МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной и системной экологии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

На тему М	ежгодовая изменчивость теплового и гидрохимического стока реки
Печора	
Исполнител	ь Кузнецова Юлия Сергеевна
	(фамилия, имя, отчество)
Руководите.	ль кандидат географических наук, доцент
	(ученая степень, ученое звание)
	Алексеев Денис Константинович
	(фамилия, имя, отчество)
«К защите д	опускаю»
Заведующий	і кафедрой
	(подпись)
	кандидат географических наук, доцент
	(ученая степень, ученое звание)
	Алексеев Денис Константинович
	(фамилия, имя, отчество)
«11» WHOH	ие 2025 г.

Оглавление

ВВЕДЕНИЕ	3
1 Физико-географическая характеристика	5
1.1 Характеристика водосборного бассейна реки Печора	7
1.2 Гидрография	8
1.3 Хозяйственная деятельность на водосборе реки Печора	9
1.4 Аналитический обзор литературы на загрязнение реки Печоры и Печорского моря	12
2 Материалы и методы исследования	15
3 Межгодовое и внутригодовое распределение стока	28
3.1 Определение нормы годового стока	28
3.2 Внутригодовая оценка стока	30
3.3 Оценка однородности среднегодового расхода воды	35
4 Тепловой сток реки Печора	38
4.1 Изменчивость среднегодового теплового стока	38
4.2 Внутригодовая изменчивость теплового стока	39
4.3 Оценка однородности теплового стока	41
5 Межгодовая и внутригодовая оценка гидрохимического стока	43
5.1 Ионный сток	43
5.1.1 Межгодовая изменчивость ионного стока	43
5.1.2 Внутригодовая изменчивость ионного стока	
5.1.3 Оценка однородности объема ионного стока	53
5.2 Твердый сток	
5.2.1 Межгодовая изменчивость твердого стока	
5.2.2 Внутригодовая изменчивость твердого стока	
5.2.3 Оценка однородности объема твердого стока	
5.3 Сток фосфатов	
5.3.1 Межгодовая изменчивость стока фосфатов	
5.3.2 Внутригодовая изменчивость стока фосфатов	
5.3.3 Оценка однородности объема стока фосфатов	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	94

ВВЕДЕНИЕ

Тепловой и гидрохимический сток в моря арктического бассейна с территории России оказывают значимое влияние на формирование природных условий низовья рек, эстуариев и прибрежных частей морских акваторий.

Основная масса загрязняющих веществ поступает в Российскую Арктику путем их переноса по рекам Севера. Река Печора является самой большой и полноводной в пределах бассейна Северного Ледовитого океана в европейской части России. Юго-восточная часть Баренцева моря, ограниченная островами Колгуев и Вайгач, обладает уникальным набором океанографических, гидробиологических и прочих параметров. Именно поэтому она выделяется как отдельный географический регион — Печорское море, где большую часть года формируется прибрежная водная масса, в которой основную роль играет речной сток.

Тепловой сток — важный фактор экологического состояния водных объектов, который изменяется под влиянием климатических условий и антропогенных нагрузок. Гидрохимический сток имеет особую значимость с точки зрения исследования состава морских вод прибрежных территорий, так как помогает выявить возможные качественные изменения водных ресурсов в Арктическом регионе.

Основными параметрами при оценке качества вод являются средние годовые значения концентраций растворенных и взвешенных веществ за различный период осреднения и объем стока, которым и уделяется большое внимание в данной работы.

Цель работы: оценить межгодовую изменчивость теплового и гидрохимического стока реки Печора.

Задачи:

- 1. Описать физико-географические особенности района исследований;
- 2. Оценить хозяйственную деятельность на водосборе реки Печора;

- 3. Выделить циклы водности и проанализировать внутригодовое распределение стока реки;
- 4. Выполнить количественную оценку теплового стока;
- 5. Оценить межгодовую и внутригодовую изменчивость ионного, твердого стока и стока фосфатов.

Объектом исследования является р. Печора в с. Оксино, а предметом исследования – комплексный анализ динамики теплового и гидрохимического стока.

Исходные данные: временные ряды данных р. Печора-Оксино о расходе воды реки, общей минерализации, содержании взвешенных веществ и концентрации фосфатов продолжительностью с 2000 по 2020 год, а также температуре воды с 1990 по 2016 год.

ЗАКЛЮЧЕНИЕ

По результатам оценки межгодовой изменчивости теплового и гидрохимического стока реки Печора в пункте с. Оксино сделаны следующие выводы:

- 1. Река Печора самая большая и полноводная река бассейна Северного Ледовитого океана в пределах Европейской части России. Водосбор реки расположен в пределах северо-таежной и тундровой физико-географических зон с умеренно-континентальным климатом арктической климатической области, в связи с чем для территории характерно наличие многолетней мерзлоты.
- 2. Речной бассейн Печоры можно отнести к бассейнам среднего уровня освоения речной бассейн с наличием значительных природных ресурсов и с недостаточно развитым промышленным комплексом по их переработке. Бассейн р. Печоры богат минерально-сырьевыми ресурсами. Основными источниками загрязнения являются предприятия угледобывающей, нефтедобывающей и нефтеперерабатывающей промышленности, энергетики.
- 3. Продолжительность контрастных фаз в реке Печора варьируется в пределах 6-9 лет. Многоводная фаза со средний значением расхода воды 5758 м³/с наблюдается в период с 2000 по 2009 год (9 лет), а маловодная со средним значением 4573 м³/с с 2010 по 2016 год (6 лет). Разница между средним расходом воды для долгосрочных сезонных многоводных и маловодных фаз (относительно маловодных фаз) составляет 25% для весеннего, 39% для летне-осеннего, 20% для зимнего и 26% для годового стока реки.
- 4. Основная часть теплового стока формируется в летние месяцы и составляет 76% от общего среднегодового теплового стока.
 - В период с 1990 по 2016 год максимальное значение среднегодового теплового стока наблюдается в 2007 году и составляет 5635*10¹² кДж,

минимальное — в 1992 году и составляет $2413*10^{12}$ кДж. Среднее значение составляет $4117*10^{12}$ кДж. Максимум внутригодового теплового стока приходится на июнь (1838 кДж* 10^{-12}), а минимум — на октябрь (166,5 кДж* 10^{-12}).

5. Погрешность погодичных средних арифметических значений общей минерализации по отношению к средним взвешенным по водности составляет от 51,8% в 2007 году до 130,2% в 2015 году. Без учета водности значения объема ионного стока значительно выше, чем при ее учете. Объем среднегодового ионного стока без учета водности изменяется в пределах от 10096 тыс. т (2010 год) до 21260 тыс. т (2015 год), а с учетом водности – от 6582 тыс. т (2010 год) до 10199 тыс. т (2003 год). Средние значения ионного стока без учета водности и с ее учетом составляют 15093 тыс. т и 8437 тыс. т соответственно. Среднемесячная общая минерализация имеет обратную зависимость от расхода воды. Пик объема ионного стока наблюдается в мае (1803 тыс. т), так как максимальный уровень воды в Печоре достигается к концу мая – началу июня.

Погрешность погодичных средних арифметических значений содержания взвешенных веществ по отношению к средним взвешенным по водности в большинстве случаев имеет отрицательный знак, что говорит об увеличении значения среднегодового содержания взвешенных веществ при учете водности. Относительные погрешности варьируются в пределах от -51,0% в 2004 году до 30,6% в 2016 году. Расход воды и содержание взвешенных веществ имеют прямую зависимость друг от друга. Содержание взвешенных веществ с учетом водности является более изменчивой величиной, чем без учета водности. Объем твердого стока без учета водности изменяется в пределах от 399 тыс. тонн (2011 год) до 2157 тыс. тонн (2009 год), а с учетом водности — от 479 тыс. тонн (2015 год) до 3305 тыс. тонн (2009 год). Средние значения твердого стока без учета водности и с ее учетом составляют 1074 тыс. т и 1701 тыс. т соответственно. При учете водности реки значения твердого стока

повышаются. Тренд значим для рядов твердого стока без учета водности и с учетом водности, идет на понижение. Минимальные значения содержания взвешенных веществ наблюдаются в начале года (мартапрель), когда расход воды так же минимален, а максимальное в мае-июне, когда расход воды в реке так же максимален. Пик расхода воды и объема твердого стока наблюдается в мае (730 тыс. т).

Относительная погрешность погодичных средних арифметических значений концентраций фосфатов по отношению к средним взвешенным по водности составляет от 0,3% в 2017 году до 62,4% в 2009 году. Максимальное значение среднегодового объема стока фосфатов с учетом водности составляет 10422 т (2005 год), минимальное -2783 т (2013 год), среднее – 5887 т, а максимальное значение среднегодового объема стока без учета водности составляет 11430 т (2004 год), минимальное – 3490 т (2013 год), среднее – 6546 т. Без учета водности значения объема стока фосфатов выше, чем при ее учете. При учете водности наблюдается два пика в 2003 и в 2005 годах, а без учета лишь один в 2004 году. Максимальные значения концентрации наблюдаются в начале года, когда расход воды минимален. Из этого можно сделать вывод, что концентрация загрязняющих веществ имеет обратную зависимость от расхода воды. Пик расхода воды и объема стока наблюдается в мае (2223 т).