелированных случайных процессов рассчитываются по следующим формулам:

$$m^*(t) = \Sigma \xi(t + KT) \tag{3.1}$$

где $m^*(t)$ – математическое ожидание;

$$D^*(t) = \sum [\xi 0(t + KT)]2$$
 (3.2)

где $D^*(t)$ – дисперсии.

Оценка математического ожидания при этом характеризует средний многолетний повторяющийся образ внутригодового хода. Оценка дисперсии случайных периодически коррелированных процессов характеризует отклонения процесса от среднего многолетнего повторяющего образа. Оценка коррелированных зависимостей $K(t,\tau)$ характеризует особенности внутригодовой коррелированности при τ=1 месяц и особенности межгодовой коррелированности при $\tau = 1$ год, где $\tau - 3$ то сдвиг при расчете коррелированных зависимостей.

Aвторегрессионная модель — модель временных рядов, в которой значения временного ряда в данный момент линейно зависят от предыдущих значений этого же ряда. Авторегрессионный процесс порядка p определяется следующим образом

$$X_t = c + \sum_{i=1}^p a_i X_{t-i} + \varepsilon_t, \tag{3.3}$$

где $a_1,, a_p$ — параметры модели (коэффициенты авторегрессии), с — постоянная (для упрощения предполагается равной нулю), ε_t — белый шум.

Простейшим примером является авторегрессия первого порядка AP(1)процесс:

$$X_t = c + rX_{t-1} + \varepsilon_t, (3.4)$$

Для данного процесса коэффициент авторегрессии совпадает с коэффициентом авторегрессии первого порядка.

3.2 Особенности внутригодового хода

На рисунках 3.1 и 3.2 показаны ряды среднемесячных значений уровней воды для Ладожского озера и озера Ильмень за 1960 — 2017 гг. Как видно из рисунков внутригодовой ход уровней воды наблюдается на фоне долгопериодного (низкочастотного) колебания в большей степени выраженного для Ладожского озера, чем для озера Ильмень. Несмотря на то, что озера находятся в одном регионе со схожими климатическими условиями, ход уровней воды в них сильно отличается.

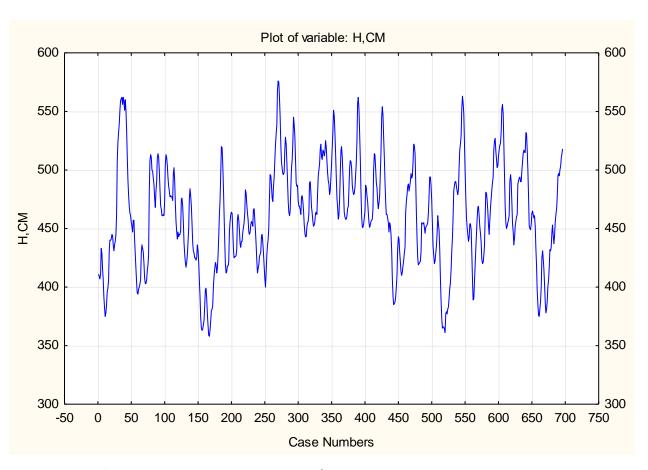


Рисунок 3.1 – Хронологический график среднемесячных значений уровней воды Ладожского озера

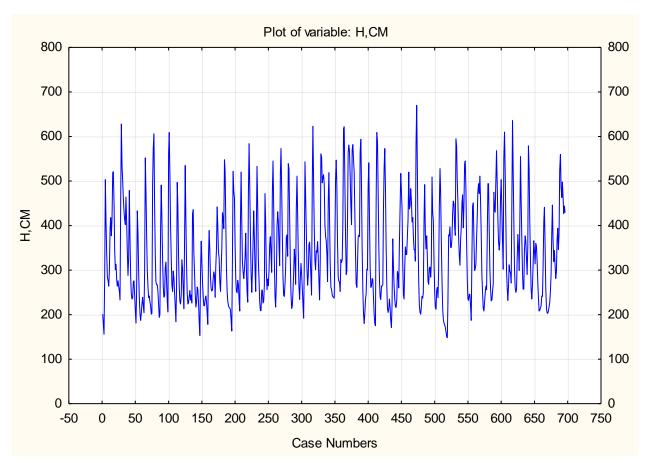


Рисунок 3.2 – Хронологический график среднемесячных значений уровней воды озера Ильмень

На рисунках 3.3, 3.4 представлены графики оценок вероятностных характеристик ПКСП: $m^*(t)$, $D^*(t)$, а их численные характеристики даны в таблицах 3.1 и 3.2.

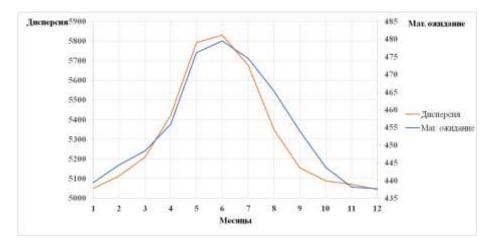


Рисунок 3.3 – Графики оценок математического ожидания и дисперсии внутригодового колебания уровня воды Ладожского озера

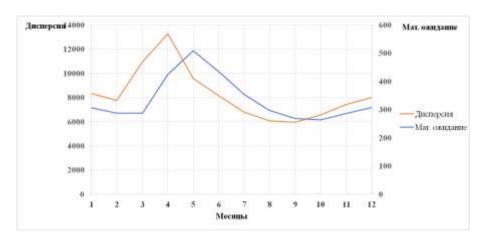


Рисунок 3.4 – Графики оценок математического ожидания и дисперсии внутригодового колебания уровня воды озера Ильмень

Графики оценок математического ожидания m(t) имеют вид кривых с ярко выраженным максимумом и минимумом. Максимум наблюдается в июне для Ладожского озера и в мае для оз. Ильмень. Минимумы на кривых m(t) приходятся на декабрь для Ладожского озера и на октябрь для оз. Ильмень. Кривая D(t) практически повторяет кривую m(t) для Ладожского озера, для озера Ильмень формы кривых m(t) и D(t) идентичны, но максимум D(t) наблюдается на один месяц раньше, чем на кривой m(t).

Графики оценок $K(t,\tau)$ при $\tau=1$ месяц и $K(t,\tau)$ при $\tau=1$ год приведены на рисунках 3.5-3.8, а их численные характеристики даны в таблицах 3.1 и 3.2. Значения параметров AP(1) ($\phi 1$), описывающих корреляционные зависимости внутригодовой изменчивости уровня Ладожского озера, близки к единице для всех месяцев года. Для уровней воды озера Ильмень $\phi 1$ значим для всех месяцев года кроме декабря.

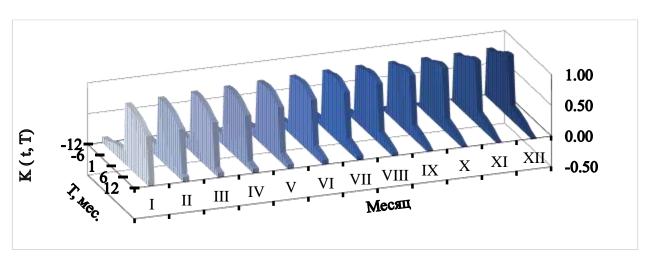


Рисунок 3.5 – Графики оценок внутригодовой коррелированности уровня Ладожского озера

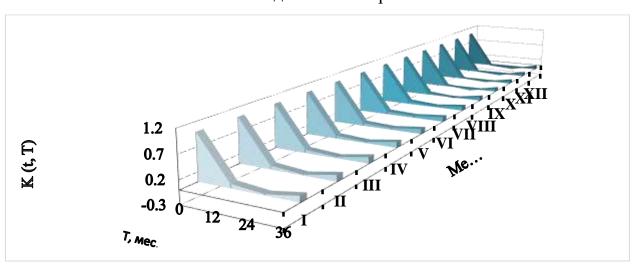


Рисунок 3.6 – Графики оценок межгодовой коррелированности уровня Ладожского озера

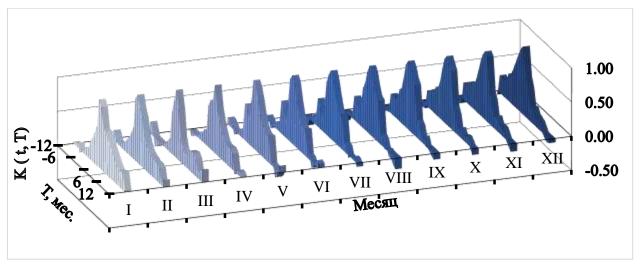


Рисунок 3.7 – Графики оценок внутригодовой коррелированности уровня озера Ильмень

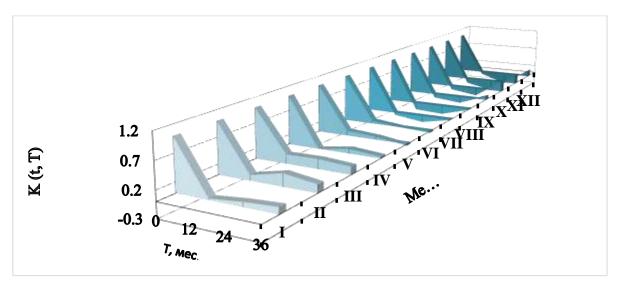


Рисунок 3.8 – Графики оценок межгодовой коррелированности уровня озера Ильмень

Наличие в структуре временных рядов долгопериодного колебания приводит к необходимости его удаления для расчета вероятностных характеристик собственно внутригодового хода. Графики оценок вероятностных характеристик ПКСП после фильтрации, приведены на рисунках 3.9 и 3.10, а их численные значения даны в таблице 3.1 и 3.2.

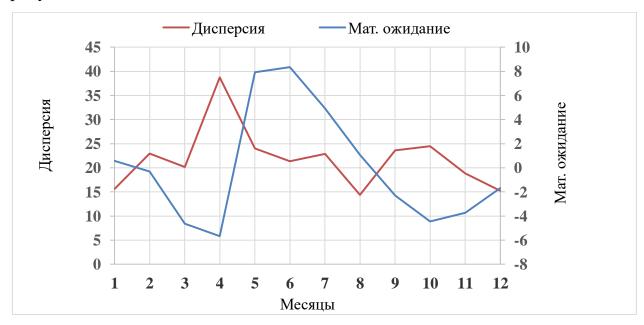


Рисунок 3.9 – Графики оценок математического ожидания и дисперсии внутригодового хода уровня воды Ладожского озера после фильтрации

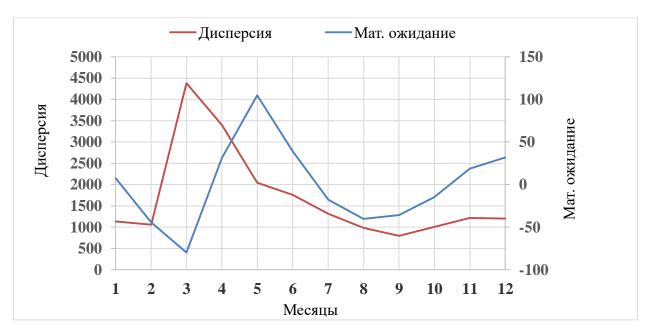


Рисунок 3.10 – Графики оценки математического ожидания и дисперсии внутригодового хода уровня воды озера Ильмень после фильтрации

Анализ графиков $m^*(t)$ и $D^*(t)$ после фильтрации показал, что существенно изменилась как форма, так и время наступления минимальных и максимальных значений внутригодового хода уровней воды в рассматриваемых озёрах.

Графики оценок $K(t,\tau)$ при $\tau=1$ мес. после фильтрации приведены на рисунках 3.11-3.12. Значения параметров AP(1) ($\phi 1$), описывающих корреляционные зависимости внутригодовой изменчивости, значительно уменьшились по сравнению с аналогичными значениями до фильтрации.

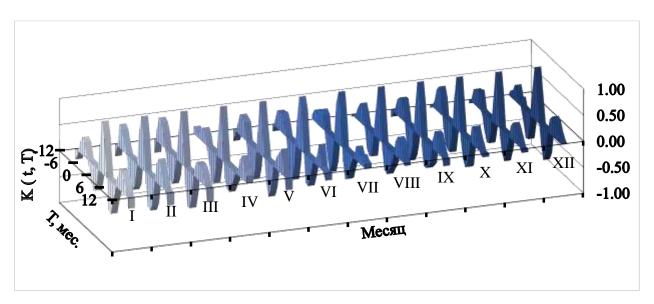


Рисунок 3.11 – Графики оценок внутригодовой коррелированности уровня воды в Ладожском озере после фильтрации

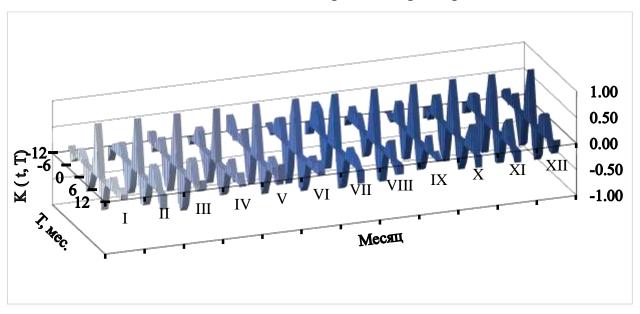


Рисунок 3.12 – Графики оценок внутригодовой коррелированности уровня воды в озере Ильмень после фильтрации

Результаты высокочастотной фильтрации рядов средних месячных значений уровня воды в озёрах приведены в приложениях И и К.

Таблица 3.1 – Значения оценок математического ожидания, дисперсии и параметра авторегрессии внутригодовых колебаний уровня Ладожского озера

Ха-ка	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
	до фильтрации												
m(t)	439	444	448	455	476	479	474	465	453	443	438	437	
D(t)	5049	5113	5209	5423	5791	5831	5676	5349	5154	5087	5070	5045	
φ1	1,00	1,00	0,99	0,99	1,00	1,00	0,99	0,99	0,99	0,99	1,00	0,21	
					после	фильтр	ации						
m(t)	0,55	-0,31	-4,64	-5,68	7,93	8,35	4,91	1,07	-2,29	-4,44	-3,73	-1,68	
D(t)	15,6	22,9	20,1	38,7	24,0	21,3	22,8	14,3	23,6	24,4	18,8	15,2	
φ1	0,70	0,59	0,44	0,37	0,52	0,77	0,52	0,49	0,57	0,44	0,54	0,51	

Таблица 3.2 – Значения оценок математического ожидания, дисперсии и параметра авторегрессии внутригодовых колебаний уровня озера Ильмень

Ха-ка	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
	до фильтрации												
m(t)	306	288	287	425	508	434	354	298	268	263	287	307	
D(t)	834	7756	10960	13299	9591	8153	6803	6074	5971	6586	7445	8017	
φ1	0,92	0,83	0,75	0,68	0,92	0,91	0,88	0,92	0,93	0,92	0,95	0,58	
					после	фильтр	ации						
m(t)	7,48	-44,6	-79,9	31,5	104	38,9	-17,7	-40,3	-35,7	-14,8	18,7	31,8	
D(t)	1132	1055	4377	3392	2045	1754	1315	983	791	1002	1212	1202	
φ1	0,49	0,49	0,28	-0,11	0,65	0,68	0,51	0,59	0,50	0,61	0,66	0,30	

Из таблиц 3.1 и 3.2 видно, что средняя многолетняя амплитуда А внутригодового хода уровня Ладожского озера до фильтрации составляла 42 ± 28 см. После фильтрации значение А уменьшилось до 14 ± 4.9 см. Для озера Ильмень $A - 245 \pm 85.6$ см до фильтрации и 185 ± 59.9 см после фильтрации. После удаления долгопериодного колебания коэффициент авторегрессии, описывающий внутригодовую коррелированность, для Ладожского озера превысил 0.70 только в январе и в июне, а для озера Ильмень в мае, июне и в ноябре.

3.3 Обобщение результатов анализа в терминах вероятностных моделей

Алгоритм анализа рядов уровней воды, основанный на выделении из последовательностей средних месячных величин двенадцати ежегодных подпоследовательностей значений для каждого месяца года, приводит к целесообразности рассмотрения внутригодового хода и межгодовой изменчивости анализируемых процессов как многомерного случайного вектора $\beta_t = \{\beta_{1,\,\,t},\,\,\ldots,\,\,\beta_{12,\,\,t}\}^T.$

Обобщим полученные в ходе анализа результаты о внутригодовых и межгодовых изменениях уровня воды в озёрах путем вероятностного моделирования. Под вероятностной моделью процесса будем понимать параметрически заданную дискретную случайную функцию, позволяющую воспроизводить ряд случайных значений с теми же вероятностными свойствами, что и ряд исходных значений. Опишем каждую компоненту вектора β_{it} , т.е. каждую подпоследовательность ежегодных значений уровней, модельным процессом AP (1). В этом случае модель примет вид

$$\beta_{it} = \phi_i \beta_{it-1} + \epsilon_{it}, i=1, ..., 12,$$
 (3.5)

где ϵ_{it} — дискретная последовательность белого шума с нулевым средним и дисперсией; δ^2_{i} , ϕ_i — параметр авторегрессии.

Параметры модели определяются через компоненты корреляционной матрицы следующими соотношениями:

$$\varphi_i = K_{i, i+1} / K_{i, i,}$$
 (3.6)

$$\delta^2 = (1 - \phi_i^2) K_{i, i} \tag{3.7}$$

Дополнив модель членами m, учитывающими среднее каждого месяца года, получим:

$$\beta_t = \varphi \beta_{t-1} + \varepsilon_t + m, \tag{3.8}$$

где $\beta_t = \{\beta_{1, t}, ..., \beta_{12, t}\}; \ \phi\beta_{t-1} = \{\phi_i\beta_{i,t-1}, ..., \phi_{12}\beta_{12, t-1}\}; \ \epsilon_t = \{\epsilon_{1, t}, ..., \epsilon_{12, t}\} -$ вектор белого шума с нулевым средним и дисперсией $\delta^2 = \{\delta^2_{1}, ..., \delta^2_{12}\}; \qquad m = \{m_1, ..., m_{12}\} -$ вектор математического ожидания; $\phi_1, ..., \phi_{12}$ – параметры модели.

Для процессов с несущественными внутригодовыми связами, которым соответствует уровень воды в озере Ильмень, запись модели будет задаваться 12 параметрами ϕ_1 , ..., ϕ_{12} , которые характеризуют корреляционные зависимости межгодовой изменчивости для каждого месяца года в виде (3.5), средним m_i и дисперсией δ^2 . Параметры ϕ_1 , определяются через компоненты матрицы межгодовой изменчивости по соотношению (3.6).

Для процессов с существенными внутригодовыми связами, которым соответсвует уровень воды в Ладожском озере, в модели (3.5) необходимо учитывать взаимную коррелированность компонент $\{\beta^t_t\}$ через задания взаимных членов. В этом случае модель (3.6) примет вид

$$\beta_{1t} = \phi_{i,1}\beta_{i,\,t-1} + \phi_{i,\,2}\beta_{i+1,\,t-1} + \epsilon_{it} + m_i,\,i=1,\,\ldots,\,12,\,t=1,\,2,\,\ldots\,N, \eqno(3.9)$$

где параметры ϕ_{i2} определяются через компоненты внутригодовой изменчивости, а параметры $\phi_{i1}-$ по аналогии с первым случаем.

Таким образом, аппроксимация ежегодных последовательностей $\{\beta^t_t\}$ модельным процессом AP позволяет в качестве количественных оценок внутригодовых и межгодовых колебаний уровня воды в озёрах использовать параметры модели (3.9).

Параметры модели для анализируемых процессов и графики оценки корреляционной зависимости внутригодовой и межгодовой изменчивости приведены в приложении П.

4 Климат и увлажненность территории

4.1 Многолетняя изменчивость метеорологических показателей

Для характеристики климата и увлажнённости водосборов Ладожского озера и озера Ильмень использовались данные средних годовых температур воздуха и количества атмосферных осадков за 1960 — 2017 гг. по метеостанциям Сортавала и Старая Русса. Исходные данные приведены в приложениях В, Г, Д, Е.

На рисунках 4.1 и 4.2 изображены линейные тренды среднегодовых значений температуры и осадков за весь рассматриваемый период. Следует обратить внимание на то, что на фоне общего тренда на повышение температуры воздуха, наблюдались два периода — с 1960 г. до конца 1980-х годов, когда наблюдался период относительного похолодания, и с конца 1980-х до 2017 г., когда началось интенсивное потепление.



Рисунок 4.1 – Графики линейного тренда среднегодовых температур воздуха и атмосферных осадков по метеостанции Сортавала

(a - температура, б - осадки)

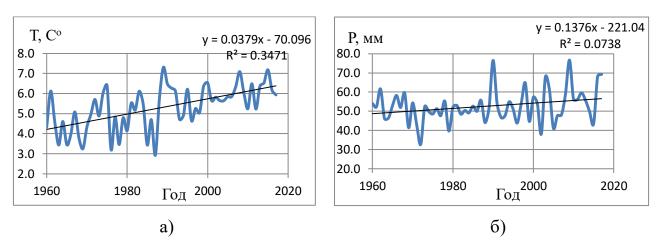


Рисунок 4.2 – Графики линейного тренда среднегодовых температур воздуха и атмосферных осадков по метеостанции Старая Русса

(a - температура, б - осадки)

Общий тренд на повышение температуры наблюдался также и для всех месяцев года. Для осадков картина не такая однозначная. Для осадков за сентябрь по станции Сортавала и март, сентябрь, декабрь по станции Старая Русса наблюдался тренд на понижение. Значимость линейных трендов средних месячных значений температуры воздуха и атмосферных осадков дана в приложениях Л, М, Н, О.

Графики средних годовых и экстремальных значений температуры для рассматриваемых станций с нанесёнными на них квантильными диаграммами приведены на рис. 4.3-4.8. Аналогичная информация для осадков содержится на рис 4.15-4.20. Результаты квантильного анализа многолетней изменчивости анализируемых процессов также приведены в табл. 4.1, 4.2 по температуре и 4.5, 4.6 по осадкам. Выполненный анализ позволяет выделить годы с высокими и низкими значениями метеорологических показателей. Годы, для которых значения характеристик выходят за квантиль $X_{0.75}$ считались теплыми и влажными, а годы со значениями метеоданных ниже квантиля $X_{0.25}$ — холодными и сухими. Годы, для которых значения метеорологических показателей выходили за верхнюю и нижнюю границы, т.е. $X_{\rm B}$ и $X_{\rm H}$ считались экстремальными.

Таблица 4.1 — Статистические характеристики межгодовой изменчивости температуры воздуха по метеостанции Старая Русса

	X_{min}	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X_{max}	R	Q	T*	X_{B}	X_{H}	m _x	σ	0,74Q
сред.год.	2,9	4,7	5,5	6,1	7,3	4,4	1,5	5	8,3	2,5	5,3	1,09	1,1
январь	-18,6	-10,2	-6,0	-3,6	-0,9	17,7	6,6	-6	6,2	-20	-7,3	4,38	4,8
июль	14,8	16,7	17,8	19,1	23,7	8,9	2,4	18	22,7	13,1	18,0	1,78	1,8

Таблица 4.2 – Статистические характеристики межгодовой изменчивости температуры воздуха по метеостанции Сортавала

	X _{min}	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X_{max}	R	Q	T*	X_{B}	X_{H}	m_x	σ	0,74Q
сред.год.	0,9	2,9	3,7	4,4	5,6	4,7	1,5	4	6,7	0,6	3,6	1,18	1,1
январь	-22,1	-11,7	-8,1	-5,3	-2,1	20,0	6,4	-8	4,2	-21	-9,0	4,77	4,7
июль	13,8	15,7	16,9	18,1	21,6	7,8	2,4	17	21,7	12,0	17,0	1,75	1,8

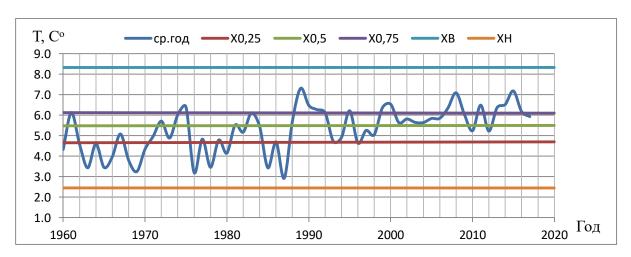


Рисунок 4.3 – Квантильная диаграмма средних годовых значений температуры воздуха по метеостанции Старая Русса

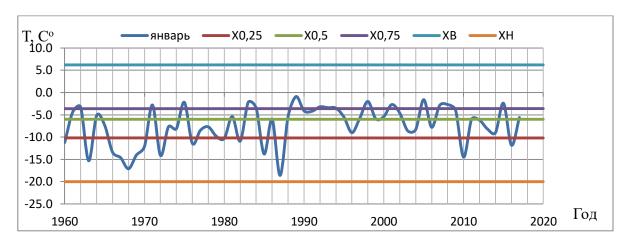


Рисунок 4.4 — Квантильная диаграмма средних месячных значений температуры воздуха по метеостанции Старая Русса (январь)

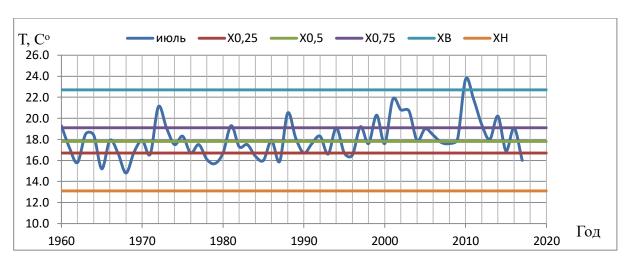


Рисунок 4.5 – Квантильная диаграмма средних месячных значений температуры воздуха по метеостанции Старая Русса (июль)

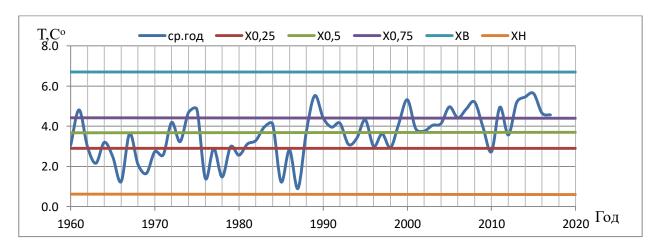


Рисунок 4.6 – Квантильная диаграмма средних годовых значений температуры воздуха по метеостанции Сортавала

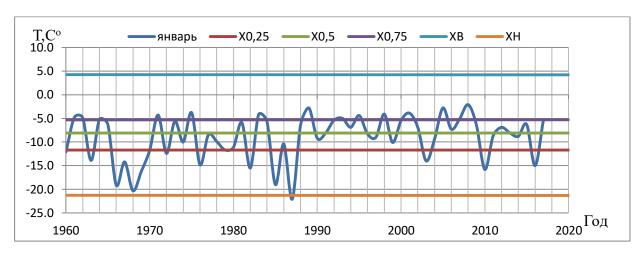


Рисунок 4.7 — Квантильная диаграмма средних месячных значений температуры воздуха по метеостанции Сортавала (январь)

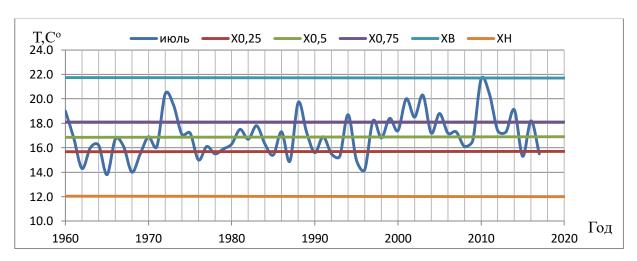


Рисунок 4.8 — Квантильная диаграмма средних месячных значений температуры воздуха по метеостанции Сортавала (июль)

Как показал квантильный анализ, встречаются годы с экстремально высокими и низкими значениями температуры воздуха. Так, для станции Старая Русса — это июль 2010 г. с экстремально высокой температурой. Для станции Сортавала — это июль 1987 г. с экстремально низкой температурой.

Годы с холодными и теплыми условиями представлены в графическом (рис. 4.9 - 4.14) и в табличном виде (табл. 4.3, 4.4).

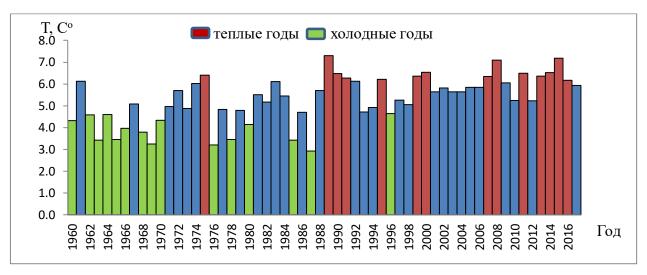


Рисунок 4.9 – Годы с высокими и низкими значениями средней годовой температуры воздуха по станции Старая Русса

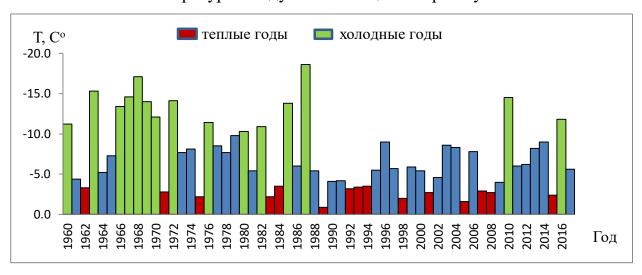


Рисунок 4.10 – Годы с высокими и низкими значениями средней месячной температуры воздуха по станции Старая Русса (январь)

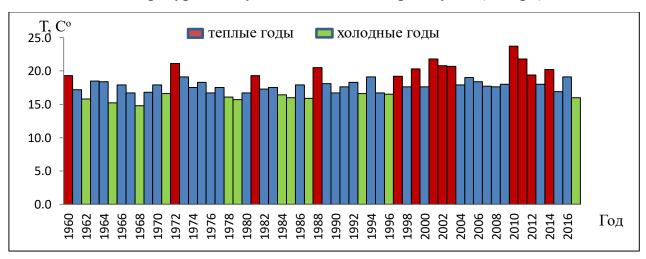


Рисунок 4.11 – Годы с высокими и низкими значениями средней месячной температуры воздуха по станции Старая Русса (июль)

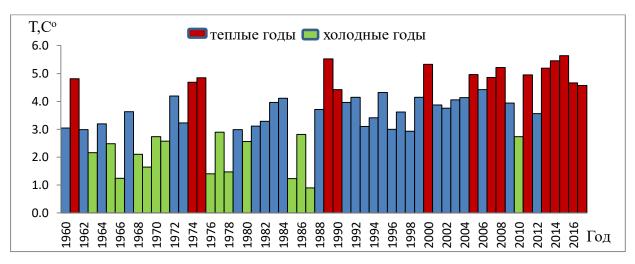


Рисунок 4.12 – Годы с высокими и низкими значениями средней годовой температуры воздуха по станции Сортавала

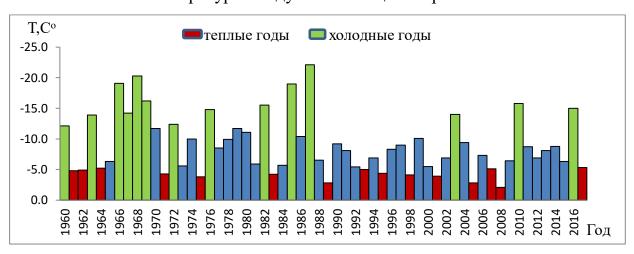


Рисунок 4.13 – Годы с высокими и низкими значениями средней месячной температуры воздуха по станции Сортавала (январь)

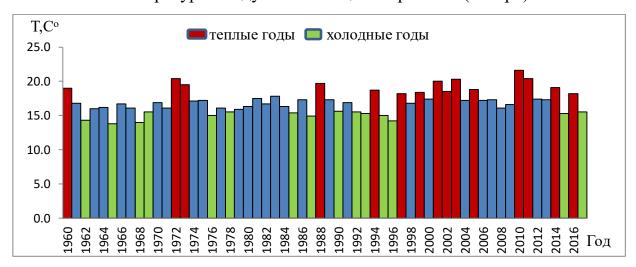


Рисунок 4.14 – Годы с высокими и низкими значениями средней месячной температуры воздуха по станции Сортавала (июль)

Таблица 4.3 – Теплые годы по наблюдениям на метеорологических станциях Старая Русса и Сортавала

	Сортавала	Старая Русса
	1961,1974, 1975,1989,1990 ,	1975,1989,1990 ,1991,1995,
Сред. год.	2000,2005, 2007,2008,2011,	1999,2000, 2007,2008,2011,
	2013,2014,2015,2016 ,2017	2013,2014,2015,2016
	1960,1972 ,1973,1988,1994,	1960,1972 ,1981,1988, 1997 ,
Июль	1997,1999,2001,2002,2003,	1999,2001,2002,2003,2010,
	2005, 2010,2011 ,2014,2016	2011 ,2012,2014
	1961,1962,1964, 1971,1975,	1962, 1971,1975,1983 ,1984,
Январь	1983 ,1989,1993,1995, 1998 ,	1989,1992,1993,1994 ,1998,
	2001,2005,2007,2008 ,2017	2001,2005,2007,2008 ,2015

Таблица 4.4 – Холодные годы по наблюдениям на метеорологических станциях Старая Русса и Сортавала

	Сортавала	Старая Русса
	1963, 1965,1966,1968,1969,	1960,1962,1963,1964, 1965 ,
Сред. год.	1970 ,1971,1976,1977, 1978 ,	1966,1968,1969,1970 ,1976,
	1980,1985 ,1986,1987,2010	1978,1980,1985 ,1987,1996
	1962,1965,1968 ,1969,1976,	1962,1965,1968 ,1971,1978,
Июль	1978, 1985,1987 ,1990,1992,	1979,1984, 1985,1987 ,1993,
	1993,1995,1996,2015,2017	1996,2017
	1960,1963,1966,1967,1968,	1960,1963,1966,1967,1968,
Январь	1969 ,1972,1976, 1982,1985 ,	1969 ,1970,1972,1976,1980,
	1987 ,2003, 2010,2016	1982,1985,1987,2010,2016

Холодные и теплые годы для рассмотренных метеостанций наблюдались синхронно как по данным средних годовых значений, так и для месяцев

максимальных и минимальных величин. Годы группировались в циклы продолжительностью от 2 до 4 лет.

Таблица 4.5 — Статистические характеристики многолетней изменчивости атмосферных осадков по метеостанции Старая Русса

	X _{min}	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X_{max}	R	Q	T*	X_{B}	X_{H}	m_x	σ	0,74Q
сред.год.	32,7	47,7	52,2	56,0	76,7	44,0	8,3	52	68	35	52,7	8,55	6,1
февраль	6,4	20,7	30,7	40,2	60,7	54,3	19,6	31	70	-9	30,9	13,48	14,5
август	2,3	43,9	69,9	97,9	183	181,0	54,0	70	179	-37	75,0	43,37	40,0

Таблица 4.6 – Статистические характеристики многолетней изменчивости атмосферных осадков на метеостанции Сортавала

	X_{min}	$X_{0.25}$	$X_{0.5}$	$X_{0.75}$	X_{max}	R	Q	T*	X_{B}	X_{H}	m_x	σ	0,74Q
сред.год.	39,0	46,8	52,4	57,7	74,4	35,4	10,9	52	74	30	53,3	8,80	8,1
апрель	6,0	17,6	32,6	41,2	71,7	65,7	23,6	31	77	-18	32,3	15,88	17,5
август	16,9	48,3	72,1	101,8	260	242,6	53,5	74	182	-32	80,0	44,14	39,6

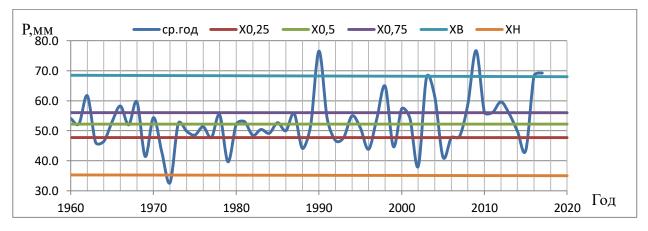


Рисунок 4.15 — Квантильная диаграмма средних годовых значений атмосферных осадков по метеостанции Старая Русса

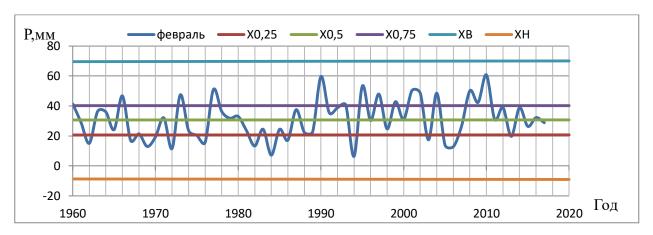


Рисунок 4.16 — Квантильная диаграмма средних месячных значений атмосферных осадков по метеостанции Старая Русса (февраль)

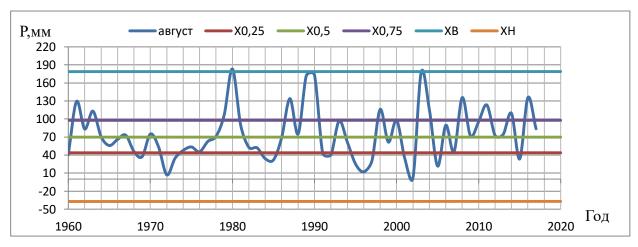


Рисунок 4.17 — Квантильная диаграмма средних месячных значений атмосферных осадков по метеостанции Старая Русса (август)

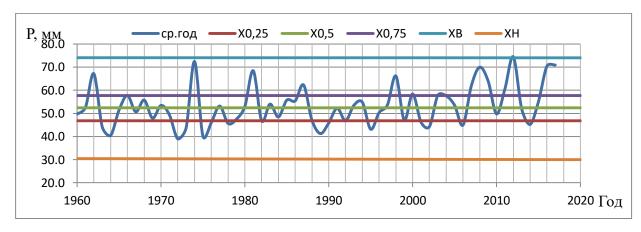


Рисунок 4.18 — Квантильная диаграмма средних годовых значений атмосферных осадков по метеостанции Сортавала

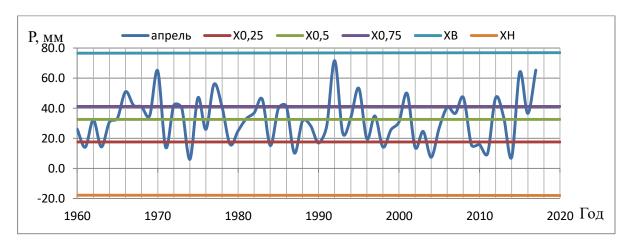


Рисунок 4.19 — Квантильная диаграмма средних месячных значений атмосферных осадков по метеостанции Сортавала (апрель)

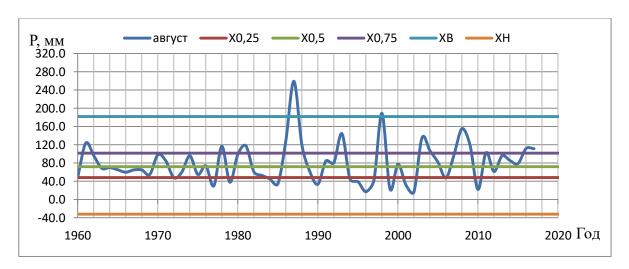


Рисунок 4.20 — Квантильная диаграмма средних месячных значений атмосферных осадков по метеостанции Сортавала (август)

Как показал квантильный анализ, наблюдались экстремально сухие и влажные годы. Для станции Старая Русса сухим был 1972 г., а влажными – 1990, 2003, 2009, 2017 гг. Влажные условия в августе наблюдались в 1980, 2003 гг. Для станции Сортавала влажным был 2012 г. и август 1987, 1998 гг.

Сухие и влажные годы представлены в графическом (рис. 4.21-4.26) и в табличном виде (табл. 4.7, 4.8).

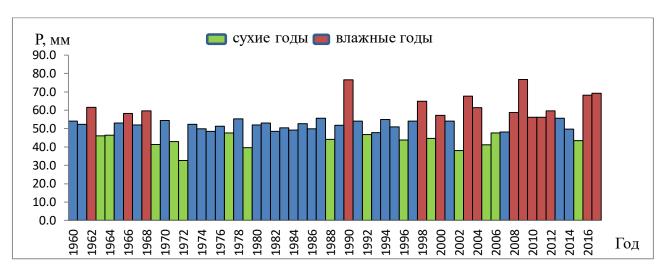


Рисунок 4.21 — Сухие и влажные года средних годовых значений атмосферных осадков по станции Старая Русса

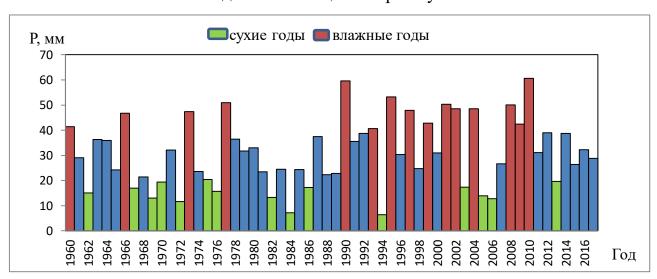


Рисунок 4.22 — Сухие и влажные года средних месячных значений атмосферных осадков по станции Старая Русса (февраль)

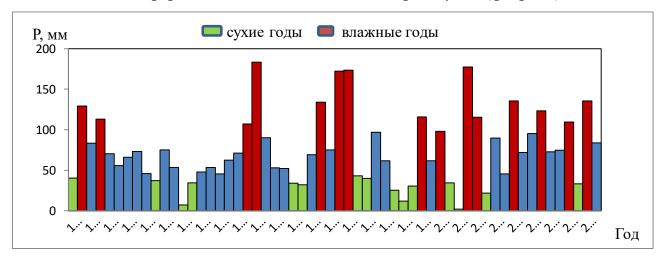


Рисунок 4.23 — Сухие и влажные года средних месячных значений атмосферных осадков по станции Старая Русса (август)

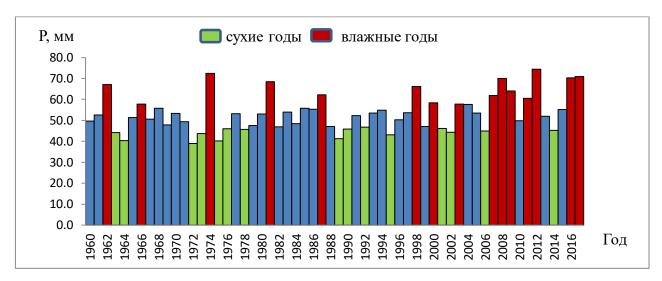


Рисунок 4.24 — Сухие и влажные года средних годовых значений атмосферных осадков по станции Сортавала

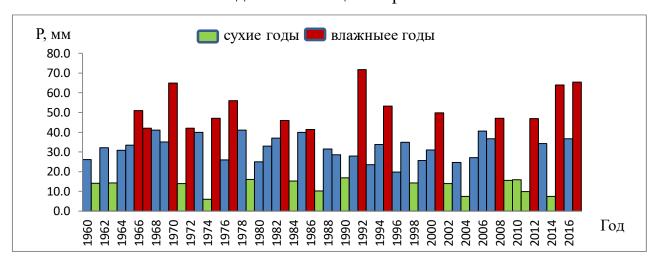


Рисунок 4.25 — Сухие и влажные года средних месячных значений атмосферных осадков по станции Сортавала (апрель)

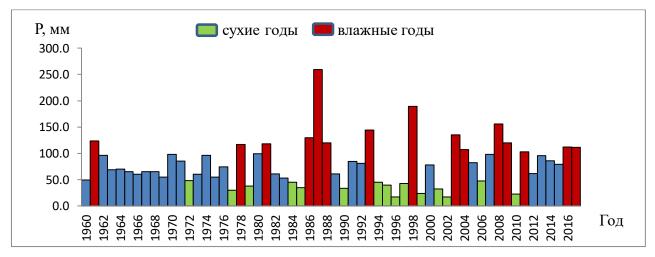


Рисунок 4.26 — Сухие и влажные годы средних месячных значений атмосферных осадков по станции Сортавала (август)

Таблица 4.7 – Влажные годы для метеорологических станций Старая Русса и Сортавала

	Сортавала	Старая Русса
	1962,1966 ,1974,1981,1987,	1962,1966 ,1968,1990, 1998 ,
Сред. год.	1998,2000,2003 ,2007, 2008 ,	2000,2003 ,2004, 2008,2009 ,
	2009,2011,2012,2016,2017	2010, 2011,2012,2016,2017
Месяц	1961,1978,1981,1986,1987,	1961,1963,1979,1980,1987,
максимального	1988,1993,1998, 2003,2004,	1989,1990,1998,2000, 2003,
кол-во осадков	2008 ,2009,2011,2016,2017	2004,2008 ,2011,2014,2016
Месяц	1966,1967,1970,1972,1975,	1960,1966,1973,1977,1990,
минимального	1977,1983,1986,1992,1995,	1993,1995,1997,1999,2001,
кол-во осадков	2001,2008,2012,2015,2017	2002,2004,2008,2009,2010

Таблица 4.8 – Сухие годы для метеорологических станций Старая Русса и Сортавала

	Сортавала	Старая Русса
	1963,1964 ,1972,1973,1975,	1963,1964 ,1969,1971,1972,
Сред. год.	1976,1978,1989,1990,1992,	1977,1979,1988,1992,1996,
	1995,2001,2002,2006,2014	1999,2002,2005,2006,2015
Месяц	1972,1977,1979, 1984,1985 ,	1960,1969,1972,1973, 1984,
максимального	1990,1994, 1995,1996,1997 ,	1985 ,1991,1992, 1995,1996 ,
кол-во осадков	1999, 2001,2002 ,2006,2010	1997,2001,2002 ,2005,2015
Месяц	1961,1963,1971,1974,1979,	1962,1967,1969,1970,1972,
минимального	1984,1987,1990,1998,2002,	1975,1976,1982,1984,1986,
кол-во осадков	2004,2009,2010,2011,2014	1994,2003,2005,2006,2013

Сухие и влажные годы для рассматриваемых метеостанций наблюдались синхронно по данным средних годовых значений и для месяцев максимальных

величин. Годы группировались в циклы продолжительностью от 2 до 3 лет и синхронно наблюдались для станций Сортавала и Старая Русса.

Для выделения периодов локальной нестационарности в рядах средних годовых значений температуры воздуха и количества атмосферных осадков использовалась низкочастотная фильтрация Баттерворта с частотой среза $\omega = 0.57$ рад/год (рис. 4.27 - 4.30).

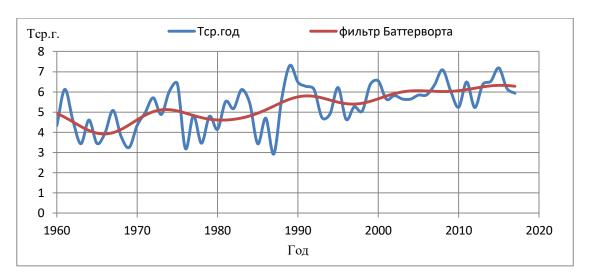


Рисунок 4.27 — Результаты низкочастотной фильтрации Баттерворта средних годовых значений температуры воздуха на станции Старая Русса

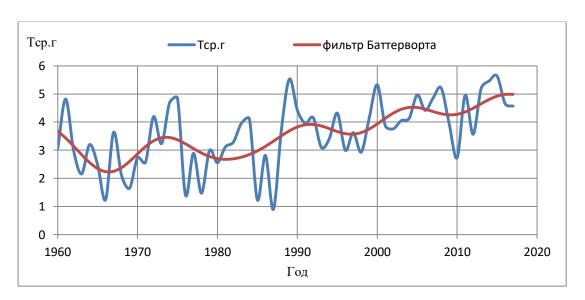


Рисунок 4.28 — Результаты низкочастотной фильтрации Баттерворта ряда средней годовой температуры воздуха на станции Сортавала

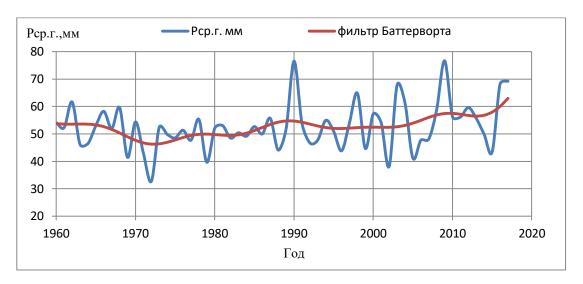


Рисунок 4.29 — Результаты низкочастотной фильтрации Баттерворта ряда средних годовых значений атмосферных осадков на станции Старая Русса

Рисунок 4.30 — Результаты низкочастотной фильтрации Баттерворта ряда средних годовых значений атмосферных осадков на станции Сортавала

Из рисунков 4.27 — 4.30 видно, что для многолетней изменчивости метеорологических показателей характерны циклы подъема и спада продолжительностью 10 — 15 лет. Для температуры воздуха эти циклы выражены достаточно четко и на рассматриваемых станциях наблюдаются синхронно. Ход подъемов и спадов средних годовых значений атмосферных осадков в общих чертах повторяется на обеих станциях. Однако резкое увеличение количества осадков на станции Старая Русса в 1990 году, привело к

рассогласованию колебаний – подъем на станции Старая Русса и спад на станции Сортавала.

4.2 Внутригодовые колебания метеорологических показателей

На рисунках 4.31-4.34 представлены графики оценок вероятностных характеристик ПКСП (m * (t), D * (t)), а их численные характеристики в таблице 4.9 и 4.10.

Рисунок 4.31 — Графики оценок математического ожидания и дисперсии внутригодового хода атмосферных осадков на метеостанции Старая Русса

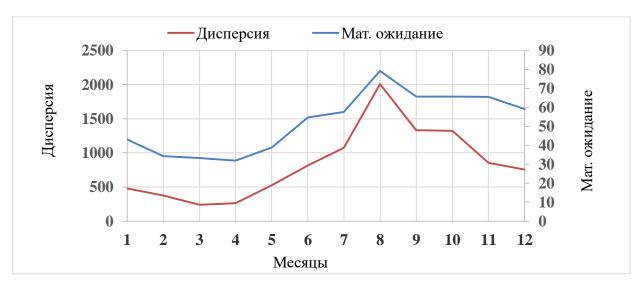


Рисунок 4.32 — Графики оценок математического ожидания и дисперсии внутригодового хода атмосферных осадков на метеостанции Сортавала

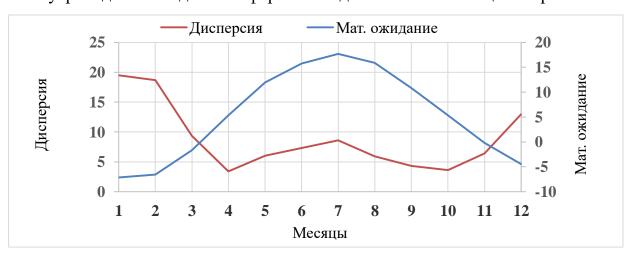


Рисунок 4.33 – Графики оценок математического ожидания и дисперсии внутригодового хода температуры на метеостанции Старая Русса

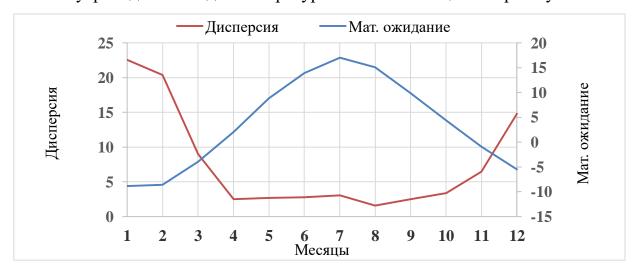


Рисунок 4.34 — Графики оценок математического ожидания и дисперсии внутригодового хода температуры на метеостанции Сортавала

Графики $m^*(t)$ имеют вид кривых с ярко выраженным максимумом и минимумом. Максимум осадков наблюдается в июле на ст. Старая Русса и в августе на ст. Сортавала. Максимальная температура на обеих станциях наблюдается в июле. Минимумы осадков приходятся на февраль для ст. Старая Русса и на апрель для ст. Сортавала. Минимальная температура на обеих станциях наблюдается в январе. Ход кривых $D^*(t)$ осадков практически повторяет ход кривых $m^*(t)$ для обеих станций. Ход кривых $D^*(t)$ температуры воздуха практически зеркально отражает ход кривых $m^*(t)$ для обеих станций. Максимум $D^*(t)$ наблюдается в январе для обеих станций, а минимум в апреле для ст. Старая Русса и в августе для ст. Сортавала.

Матрицы корреляционных зависимостей внутригодовой и межгодовой изменчивости метеорологических показателей приведены в приложении Π , а графики оценок $K(t,\tau)$ при $\tau=1$ месяц и $K(t,\tau)$ при $\tau=1$ год – на рисунках 4.35 – 4.42, а их численная характеристика в таблице 4.9, 4.10.

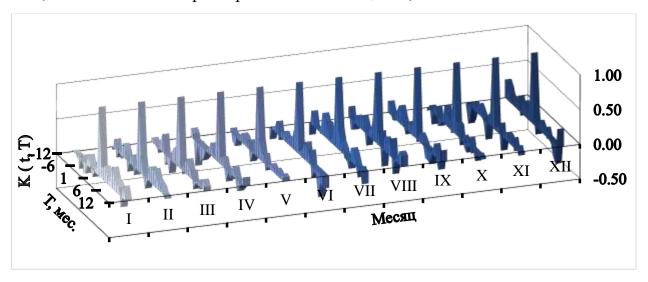


Рисунок 4.35 – Графики вероятностных характеристик внутригодовой коррелированности атмосферных осадков на метеостанции Старая Русса

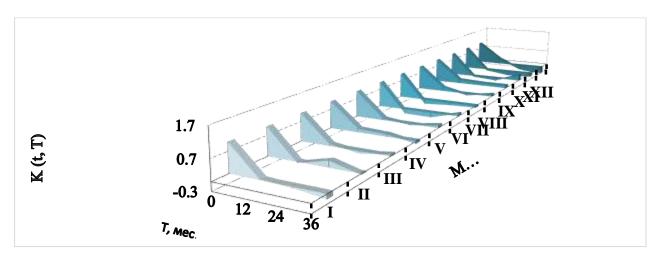


Рисунок 4.36 – Графики вероятностных характеристик межгодовой коррелированности атмосферных осадков на метеостанции Старая Русса

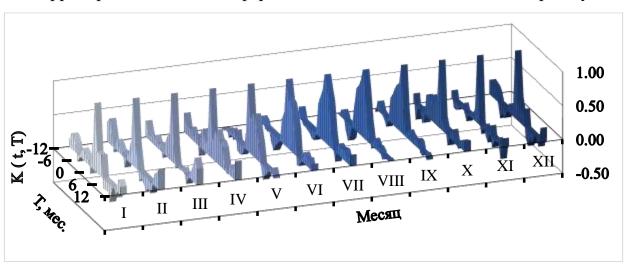


Рисунок 4.37 — Графики вероятностных характеристик внутригодовой коррелированности температуры на метеостанции Старая Русса

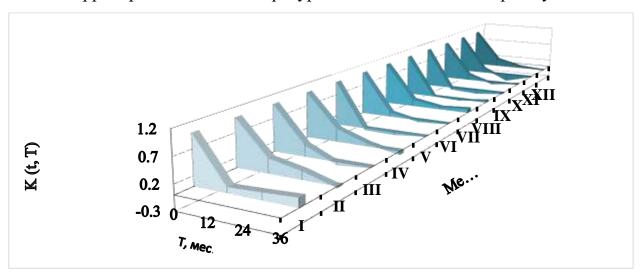


Рисунок 4.38 – Графики вероятностных характеристик межгодовой коррелированности температуры на метеостанции Старая Русса

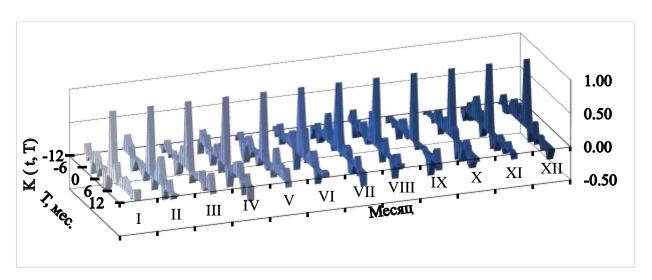


Рисунок 4.39 — Графики вероятностных характеристик внутригодовой коррелированности атмосферных осадков на метеостанции Сортавала

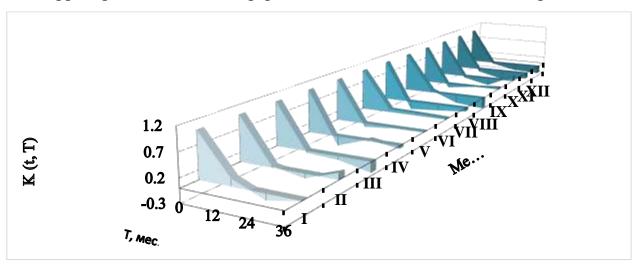


Рисунок 4.40 – Графики вероятностных характеристик межгодовой коррелированности атмосферных осадков на метеостанции Сортавала

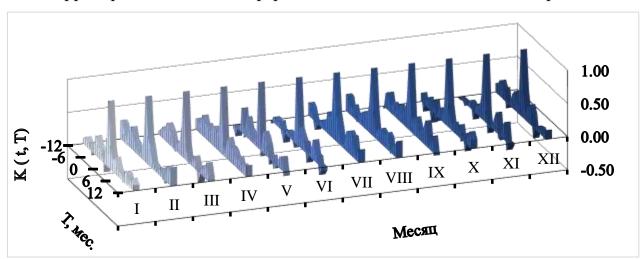


Рисунок 4.41 Графики вероятностных характеристик внутригодовой коррелированности температуры на метеостанции Сортавала

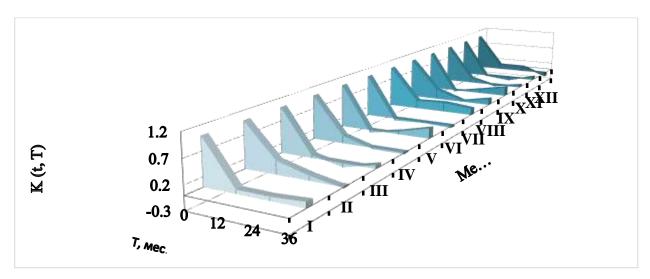


Рисунок 4.42 — Графики вероятностных характеристик межгодовой коррелированности температуры на метеостанции Сортавала

Таблица 4.9 – Значения вероятностных характеристик математического ожидания, дисперсии и параметра авторегрессии внутригодовых колебаний температуры воздуха для метеостанций Сортавала и Старая Русса

Ха-ка	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
	Сортавала													
m(t)	n(t) -8,9 -8,6 -3,9 2,1 8,8 13,9 17,0 15,1 9,9 4,4 -0,9 -5,5													
D(t)	22,5	20,4	8,9	2,5	2,7	2,8	3,1	1,6	2,5	3,4	6,5	14,8		
φ1	0,35	0,42	0,23	0,18	-0,09	0,28	0,42	0,39	0,21	0,33	0,18	0,41		
					Ста	рая Рус	ca							
m(t)	-7,1	-6,6	-1,7	5,3	11,9	15,7	17,7	15,9	10,8	5,4	-0,2	-4,4		
D(t)	19,4	18,7	9,3	3,4	6,0	7,3	8,5	5,9	4,3	3,6	6,4	12,9		
φ1	0,32	0,37	0,25	0,25	0,48	0,73	0,81	0,70	0,37	0,19	0,06	0,34		

Таблица 4.10 — Значения вероятностных характеристик математического ожидания, дисперсии и параметра авторегрессии внутригодовых колебаний атмосферных осадков для метеостанций Сортавала и Старая Русса

Ха-ка	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
	Сортавала													
m _x (t)	a _x (t) 43,1 34,3 33,2 31,9 38,9 54,7 57,7 79,2 65,7 65,5 59,2													
D(t)	480	375	237	264	526	817	1076	2007	1332	1323	856	755		
φ1	0,14	0,14	0,35	-0,09	0,16	0,39	0,24	0,05	0,01	0,17	0,10	0,23		
					Ста	рая Рус	cca							
m _x (t)	38,9	30,2	33,3	37,1	50,9	70,5	75,3	74,3	56,3	55,6	52,7	45,1		
D(t)	329	192	286	475	705	1391	1782	1924	676	776	471	221		
φ1	0,13	0,26	0,10	0,08	0,29	0,04	0,31	-0,01	-0,04	0,18	0,04	0,18		

Значения параметров AP(1) (ϕ 1), описывающих корреляционные зависимости внутригодовой изменчивости осадков не значимы для всех месяцев года (табл. 4.10). Для температуры воздуха на ст. Старая Русса с июня по август значения ϕ 1 > 0,60 (табл. 4.9).

Из таблиц 4.9 и 4.10 следует, что амплитуда среднего многолетнего внутригодового хода температуры воздуха на станции Сортавала составила 25,9 \pm 4,6 0 C, а по ст. Старая Русса - 24,8 \pm 4,0 0 C. Для осадков амплитуда составила 47,3 \pm 42,1 мм по ст. Сортавала, а по ст. Старая Русса 45,1 \pm 41,6 мм.

4.3 Увлажненность территории

Для оценки степени увлажненности территории был использован индекс Де-Мартона ($\alpha^{\rm M}$), который представляет собой отношение годовой суммы осадков к средней годовой температуре воздуха (Т °C + 10 °C) и позволяет различить два прямо противоположных по степени увлажнения территории типа климата – гумидный ($\alpha^{\rm M} > 0.15$) и аридный ($\alpha^{\rm M} < 0.15$).

Для характеристики многолетней изменчивости увлажненности рассчитывались временные ряды индексов Де-Мартона в период с 1960 — 2017 гг. для метеостанций Старая Русса и Сортавала (приложение Р). Полученные значения сопоставлялись с интегральными индексами увлажнённости, вычисленными ранее для набора метеостанций в пределах водосборов, что показало хорошее соответствие (рис.4.43, 4.44).

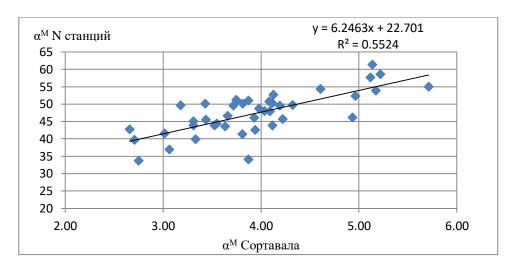


Рисунок 4.43 — График связи индексов Де-Мартона метеорологических станций на водосборе Ладожского озера

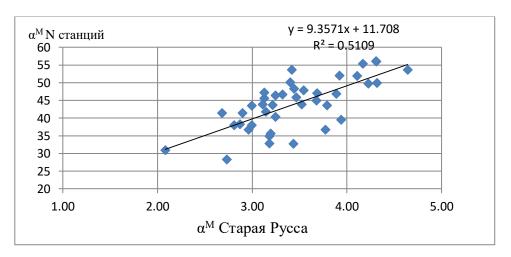


Рисунок 4.44 — График связи индексов Де-Мартона метеорологических станций на водосборе оз. Ильмень

Расчеты индекса Де-мартона, показали, что климат бассейна Ладожского озера и озера Ильмень является гумидным ($\alpha^{M} > 0.15$).

Периоды локальной нестационарности многолетней изменчивости увлажненности четко прослеживаются по результатам низкочастотной фильтрации Баттерворта с частотой среза $\omega = 0,57$ рад/год (рис. 4.43, 4.44) и хорошо согласуются с аналогичными периодами многолетней изменчивости уровней воды (рис. 4.45 - 4.48).

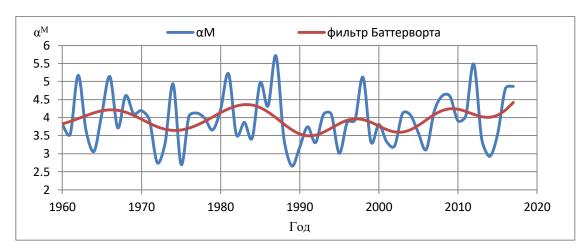


Рисунок 4.45 — Результаты низкочастотной фильтрации Баттерворта индекса Де-Мартона на станции Сортавала

Рисунок 4.46 — Результаты низкочастотной фильтрации Баттерворта индекса Де-Мартона на станции Старая Русса

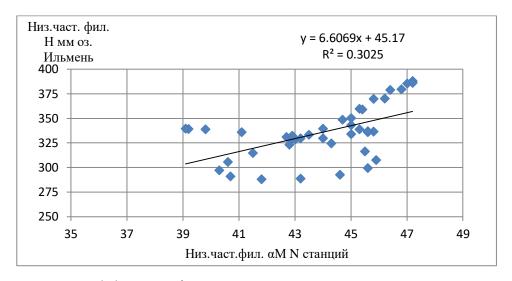


Рисунок 4.47 – График связи НЧФ уровня в оз. Ильмень и результатов НЧФ интегрального индекса Де-Мартона на его водосборе

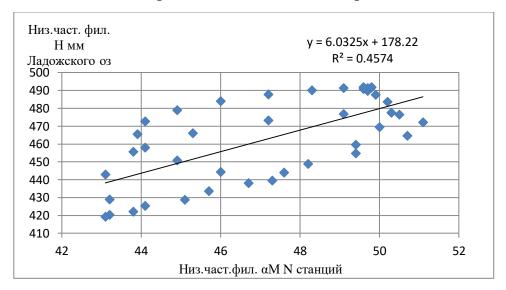


Рисунок 4.48 — График связи результатов НЧФ уровня в Ладожском озере и результатов НЧФ интегрального индекса Де-Мартона на его водосборе

Выводы

Для многолетней изменчивости уровня озёр характерны периоды локальной нестационарности - фазы или циклы подъёма и спада продолжительностью в несколько лет. Так, для Ладожского озера подъем уровня наблюдался с 1960 – 1966, 1975 – 1991, 2002 – 2009 гг., спад - с 1967 – 1974, 1992 – 2001, 2010 – 2017 гг. Для озера Ильмень также наблюдались три цикла подъема и спада уровней воды. Периоды подъема пришлись на 1970 – 1989, 1998 – 2008, 2013 – 2017 гг., периоды спада - с 1960 – 1970, 1989 – 1998, 2009 – 2013 гг.

Годы низкого стояния уровней группировались в циклы продолжительностью от 2 до 3 лет и синхронно наблюдались для Ладожского озера и озера Ильмень. Для среднегодовых значений это 1964,1965 гг.; для максимальных уровней – 2002, 2003 и 1972, 1973,1974 гг.; для минимальных уровней – 2014, 2015 гг.

Для внутригодового хода уровня воды в озёрах характерно наличие четко выраженного максимума и минимума. В Ладожском озере максимальные значения наблюдались в июне, в озере Ильмень - в мае. Минимальные значения пришлись на декабрь в Ладожском озере и на октябрь - в оз. Ильмень.

Экстремально высокий уровень в период минимальных значений в Ладожском озере наблюдался только в декабре 1962 г. (562 см) при среднем многолетнем значении 437 см., а в озере Ильмень - значительно чаще — в октябре 1962 г. (414 см.), 1987 г. (492 см.), 1990 г. (564 см.), 1998 г. (408 см.), 2003 г. (371 см.), 2017 г. (427 см.) при среднем многолетнем уровне 263 см.

Средняя многолетняя амплитуда внутригодового хода уровня Ладожского озера составила 42 ± 28 см. до фильтрации и $14 \pm 4,9$ см. после фильтрации, значительно изменившись после удаления долгопериодного колебания. Для озера Ильмень аналогичная характеристика — $245 \pm 85,6$ см до фильтрации и $185 \pm 59,9$ см после фильтрации.

На фоне общего тренда на повышение средней годовой температуры воздуха за весь рассматриваемый период, наблюдались два отрезка времени — с 1960 г. до конца 1980-х годов, когда преобладала относительно холодная погода, и с конца 1980-х годов до 2017 г., когда началось интенсивное потепление. Общий тренд на повышение температуры в большей или меньшей степени выражен и для ежегодных последовательностей для всех месяцев года за исключением июня и октября. Так, в июне тренд вообще отсутствует, а в октябре наблюдалось интенсивное похолодание с начала 1960-х до конца 1970-х годов, после чего колебания температуры стабилизировались около среднего многолетнего значения.

Для внутригодового хода температуры воздуха характерно наличие четко выраженного максимума и минимума. Максимальная температура воздуха на обеих станциях наблюдалась в июле, а минимальная - в январе. Встречались годы с экстремально высокими и низкими значениями температуры воздуха. Так, на станции Старая Русса — это июль 2010 г. с экстремально высокой температурой 23,7 ° С при среднем многолетнем значении 17,7° С. На станции Сортавала — это июль 1987 г. с экстремально низкой температурой 14,9° С при среднем многолетнем значении 17,0 ° С.

Амплитуда среднего многолетнего внутригодового хода температуры воздуха с 1960 по 2017 гг. на станции Сортавала составила 25,9 \pm 4,6 0 C, а на ст. Старая Русса — 24,8 \pm 4,0 0 C.

Внутригодовая коррелированность температуры воздуха существенна только для отдельных месяцев года (ст. Старая Русса, с июня по август).

Особенности многолетней изменчивости осадков на рассматриваемых станциях различны. Общий тренд на повышение достаточно четко выражен только на ст. Сортавала. Однако в сентябре на этой же станции наблюдался тренд на понижение. На ст. Старая Русса на фоне незначительного тренда на увеличение количества осадков за весь рассматриваемый период выделяются несколько отрезков со специфическими особенностями. Так, с 1960 г. до 1972 г. наблюдался тренд на уменьшение количества осадков; с 1973 г. до 1989-х годов

наблюдались колебания осадков около медианы 50,4 мм при размахе 16,0 мм; с 1990 г. до 2017 г. - колебания около медианы 54,5 мм при размахе 38,6 мм. В марте, сентябре, декабре на станции Старая Русса наблюдался тренд на понижение.

Для среднего многолетнего внутригодового хода осадков характерен максимум в июле на ст. Старая Русса и в августе на ст. Сортавала, а минимум - в феврале на ст. Старая Русса и в апреле на ст. Сортавала.

Средняя многолетняя амплитуда количества атмосферных осадков составила 47.3 ± 42.1 мм (ст. Сортавала), 45.1 ± 41.6 мм (ст. Старая Русса).

Для осадков внутригодовая коррелированность отсутствует.

Заключение

Потепление климата началось с конца 1980-х годов и в большей степени проявилось на прилегающей к Ладожскому озеру территории, чем на частном бассейне озера Ильмень.

Климат на рассматриваемой территории гумидный. Сопоставление многолетних рядов индекса Де-Мартона, рассчитанного до 2000 г. для водосборов Ладожского озера и озера Ильмень по набору метеостанций (интегральный ряд), с аналогичными рядами, вычисленными для отдельных станций (Старая Русса и Сортавала) показало их хорошее соответствие. Это позволяет использовать полученное уравнение связи для продления рядов интегрального индекса увлажнённости.

Хорошая согласованность долгопериодных изменений индекса Де-Мартона и уровня воды в Ладожском озере позволяет в качестве показателя увлажнённости водосбора использовать наблюдения за уровнем.

Библиографическая запись. Библиографическое описание

- 1. Богословский Б.Б., Филь С.А. Классификация водоемов по внешнему водообмену // Географо-гидрологический метод исследования вод суши. М.: изд. АН. СССР. Геогр. общ. СССР, 1984, с. 54 60.
- 2. Будыко М.И., Юдин М.И. О колебаниях уровня непроточных озер // Метеорология и гидрология, 1960, № 8, с. 15 19.
- 3. Григорьев А.С. Вероятностные модели влияния климата на гидрологический режим озер: Автореф. Дисс., канд. физ.-мат. наук. СПб., 2000. 18 с.
- 4. Громов А.Ю. Применение цифровых фильтров Баттерворта в океанологии. В кн.: Режимообразующие факторы, информационная база и методы ее анализа. Л.: Гидрометеоиздат, 1989, с. 22 35.
- 5. Догановский А.М. Многолетние колебания уровня Ладожского озера // Современные проблемы гидрометеорологии. СПб.: изд. РГГМУ, 2006, с. 175 183.
- 6. Кириллова В.А. Озеро Ильмень // Природные ресурсы больших озер СССР и вероятностные их изменения. – Л. 1984.
- 7. Лемешко Н.А., Сперанская Н.А. Особенности увлажнения Европейской территории России в условиях изменяющегося климата // Современные проблемы гидрометеорологии. СПб.: Астерион, 2006, с. 38 54.
- 8. Мякишева Н.В. Особенности увлажненности бассейнов больших европейских озер в условиях современного климата // Ученые записки РГГМУ, вып. № 11: СПб.: изд. РГГМУ, 2009, с. 5 15.
- 9. Мякишева Н.В., Догановский А.М. Водный баланс и уровень воды озера Ильмень в разных временных интервалах // Труды IV Международного симпозиума по Ладожскому озеру . Великий Новгород. Россия. 2 6 сентября 2002 г. СПб.: изд. НИИ химии СПбГУ, 2003, с. 175 179.

- 10. Мякишева Н.В., Трапезников Ю.А. Авторегрессионная модель межгодовой изменчивости гидрометеорологических процессов // Вероятностный анализ и моделирование океанологических процессов. Л.,1984.
- 11. Ресурсы поверхностных вод СССР. Т. 2. Карелия и Северо-Запад. Ч. 1. Л.: Гидрометеоиздат, 1972.
- 12. Рожков В.А. Теория и методы статистического оценивания вероятностных характеристик случайных величин и функций с гидрометеорологическими примерами. Книга 2. СПб. Гидрометеоиздат. 2002. 780 с.
- 13. Рожков В.А., Трапезников Ю.А. Вероятностные модели океанологических процессов. Л.:: Гидрометеоиздат, 1990 270 с.
- 14. Российская Академия Наук //Институт озероведения. Ладога. Под редакцией Академика РАН, проф. В.А. Румянцева д-ра физ.-мат. Наук С.А. Кондратьева, 2013. 560 с.
- 15. Сикан А.В. Методы статистической обработки гидрометеорологической информации. Учебник. Специальность «Гидрология» направления подготовки «Гидрометеорология» СПб.: изд. РГГМУ, 2007. 279 с.

Приложения

Приложение A — Среднемесячные и среднегодовые значения уровня воды оз. Ильмень

Год	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	201	177	156	297	503	406	337	284	277	264	296	391	299
1961	418	377	417	519	521	448	344	301	313	278	264	276	373
1962	263	252	233	457	628	533	502	462	432	414	402	464	420
1963	408	343	288	328	479	377	285	247	235	237	274	276	315
1964	242	210	181	255	433	383	296	239	201	187	204	224	255
1965	239	220	204	296	552	478	376	299	262	238	242	228	303
1966	220	201	203	492	574	606	454	333	274	267	267	252	345
1967	222	194	200	396	491	412	326	262	239	242	305	318	301
1968	274	231	206	562	609	508	400	325	266	252	298	282	351
1969	250	218	184	258	497	446	332	264	229	224	243	323	289
1970	303	258	213	350	535	421	309	249	224	227	241	254	299
1971	233	244	226	427	436	342	292	248	217	227	262	256	284
1972	225	185	153	287	365	321	277	242	220	220	234	242	248
1973	230	202	178	329	389	342	284	258	253	256	280	296	275
1974	289	239	308	349	442	398	340	326	275	252	300	347	322
1975	429	414	393	548	522	402	304	251	230	220	216	215	345
1976	211	188	163	317	522	479	462	359	280	253	249	277	313
1977	268	233	208	399	520	413	319	296	281	300	332	383	329
1978	297	251	228	473	584	491	379	295	250	297	363	433	362
1979	366	301	252	398	533	438	320	276	229	209	209	255	316
1980	255	226	230	266	472	399	297	256	280	265	301	357	300
1981	375	333	295	474	545	441	324	240	217	275	398	431	362
1982	408	354	310	516	573	482	378	285	243	241	269	306	364
1983	374	379	331	539	527	422	319	248	214	219	252	291	343
1984	347	324	268	432	511	428	336	262	234	279	315	291	336
1985	260	225	192	318	543	468	385	305	266	289	357	363	331
1986	324	285	244	494	623	503	397	322	301	343	340	364	378
1987	329	278	233	323	561	554	496	508	514	492	402	376	422
1988	366	335	274	454	519	410	313	261	257	244	240	239	326
1989	237	364	502	547	484	364	284	275	273	252	324	317	352

Приложение A – Среднемесячные и среднегодовые значения уровня воды оз. Ильмень (продолжение)

1990	323	404	618	622	500	378	290	298	420	564	581	566	464
1991	509	447	402	570	582	549	519	426	335	269	261	313	432
1992	374	379	375	565	594	492	354	257	205	180	202	233	351
1993	247	302	300	488	541	418	307	261	263	281	279	238	327
1994	202	180	175	450	609	590	484	356	277	239	234	264	338
1995	264	268	434	531	573	480	360	264	215	205	214	235	337
1996	217	187	171	223	370	312	265	236	218	216	232	297	245
1997	290	260	361	435	517	480	435	317	244	235	309	352	353
1998	335	335	378	414	520	437	445	483	455	408	418	375	417
1999	346	346	320	582	670	527	381	275	222	205	201	218	358
2000	241	237	250	414	492	383	348	377	330	274	268	305	327
2001	307	284	315	509	431	409	321	249	216	212	254	261	314
2002	238	304	443	528	474	361	280	217	190	181	177	172	297
2003	162	151	148	228	379	377	397	351	351	371	429	455	317
2004	449	398	378	595	578	500	448	374	333	311	370	394	427
2005	451	469	395	445	539	545	476	366	277	235	232	246	390
2006	245	218	187	328	444	451	378	299	303	314	370	420	330
2007	477	494	472	511	455	378	288	249	215	208	227	249	352
2008	264	256	364	494	494	388	303	258	231	233	251	269	317
2009	475	435	430	499	568	497	418	366	345	365	464	503	447
2010	439	365	302	551	610	523	412	301	261	232	264	312	381
2011	297	294	271	443	636	527	405	303	261	250	256	321	355
2012	380	352	299	404	555	457	375	297	257	257	342	377	363
2013	366	329	290	352	579	527	409	321	257	235	265	313	354
2014	366	342	314	360	354	319	275	236	208	210	215	221	285
2015	242	241	306	409	441	350	260	214	204	203	209	217	275
2016	228	251	291	377	446	367	319	344	311	281	296	367	323
2017	394	346	382	524	560	489	463	498	463	427	444	429	452

Приложение Б — Среднемесячные и среднегодовые значения уровня воды Ладожского озера

Год	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	411	409	407	411	433	429	416	406	392	382	375	378	404
1961	385	396	399	406	431	440	440	441	445	444	436	431	425
1962	436	439	445	461	508	523	532	539	551	559	561	562	510
1963	556	562	558	551	560	551	535	511	492	478	469	463	524
1964	461	455	452	447	457	457	441	428	416	404	395	394	434
1965	398	400	403	406	429	436	433	430	420	408	403	403	414
1966	406	414	419	428	482	508	513	511	500	499	493	487	472
1967	476	468	482	490	510	514	511	499	484	469	467	461	486
1968	461	462	461	474	504	513	511	504	494	486	482	477	486
1969	478	477	477	474	497	502	491	472	456	448	441	447	472
1970	443	445	445	448	475	476	469	455	438	428	421	417	447
1971	421	428	438	451	475	484	478	469	455	438	431	429	450
1972	425	425	423	425	436	431	421	406	391	374	365	363	407
1973	364	368	372	384	398	399	390	377	367	359	358	363	375
1974	371	380	381	384	400	410	416	421	419	412	416	427	403
1975	443	462	474	497	520	519	506	486	463	439	420	412	470
1976	413	418	418	422	448	456	462	464	463	449	432	425	439
1977	426	426	427	432	458	462	457	449	437	434	439	439	441
1978	447	451	455	464	483	480	471	463	458	447	445	447	459
1979	453	456	455	452	466	467	458	448	437	423	412	416	445
1980	419	426	428	430	444	445	438	429	418	408	400	412	425
1981	427	435	441	450	477	496	495	487	476	473	486	494	470
1982	508	522	530	539	568	576	575	561	545	521	507	501	538
1983	497	496	498	518	528	522	508	492	473	464	461	465	494
1984	485	502	509	523	545	539	529	509	489	486	487	474	506
1985	469	469	466	462	477	478	473	465	454	446	443	443	462
1986	451	455	456	463	489	490	481	468	463	456	452	453	465
1987	456	463	464	462	480	495	500	505	518	522	511	509	490
1988	517	516	512	515	525	520	508	498	491	488	479	482	504
1989	494	506	519	534	551	546	532	514	496	476	469	458	508
1990	461	474	496	516	520	511	497	481	464	460	458	458	483
1991	461	467	469	483	502	508	507	502	487	482	479	480	486
1992	485	495	506	525	557	562	552	533	511	483	461	451	510

Приложение Б – Среднемесячные и среднегодовые значения уровня воды Ладожского озера (продолжение)

1993	451	454	459	465	487	485	478	473	464	455	451	453	465
1994	456	457	458	467	499	514	513	501	489	485	473	467	482
1995	472	478	497	514	545	554	547	528	511	490	473	462	506
1996	462	459	455	447	455	453	445	431	408	392	385	386	432
1997	387	392	400	411	433	443	441	430	422	413	410	413	416
1998	418	423	429	434	464	473	479	486	488	482	486	490	463
1999	497	493	495	506	522	521	514	491	464	442	425	419	482
2000	420	421	422	431	455	454	454	455	451	446	451	452	443
2001	453	455	463	478	494	494	487	474	455	435	427	420	461
2002	422	429	435	445	461	454	448	432	407	389	373	365	422
2003	366	366	364	361	377	379	377	381	383	390	399	404	379
2004	415	431	442	461	482	487	490	490	486	482	479	483	469
2005	502	517	522	529	552	563	558	548	525	499	476	460	521
2006	451	445	439	442	454	454	449	430	407	389	390	404	430
2007	419	432	445	458	468	469	461	452	446	438	424	420	444
2008	421	427	435	460	481	480	474	465	453	445	456	468	455
2009	475	483	489	494	517	525	527	516	509	502	504	512	504
2010	517	521	523	532	552	556	548	523	495	469	455	450	512
2011	452	455	457	461	490	496	490	472	454	447	436	442	463
2012	452	456	460	462	488	491	493	494	490	490	499	507	482
2013	514	517	515	515	532	531	517	500	477	452	450	449	497
2014	454	463	465	462	459	461	452	434	418	397	385	376	436
2015	375	382	388	401	425	431	424	415	402	387	378	381	399
2016	388	401	406	417	432	431	434	447	453	444	437	444	428
2017	456	462	467	477	495	497	495	500	503	510	514	518	491

Приложение В – Среднемесячная и среднегодовая температура по метеостанции Старая Русса

Год	Янв.	Фев.	Map	Апр	Май	Июн	Июл	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	-11,2	-9,8	-7,2	3,7	12,2	16,9	19,3	15,7	9,1	2,8	-1,0	1,4	4,3
1961	-4,4	-0,7	0,7	4,2	11,6	18,0	17,2	14,9	9,8	6,8	1,0	-5,6	6,1
1962	-3,3	-5,6	-8,1	6,5	11,0	13,0	15,8	14,2	10,4	6,6	1,4	-6,8	4,6
1963	-15,3	-11,4	-10,8	2,7	16,0	13,8	18,5	17,3	12,8	5,7	-0,4	-7,7	3,4
1964	-5,2	-10,4	-7,3	4,0	11,2	17,4	18,4	15,0	10,6	7,5	-1,9	-4,0	4,6
1965	-7,3	-11,0	-4,2	2,8	8,3	15,8	15,2	14,8	12,4	4,4	-6,6	-3,2	3,5
1966	-13,4	-11,6	-1,3	3,7	13,4	17,3	17,9	15,2	9,2	6,1	-0,5	-8,4	4,0
1967	-14,6	-7,5	1,4	5,2	14,2	15,2	16,7	16,3	12,2	9,1	2,7	-9,9	5,1
1968	-17,1	-8,1	-1,8	4,9	10,4	16,9	14,8	17,3	10,7	3,1	-1,9	-3,6	3,8
1969	-14,0	-9,5	-7,5	4,6	10,7	14,9	16,8	15,6	10,0	5,0	1,1	-8,7	3,3
1970	-12,1	-10,6	-1,0	5,1	12,1	16,2	17,9	15,8	10,7	4,7	-1,0	-5,7	4,3
1971	-2,8	-7,5	-3,8	4,1	12,2	15,9	16,6	16,2	10,1	4,3	-1,8	-3,8	5,0
1972	-14,1	-5,0	-2,1	4,1	11,4	18,2	21,1	19,0	11,1	4,4	0,3	0,1	5,7
1973	-7,7	-4,2	-1,2	5,6	12,0	17,1	19,1	15,5	7,6	3,4	-2,0	-6,6	4,9
1974	-8,1	-0,8	-0,1	2,9	8,3	16,0	17,5	15,3	12,9	7,3	1,6	-0,5	6,0
1975	-2,2	-5,7	0,9	7,0	14,6	15,2	18,3	15,6	12,9	4,8	-1,8	-2,8	6,4
1976	-11,4	-10,3	-3,5	3,8	10,6	12,8	16,7	14,1	9,6	-0,3	0,2	-3,9	3,2
1977	-8,5	-7,3	-2,3	6,1	12,9	16,2	17,5	14,9	8,9	4,3	2,6	-7,3	4,8
1978	-7,7	-10,2	0,0	3,7	10,7	14,4	16,1	14,8	9,0	3,6	3,0	-15,9	3,5
1979	-9,8	-10,8	-0,8	3,3	14,6	16,8	15,7	16,7	10,7	4,2	0,4	-3,5	4,8
1980	-10,3	-8,3	-6,3	5,6	8,0	18,2	16,7	14,8	10,9	6,0	-2,0	-3,5	4,2
1981	-5,4	-5,2	-4,4	2,5	13,8	17,1	19,3	15,4	10,8	8,0	-0,1	-5,6	5,5
1982	-10,9	-8,0	0,1	4,6	11,4	12,9	17,3	15,7	10,9	5,5	3,2	-0,6	5,2
1983	-2,2	-9,1	-2,1	7,9	15,1	14,5	17,5	16,1	12,2	6,3	-0,2	-2,6	6,1
1984	-3,5	-7,5	-3,3	6,9	15,0	14,6	16,4	14,8	11,4	7,6	-1,5	-5,5	5,5
1985	-13,8	-17,0	-1,1	3,7	12,4	14,0	16,0	18,4	10,0	7,5	-1,9	-7,0	3,4
1986	-6,0	-13,1	0,0	5,5	12,5	17,4	17,9	15,0	7,7	4,9	2,4	-7,8	4,7
1987	-18,6	-5,0	-7,1	2,3	11,4	15,4	15,9	13,9	9,5	5,0	-1,6	-6,0	2,9
1988	-5,4	-4,5	-0,3	4,3	14,5	18,4	20,5	15,4	11,7	5,2	-4,8	-6,6	5,7
1989	-0,9	0,8	2,4	8,1	13,0	18,5	18,1	16,0	12,2	5,8	-1,3	-5,0	7,3
1990	-4,1	1,8	2,1	7,8	10,6	14,4	16,7	15,6	9,2	5,8	0,4	-2,5	6,5
1991	-4,2	-5,8	-0,3	6,2	11,0	15,9	17,6	16,5	11,1	6,6	2,6	-1,9	6,3
1992	-3,2	-2,7	1,8	4,4	12,5	16,3	18,3	17,2	12,7	1,5	-3,2	-2,1	6,1

Приложение В – Среднемесячная и среднегодовая температура по метеостанции Старая Русса (продолжение)

1993 -3,4 -3,0 -1,8 4,6 14,7 13,5 16,6 14,6 6,6 4,5 -7,4 -2,8 1994 -3,5 -13,3 -1,9 7,8 10,0 14,5 19,1 15,9 12,8 4,8 -1,6 -5,6 -5,6 -1995 -5,5 -0,3 1,6 6,2 12,7 19,6 16,7 16,3 11,9 7,5 -2,8 -9,3 -1,4 -9,3<
1995 -5,5 -0,3 1,6 6,2 12,7 19,6 16,7 16,3 11,9 7,5 -2,8 -9,3 1996 -9,0 -11,5 -3,7 5,5 13,2 15,5 16,5 17,2 8,5 6,3 3,9 -6,7 1997 -5,7 -3,3 -0,9 3,4 9,7 17,1 19,2 18,0 9,1 3,4 0,0 -6,9 1998 -2,0 -6,3 -2,6 5,0 13,0 17,8 17,6 14,7 11,0 5,6 -7,6 -5,6 1999 -5,9 -8,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 2000 -5,4 -3,4 -0,3 9,2 11,1 15,5 17,6 15,9 9,4 8,2 2,2 -1,5 2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8
1996 -9,0 -11,5 -3,7 5,5 13,2 15,5 16,5 17,2 8,5 6,3 3,9 -6,7 -6,7 -1997 -5,7 -3,3 -0,9 3,4 9,7 17,1 19,2 18,0 9,1 3,4 0,0 -6,9 1998 -2,0 -6,3 -2,6 5,0 13,0 17,8 17,6 14,7 11,0 5,6 -7,6 -5,6 1999 -5,9 -8,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 1,0 200 -5,4 -3,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 1,0 200 -1,5 -1,1 1,0 2,0 1,5 -1,1 1,1 1,5 1,7 1,5 1,1 1,5 1,7 1,5 1,1 1,5 1,7 1,5 1,1 1,5 1,7 1,5 1,1 1,5 1,7
1997 -5,7 -3,3 -0,9 3,4 9,7 17,1 19,2 18,0 9,1 3,4 0,0 -6,9 1998 -2,0 -6,3 -2,6 5,0 13,0 17,8 17,6 14,7 11,0 5,6 -7,6 -5,6 1999 -5,9 -8,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 2000 -5,4 -3,4 -0,3 9,2 11,1 15,5 17,6 15,9 9,4 8,2 2,2 -1,5 2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8 6,3 -1,0 -10,9 2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3
1998 -2,0 -6,3 -2,6 5,0 13,0 17,8 17,6 14,7 11,0 5,6 -7,6 -5,6 1999 -5,9 -8,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 2000 -5,4 -3,4 -0,3 9,2 11,1 15,5 17,6 15,9 9,4 8,2 2,2 -1,5 2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8 6,3 -1,0 -10,9 2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5
1999 -5,9 -8,4 -0,2 9,4 8,5 21,1 20,3 15,3 12,0 6,9 -1,5 -1,1 2000 -5,4 -3,4 -0,3 9,2 11,1 15,5 17,6 15,9 9,4 8,2 2,2 -1,5 2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8 6,3 -1,0 -10,9 2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 <td< td=""></td<>
2000 -5,4 -3,4 -0,3 9,2 11,1 15,5 17,6 15,9 9,4 8,2 2,2 -1,5 2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8 6,3 -1,0 -10,9 2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3
2001 -2,7 -7,6 -2,9 9,5 11,3 15,8 21,8 16,3 11,8 6,3 -1,0 -10,9 2002 2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2002 -4,6 -0,4 1,5 6,7 12,6 16,5 20,8 18,0 10,6 1,3 -1,6 -11,6 2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2003 -8,6 -6,5 -1,8 4,0 13,9 13,1 20,7 16,2 11,3 4,9 1,6 -1,0 1,0 2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2004 -8,3 -6,4 -0,8 5,5 10,9 14,8 17,9 17,6 12,5 6,0 -1,0 -1,0 2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2005 -1,6 -8,4 -6,4 6,2 11,9 15,2 19,0 17,2 12,9 6,4 1,9 -4,2 2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2006 -7,8 -12,0 -5,2 5,5 11,4 16,9 18,4 17,2 13,5 8,0 1,7 2,6 2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2007 -2,9 -13,7 4,3 5,5 13,7 16,4 17,7 18,7 11,4 6,9 -1,4 -0,4
2000 27 02 11 77 111 150 176 165 102 02 21 15
2008 -2,7 -0,2 1,1 7,7 11,1 15,0 17,6 16,5 10,2 8,2 2,1 -1,5
2009 -4,0 -3,8 -0,9 5,5 12,2 15,5 18,0 15,6 13,1 4,3 2,4 -5,3
2010 -14,5 -8,2 -1,8 6,7 14,9 17,0 23,7 19,1 11,1 3,8 0,4 -9,3
2011 -6,0 -11,7 -1,9 6,3 11,9 17,7 21,8 17,2 12,0 6,6 2,7 1,3
2012 -6,2 -11,9 -1,4 6,2 13,0 15,1 19,4 15,6 12,1 6,2 2,3 -7,7
2013 -8,2 -3,9 -7,4 4,8 16,0 19,0 18,0 17,2 10,9 6,4 3,8 -0,2
2014 -9,0 -0,7 2,4 6,8 13,9 15,0 20,2 17,3 11,9 3,9 -0,6 -2,8
2015 -2,4 -2,0 2,3 5,8 12,2 16,1 16,9 16,6 13,1 3,9 2,1 1,6
2016 -11,8 0,4 0,1 6,7 14,2 16,8 19,1 17,0 12,0 4,2 -2,4 -2,2
2017 -5,6 -3,9 1,6 3,9 9,7 13,5 16,0 17,1 12,2 5,3 1,5 -0,1

Приложение Γ — Среднемесячная и среднегодовая температура по метеостанции Сортавала

Год	Янв.	Фев.	Map	Апр	Май	Июн	Июл	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	-12,1	-12,2	-4,9	1,1	9,9	14,9	19,0	15,5	8,9	1,2	-1,9	-2,9	3,0
1961	-4,8	-1,4	-1,7	-0,5	8,2	16,1	16,8	14,6	8,5	8,0	0,5	-6,5	4,8
1962	-4,9	-6,6	-9,8	3,8	7,8	10,9	14,3	12,5	9,5	5,4	1,5	-8,6	3,0
1963	-13,9	-13,2	-12,2	0,7	11,4	12,8	16,0	15,7	11,8	5,2	-0,5	-7,9	2,2
1964	-5,2	-10,0	-6,0	1,2	8,0	13,2	16,2	13,9	9,0	6,5	-3,2	-5,2	3,2
1965	-6,3	-10,8	-5,5	0,9	5,2	13,0	13,8	13,6	11,8	3,8	-5,5	-4,2	2,5
1966	-19,1	-17,7	-6,4	-1,0	8,2	15,1	16,7	14,2	7,5	3,7	1,2	-7,5	1,2
1967	-14,2	-8,6	-0,2	2,8	9,1	12,8	16,1	16,9	11,4	7,1	2,3	-11,9	3,6
1968	-20,3	-8,7	-2,4	1,9	7,2	15,5	14,0	15,2	8,8	1,2	-3,2	-4,0	2,1
1969	-16,2	-13,8	-8,3	1,8	6,9	13,6	15,5	15,5	8,8	4,4	-0,3	-8,1	1,7
1970	-11,7	-13,9	-3,6	1,2	8,8	15,4	16,9	15,1	9,4	3,6	-2,6	-5,7	2,7
1971	-4,3	-10,7	-6,8	-0,2	7,6	13,2	16,1	14,8	8,4	2,5	-3,1	-6,6	2,6
1972	-12,4	-7,5	-4,9	1,2	7,6	16,1	20,4	17,3	9,4	4,0	-1,6	0,7	4,2
1973	-5,6	-6,6	-3,8	2,4	9,2	15,4	19,5	14,6	6,1	1,3	-4,1	-9,6	3,2
1974	-10,0	-0,9	-3,3	0,8	5,7	14,4	17,1	14,3	11,9	5,8	0,6	-0,2	4,7
1975	-3,8	-6,4	-0,4	3,4	10,3	12,8	17,2	14,6	11,7	3,4	-0,4	-4,3	4,8
1976	-14,8	-12,5	-6,1	0,9	9,1	10,9	15,0	13,3	7,1	-0,4	-0,9	-4,7	1,4
1977	-8,5	-10,1	-4,0	1,7	8,3	13,3	16,1	14,2	7,9	2,6	0,7	-7,5	2,9
1978	-9,9	-15,7	-4,0	0,3	9,7	13,3	15,5	12,8	8,3	2,9	0,6	-16,1	1,5
1979	-11,7	-11,9	-2,9	0,0	10,1	14,0	15,9	15,4	9,0	2,6	0,7	-5,4	3,0
1980	-11,1	-10,3	-7,8	2,7	6,3	16,9	16,3	14,5	9,3	4,3	-4,4	-6,0	2,6
1981	-5,9	-8,9	-8,6	0,3	8,8	12,9	17,5	14,1	9,4	6,2	-0,7	-7,7	3,1
1982	-15,5	-7,8	-1,9	2,3	7,7	10,4	16,7	14,1	9,5	3,1	2,7	-1,8	3,3
1983	-4,2	-11,5	-3,6	4,1	10,6	13,0	17,8	14,7	10,4	4,6	-3,6	-4,8	4,0
1984	-5,7	-8,5	-5,4	3,5	11,6	13,7	16,3	14,3	9,6	5,9	-0,9	-5,1	4,1
1985	-19,0	-18,2	-4,3	-0,3	8,3	12,7	15,4	16,4	9,7	5,7	-2,5	-9,1	1,2
1986	-10,4	-14,0	-1,9	1,9	8,2	16,3	17,3	13,4	6,7	4,6	2,8	-11,1	2,8
1987	-22,1	-9,1	-7,8	1,0	7,2	13,4	14,9	12,0	8,6	6,3	-4,0	-9,6	0,9
1988	-6,5	-6,6	-2,8	0,1	9,8	16,4	19,7	14,5	10,5	4,0	-5,7	-8,8	3,7
1989	-2,8	-1,2	0,5	4,0	10,0	16,2	17,3	15,0	11,1	4,1	-0,9	-7,0	5,5
1990	-9,2	0,2	-0,8	5,1	8,3	12,6	15,6	15,3	7,9	4,3	-3,4	-2,8	4,4
1991	-8,1	-9,1	-3,6	1,6	7,6	13,2	16,9	15,6	9,0	5,6	2,4	-3,6	4,0
1992	-5,4	-4,4	-0,3	0,0	8,9	14,7	15,5	14,4	12,5	-0,5	-4,5	-1,1	4,2

Приложение Г – Среднемесячная и среднегодовая температура по метеостанции Сортавала (продолжение)

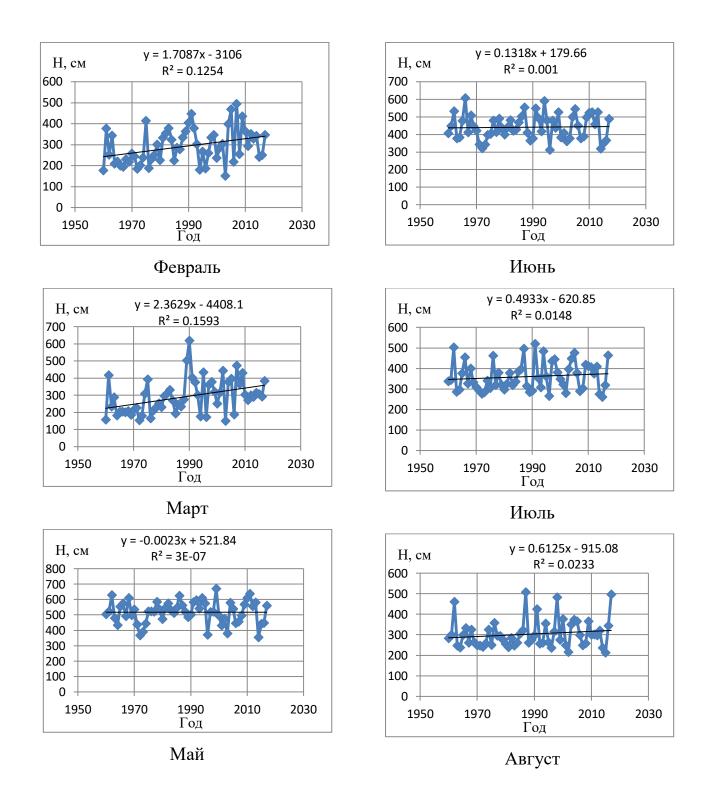
1993	-5,0	-4,7	-2,4	1,7	11,0	10,5	15,3	13,6	5,5	2,2	-5,7	-4,8	3,1
1994	-6,9	-15,2	-4,3	3,8	7,1	13,3	18,7	15,4	10,9	4,2	-2,5	-3,6	3,4
1995	-4,4	-2,7	-0,5	1,8	8,4	16,9	15,0	15,2	10,3	6,8	-4,1	-10,9	4,3
1996	-8,3	-12,3	-5,9	1,1	7,7	13,1	14,2	16,6	8,5	5,3	3,0	-7,0	3,0
1997	-9,0	-5,6	-2,4	0,8	7,3	15,0	18,2	16,8	9,4	2,1	-2,0	-7,1	3,6
1998	-4,1	-11,0	-8,0	-0,7	8,9	14,0	16,8	13,5	10,4	5,0	-4,5	-5,1	2,9
1999	-10,1	-10,4	-3,7	4,3	5,9	18,4	18,4	14,1	11,0	6,2	-0,9	-3,4	4,2
2000	-5,5	-4,7	-1,6	4,6	8,8	14,1	17,4	14,8	9,0	7,5	2,0	-2,5	5,3
2001	-3,9	-9,7	-6,6	5,6	8,0	14,2	20,0	15,1	11,1	5,5	-2,3	-10,5	3,9
2002	-6,9	-2,3	-1,3	2,9	9,7	15,1	18,5	16,6	9,3	0,4	-4,7	-12,2	3,8
2003	-14,0	-6,7	-2,3	1,2	9,9	11,5	20,3	15,1	10,8	4,0	1,5	-2,7	4,1
2004	-9,4	-7,8	-2,0	2,6	8,7	13,2	17,2	15,6	11,7	4,6	-1,7	-3,1	4,1
2005	-2,8	-7,4	-7,6	2,7	8,6	14,4	18,8	16,5	11,4	6,1	3,3	-4,4	5,0
2006	-7,3	-12,9	-8,7	2,9	9,6	15,8	17,2	17,2	11,9	5,9	-0,1	1,5	4,4
2007	-5,1	-14,8	1,8	3,5	9,5	14,0	17,3	17,4	10,0	5,9	-1,6	0,4	4,9
2008	-2,1	-2,5	-2,8	3,5	8,4	12,3	16,1	13,7	8,5	6,8	1,7	-1,1	5,2
2009	-6,4	-7,3	-3,2	1,9	10,9	13,4	16,6	15,0	11,7	2,3	0,9	-8,5	3,9
2010	-15,8	-11,6	-4,8	3,4	11,3	13,1	21,6	17,4	10,7	3,9	-3,0	-13,4	2,7
2011	-8,7	-14,0	-3,6	4,3	9,2	15,5	20,4	15,6	11,3	6,1	2,0	1,3	5,0
2012	-6,9	-13,1	-2,9	1,5	9,7	13,4	17,4	14,6	11,2	4,8	1,7	-8,6	3,6
2013	-8,1	-3,4	-8,9	2,0	12,3	17,2	17,3	16,3	10,7	5,5	2,4	-1,0	5,2
2014	-8,8	-1,1	0,8	4,0	9,3	13,3	19,1	17,1	11,4	3,2	0,5	-3,3	5,5
2015	-6,3	-2,0	0,2	3,2	8,9	13,6	15,3	16,1	12,0	4,2	2,2	0,2	5,6
2016	-15,0	-1,9	-1,2	4,4	12,3	14,2	18,2	15,6	11,0	4,0	-2,7	-3,0	4,7
2017	-5,3	-6,0	-0,4	0,9	6,5	12,4	15,5	15,5	10,2	4,5	1,2	-0,2	4,6

Приложение Д – Среднемесячные и среднегодовые значения атмосферных осадков по метеостанции Старая Русса

Год	Янв.	Фев.	Map.	Апр.	Май	Июн.	Июл.	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	57,2	41,4	43,6	17,2	32,4	78,6	93,4	40,5	107,5	56,1	45,6	35,3	54,1
1961	30	29	73,2	39,4	61,3	51,1	94,4	129,2	25,8	20,9	23,5	50,1	52,3
1962	37,2	15,1	75,1	41,1	59,6	133,8	101,6	83,4	59,0	36,0	65,2	32,7	61,7
1963	26,4	36,3	18,8	8,1	33,7	43,6	85,5	113,2	14,8	99,3	46,4	27,7	46,2
1964	16,0	36,0	20,1	35,9	54,6	59,8	18,6	70,6	60,7	53,4	62,5	69,4	46,5
1965	67,1	24,2	63,3	1,8	34,6	43,4	131,7	55,9	22,7	50,5	68,4	72,3	53,0
1966	55,7	46,7	45,7	58,3	82,0	53,5	104,1	66,0	70,4	38,4	29,7	48,3	58,2
1967	37,4	17,0	30,2	43,8	46,6	90,4	64,1	73,2	52,0	73,2	53,6	41,6	51,9
1968	38,9	21,4	46,9	69,0	73,6	96,1	124,8	46,1	50,7	81,7	34,4	31,4	59,6
1969	17,0	13,0	13,0	56,8	45,1	10,6	52,0	37,4	45,0	55,6	108,2	43,4	41,4
1970	40,1	19,4	17,5	68,5	13,6	75,5	97,5	75,1	91,2	47,1	56,6	50,2	54,4
1971	20,8	32,1	42,5	23,8	11,3	116,8	40,3	53,6	42,2	62,8	32,2	37,0	43,0
1972	6,3	11,6	39,7	28,6	46,8	25,1	52,4	7,1	49,2	47,3	60,8	17,4	32,7
1973	11,4	47,4	36,0	39,5	39,6	86,0	66,9	34,5	90,4	54,8	82,0	40,6	52,4
1974	19,5	23,6	7,2	19,7	53,3	47,4	118,9	47,8	32,1	81,8	82,8	63,9	49,8
1975	49,5	20,4	37,2	86,6	52,7	94,4	28,3	53,6	26,4	25,7	42,4	65,3	48,5
1976	52,8	15,7	45,1	64,7	44,8	142,5	31,8	45,5	34,0	38,0	41,7	59,4	51,3
1977	13,1	50,9	34,2	48,8	20,3	29,7	99,1	62,7	77,8	52,2	41,7	41,9	47,7
1978	30,6	36,4	50,2	71,7	24,3	57,9	84,3	71,2	78,6	57,4	76,3	24,5	55,3
1979	21,0	31,8	28,5	11,6	26,2	20,1	82,3	107,1	39,1	17,3	48,8	42,1	39,7
1980	44,9	33,0	11,4	18,2	44,4	41,8	69,6	183,3	30,8	69,7	31,7	45,9	52,1
1981	35,8	23,5	35,7	8,4	23,7	53,0	33,1	90,3	80,3	116,5	55,9	80,2	53,0
1982	17,3	13,3	21,4	38,6	58,5	68,9	84,1	53,0	75,2	40,1	42,5	68,7	48,5
1983	44,3	24,5	36,2	43,1	40,2	47,7	44,0	52,2	70,2	59,3	82,7	60,5	50,4
1984	41,0	7,2	25,6	18,3	80,7	104,9	79,2	34,1	98,8	46,3	21,1	32,7	49,2
1985	49,3	24,4	21,1	22,4	30,8	112,5	61,5	32,0	121,8	62,5	57,1	36,6	52,7
1986	71,2	17,2	41,1	34,3	23,3	45,0	77,4	69,2	93,2	31,4	41,0	55,5	50,0
1987	28,3	37,5	15,1	15,6	81,5	109,8	56,6	134,0	101,1	5,8	45,7	37,7	55,7
1988	18,3	22,3	32,3	18,5	36,3	64,2	76,7	75,1	51,3	26,0	54,6	53,6	44,1
1989	34,2	22,8	48,9	26,6	24,2	59,1	58,7	172,1	27,8	63,9	36,8	46,7	51,8
1990	74,4	59,6	60,9	3,7	36,6	36,1	231,0	173,3	101,0	65,1	54,4	22,3	76,5
1991	36,0	35,5	46,8	32,7	64,7	104,0	89,8	43,3	47,8	37,2	78,4	32,0	54,0
1992	56,0	38,8	50,2	46,1	58,2	20,9	28,5	40,2	39,7	70,3	57,0	54,9	46,7

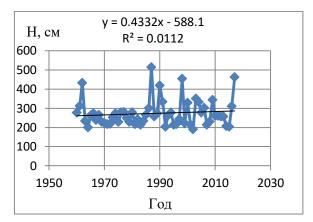
Приложение Д – Среднемесячные и среднегодовые значения атмосферных осадков по метеостанции Старая Русса (продолжение)

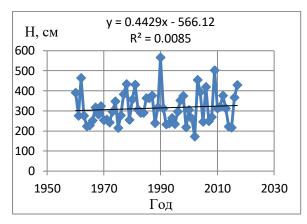
1993	48,2	40,6	23,8	57,9	43,3	54,6	67,7	96,9	51,8	41,8	0,7	45,9	47,8
1994	49,8	6,4	66,4	43,0	108,3	71,1	37,0	61,8	85,1	32,5	57,7	40,3	55,0
1995	64,0	53,2	43,6	56,4	43,3	58,6	73,8	25,3	70,3	48,3	44,7	30,2	51,0
1996	14,4	30,3	9,2	14,4	55,6	57,3	91,9	12,2	61,3	52,6	88,7	38,0	43,8
1997	35,8	47,9	20,7	58,6	58,5	118,4	3,1	30,5	66,1	87,8	76,7	44,6	54,1
1998	46,4	24,7	29,8	15,4	66,0	123,2	158,2	116,0	66,0	41,9	27,5	63,0	64,8
1999	75,7	42,8	29,8	29,7	32,0	37,7	35,0	61,6	48,6	47,2	32,6	63,7	44,7
2000	42,3	31,0	32,9	65,3	61,7	86,6	135,1	98,2	23,8	35,5	30,3	44,9	57,3
2001	29,0	50,3	60,3	45,7	24,1	76,7	119,7	34,5	42,3	58,8	69,5	38,0	54,1
2002	39,7	48,6	32,6	13,1	8,6	73,4	31,7	2,3	65,0	45,7	58,9	37,7	38,1
2003	44,1	17,4	12,8	32,1	74,0	141,7	52,2	177,5	14,5	140,3	52,0	54,1	67,7
2004	39,9	48,5	39,1	8,1	81,2	93,3	98,9	115,5	57,3	68,6	26,2	59,3	61,3
2005	47,9	13,9	19,1	37,3	91,1	61,6	45,4	21,7	27,8	28,9	58,1	41,3	41,2
2006	22,9	12,8	12,1	36,0	61,7	64,2	35,0	89,6	46,1	116,4	48,6	26,9	47,7
2007	74,5	26,6	21,4	30,1	79,0	15,4	113,0	45,5	19,0	82,5	50,6	19,7	48,1
2008	34,5	50,1	44,5	52,5	43,5	21,0	83,5	135,6	92,4	53,2	43,6	51,7	58,8
2009	58,2	42,4	28,2	39,9	63,4	155,4	131,3	72,1	61,1	134,4	72,6	61,1	76,7
2010	13,4	60,7	52,1	19,4	42,9	99,1	39,2	95,4	65,5	48,3	83,9	54,7	56,2
2011	69,1	31,1	18,8	14,7	47,3	40,6	80,2	123,4	99,1	59,7	32,7	56,7	56,1
2012	48,4	39,0	46,2	55,4	36,4	95,7	35,9	72,9	80,9	77,8	83,7	43,2	59,6
2013	31,5	19,7	11,2	37,1	155,2	85,3	56,9	74,6	35,7	35,7	85,7	39,2	55,7
2014	29,4	38,8	36,2	20,0	86,1	79,6	16,7	109,5	32,8	54,5	46,0	47,5	49,8
2015	59,8	26,4	13,5	92,5	21,1	25,5	77,1	33,5	48,1	13,0	72,7	38,0	43,4
2016	56,4	32,2	25,5	75,5	82,0	53,5	150,3	135,6	51,8	52,8	70,2	32,7	68,2
2017	44,0	28,8	35,7	61,6	64,1	157,9	133,4	83,7	56,7	79,3	30,0	55,4	69,2


Приложение E – Среднемесячные и среднегодовые значения атмосферных осадков по метеостанции Сортавала

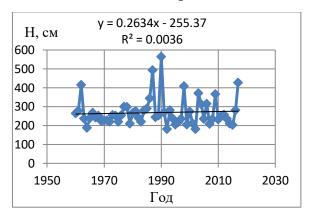
Год	Янв.	Фев.	Map	Апр	Май	Июн	Июл	Авг.	Сен.	Окт.	Ноя.	Дек.	Ср.г.
1960	67,7	46,5	13,9	26,1	25,1	67,4	83,2	49,0	30,2	36,5	93,8	56,4	49,7
1961	76,0	70,5	60,0	14,1	31,4	57,1	50,8	123,7	23,1	14,1	50,6	59,1	52,5
1962	69,0	42,1	27,1	32,2	39,6	91,7	83,3	96,4	116,0	37,2	132,5	38,5	67,1
1963	39,3	21,8	21,3	14,3	19,6	37,3	35,9	68,6	39,3	115,4	73,3	43,9	44,2
1964	29,0	20,8	9,0	30,8	27,8	16,7	34,2	70,1	56,3	46,0	59,5	84,9	40,4
1965	47,3	29,3	36,4	33,4	33,6	59,7	70,0	65,2	43,1	40,5	54,3	103,8	51,4
1966	31,0	26,0	67,0	51,0	31,0	47,0	75,0	60,0	95,0	85,0	57,0	68,0	57,8
1967	27,0	31,0	41,0	42,0	36,0	47,0	45,0	65,0	24,0	144,0	70,0	36,0	50,7
1968	17,0	31,0	35,0	41,0	71,0	51,0	46,0	65,0	123,0	111,0	42,0	36,0	55,8
1969	29,0	34,0	6,0	35,0	33,0	10,0	61,0	55,0	135,0	41,0	94,0	42,0	47,9
1970	36,0	30,0	20,0	65,0	13,0	19,0	90,0	98,0	94,0	71,0	37,0	68,0	53,4
1971	49,0	54,0	41,0	14,0	30,0	54,0	40,0	85,0	70,0	60,0	49,0	47,0	49,4
1972	7,0	34,0	28,0	42,0	18,0	11,0	101,0	48,0	29,0	56,0	65,0	29,0	39,0
1973	25,0	31,0	25,0	40,0	54,0	38,0	12,0	60,0	89,0	53,0	52,0	46,0	43,8
1974	34,0	71,0	23,0	6,0	41,0	68,0	131,0	96,0	42,0	117,0	124,0	116,0	72,4
1975	37,0	17,0	29,0	47,0	32,0	30,0	30,0	55,0	60,0	39,0	36,0	70,0	40,2
1976	53,0	13,0	35,0	26,0	12,0	68,0	83,0	74,0	65,0	10,0	35,0	78,0	46,0
1977	41,0	33,0	33,0	56,0	50,0	36,0	60,0	30,0	93,0	70,0	106,0	30,0	53,2
1978	23,0	10,0	41,0	41,0	3,0	49,0	56,0	117,0	103,0	48,0	45,0	12,0	45,7
1979	37,0	28,0	35,0	16,0	52,0	31,0	38,0	38,0	97,0	36,0	112,0	50,0	47,5
1980	34,0	25,0	18,0	25,0	38,0	49,0	47,0	99,0	29,0	97,0	79,0	96,0	53,0
1981	48,0	31,0	30,0	33,0	25,0	118,0	72,0	118,0	52,0	131,0	81,0	82,0	68,4
1982	21,0	9,0	23,0	37,0	75,0	91,2	31,0	61,0	28,0	35,0	86,0	65,0	46,9
1983	68,0	6,0	59,0	46,0	30,0	48,0	40,0	53,0	96,0	92,0	56,0	54,0	54,0
1984	105,7	47,7	29,5	15,2	5,4	27,4	52,5	45,3	97,0	99,6	25,9	30,2	48,5
1985	22,0	9,3	38,6	39,9	26,6	74,2	74,2	34,6	101,1	85,5	92,6	70,2	55,7
1986	37,5	5,0	30,5	41,3	62,5	55,9	64,4	129,6	86,7	39,3	57,3	54,8	55,4
1987	12,2	44,5	16,3	10,2	25,7	108,8	47,3	259,5	120,7	13,5	35,8	52,4	62,2
1988	38,9	30,4	41,7	31,5	8,7	39,9	35,7	120,0	93,9	41,1	25,1	57,2	47,0
1989	70,2	31,2	62,3	28,5	26,7	24,7	24,6	61,1	42,5	51,9	40,8	30,6	41,3
1990	47,3	82,9	44,4	16,9	36,5	31,0	69,5	33,7	56,5	25,5	66,0	39,7	45,8
1991	38,7	26,0	26,1	27,9	60,7	57,9	43,7	84,5	45,2	44,0	109,2	63,3	52,3
1992	37,2	35,2	55,8	71,7	16,4	16,6	41,0	80,9	50,7	35,5	80,6	39,9	46,8

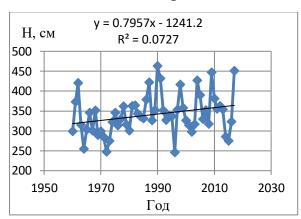
Приложение E – Среднемесячные и среднегодовые значения атмосферных осадков по метеостанции Сортавала (продолжение)


1993	52,1	27,6	26,2	23,5	28,0	57,6	107,3	144,5	31,9	40,0	7,1	96,2	53,5
1994	50,1	2,6	65,1	33,7	25,0	46,2	14,9	45,1	140,3	106,8	39,3	88,9	54,8
1995	40,1	56,5	53,4	53,3	28,5	28,0	23,9	39,4	52,4	75,5	49,6	16,9	43,1
1996	9,4	34,7	11,2	19,7	96,3	66,8	54,0	17,1	29,0	46,6	140,0	78,8	50,3
1997	38,6	31,7	35,4	34,9	35,1	31,1	55,3	42,4	178,2	66,2	51,3	43,7	53,7
1998	58,7	49,4	32,6	14,2	34,1	109,1	116,5	189,1	27,6	103,7	18,4	40,6	66,2
1999	50,0	39,4	20,6	25,7	21,1	66,1	84,1	23,5	14,0	72,6	67,5	80,7	47,1
2000	48,4	42,6	49,0	31,0	43,8	63,4	73,9	77,6	44,1	75,8	92,6	58,4	58,4
2001	25,9	51,6	35,9	49,9	64,9	42,6	29,3	32,0	50,6	59,8	81,1	30,6	46,2
2002	45,5	55,5	40,1	14,0	49,9	99,1	44,5	16,9	53,1	31,1	55,4	25,9	44,3
2003	40,2	21,9	13,6	24,6	61,6	37,6	47,3	135,1	58,6	136,1	53,2	63,5	57,8
2004	38,3	54,5	34,8	7,4	37,2	93,0	71,1	107,1	67,8	35,0	44,8	99,7	57,6
2005	113,5	21,6	8,4	27,1	78,9	52,6	30,4	81,9	25,3	31,5	88,9	81,9	53,5
2006	42,8	11,0	22,7	40,6	34,7	37,9	20,4	47,4	31,0	109,9	87,2	53,5	44,9
2007	68,9	23,7	35,8	36,6	120,1	48,6	63,3	97,9	106,4	27,8	69,1	45,1	61,9
2008	66,3	61,2	64,5	47,1	19,4	80,7	44,5	155,6	15,1	132,3	94,3	58,4	70,0
2009	43,5	36,0	25,2	15,6	23,8	138,1	67,7	119,7	70,2	98,7	80,7	48,4	64,0
2010	30,6	44,6	41,1	15,9	63,8	71,7	66,2	22,2	46,8	78,3	69,8	46,3	49,8
2011	72,6	34,0	28,3	9,8	63,0	69,7	11,2	102,7	111,4	47,5	33,7	143,0	60,6
2012	92,4	24,2	48,2	46,9	40,2	99,8	151,7	61,4	81,9	113,0	64,3	68,9	74,4
2013	40,7	31,5	14,9	34,2	28,5	42,7	52,7	95,7	43,9	92,4	88,9	56,9	51,9
2014	16,1	51,1	22,9	7,4	85,6	58,3	25,5	85,6	52,4	33,2	36,9	67,6	45,2
2015	59,5	46,3	50,9	64,0	38,9	27,7	60,1	79,0	39,5	27,9	86,4	81,2	55,1
2016	44,5	100,9	22,4	36,6	43,5	89,8	177,2	111,8	43,6	50,0	87,3	36,6	70,4
2017	23,0	26,8	36,5	65,4	26,4	49,6	67,8	111,5	98,2	135,9	83,0	126,6	70,9

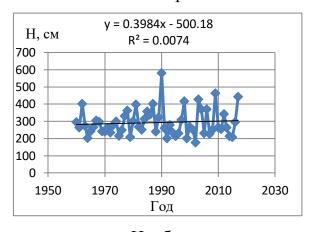

Приложение Ж – Графики оценок значимости линейного тренда среднемесячных и среднегодовых значений уровня воды оз. Ильмень

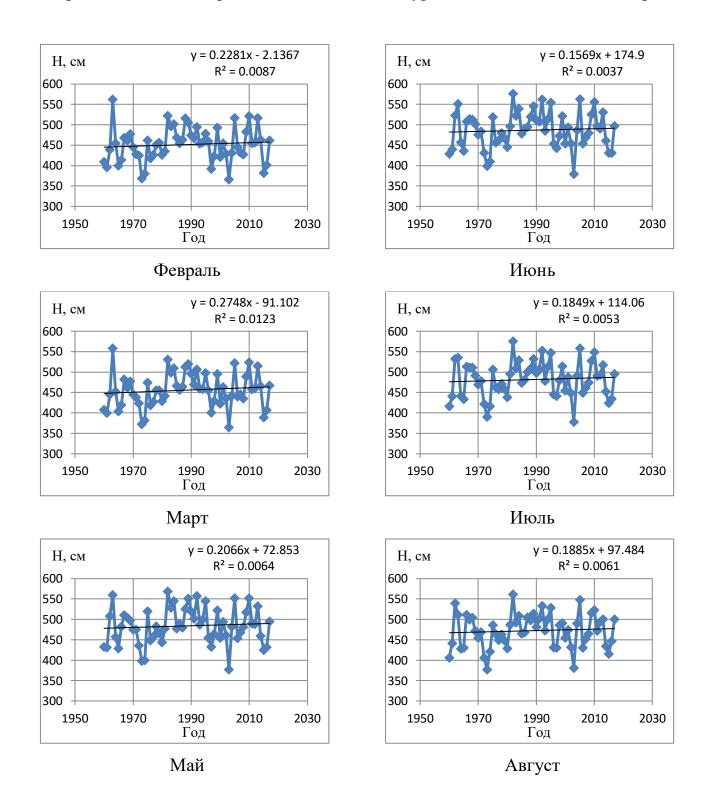
Приложение Ж – Графики оценок значимости линейного тренда среднемесячных и среднегодовых значений уровня воды оз. Ильмень


(продолжение)

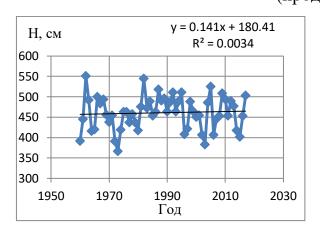


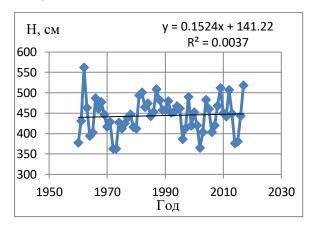
Сентябрь


Декабрь

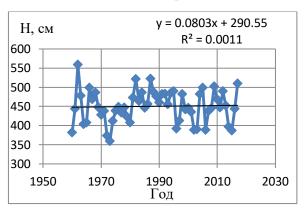

Октябрь

Сред. год.

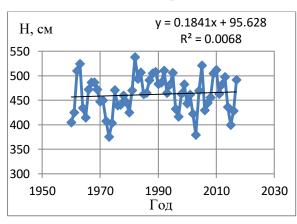


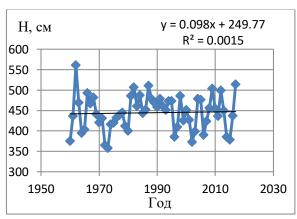

Ноябрь

Приложение 3 – Графики оценок значимости линейного тренда среднемесячных и среднегодовых значений уровня воды Ладожского озера



Приложение 3 — Графики оценок значимости линейного тренда среднемесячных и среднегодовых значений уровня воды Ладожского озера (продолжение)




Сентябрь

Декабрь

Октябрь

Ноябрь

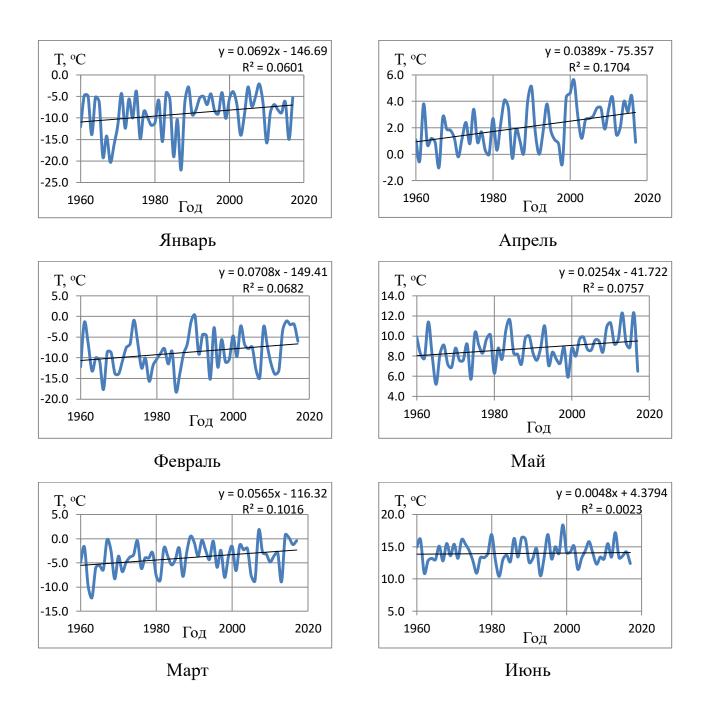
Сред. год.

Приложение И – Среднемесячные значения уровня воды оз. Ильмень высокочастотной фильтрации

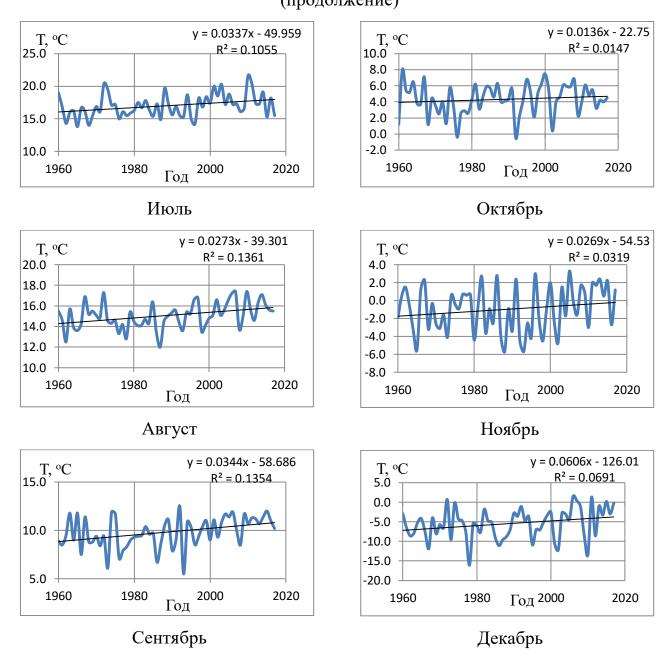
Год	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Ноя.	Дек.
1960	4,7	-63,4	-124,2	-14,0	173,3	70,2	5,3	-38,5	-37,7	-50,4	-29,8	41,5
1961	35,6	-41,1	-31,4	53,8	57,9	7,7	-56,1	-48,7	14,1	19,5	27,0	36,6
1962	-2,8	-59,4	-134,7	32,8	157,0	32,1	-8,5	-39,0	-45,1	-32,2	-13,4	73,3
1963	33,1	-24,6	-77,5	-35,7	121,7	34,1	-35,1	-44,4	-26,6	0,1	51,3	53,7
1964	6,4	-49,0	-104,8	-53,2	113,9	68,7	2,4	-22,6	-25,3	-10,7	19,4	31,4
1965	17,1	-47,4	-115,0	-68,7	158,8	80,7	0,1	-35,5	-22,2	-1,0	30,2	16,7
1966	-19,5	-89,9	-150,6	79,2	119,9	138,3	3,4	-74,4	-75,2	-23,5	22,1	29,6
1967	-4,0	-58,1	-90,9	66,0	133,2	45,7	-27,9	-63,4	-51,3	-18,4	58,8	63,9
1968	-10,2	-99,5	-176,3	134,8	155,1	52,2	-32,2	-63,5	-69,0	-31,8	52,2	53,6
1969	17,0	-37,6	-103,8	-61,4	155,8	98,8	-4,7	-49,6	-56,7	-37,7	-6,4	70,1
1970	31,2	-42,9	-119,3	-7,0	167,2	59,8	-29,3	-55,7	-44,7	-12,2	17,5	28,9
1971	-10,1	-28,3	-78,8	95,2	89,6	-2,7	-35,0	-49,5	-46,4	-5,3	51,1	52,6
1972	14,9	-42,8	-97,9	14,5	78,1	30,8	-5,0	-22,9	-24,1	-5,6	19,1	27,0
1973	3,6	-44,2	-91,3	39,0	85,7	35,4	-16,1	-29,1	-19,9	-7,0	18,2	24,8
1974	-0,8	-74,3	-27,9	-2,7	84,9	46,8	3,0	5,8	-33,1	-54,9	-20,4	-1,0
1975	43,9	-9,3	-59,9	82,9	68,0	-17,1	-60,9	-49,7	-8,5	29,8	50,8	46,8
1976	13,2	-59,0	-141,6	-41,1	125,8	67,4	59,3	-14,7	-53,3	-39,6	-13,1	27,9
1977	12,4	-45,8	-103,2	55,4	152,8	36,6	-50,8	-54,9	-45,7	-5,3	37,7	85,3
1978	-18,7	-92,8	-146,9	72,1	168,7	76,5	-20,7	-80,4	-99,1	-31,5	43,7	109,1
1979	25,5	-62,6	-133,4	-0,1	137,0	60,7	-24,4	-27,6	-34,2	-22,8	-6,4	38,3
1980	21,3	-34,8	-60,4	-48,8	143,3	68,8	-24,6	-52,3	-17,1	-29,3	-2,5	32,7
1981	22,4	-48,5	-108,4	62,0	140,2	57,5	-30,0	-85,0	-88,4	-27,0	80,7	82,2
1982	18,6	-75,1	-147,5	49,2	119,5	61,7	3,4	-42,4	-47,2	-31,0	-8,1	2,3
1983	29,6	-9,2	-92,3	99,0	93,8	18,1	-39,9	-60,6	-50,9	-19,0	18,3	38,7
1984	58,3	-9,5	-107,9	26,5	95,5	24,3	-37,4	-69,6	-54,3	25,8	81,0	56,4
1985	6,0	-62,1	-133,6	-42,4	159,2	77,0	3,2	-55,3	-67,6	-21,4	58,6	60,5
1986	0,7	-71,9	-151,8	63,2	169,7	45,7	-44,4	-86,7	-65,8	17,7	45,7	82,7
1987	38,9	-41,1	-129,7	-88,6	104,8	65,9	-6,5	9,0	32,5	35,4	-29,4	-35,4
1988	-33,1	-58,3	-115,6	71,0	150,0	63,5	-5,0	-28,4	-11,0	-16,7	-30,9	-58,6
1989	-97,9	-9,7	98,2	129,5	72,7	-23,3	-69,0	-43,5	-21,4	-36,4	20,8	-19,0
1990	-56,4	-19,5	159,3	143,5	19,1	-91,1	-159,8	-133,8	-3,1	135,3	131,3	83,7

Приложение И – Среднемесячные значения уровня воды оз. Ильмень высокочастотной фильтрации (продолжение)

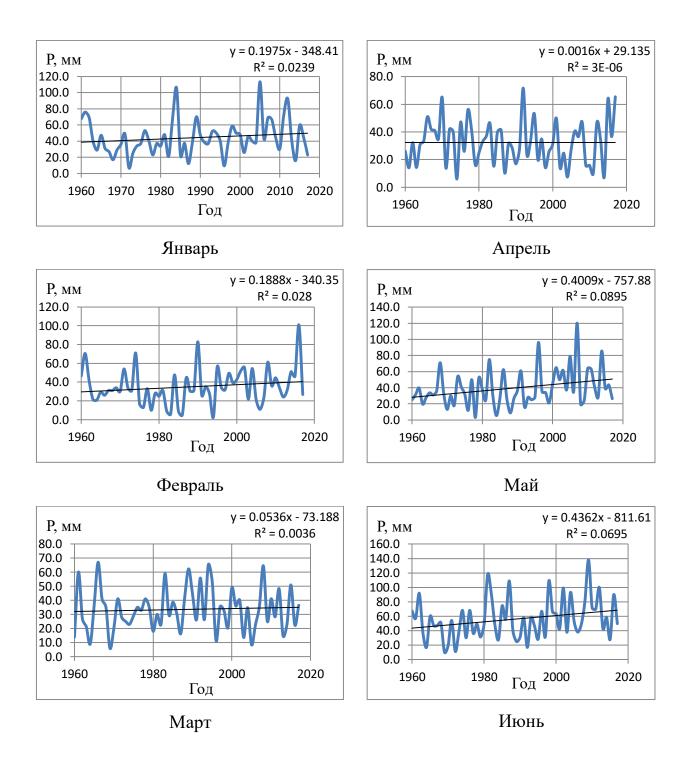
1991	-10,2	-104,2	-167,4	2,8	39,4	50,6	76,9	41,5	-2,3	-41,2	-47,4	-18,3	-10,2
1992	1,9	-40,3	-84,3	85,1	120,7	53,6	-27,3	-56,8	-45,8	-26,5	11,0	25,7	1,9
1993	-3,8	-8,3	-70,6	71,5	104,6	-7,3	-78,9	-67,2	-3,8	63,4	85,8	37,8	-3,8
1994	-35,4	-116,0	-186,8	31,2	155,4	131,2	49,4	-33,3	-59,3	-51,9	-31,9	-4,1	-35,4
1995	-32,6	-75,1	39,7	95,5	118,4	34,7	-48,5	-88,0	-73,0	-24,9	25,0	63,7	-32,6
1996	39,9	-13,5	-61,1	-38,6	89,6	27,7	-9,2	-19,5	-18,8	-10,8	-0,1	41,7	39,9
1997	-3,8	-80,4	-24,7	15,4	82,2	51,6	32,4	-47,6	-80,6	-58,0	30,6	66,8	-3,8
1998	22,7	-18,8	-22,4	-27,8	50,8	-41,0	-23,1	38,4	38,9	15,7	37,0	-11,4	22,7
1999	-61,1	-90,8	-145,6	99,3	190,4	74,4	-23,3	-67,7	-58,0	-24,1	0,7	19,2	-61,1
2000	17,8	-29,2	-66,2	53,2	102,3	-14,4	-36,7	19,3	3,8	-26,6	-21,0	10,4	17,8
2001	-8,4	-60,2	-56,3	121,7	45,3	43,8	-9,2	-40,5	-38,0	-21,8	18,8	2,2	-8,4
2002	-61,4	-42,8	54,0	113,4	58,2	-29,8	-63,3	-65,3	-29,5	14,1	43,3	47,2	-61,4
2003	21,9	-23,7	-72,6	-40,8	67,5	33,3	32,7	-24,6	-31,4	-18,9	26,5	33,3	21,9
2004	3,0	-72,8	-112,3	96,2	85,2	27,8	7,1	-31,8	-42,4	-46,6	12,8	19,0	3,0
2005	44,2	24,2	-83,7	-53,9	40,7	70,2	44,7	-9,3	-40,2	-32,6	-3,0	22,7	44,2
2006	13,1	-37,5	-99,2	12,3	106,0	100,6	23,4	-56,3	-55,7	-55,8	-20,6	1,0	13,1
2007	28,1	22,1	-7,8	44,1	22,7	-2,2	-31,9	-14,1	-6,4	4,6	15,1	5,2	28,1
2008	-26,5	-83,7	-15,2	94,4	97,3	15,3	-32,6	-38,7	-37,2	-26,2	-23,2	-42,3	-26,5
2009	112,0	16,6	-35,6	3,6	65,2	8,4	-40,9	-57,4	-47,7	-10,6	87,0	106,6	112,0
2010	10,9	-98,0	-188,2	50,6	121,6	68,8	8,7	-45,0	-33,3	-27,4	15,2	47,7	10,9
2011	-4,3	-56,3	-127,8	8,2	186,2	86,2	-5,9	-65,9	-65,1	-43,9	-24,3	32,7	-4,3
2012	65,3	0,3	-89,7	-11,6	129,8	41,7	-14,2	-57,6	-64,1	-41,4	49,4	71,7	65,3
2013	32,7	-40,0	-112,8	-73,8	146,9	106,9	15,9	-37,1	-66,9	-63,6	-22,4	21,8	32,7
2014	59,5	15,6	-28,7	11,7	14,9	3,6	-6,7	-9,9	-8,6	8,6	10,6	-4,1	59,5
2015	-16,7	-55,8	-23,8	59,7	90,8	17,7	-39,7	-46,6	-20,6	2,5	14,8	9,8	-16,7
2016	-8,4	-24,1	-23,7	30,2	80,3	-2,2	-40,5	2,1	-12,8	-31,5	-17,3	38,6	-8,4
2017	37,6	-47,0	-49,9	57,5	68,3	-15,3	-41,0	4,9	-12,4	-28,3	7,4	7,1	37,6

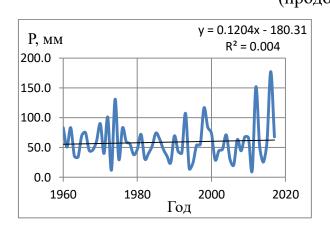

Приложение K – Среднемесячные значения уровня воды Ладожского озера высокочастотной фильтрации

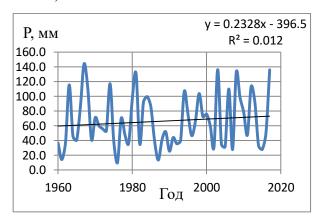
Год	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сен.	Окт.	Ноя.	Дек.
1960	-0,39	-6,20	-11,76	-10,00	12,06	11,06	4,01	2,22	-2,66	-4,39	-5,77	-1,23
1961	2,53	5,71	-2,52	-8,32	4,46	3,78	-2,02	-2,60	3,36	6,25	1,91	-1,86
1962	0,20	-4,83	-11,80	-12,59	15,60	11,82	3,94	-2,76	-0,75	0,78	-0,85	-1,49
1963	-7,80	-1,00	-2,88	-5,85	9,74	10,31	6,75	-2,67	-6,25	-5,60	-2,23	0,76
1964	4,05	0,19	-2,54	-7,40	4,34	8,94	0,86	-1,43	-1,35	-1,89	-2,14	1,26
1965	4,54	1,07	-4,70	-11,55	3,03	5,16	2,08	3,74	1,76	-1,27	0,74	3,07
1966	1,91	-1,15	-13,02	-24,25	9,35	18,02	11,22	4,13	-5,66	-0,93	0,69	1,39
1967	-5,98	-14,45	-4,63	-2,92	10,98	11,39	8,92	2,02	-4,17	-8,65	-0,96	-0,51
1968	1,06	-1,65	-10,74	-8,20	11,47	12,66	6,99	0,93	-4,27	-5,32	-2,32	-2,23
1969	0,80	-1,35	-4,70	-11,50	9,21	15,07	8,80	-1,96	-7,64	-5,35	-4,29	5,85
1970	1,36	-1,19	-8,16	-12,20	10,09	10,55	7,86	2,39	-3,70	-3,00	-2,20	-3,33
1971	-2,28	-3,50	-5,14	-4,53	9,18	12,30	6,01	2,14	-2,74	-8,90	-5,77	-0,31
1972	-0,48	-0,03	-3,62	-3,23	8,19	7,13	5,07	1,30	-0,86	-5,69	-5,37	-2,44
1973	-1,40	-1,53	-4,12	1,07	10,20	9,79	3,34	-3,83	-6,35	-7,35	-3,89	1,58
1974	5,60	6,81	-2,27	-9,64	-2,45	1,56	4,57	8,72	6,25	-3,00	-4,90	-4,50
1975	-3,60	-2,61	-8,85	-1,11	12,63	10,42	4,82	-0,28	-3,54	-6,54	-7,08	-2,28
1976	4,03	6,68	-1,89	-10,01	3,51	1,62	2,38	4,50	8,30	2,00	-6,75	-7,20
1977	-2,92	-3,43	-6,17	-6,69	13,78	13,84	7,44	0,59	-8,58	-8,51	-1,78	-2,57
1978	1,67	-0,58	-4,06	-2,07	12,05	7,42	0,35	-2,79	-1,38	-6,18	-3,80	-0,32
1979	4,10	3,20	-2,55	-9,33	3,49	6,91	3,99	2,83	1,74	-3,27	-8,03	-1,66
1980	-0,31	1,93	-2,23	-5,72	5,33	7,05	4,49	2,61	-0,56	-4,34	-9,88	-0,53
1981	6,50	2,22	-6,37	-11,78	3,31	14,44	9,98	2,00	-7,45	-9,85	0,53	1,23
1982	3,08	1,34	-7,58	-13,71	4,80	8,91	11,18	6,64	4,01	-5,69	-7,39	-5,22
1983	-5,97	-7,98	-9,36	7,36	16,51	13,53	6,54	0,27	-8,61	-9,82	-9,69	-8,51
1984	2,87	7,08	-0,20	1,13	14,83	6,68	1,03	-9,12	-15,93	-5,03	8,05	3,51
1985	2,62	2,83	-2,48	-9,46	3,74	5,41	3,97	1,90	-2,10	-3,72	-2,64	-1,97
1986	2,95	0,71	-6,31	-7,32	12,50	10,49	2,27	-6,49	-4,90	-4,65	-2,55	1,82
1987	4,50	7,29	0,79	-10,81	-3,07	2,40	-0,41	-1,08	8,20	9,83	-2,95	-6,75
1988	-0,79	-3,76	-8,93	-5,38	7,61	8,26	4,00	2,50	2,89	4,19	-5,11	-7,59
1989	-5,59	-6,22	-5,77	-0,27	12,72	10,51	5,85	1,95	-0,15	-5,82	-3,03	-10,60
1990	-10,74	-5,97	5,42	15,72	13,90	4,85	-3,07	-8,15	-11,95	-3,63	2,84	5,48


Приложение K – Среднемесячные значения уровня воды Ладожского озера высокочастотной фильтрации (продолжение)

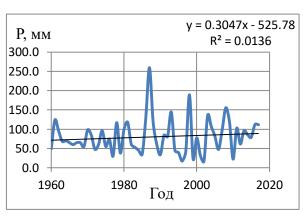
		1											
1991	4,72	1,61	-8,54	-6,73	2,92	4,44	4,48	5,10	-1,96	0,31	0,98	-0,05	4,72
1992	-3,38	-6,91	-12,03	-8,23	13,07	14,61	9,64	3,51	-0,10	-7,70	-11,09	-7,50	-3,38
1993	-0,78	1,92	1,13	-1,42	12,43	5,40	-1,89	-2,34	-3,34	-3,33	-0,14	4,84	-0,78
1994	5,31	-1,58	-12,22	-16,02	4,98	13,22	11,02	3,15	-1,12	3,44	-2,26	-6,76	5,31
1995	-6,36	-10,74	-5,95	-3,94	14,72	16,93	10,36	-0,93	-4,50	-9,01	-9,56	-6,81	-6,36
1996	2,62	4,55	2,13	-5,54	3,90	6,37	6,71	4,52	-4,86	-7,82	-4,90	0,93	2,62
1997	0,77	-0,93	-3,47	-4,37	7,09	10,11	5,90	-2,60	-4,70	-6,57	-3,68	1,80	0,77
1998	4,56	2,42	-2,67	-10,92	5,82	3,48	1,30	3,53	3,46	-3,31	-0,41	0,85	4,56
1999	2,93	-7,70	-12,62	-6,82	7,78	10,70	13,45	5,25	-3,85	-7,57	-8,80	-3,89	2,93
2000	1,85	1,47	-3,73	-3,53	11,58	3,73	0,15	0,91	-1,03	-3,45	2,71	1,96	1,85
2001	-2,25	-8,27	-9,46	-2,53	8,79	9,13	7,96	5,43	-0,46	-7,38	-5,00	-6,28	-2,25
2002	-3,93	-1,25	-2,30	0,63	12,31	5,89	6,33	2,23	-7,05	-7,99	-8,24	-4,03	-3,93
2003	4,31	6,61	2,72	-4,83	5,72	2,77	-2,96	-1,62	-2,10	1,24	4,09	-0,40	4,31
2004	-2,27	-1,63	-6,87	-2,95	6,01	3,27	3,06	3,51	1,79	-0,47	-4,50	-5,86	-2,27
2005	3,07	4,28	-6,05	-12,99	0,40	8,42	8,09	9,94	4,05	-2,40	-6,50	-6,83	3,07
2006	-4,84	-4,61	-7,91	-3,71	10,19	14,39	16,42	6,52	-7,15	-17,93	-14,01	-2,70	-4,84
2007	3,98	4,46	3,24	3,32	4,45	2,41	-2,45	-3,25	1,67	4,37	-1,94	-3,20	3,98
2008	-5,05	-6,73	-9,31	4,75	16,86	10,74	3,90	-2,43	-10,03	-14,2	-2,12	6,80	-5,05
2009	6,25	3,16	-3,60	-10,68	3,10	6,16	7,77	0,00	-2,05	-4,75	-1,25	4,13	6,25
2010	2,31	-3,47	-11,86	-11,02	5,69	12,99	15,18	6,03	-3,01	-10,2	-8,75	-4,04	2,31
2011	0,94	0,78	-4,55	-9,23	12,63	15,29	10,79	-1,23	-10,1	-7,95	-11,48	-1,86	0,94
2012	7,01	5,40	0,58	-7,55	8,92	4,45	1,64	0,18	-5,00	-6,31	0,02	3,33	7,01
2013	3,85	-0,31	-8,42	-11,62	6,61	11,92	8,85	5,89	-2,24	-14,1	-6,64	-3,14	3,85
2014	1,53	6,75	3,82	-2,60	-5,13	2,65	4,87	2,27	3,48	-1,40	-1,15	-3,70	1,53
2015	-4,70	-3,37	-6,71	-3,99	11,53	12,96	6,29	2,16	-2,95	-9,33	-11,39	-5,08	-4,70
2016	0,55	7,60	3,15	2,95	6,93	-3,27	-6,71	2,70	7,31	-2,08	-9,79	-4,95	0,55
2017	2,79	2,39	-0,66	0,48	9,78	4,02	-4,33	-4,21	-4,91	-0,95	0,12	0,80	2,79
	1	l	l										


Приложение Л – Графики оценок значимости линейного тренда среднемесячных значений температур воздуха по метеостанции Сортавала

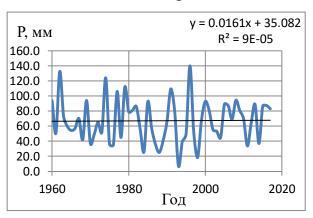

Приложение Л – Графики оценок значимости линейного тренда среднемесячных значений температур воздуха по метеостанции Сортавала (продолжение)

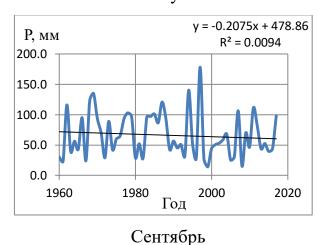


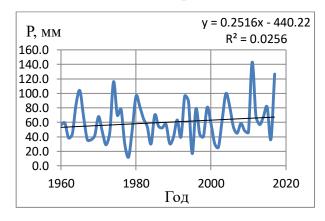
Приложение M – Графики оценок значимости линейного тренда среднемесячных значений атмосферных осадков по метеостанции Сортавала



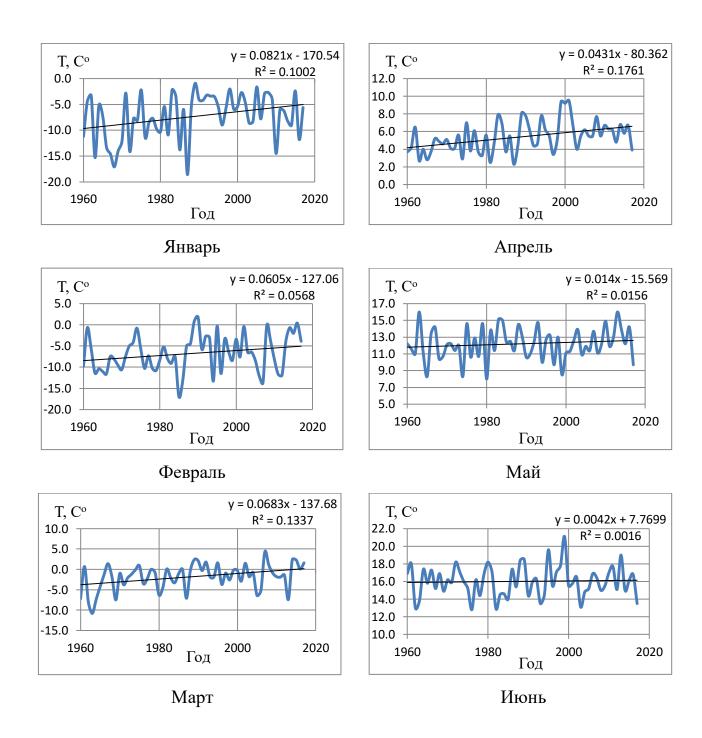
Приложение M – Графики оценок значимости линейного тренда среднемесячных значений атмосферных осадков по метеостанции Сортавала (продолжение)



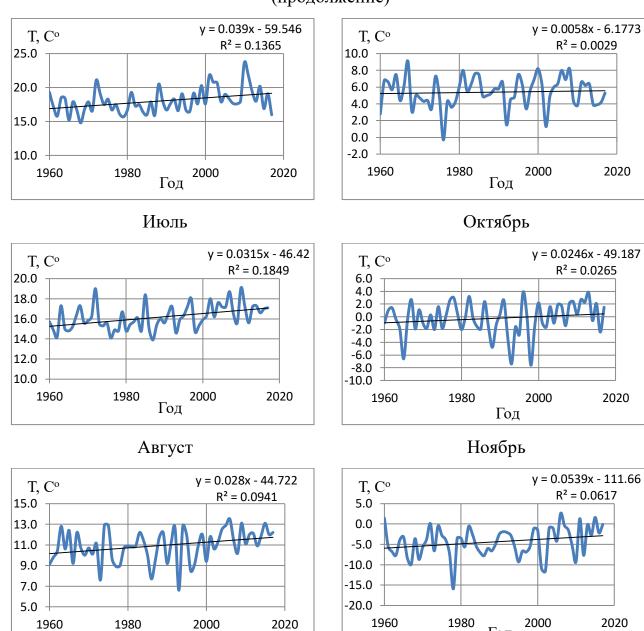

Июль


Октябрь

Август



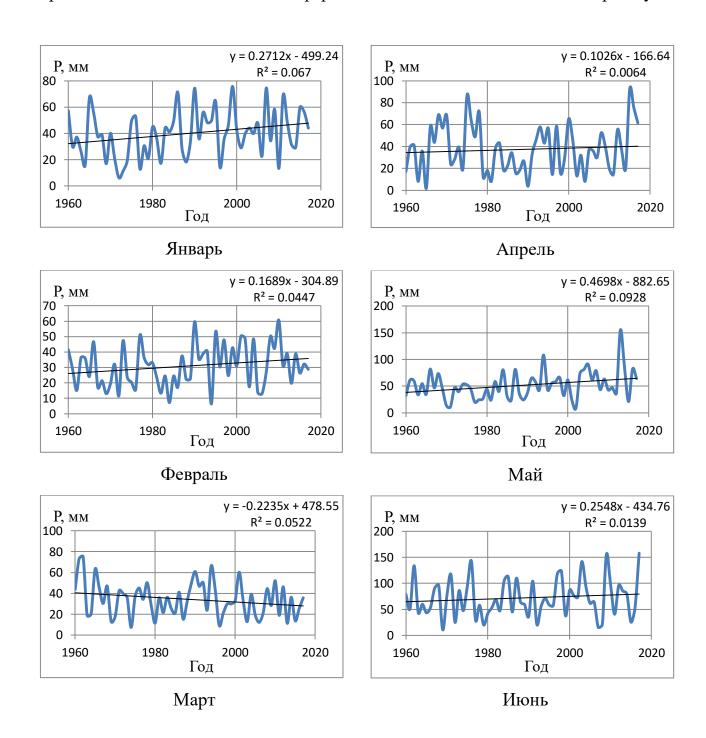
Ноябрь


Декабрь

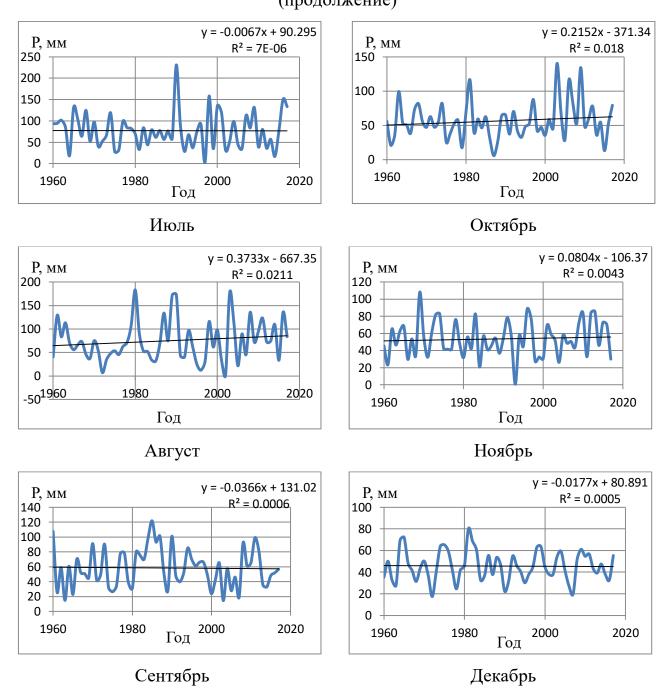
Приложение H – Графики оценок значимости линейного тренда среднемесячных значений температур по метеостанции Старая Русса

Приложение H – Графики оценок значимости линейного тренда среднемесячных значений температур по метеостанции Старая Русса

(продолжение)


Год

Сентябрь


Год

Декабрь

Приложение О – Графики оценок значимости линейного тренда среднемесячных значений атмосферных осадков по метеостанции Старая Русса

Приложение О – Графики оценок значимости линейного тренда среднемесячных значений атмосферных осадков по метеостанции Старая Русса (продолжение)

Приложение П Матрица корреляционных зависимостей внутригодовой и межгодовой изменчивости

Приложение П.1 – Матрица корреляционных зависимостей внутригодовой изменчивости уровней воды Ладожского озера

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,09	0,08	0,08	0,07	0,07	0,07	0,07	0,05		0,01	0,00	-0,01
-11	0,10	0,09	0,09	0,10	0,09	0,09	0,08	0,05		0,02	0,01	0,79
-10	0,10	0,10	0,12	0,12	0,11	0,10	0,09	0,06		0,03	0,81	0,80
-9	0,11	0,13	0,13	0,13	0,12	0,11	0,09	0,07		0,83	0,82	0,81
-8	0,14	0,15	0,15	0,14	0,12	0,11	0,10	0,08		0,85	0,83	0,82
-7	0,16	0,16	0,16	0,15	0,13	0,12	0,11	0,91		0,86	0,84	0,85
-6	0,18	0,17	0,16	0,15	0,14	0,13	0,93	0,92		0,87	0,88	0,87
-5	0,19	0,18	0,17	0,16	0,15	0,95	0,95	0,93		0,90	0,90	0,90
-4	0,20	0,18	0,18	0,17	0,96	0,96	0,96	0,94		0,93	0,92	0,93
-3	0,20	0,19	0,19	0,98	0,97	0,97	0,97	0,97		0,95	0,95	0,96
-2	0,20	0,19	0,99	0,99	0,98	0,98	0,99	0,98		0,97	0,98	0,98
-1	0,21	1,00	1,00	0,99	0,99	1,00	1,00	0,99		0,99	0,99	1,00
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1,00	1,00	0,99	0,99	1,00	1,00	0,99		0,99	0,99	1,00	0,21
2	0,99	0,99	0,98	0,98	0,99	0,98		0,97	0,98	0,98	0,20	0,19
3	0,98	0,97	0,97	0,97	0,97		0,95	0,95	0,96	0,20	0,19	0,19
4	0,96	0,96	0,96	0,94		0,93	0,92	0,93	0,20	0,18	0,18	0,17
5	0,95	0,95	0,93		0,90	0,90	0,90	0,19	0,18	0,17	0,16	0,15
6	0,93	0,92		0,87	0,88	0,87	0,18	0,17	0,16	0,15	0,14	0,13
7	0,91		0,86	0,84	0,85	0,16	0,16	0,16	0,15	0,13	0,12	0,11
8		0,85	0,83	0,82	0,14	0,15	0,15	0,14	0,12	0,11	0,10	0,08
9	0,83	0,82	0,81	0,11	0,13	0,13	0,13	0,12	0,11	0,09	0,07	
10	0,81	0,80	0,10	0,10	0,12	0,12	0,11	0,10	0,09	0,06		0,03
11	0,79	0,10	0,09	0,09	0,10	0,09	0,09	0,08	0,05		0,02	0,01
12	0,09	0,08	0,08	0,07	0,07	0,07	0,07	0,05	0,02	0,01	0,00	-0,01

Приложение П.2 – Матрица корреляционных зависимостей межгодовой изменчивости уровней воды Ладожского озера

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,09	0,08	0,07	0,07	0,07	0,07	0,07	0,04	0,02	0,01	-0,001	-0,01
24	0,02	0,01	0,02	0,02	0,04	0,04	0,02	-0,01	-0,04	-0,04	-0,05	-0,06
36	0,12	0,13	0,14	0,13	0,12	0,11	0,11	0,10	0,09	0,09	0,09	0,09

Приложение П.3 – Матрица корреляционных зависимостей внутригодовой изменчивости уровней озера Ильмень

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,03	0,11	0,18	0,00	0,10	0,06	-0,05	-0,16		-0,09	-0,12	-0,06
-11	0,02	0,16	0,06	-0,07	0,08	0,03	-0,13	-0,07		-0,07	-0,08	0,25
-10	0,07	0,05	-0,12	-0,04	0,04	-0,07	-0,03	0,04		-0,06	0,25	0,22
-9	-0,04	0,01	-0,09	0,00	-0,06	-0,01	0,09	0,04		0,23	0,26	0,25
-8	0,02	0,04	-0,04	0,02	-0,01	0,08	0,11	0,05		0,25	0,31	0,23
-7	0,05	0,10	-0,01	0,11	0,06	0,12	0,11	0,35		0,31	0,28	0,40
-6	0,13	0,11	0,05	0,13	0,11	0,13	0,42	0,29		0,28	0,37	0,40
-5	0,15	0,20	0,06	0,20	0,15	0,48	0,32	0,22		0,40	0,37	0,50
-4	0,25	0,26	0,14	0,23	0,54	0,39	0,17	0,30		0,41	0,48	0,61
-3	0,36	0,36	0,21	0,62	0,50	0,22	0,40	0,59		0,54	0,64	0,73
-2	0,46	0,46	0,63	0,72	0,35	0,54	0,77	0,69		0,75	0,80	0,84
-1	0,58	0,92	0,83	0,75	0,68	0,92	0,91	0,88		0,93	0,92	0,95
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,92	0,83	0,75	0,68	0,92	0,91	0,88	0,92	0,93	0,92	0,95	0,58
2	0,63	0,72	0,35	0,54	0,77	0,69	0,70	0,75	0,80	0,84	0,46	0,46
3	0,62	0,50	0,22	0,40	0,59	0,52	0,54	0,64	0,73	0,36	0,36	0,21
4	0,54	0,39	0,17	0,30	0,46	0,41	0,48	0,61	0,25	0,26	0,14	0,23
5	0,48	0,32	0,22	0,27	0,40	0,37	0,50	0,15	0,20	0,06	0,20	0,15
6	0,42	0,29	0,29	0,28	0,37	0,40	0,13	0,11	0,05	0,13	0,11	0,13
7	0,35	0,27	0,31	0,28	0,40	0,05	0,10	-0,01	0,11	0,06	0,12	0,11
8	0,28	0,25	0,31	0,23	0,02	0,04	-0,04	0,02	-0,01	0,08	0,11	0,05
9	0,23	0,26	0,25	-0,04	0,01	-0,09	0,00	-0,06	-0,01	0,09	0,04	-0,01
10	0,25	0,22	0,07	0,05	-0,12	-0,04	0,04	-0,07	-0,03	0,04	-0,02	-0,06
11	0,25	0,02	0,16	0,06	-0,07	0,08	0,03	-0,13	-0,07	-0,02	-0,07	-0,08
12	0,03	0,11	0,18	0,00	0,10	0,06	-0,05	-0,16	-0,09	-0,09	-0,12	-0,06

Приложение П.4 – Матрица корреляционных зависимостей межгодовой изменчивости уровней озера Ильмень

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,02	0,10	0,18	-0,002	0,10	0,06	-0,05	-0,15	-0,08	-0,09	-0,11	-0,05
24	0,08	0,24	0,19	0,09	0,06	-0,001	-0,13	-0,19	-0,15	-0,18	-0,25	-0,26
36	0,12	0,15	0,15	0,03	-0,03	-0,03	-0,01	-0,01	0,09	0,25	0,22	0,16

Приложение П.5 – Матрица корреляционных зависимостей внутригодовой изменчивости уровня Ладожского озера после фильтрации

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	-0,20	-0,24	-0,27	0,15	-0,23	-0,14	0,09	-0,04		-0,06	-0,07	-0,01
-11	-0,05	0,03	0,22	0,07	-0,04	0,12	0,22	0,02		0,00	0,05	0,12
-10	0,21	0,46	0,49	0,05	0,19	0,34	0,16	0,10		0,16	0,28	0,16
-9	0,34	0,39	0,44	0,15	0,40	0,35	0,20	0,26		0,41	0,30	0,30
-8	0,28	0,18	0,28	0,28	0,37	0,38	0,35	0,37		0,50	0,33	0,10
-7	0,05	0,03	-0,06	0,18	0,32	0,25	0,28	0,21		0,31	0,03	0,14
-6	-0,09	-0,27	-0,32	-0,08	-0,06	0,02	-0,13	-0,02		-0,18	-0,08	-0,07
-5	-0,38	-0,41	-0,52	-0,33	-0,46	-0,33	-0,49	-0,38		-0,48	-0,33	-0,27
-4	-0,49	-0,57	-0,55	-0,62	-0,62	-0,65	-0,70	-0,48		-0,56	-0,50	-0,51
-3	-0,45	-0,43	-0,37	-0,59	-0,61	-0,71	-0,46	-0,45		-0,56	-0,48	-0,49
-2	-0,14	0,06	0,10	-0,21	-0,32	-0,30	0,09	0,05		-0,15	-0,15	-0,13
-1	0,51	0,70	0,59	0,44	0,37	0,52	0,77	0,52		0,57	0,44	0,54
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,70	0,59	0,44	0,37	0,52	0,77	0,52		0,57	0,44	0,54	0,51
2	0,10	-0,21	-0,32	-0,30	0,09	0,05		-0,15	-0,15	-0,13	-0,14	0,06
3	-0,59	-0,61	-0,71	-0,46	-0,45		-0,56	-0,48	-0,49	-0,45	-0,43	-0,37
4	-0,62	-0,65	-0,70	-0,48		-0,56	-0,50	-0,51	-0,49	-0,57	-0,55	-0,62
5	-0,33	-0,49	-0,38		-0,48	-0,33	-0,27	-0,38	-0,41	-0,52	-0,33	-0,46
6	-0,13	-0,02		-0,18	-0,08	-0,07	-0,09	-0,27	-0,32	-0,08	-0,06	0,02
7	0,21		0,31	0,03	0,14	0,05	0,03	-0,06	0,18	0,32	0,25	0,28
8		0,50	0,33	0,10	0,28	0,18	0,28	0,28	0,37	0,38	0,35	0,37
9	0,41	0,30	0,30	0,34	0,39	0,44	0,15	0,40	0,35	0,20	0,26	0,32
10	0,28	0,16	0,21	0,46	0,49	0,05	0,19	0,34	0,16	0,10		0,16
11	0,12	-0,05	0,03	0,22	0,07	-0,04	0,12	0,22	0,02		0,00	0,05
12	-0,20	-0,24	-0,27	0,15	-0,23	-0,14	0,09	-0,04	-0,14	-0,06	-0,07	-0,01

Приложение П.6 – Матрица корреляционных зависимостей внутригодовой изменчивости уровня озера Ильмень после фильтрации

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,10	-0,29	0,19	-0,03	0,32	0,07	-0,25	-0,17		-0,22	-0,22	0,12
-11	-0,17	-0,06	0,21	-0,12	0,26	-0,02	-0,21	0,00		-0,11	-0,18	0,20
-10	-0,09	0,12	-0,13	0,04	0,10	-0,09	0,11	0,28		-0,17	0,09	0,05
-9	-0,04	0,13	0,05	0,16	-0,06	0,04	0,50	0,18		-0,01	0,29	-0,03
-8	0,21	0,23	0,18	0,34	-0,02	0,31	0,46	0,22		0,38	0,31	0,08
-7	0,16	0,26	0,27	0,30	0,15	0,37	0,41	0,24		0,43	0,31	0,27
-6	0,08	0,07	0,06	-0,09	0,21	0,39	0,18	0,12		0,20	-0,11	-0,03
-5	-0,21	-0,26	-0,39	-0,26	0,31	0,05	-0,32	-0,09		-0,35	-0,43	-0,32
-4	-0,47	-0,57	-0,55	-0,49	-0,12	-0,51	-0,60	-0,46		-0,61	-0,63	-0,62
-3	-0,34	-0,56	-0,61	-0,55	-0,52	-0,75	-0,55	-0,38		-0,70	-0,62	-0,53
-2	-0,13	-0,36	-0,24	-0,22	-0,63	-0,39	0,12	-0,07		-0,28	-0,14	0,14
-1	0,30	0,49	0,49	0,28	-0,11	0,65	0,68	0,51		0,50	0,61	0,66
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,49	0,49	0,28	-0,11	0,65	0,68	0,51		0,50	0,61	0,66	0,30
2	-0,24	-0,22	-0,63	-0,39	0,12	-0,07		-0,28	-0,14	0,14	-0,13	-0,36
3	-0,55	-0,52	-0,75	-0,55	-0,38		-0,70	-0,62	-0,53	-0,34	-0,56	-0,61
4	-0,12	-0,51	-0,60	-0,46		-0,61	-0,63	-0,62	-0,47	-0,57	-0,55	-0,49
5	0,05	-0,32	-0,09		-0,35	-0,43	-0,32	-0,21	-0,26	-0,39	-0,26	0,31
6	0,18	0,12		0,20	-0,11	-0,03	0,08	0,07	0,06	-0,09	0,21	0,39
7	0,24		0,43	0,31	0,27	0,16	0,26	0,27	0,30	0,15	0,37	0,41
8	0,10	0,38	0,31	0,08	0,21	0,23	0,18	0,34	-0,02	0,31	0,46	0,22
9	-0,01	0,29	-0,03	-0,04	0,13	0,05	0,16	-0,06	0,04	0,50	0,18	
10	0,09	0,05	-0,09	0,12	-0,13	0,04	0,10	-0,09	0,11	0,28	-0,07	-0,17
11	0,20	-0,17	-0,06	0,21	-0,12	0,26	-0,02	-0,21	0,00		-0,11	-0,18
12	0,10	-0,29	0,19	-0,03	0,32	0,07	-0,25	-0,17	-0,01	-0,22	-0,22	0,12

Приложение П.7 – Матрица корреляционных зависимостей внутригодовой изменчивости осадков по метеостанции Старая Русса

	I	II	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,02	-0,04	0,06	0,13	0,06	-0,17	-0,18	0,16		-0,04	-0,05	0,26
-11	0,00	0,14	0,02	0,08	-0,11	0,04	0,19	-0,14		0,06	-0,27	0,19
-10	-0,03	-0,09	0,00	-0,36	-0,14	0,04	-0,03	-0,12		-0,18	-0,15	0,08
-9	-0,16	0,06	-0,07	0,02	0,03	0,17	0,01	0,12		0,11	0,10	0,07
-8	0,07	-0,05	0,14	-0,22	-0,02	-0,07	0,05	0,00		0,13	0,00	0,01
-7	-0,17	0,20	0,26	-0,18	0,13	0,09	-0,02	0,17		-0,12	0,13	0,03
-6	-0,14	0,11	-0,15	-0,11	0,11	0,11	0,31	0,20		-0,08	0,08	0,20
-5	0,17	-0,15	-0,08	0,04	0,01	0,04	0,21	0,09		0,03	0,01	-0,05
-4	0,02	0,08	-0,22	0,06	0,12	0,00	0,23	-0,17		0,26	-0,04	0,19
-3	-0,10	0,15	0,12	0,18	-0,16	0,13	0,00	0,13		0,07	-0,26	0,08
-2	0,01	-0,11	0,21	-0,01	-0,05	0,13	0,08	0,07		0,22	0,12	0,16
-1	0,18	0,13	0,26	0,10	0,08	0,29	0,04	0,31	-0,01	-0,04	0,18	0,04
1	1	1	1	1	1	1	1	1	1	1	1	1
1	0,13	0,26	0,10	0,08	0,29	0,04	0,31	-0,01	-0,04	0,18	0,04	0,18
2	0,21	-0,01	-0,05	0,13	0,08	0,07	0,13	0,22	0,12	0,16	0,01	-0,11
3	0,18	-0,16	0,13	0,00	0,13	0,14	0,07	-0,26	0,08	-0,10	0,15	0,12
4	0,12	0,00	0,23	-0,17	-0,08	0,26	-0,04	0,19	0,02	0,08	-0,22	0,06
5	0,04	0,21	0,09	0,02	0,03	0,01	-0,05	0,17	-0,15	-0,08	0,04	0,01
6	0,31	0,20	0,13	-0,08	0,08	0,20	-0,14	0,11	-0,15	-0,11	0,11	0,11
7	0,17	0,25	-0,12	0,13	0,03	-0,17	0,20	0,26	-0,18	0,13	0,09	-0,02
8	0,14	0,13	0,00	0,01	0,07	-0,05	0,14	-0,22	-0,02	-0,07	0,05	0,00
9	0,11	0,10	0,07	-0,16	0,06	-0,07	0,02	0,03	0,17	0,01	0,12	-0,03
10	-0,15	0,08	-0,03	-0,09	0,00	-0,36	-0,14	0,04	-0,03	-0,12	-0,05	-0,18
11	0,19	0,00	0,14	0,02	0,08	-0,11	0,04	0,19	-0,14	0,03	0,06	-0,27
12	0,02	-0,04	0,06	0,13	0,06	-0,17	-0,18	0,16	0,17	-0,04	-0,05	0,26

Приложение П.8 – Матрица корреляционных зависимостей межгодовой изменчивости осадков по метеостанции Старая Русса

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,0193	-0,041	0,062	0,128	0,058	-0,174	-0,182	0,156	0,165	-0,041	-0,051	0,262
24	-0,042	0,230	-0,081	0,086	-0,050	-0,187	-0,108	-0,080	0,119	-0,114	-0,198	-0,219
36	-0,160	-0,036	0,065	-0,096	0,109	0,104	-0,075	0,103	0,121	0,270	-0,159	-0,372

Приложение П.9 – Матрица корреляционных зависимостей внутригодовой изменчивости температуры по метеостанции Старая Русса

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,12	0,30	0,24	0,29	-0,04	0,10	0,17	0,00		0,15	0,13	0,21
-11	0,23	0,37	0,10	0,09	-0,01	0,07	0,02	0,03		-0,21	-0,09	0,19
-10	0,21	0,17	0,03	0,13	0,05	-0,03	-0,05	0,11		0,01	-0,10	0,18
-9	0,12	-0,06	0,10	0,15	-0,06	-0,04	-0,04	0,05		0,04	-0,07	0,11
-8	-0,10	0,15	0,15	0,03	0,11	-0,01	-0,06	-0,14		-0,17	-0,01	-0,02
-7	-0,01	0,12	0,06	0,11	-0,03	-0,15	-0,08	-0,26		-0,13	0,09	-0,21
-6	0,15	0,06	0,08	0,15	0,14	-0,23	-0,13	-0,19		0,31	-0,03	-0,11
-5	0,13	0,05	0,04	-0,14	-0,13	-0,13	-0,12	0,05		0,27	-0,12	-0,14
-4	0,08	-0,14	-0,07	0,25	-0,15	-0,06	-0,01	0,36		0,37	0,02	-0,05
-3	0,06	0,07	0,19	0,32	-0,14	0,01	0,48	0,64		0,25	0,07	0,12
-2	-0,10	0,16	0,30	0,10	-0,05	0,36	0,61	0,70		0,30	0,00	0,07
-1	0,34	0,32	0,37	0,25	0,25	0,48	0,73	0,81		0,37	0,19	0,06
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,32	0,37	0,25	0,25	0,48	0,73	0,81		0,37	0,19	0,06	0,34
2	0,30	0,10	-0,05	0,36	0,61	0,70		0,30	0,00	0,07	-0,10	0,16
3	0,32	-0,14	0,01	0,48	0,64	0,56	0,25	0,07	0,12	0,06	0,07	0,19
4	-0,15	-0,06	-0,01	0,36	0,45	0,37	0,02	-0,05	0,08	-0,14	-0,07	0,25
5	-0,13	-0,12	0,05	0,37	0,27	-0,12	-0,14	0,13	0,05	0,04	-0,14	-0,13
6	-0,13	-0,19	-0,01	0,31	-0,03	-0,11	0,15	0,06	0,08	0,15	0,14	-0,23
7	-0,26	-0,12	-0,13	0,09	-0,21	-0,01	0,12	0,06	0,11	-0,03	-0,15	-0,08
8		-0,17	-0,01	-0,02	-0,10	0,15	0,15	0,03	0,11	-0,01	-0,06	-0,14
9	0,04	-0,07	0,11	0,12	-0,06	0,10	0,15	-0,06	-0,04	-0,04	0,05	0,00
10	-0,10	0,18	0,21	0,17	0,03	0,13	0,05	-0,03	-0,05	0,11	0,02	0,01
11	0,19	0,23	0,37	0,10	0,09	-0,01	0,07	0,02	0,03	0,14	-0,21	-0,09
12	0,12	0,30	0,24	0,29	-0,04	0,10	0,17	0,00	-0,05	0,15	0,13	0,21

Приложение П.10 – Матрица корреляционных зависимостей межгодовой изменчивости температуры по метеостанции Старая Русса

	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,115	0,303	0,241	0,285	-0,041	0,100	0,166	-0,001	-0,050	0,151	0,127	0,212
24	0,146	0,168	-0,064	0,052	-0,055	-0,043	0,053	-0,031	-0,090	-0,061	-0,181	0,043
36	0,183	-0,032	-0,009	-0,078	0,007	-0,002	0,096	0,043	-0,024	0,024	-0,006	-0,014

Приложение П.11 — Матрица корреляционных зависимостей внутригодовой изменчивости осадков по метеостанции Сортавала

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,16	0,03	-0,04	-0,22	-0,08	0,07	-0,20	0,07		-0,05	-0,08	-0,03
-11	-0,08	0,25	-0,10	0,18	0,08	-0,07	-0,05	0,20		0,03	-0,18	0,14
-10	0,08	0,14	0,12	0,05	-0,11	0,16	0,10	-0,20		-0,01	-0,03	-0,08
-9	-0,22	0,12	-0,01	0,16	-0,25	-0,13	-0,17	0,10		0,06	0,16	-0,08
-8	0,16	-0,22	-0,08	-0,10	-0,30	0,07	-0,12	-0,13		-0,06	-0,09	-0,06
-7	0,08	-0,17	0,05	-0,07	0,14	-0,05	0,04	0,10		0,15	0,19	0,13
-6	-0,17	0,00	-0,04	-0,21	0,04	0,04	0,14	0,17		0,21	0,34	0,23
-5	0,02	0,03	-0,25	0,09	-0,13	0,16	0,40	-0,05		-0,14	0,15	0,13
-4	0,02	-0,09	-0,19	0,18	0,01	0,23	-0,01	-0,10		0,16	0,17	0,22
-3	-0,28	-0,11	0,15	-0,03	0,05	0,03	0,06	-0,09		0,15	-0,18	0,00
-2	-0,22	-0,19	0,29	-0,21	-0,17	-0,30	-0,09	0,45		0,06	-0,09	0,13
-1	0,23	0,14	0,14	0,35	-0,09	0,16	0,39	0,24		0,00	0,17	0,10
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,14	0,14	0,35	-0,09	0,16	0,39	0,24	0,05	0,00	0,17	0,10	0,23
2	0,29	-0,21	-0,17	-0,30	-0,09	0,45		0,06	-0,09	0,13	-0,22	-0,19
3	-0,03	0,05	0,03	0,06	-0,09	-0,05	0,15	-0,18	0,00	-0,28	-0,11	0,15
4	0,01	0,23	-0,01	-0,10	0,01	0,16	0,17	0,22	0,02	-0,09	-0,19	0,18
5	0,16	0,40	-0,05	0,17	-0,14	0,15	0,13	0,02	0,03	-0,25	0,09	-0,13
6	0,14	0,17	0,13	0,21	0,34	0,23	-0,17	0,00	-0,04	-0,21	0,04	0,04
7	0,10	-0,20	0,15	0,19	0,13	0,08	-0,17	0,05	-0,07	0,14	-0,05	0,04
8	0,00	-0,06	-0,09	-0,06	0,16	-0,22	-0,08	-0,10	-0,30	0,07	-0,12	-0,13
9	0,06	0,16	-0,08	-0,22	0,12	-0,01	0,16	-0,25	-0,13	-0,17	0,10	-0,08
10	-0,03	-0,08	0,08	0,14	0,12	0,05	-0,11	0,16	0,10	-0,20	0,01	-0,01
11	0,14	-0,08	0,25	-0,10	0,18	0,08	-0,07	-0,05	0,20	-0,06	0,03	-0,18
12	0,16	0,03	-0,04	-0,22	-0,08	0,07	-0,20	0,07	-0,11	-0,05	-0,08	-0,03

Приложение П.12 — Матрица корреляционных зависимостей межгодовой изменчивости осадков по метеостанции Сортавала

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,159	0,030	-0,04	-0,216	-0,081	0,066	-0,200	0,065	-0,105	-0,048	-0,079	-0,030
24	-0,132	-0,096	-0,078	0,036	-0,017	0,051	-0,144	-0,207	-0,008	-0,198	-0,249	-0,177
36	-0,001	0,148	-0,236	-0,065	-0,012	0,024	-0,083	-0,277	0,046	0,139	-0,149	-0,207

Приложение П.13 — Матрица корреляционных зависимостей внутригодовой изменчивости температуры по метеостанции Сортавала

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
-12	0,09	0,28	0,06	0,17	-0,06	-0,05	0,20	0,25		0,13	-0,02	0,14
-11	0,13	0,26	0,10	0,20	-0,14	0,08	0,14	0,23		-0,12	-0,02	0,16
-10	0,07	0,13	0,17	0,11	0,04	0,09	0,03	0,05		0,03	0,00	0,24
-9	0,09	0,04	0,11	0,31	-0,02	0,02	-0,13	0,18		0,15	-0,05	0,15
-8	-0,06	0,30	0,29	0,20	0,38	0,11	-0,06	0,07		-0,01	-0,01	0,19
-7	0,09	0,33	0,24	0,24	-0,04	-0,06	0,05	-0,02		-0,17	0,10	-0,09
-6	0,30	0,16	0,18	0,18	0,30	-0,16	0,11	0,04		0,20	0,08	0,00
-5	0,18	0,14	0,00	0,17	0,16	0,06	0,04	0,18		-0,09	-0,13	0,05
-4	0,13	0,02	-0,02	0,29	0,13	0,07	0,06	0,23		0,14	0,04	0,21
-3	0,13	0,04	0,17	0,24	0,08	0,04	0,32	0,26		0,05	0,16	0,28
-2	-0,13	0,11	0,13	0,27	0,01	0,02	0,32	0,20		0,06	0,11	0,10
-1	0,41	0,35	0,42	0,23	0,18	-0,09	0,28	0,42		0,21	0,33	0,18
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1	0,35	0,42	0,23	0,18	-0,09	0,28	0,42	0,39	0,21	0,33	0,18	0,41
2	0,13	0,27	0,01	0,02	0,32	0,20		0,06	0,11	0,10	-0,13	0,11
3	0,24	0,08	0,04	0,32	0,26		0,05	0,16	0,28	0,13	0,04	0,17
4	0,13	0,07	0,06	0,23		0,14	0,04	0,21	0,13	0,02	-0,02	0,29
5	0,06	0,04	0,18	0,23	-0,09	-0,13	0,05	0,18	0,14	0,00	0,17	0,16
6	0,11	0,04	0,05	0,20	0,08	0,00	0,30	0,16	0,18	0,18	0,30	-0,16
7	-0,02	0,13	-0,17	0,10	-0,09	0,09	0,33	0,24	0,24	-0,04	-0,06	0,05
8	0,17	-0,01	-0,01	0,19	-0,06	0,30	0,29	0,20	0,38	0,11	-0,06	0,07
9	0,15	-0,05	0,15	0,09	0,04	0,11	0,31	-0,02	0,02	-0,13	0,18	0,08
10	0,00	0,24	0,07	0,13	0,17	0,11	0,04	0,09	0,03	0,05	0,27	0,03
11	0,16	0,13	0,26	0,10	0,20	-0,14	0,08	0,14	0,23	0,23	-0,12	-0,02
12	0,09	0,28	0,06	0,17	-0,06	-0,05	0,20	0,25	-0,03	0,13	-0,02	0,14

Приложение П.14 — Матрица корреляционных зависимостей межгодовой изменчивости температуры по метеостанции Сортавала

	l	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0	1	1	1	1	1	1	1	1	1	1	1	1
12	0,085	0,284	0,056	0,170	-0,059	-0,048	0,197	0,254	-0,035	0,132	-0,019	0,138
24	0,080	0,103	-0,085	-0,030	0,071	-0,014	0,228	0,021	0,098	-0,045	-0,088	0,135
36	0,120	-0,026	0,081	-0,031	0,241	-0,048	0,156	0,160	0,232	0,066	0,097	-0,114

Приложение Р Индекса Де-Мартона

Приложение Р.1 Расчеты индекса Де-Мартона

α^{M}			(α^{M}		$lpha^{ m M}$		
Год	Старая	Сортавала	Год	Старая	Сортавала	Год	Старая	Сортавала
	Pycca	Сортавала		Pycca	Сортавала		Pycca	Сортавала
1960	3,77	3,81	1980	3,68	4,22	2000	3,46	3,81
1961	3,24	3,55	1981	3,42	5,22	2001	3,46	3,33
1962	4,23	5,17	1982	3,19	3,52	2002	2,41	3,22
1963	3,44	3,63	1983	3,13	3,87	2003	4,33	4,11
1964	3,18	3,06	1984	3,18	3,43	2004	3,92	4,07
1965	3,94	4,12	1985	3,92	4,96	2005	2,60	3,57
1966	4,17	5,14	1986	3,40	4,32	2006	3,01	3,12
1967	3,44	3,72	1987	4,31	5,71	2007	2,94	4,17
1968	4,32	4,61	1988	2,81	3,43	2008	3,44	4,60
1969	3,13	4,11	1989	2,99	2,66	2009	4,78	4,59
1970	3,79	4,19	1990	4,64	3,18	2010	3,69	3,91
1971	2,87	3,93	1991	3,32	3,74	2011	3,40	4,05
1972	2,08	2,75	1992	2,90	3,31	2012	3,92	5,48
1973	3,52	3,31	1993	3,24	4,08	2013	3,40	3,42
1974	3,11	4,93	1994	3,68	4,09	2014	3,01	2,93
1975	2,96	2,71	1995	3,14	3,01	2015	2,53	3,53
1976	3,89	4,03	1996	2,99	3,87	2016	4,22	4,80
1977	3,22	4,12	1997	3,54	3,94	2017	4,34	4,87
1978	4,11	3,98	1998	4,31	5,12			
1979	2,68	3,66	1999	2,73	3,33			

Приложение P.2 – Значения индекса Де-Мартона для ст. Сортавала и N кол-во станций на водосборе Ладожского озера

Год	α^{M} Сортавала	α ^M N станций	Год	α Сортавала	α^{M} N станций
1960	3,81	41,3	1980	4,22	45,7
1961	3,55	44,4	1981	5,22	58,6
1962	5,17	53,9	1982	3,52	43,8
1963	3,63	43,5	1983	3,87	51
1964	3,06	36,9	1984	3,43	45,5
1965	4,12	43,8	1985	4,96	52,3
1966	5,14	61,3	1986	4,32	49,7
1967	3,72	49,5	1987	5,71	55
1968	4,61	54,3	1988	3,43	50,1
1969	4,11	50,3	1989	2,66	42,7
1970	4,19	49,5	1990	3,18	49,6
1971	3,93	46	1991	3,74	51,2
1972	2,75	33,7	1992	3,31	45
1973	3,31	43,8	1993	4,08	50,7
1974	4,93	46,1	1994	4,09	47,9
1975	2,71	39,7	1995	3,01	41,5
1976	4,03	48	1996	3,87	34,1
1977	4,12	52,7	1997	3,94	42,5
1978	3,98	48,7	1998	5,12	57,6
1979	3,66	46,6	1999	3,33	39,9
			2000	3,81	50,1

Приложение Р.3 – Значения индекса Де-Мартона для ст. Старая Русса и N колво станций на водосборе озера Ильмень

Год	α М Старая Русса	α^{M} N станций	Год	α М Старая Русса	α^{M} N станций
1960	3,77	36,7	1980	3,68	44,9
1961	3,24	40,3	1981	3,42	53,6
1962	4,23	49,7	1982	3,19	35,6
1963	3,44	32,7	1983	3,13	47,2
1964	3,18	34,9	1984	3,18	32,8
1965	3,94	39,5	1985	3,92	52
1966	4,17	55,3	1986	3,40	50,1
1967	3,44	48,3	1987	4,31	56
1968	4,32	49,9	1988	2,81	38
1969	3,13	45,6	1989	2,99	43,5
1970	3,79	43,6	1990	4,64	53,6
1971	2,87	38,2	1991	3,32	46,6
1972	2,08	30,9	1992	2,90	41,4
1973	3,52	43,8	1993	3,24	46,4
1974	3,11	43,8	1994	3,68	47
1975	2,96	36,7	1995	3,14	41,8
1976	3,89	46,8	1996	2,99	38
1977	3,22	43,7	1997	3,54	47,8
1978	4,11	51,9	1998	4,31	56,1
1979	2,68	41,4	1999	2,73	28,3
			2000	3,46	45,8