

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра инженерной гидрологии

### ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

На тему

## Многолетние колебания уровня озер Онежского и Саймаа

| Исполнитель _                              | Заколодкин Максим Александрович (фамилия, имя, отчество)              |  |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Руководитель _                             | профессор, доктор географических наук (ученая степень, ученое звание) |  |  |  |  |  |  |
| V 4.4                                      | Мякишева Наталия Вячеславовна (фамилия, имя, отчество)                |  |  |  |  |  |  |
| «К защите допускаю»<br>Заведующий кафедрой |                                                                       |  |  |  |  |  |  |
|                                            | (подпись)                                                             |  |  |  |  |  |  |
|                                            | доцент, кандидат технических наук<br>(ученая степень, ученое звание)  |  |  |  |  |  |  |
|                                            | Хаустов Виталий Александрович (фамилия, имя, отчество)                |  |  |  |  |  |  |
| « <u>13</u> » 06                           | _20 <u>22</u> Γ.                                                      |  |  |  |  |  |  |

Санкт-Петербург

2022

#### Содержание

| Введение                                                         |
|------------------------------------------------------------------|
| 1. Общая характеристика                                          |
| 1.1 Гидрография                                                  |
| 1.2 Морфометрия                                                  |
| 1.3 Гидрологический режим                                        |
| 1.4 Донные отложения                                             |
| 2. Методы анализа                                                |
| 2.1. Квантильный анализ                                          |
| 2.2. Регрессионный анализ                                        |
| 2.3. Фильтрация Баттерворта                                      |
| 2.4 Спектральный анализ                                          |
| 3. Особенности многолетней изменчивости уровней воды в озёрах 27 |
| 4. Увлажненность территории                                      |
| Заключение                                                       |
| Список литературы                                                |
| Приложения                                                       |

#### Введение

Онежское озеро является крупным пресноводным водоёмом Европы. Его объем составляет 295 км<sup>3</sup>, площадь зеркала — 9720 км<sup>2</sup>, а максимальная глубина — 120 м. Площадь водосборного бассейна озера составляет 53100 км<sup>2</sup>. В озеро впадают более 1000 водотоков, из них 52 реки протяженностью более 10 км и 8 — более 100 км. Самыми большими из них являются Водла и Суна.

В Свирской губе южной части озера находится исток единственной вытекающей из озера реки Свирь, на которой в 1953 году построена Верхне-Свирская ГЭС.

Онежское озеро относится к водоемам замедленного водообмена. Период водообмена составляет 16 лет — за это время чаша озера может заполниться таким же объемом речной воды. Озеро судоходно, является частью водной магистрали, входящей в состав Волго - Балтийского водного пути и Беломорско - Балтийского канала.

Озеро Сайма — самое крупное озеро Финляндии, четвертое по величине озеро Европы. Образовано совокупностью из восьми крупных и многочисленных мелких связанных друг с другом водоёмов с суммарной площадью поверхности около 4400 км². Площадь водосборного бассейна — 61054 км². Максимальная глубина озера составляет 84 м. Сайму питает множество рек, а вытекает единственная — Вуокса, которая, в свою очередь, впадает в Ладожское озеро.

В 1856 году был открыт судоходный Сайменский канал, соединивший Сайму с Финским заливом и превративший озеро в важную для значительной части Финляндии транспортную артерию. Это повлекло за собой уточнение параметров и картографирование водных путей озера. Первая карта подводного ландшафта была изготовлена в 1859 году и изображала подробности основных водных путей из Лаппеэнранты в Миккели, Ийсалми и Йоэнсуу. С

1857 года подробную подводную карту всего озера по заказу сената составлял бывший морской офицер Йохан Бартрам. В 1940 году эту работу продолжил Ааро Хеллаакоски.

Уровни озер не только фиксируют водные ресурсы территорий, но и являются интегральными показателями увлажненности водосборов и изменений климата на обширных пространствах. Также изменчивость уровня воды в озерах отражает суммарное антропогенное влияние в их бассейнах, что может сказаться на судоходстве, рыболовстве и других промышленных отраслях экономики, а также на изменении качества воды и трофического статуса водных экосистем.

Поэтому, целью данной работы является изучение уровенного режима Онежского озера и озера Сайма.

Для достижения поставленной цели решались следующие задачи:

- 1. собрать исходные данные;
- 2. оценить вероятностные характеристики многолетней изменчивости уровней озер;
- 3. выявить особенности многолетней изменчивости уровней озер;
- 4. оценить увлажненность водосборов.

Для решения поставленных задач использовались данные наблюдений за уровнями воды в Онежском озере с 1881 по 2017 гг. (137 лет) и в озере Сайма с 1850 по 2012 гг. (163 года). Для характеристики климата привлекались данные наблюдений за температурой воздуха и количеством атмосферных осадков на метеостанции г. Петрозаводск. Для оценки увлажненности водосборов оценивался индекс Де-Мартона.

#### 1. Общая характеристика

Онежское озеро – второе по величине в Европе – расположено большей частью в зоне Европейского Севера России. Административно акватория озера принадлежит трём субъектам Российской Федерации (табл. 1): Республика Карелия, Вологодская область и Ленинградская область. Из них Республике Карелия – 86,1% зеркала с водосборной площадью 53,5 тыс. км <sup>2</sup>.

Таблица 1—Территориально-административное распределение площадей Онежского озера

| Наименование  | Всего,          | Карелия | Вологодская | Ленинградская |
|---------------|-----------------|---------|-------------|---------------|
| региона       | км <sup>2</sup> |         | область     | область       |
| Общая площадь | 9943            | 8593    | 1197        | 153           |
| Острова       | 251             | 243     | 3           | -             |
| Зеркало       | 9693            | 8345    | 1194        | 153           |

По данным Г.С. Бискэ (1971), котловина Онежского озера - доледниковая тектоническая впадина, расположенная в краевой части Балтийского щита, на стыке с Русской плитой. Она представляет собой сочленение двух блоков земной коры, имеющих разную геологическую историю. В северной части котловины ее формирование происходило в условиях преобладающих поднятий, в южной - на фоне преобладающих погружений. Эти противонаправленные тектонические движения наблюдаются и в настоящее время. Они меняют гидрогеологическую обстановку в бассейне. Северная часть котловины сложена кристаллическими породами (граниты, гнейсы). Так, берега губ Уницкой, Лижемской, Кондопожской и Петрозаводской, а также юг Заонежпредставлены карбонатными, ского полуострова глинисто-песчанокарбонатными, вулканическими породами. кварцитами, алевритами. На Заонежском полуострове встречаются шунгитоносные породы, обладающие уникальными свойствами. К югу от Петрозаводска эти породы сменяются кварцевыми и слюдистыми песчаниками, песчано-глинистыми сланцами.

#### 1.1 Гидрография

Онежское озеро и его крупнейший приток р. Илекса-Водла являются верхним звеном водной системы р. Невы. Площадь водосбора Онежского озера, включая его зеркало, равна 66284 км<sup>2</sup> (Швец, 1977). Около 80% этой территории относится к Республике Карелия, остальная часть распределена по Архангельской (6%), Вологодской (13%) и Ленинградской (1%) областям. Рельеф водосбора имеет значительную расчлененность в пределах отметок от 34 до 417 м БС. В северной части бассейна реки более молодые, образовавшиеся по линиям тектонических разломов и понижений местности. Они характеризуются высокой озерностью (от 3 до 18%), порожистыми, неразработанными руслами с большими уклонами. Южные реки более старые, отличаются хорошо выработанными руслами, меньшей озерностью (1- 3%) и большей заболоченностью. Водную сеть бассейна образуют 6765 рек общей длиной 22741 км и 9516 озер общей площадью 13441 км<sup>2</sup> (Швец, 1977). В озеро впадают 52 реки длиной более 10 км и порядка тысячи малых речек и ручьев. Главные притоки - Водла, Шуя и Суна обеспечивают в среднем 58% речного прихода водного баланса озера. Вытекает из озера р. Свирь, впадающая в Ладожское озеро. Среднемноголетняя величина стока 18,4 км<sup>3</sup> с изменениями в зависимости от водности года от 28,3 до 12,6 км. Сток р. Свирь зарегулирован плотинами двух ГЭС. Высокая озерность водосбора (средняя 6,7%, а в северо-западной части - 11,3%) обуславливает большую естественную зарегулированность стока рек. На нее накладывается искусственное регулирование стока рек Суны, Водлы, преобразованных в судоходные каналы - Вытегры и Повенчанки. Удельный водосбор Онежского озера равен 5,81 км 2, т.е. водоем относится к первому типу по режиму уровней (классификация К.Д. Литинской) и степени влияния водосбора на режим водоёма. Он характеризуется устойчивым режимом уровней, растянутым весенним половодьем и высокими уровнями летне-весеннего периода, а также относительно небольшой ролью водосбора в формировании гидрохимического и гидрологического режимов озер. Последнее ослабляется громадным объемом водных масс, заключенных в котловине озера.

Таблица 2 – Основные притоки Онежского озера

|                     | Водос      | бор, км <sup>2</sup> | Среднемноголетний сток<br>водной системы |         |  |
|---------------------|------------|----------------------|------------------------------------------|---------|--|
| Название            | общая пло- | D.T.H. ODODO         |                                          |         |  |
|                     | щадь       | в т.ч. озера         | км <sup>3</sup> /год                     | доля, % |  |
| Суна                | 7665       | 957                  | 2,42                                     | 14,40   |  |
| Шуя                 | 10267      | 1062                 | 3,05                                     | 18,15   |  |
| Ошта                | 374        | 2                    | 0,12                                     | 0,71    |  |
| Водлица             | 514        | 9                    | 0,17                                     | 1,01    |  |
| Мегра               | 1730       | 50                   | 0,55                                     | 3,27    |  |
| Вытегра             | 1670       | 33                   | 0,53                                     | 3,15    |  |
| Протока из Тудозера | 367        | 12                   | 0,14                                     | 0,83    |  |
| (Илекса)            |            |                      |                                          |         |  |
| Андома              | 2570       | 38                   | 1,05                                     | 6,25    |  |
| Муромка             | 367        | 39                   | 0,13                                     | 0,77    |  |
| Черная              | 616        | 4,7                  | 0,19                                     | 1,13    |  |
| Водла               | 13655      | 723                  | 4,31                                     | 25,65   |  |
| Туба                | 314        | 12                   | 0,10                                     | 0,60    |  |
| Пяльма              | 909        | 18                   | 0,29                                     | 1,73    |  |
| Немина              | 659        | 20,5                 | 0,20                                     | 1,19    |  |
| Повенчанка          | 885        | 122                  | 0,31                                     | 1,85    |  |
| Кумса               | 738        | 68                   | 0,23                                     | 1,37    |  |
| Путка               | 221        | 37                   | 0,07                                     | 0,42    |  |
| Лижма               | 934        | 142                  | 0,24                                     | 1,43    |  |
| Уница               | 394        | 9,5                  | 0,13                                     | 0,77    |  |

#### 1.2 Морфометрия

Морфометрия Онежского озера крайне сложная. Согласно определениям Ф.А. Черняевой, общая длина береговой линии озера составляет 1810 км, на северную часть приходится 1230 (коэффициент извилистости 0,41) и на южную -580 км (0,12). Берега островов имеют длину 190 км, их общая площадь 250, 7 км<sup>2</sup>, а число размером больше 1 га – около 200. Наибольшая островистость у губ Великая и Кондопожская. Самые крупные острова: Бол. Клименецкий (147, 4 км), Большой Леликовский (21,2 км<sup>2</sup>) и Суйсари (16,8 км<sup>2</sup>). По физико-географическим особенностям автором выделены 8 частей озера с подрайонами. Ранее существовала более дифференцированная схема морфологических районов Онежского озера, которых насчитывалось 21. Эта схема принята нами в качестве базовой при экологическом районировании озера. Рельеф дна озера как бы повторяет рельеф прилегающей суши: изобаты 10, 15 и 20 следуют очертаниям берега, четко выделяются северная и южная части с границей по линии Петрозаводск – устье р. Водлы. Южная часть имеет сравнительно ровное дно с обширным плато на глубинах 50-60 м. Постепенно глубины уменьшаются к югу, а изобата 30 м. отходит от берега. Исключением является Шокшинский участок с глубинами до 50 м. Северная часть озера характеризуется ульстрасложным, контрастным сельговым рельефом с большими перепадами глубин, обилием островов, впадин, гряд, луд, заливов и губ. Большинство островов сложено коренными породами. В целом преобладают глубины от 20 до 60 м, на долю которых приходится 57% площади озера. Наибольшая часть объема -85, 5% заключена на участках с глубинами до 40 м, которые являются основными для рыбного хозяйства. Их обшая плошадь 6525, 7 км<sup>2</sup>.

Таблица 3 – Основные морфометрические характеристики и статистические параметры батиметрических моделей Ладожского и Онежского озер

| Характеристика                                  | Ладога | Онего   |
|-------------------------------------------------|--------|---------|
| Высота над уровнем моря,                        | 5,1    | 33,0    |
| M                                               |        |         |
| Площадь водосбора, км <sup>2</sup>              | 258600 | 56341   |
| Площадь общая, $S_{\text{общ}}$ , $\text{км}^2$ | 18135  | 9943,3  |
| Площадь зеркала, км <sup>2</sup>                | 17872  | 9777,4  |
| Показатель площади *                            | 0,06   | 0,18    |
| Объем, км <sup>3</sup>                          | 837,9  | 262,0   |
| Средняя глубина, Нср м                          | 46,9   | 26,8    |
| Максимальная глубина,                           | 230    | 119     |
| H <sub>max</sub> , M                            |        |         |
| Максимальная длина, км                          | 219    | 290     |
| Максимальная ширина, км                         | 125    | 82      |
| Относительная глубина **                        | 0,15%  | 0,11%   |
| Направление главных осей                        | С3-ЮВ  | СС3-ЮЮВ |
| Длина береговой линии L,                        | 1570   | 1810    |
| КМ                                              |        |         |
| Изрезанность ***, х                             | 3,28   | 5,12    |
| Острова, км <sup>2</sup>                        | 456,6  | 250,73  |
|                                                 |        |         |
| Острова, отн.                                   | 2,5%   | 2,5%    |
| Коэффициент емкости,                            | 0,20   | 0,22    |
| H <sub>cp.</sub> /H <sub>max</sub>              |        |         |
| Коэффициент формы,                              | 0,38   | 0,16    |
| **** K                                          |        |         |
| Время водообмена, лет                           | 11     | 15      |

Таблица 4 — Распределение поверхности и водной массы Онежского озера по ступеням глубин

| Ступени глубин, м | Пове            | рхность   | O               | бъем       |
|-------------------|-----------------|-----------|-----------------|------------|
|                   | KM <sup>2</sup> | % к обшей | KM <sup>3</sup> | % к общему |
| 0-5               | 925,9           | 9,6       | 46,1            | 15,8       |
| 5-10              | 914,5           | 9,4       | 41,6            | 14,3       |
| 10-15             | 870,6           | 9,0       | 37,0            | 12,7       |
| 15-20             | 777,8           | 8,0       | 32,9            | 11,3       |
| 20-30             | 1693,3          | 17,5      | 53,4            | 18,3       |
| 30-40             | 1343,6          | 13,9      | 38,2            | 13,1       |
| 40-50             | 1380,6          | 14,3      | 24,7            | 8,5        |
| 50-60             | 1109,2          | 11,4      | 12,1            | 4,1        |
| 60-70             | 459,5           | 4,7       | 4,1             | 1,4        |
| 79-80             | 157,7           | 1,6       | 1,2             | 0,4        |
| 80-90             | 51,2            | 0,5       | 0,3             | 0,1        |
| 90-100            | 8,5             | 0,1       | 0,1             | 0,03       |
| 0-100             | 9692,3          | 100       | 291,7           | 100        |

#### Примечания:

\*\*\* 
$$- x = L/2(x-S_{\text{обш}})^{1/2}$$

#### 1.3 Гидрологический режим

Гидрологический режим Онежского озера формируется в результате взаимодействия множества природных и антропогенных факторов. Определяющими из них являются крупные размеры озера, климат, неоднородное геологическое и химическое строение котловины и водосбора. В целом озеро относится к холодноводным, со слабым водообменом водоемам. Коэффициент условного водообмена изменяется от 0, 040 до 0,085 в зависимости от

<sup>\* –</sup> площадь зеркала/площадь водосбора;

 $<sup>** - \</sup>max$  глубина/средний диаметр;

водности года, составляя в среднем 0,058. Установлено, что средний объем водообмена между основным плесом и шхерной частью Онежского озера составляет за май-сентябрь 12,8 км<sup>3</sup>, а за октябрь-апрель 26,2 км<sup>3</sup>. Выраженная холодноводность озера обуславливает характер продуцирования. Для внутриводоемных процессов и определяет низкую степень продуцирования. Для термического режима характерны два периода полного перемешивания (весной и осенью), а также летняя прямая и зимняя обратная стратификация. Профундаль озера заполнена мощным слоем холодного гиполимниона с температурой воды круглый год близкой к 4 градусам Цельсия. Перенос тепла по вертикали осуществляется только за счет ветрового перемешивания, действие которого распространяется обычно до глубины 20-25 м. Важной гидрологической особенностью является существенная изменчивость полей течения и температуры воды, связанная с прибрежными апвеллингами, внутренними и береговыми захваченными волнами. Апвеллинги (мезомасштабные подъемы и опускания вод) наиболее часто возникают в районе мысов Бесов Нос, Брусно, залива Большое Онего. На основе целенаправленных наблюдений и экспериментов не подтверждены сложившиеся ранее представления о существовании в Онежском озере квазипостоянной циркуляции вод циклонического типа. Спектр флюктуаций течений в низкочастотной области ограничивается синоптическим периодом. Как при гомотермии, так и в случае прямой стратификации имеет место тенденция к формированию нескольких крупномасштабных циклонических циркуляций. Осенью преобладают ветровые течения, которые более отчетливы в неглубоких заливах. Из стоковых наибольшее распространение имеет течение р. Шуи, впадающей в Петрозаводскую губу. Сгонно-нагонные колебания уровня достигают 15-20, предельно 40 см. Имеют место сейшовые колебания уровня с амплитудой до 20 см и периодичностью 4ч 30 мин, 2ч 15 мин. И 1ч 8 мин. Для Онежского озера установлены 5 - 7 летние квазипериодические колебания уровня, на которые накладывается техногенное регулирование в целях энергетики. Наблюдается снижение уровня в среднем на 14 -34 см в летне-осенний период. Приходная часть водного баланса на 75% составлена речным притоком и 25% - осадками на зеркало в средний по водности год. В многоводные годы доля притока возрастает до 80%, а осадком и испарений сокращается на 5-6%. В маловодные годы значение осадков – до 30% от приходной части баланса и испарения до 25% от его расходной половины. Доля подземного притока в озерро невелика и, вероятно, составляет порядка 1% от приходной части баланса. Количество выпадающих над озером осадков имеющих крайне низкую минерализацию, но зачастую загрязненных аэрогенно, превышает на 45% испарение. Термо - динамический режим Онежского озера весьма детально изучен Институтом озероведения в 60-е годы и ИВПС РАН в последующий период. Ниже излагаются основные результаты этих исследований. В силу позднего и неполного по акватории замерзания охлаждение всей массы в озере продолжается всю зиму и в суровые годы температура воды может понижаться до 1-2 °С. Весенний прогрев приводит к быстрому росту температуры на прибрежных участках, в то время как вся глубокая часть озера остается позимнему холодной (явление термического бара). В теплоактивной области формируется прямая стратификация температур, а теплоинертной – происходит постепенное увеличение по всей толще до 4 °C. Воды этих двух областей почти не вступают в непосредственное смешение, пока в озере сохраняется фронт термобара. Его исчезновение обычно происходит в конце июня-начале июля, что означает конец весеннего периода в водоеме.

Таблица 5 – Средний водный баланс Онежского озера за 1953-1988 гг.

| Элементы баланса | Объем воды, км <sup>3</sup> | Слой, мм | % от обшего |  |  |  |  |  |  |  |  |
|------------------|-----------------------------|----------|-------------|--|--|--|--|--|--|--|--|
|                  | Приход:                     |          |             |  |  |  |  |  |  |  |  |
| Осадки           | 5,4                         | 550      | 24,7        |  |  |  |  |  |  |  |  |
| речной приток    | 16,7                        | 1700     | 75,3        |  |  |  |  |  |  |  |  |
| Итого            | 22,1                        | 2250     | 100,0       |  |  |  |  |  |  |  |  |
| Расход:          |                             |          |             |  |  |  |  |  |  |  |  |
| Осадки           | 18,4                        | 1870     | 83,2        |  |  |  |  |  |  |  |  |
| Испарения        | 3,7                         | 380      | 16,8        |  |  |  |  |  |  |  |  |

| Элементы баланса | Объем воды, км <sup>3</sup> | Слой, мм | % от обшего |
|------------------|-----------------------------|----------|-------------|
| Итого            | 22,1                        | 2250     | 100,0       |

#### 1.4 Донные отложения

Донные отложения находятся в тесной связи с рельефом дна, динамикой водных масс, распределением речного стока и степенью влияния антропогенных факторов. Они обладают значительными аккумулирующими свойствами и по сути отражают ею совокупность биологических, химический и физических процессов, происходящих в водоёме. Современное состояние донных отложений на большей части Онежского озера удовлетворительное, с малым содержанием органики и биогенных элементов На изолированные губы (Кондопожская, Петрозаводоская, Большая в Повенецском заливе), испытывающие большие антропогенные нагрузки характеризуются высоким загрязнением вод и донных отложений. Влияние трансформированных вод этих губ в периферийных районах озера.

Таблица 6 – Сброс загрязняющих веществ в Онежского озеро от учтенных источников промузлов (по материалам Минэкологии Республики Карелия, 1995)

| Промузел   | Азо   | Взве-  | Же-  | Нефте-   | Фос      | Тан- | Фос- | Хло- | Суль | Про |
|------------|-------|--------|------|----------|----------|------|------|------|------|-----|
|            | т,    | шен-   | лезо | продукты | фор      | ниды | фаты | риды | фаты | чие |
|            | об    | ные в- | об-  |          | об-      |      |      |      |      |     |
|            | ЩИ    | ва     | щее  |          | щий      |      |      |      |      |     |
|            | й     |        |      |          |          |      |      |      |      |     |
| Сточные во | ды, т |        | •    |          | <u>'</u> |      |      |      |      |     |
| Петроза-   | 580   | 1345   | 24,6 | 2,2      | -        | _    | 123  | 1631 | 976  | 102 |
| водск      |       |        |      |          |          |      |      |      |      | 30  |
| Кондо-     | 159   | 3945   | 1,0  | 6,4      | 71,0     | 3306 | 0,6  | 264  | 3765 | 356 |
| подский    |       |        |      |          |          |      |      |      |      | 90  |
| Медвежь-   | 23,1  | 199    |      | 2,4      | 6,9      | -    | 1,7  | 341  | 54,4 | 706 |
| егорсий    |       |        | 3,0  |          |          |      |      |      |      |     |
|            |       |        | 3,0  |          |          |      |      |      |      |     |
| Пудож-     | 9,4   | 40     | 3,4  | 1,0      | 0,1      | -    | 3,2  | 35   | 14,6 | 252 |

| ский                               |           |      |      |      |      |      |       |      |      |           |
|------------------------------------|-----------|------|------|------|------|------|-------|------|------|-----------|
| Итого                              | 771,<br>5 | 5529 | 32   | 12   | 78,0 | 3306 | 128,5 | 2271 | 4810 | 468<br>78 |
| То же, до-<br>ля от СВ<br>по РК, % | 71,7      | 14,2 | 39,5 | 28,1 | 93,6 | 57,3 | 73,0  | 31,2 | 28,6 | 53        |

Таблица 7 – Выбросы в атмосферу (тыс. т) в 1989 г.

| Промузлы        | Твердые ве- | Углеводороды | CO   | NO   | SO   | Всего |
|-----------------|-------------|--------------|------|------|------|-------|
|                 | щества      |              |      |      |      |       |
| Петрозаводск    | 5,6         | 0,82         | 4,9  | 3,9  | 30,4 | 55,8  |
| Кондопожский    | 11,5        | 0,08         | 3,2  | 0,7  | 25,3 | 40,8  |
| Медвежьегорский | 2,0         | 0,24         | 0,1  | 0,1  | 1,4  | 3,6   |
| Пудожский       | 0,5         | -            | 0,02 | 0,04 | 0,6  | 1,1   |

Существующим негативным фактором являются ливневой и речной стоки, дренирующие урабанизированные территории. Например, в Петрозаводскую губу дополнительно к 40-460 млн. м<sup>3</sup>, прошедших КОС, ежегодно поступает порядка 133 млн<sup>3</sup> вод рек Лососинка, Неглинка и ручьев, 10 млн.  ${\rm M}^3$  ливневого стока и 3,08  ${\rm km}^3$  вод р. Шуи, качество вод которых в нижнем течении характеризуется как загрязненные III и IV класса по шкале Госкомгидромета. В общей сложности из всех источников, включая воздушные, в губу поступает 110 тыс.т веществ техногенного свойства, загрязнение от которых распространяется на районы Большое и Центрального Онего. В илах этих районов обнаружено значительное увеличение содержания органических веществ, биогенных элементов (фосфора) и металлов. Велика роль в приносе загрязнений и эвтрофирующихся веществ рек Водла, Шуя, Суна, Вытегра, Мегра и Андома, в сумме около 442 тыс.т в год, из которых органические составляют 74%, танниды -12%, взвешенные -11%, общий азот -2,1% и нефтепродукты -0,33%. К речному стоку плюсуются сбросы других антропогенных источников и выбросы в атмосферу. Общее количество прихода веществ составляет более 490 тыс. т, из них 33% обладают вредным действием на биоту.

По ранее выполненной оценке, объем техногенных стоков в бассейне Онежского озера составляет порядка 315 млн. м<sup>3</sup> в год, из них 46% приходится на проиводственно-хозяйственные, 25% -- ливневой сток и 16% -- дренажно-мелиоративные воды. Из общего объёма токсической массы загрязнений 25-26% поступает аэрогенным путём главным образом из района Петрозаводск-Кондопога-Медвежьегорск. Поступление в озеро биогенных элементов значительно превышает сток их из озера. Современная биогенная нагрузка характеризуется поступлением общего фосфора – 810 т, общего азота – 17, 0 тыс.т. в год, а из озера с водами р. Свирь выносится 280 тонн фосфора и 11800 тонн азот, то есть аккумулируется в озере 68% фосфора и 31% азота.

В результате гидростроительства наибольшей трансформации подверглась система р. Суны. Подпором реки и озер Сандал, Палье, Сунозеро создано 4 водохранилища со сливной призмой 0,53 км<sup>3</sup>, осуществлены внутрибассейновая переброска вод и деривация стока. Это привело к увеличению водообмена в озере Палье в 7 раз и озере Сандал в 15 раз, утрате ими олиготрофных качеств, а также к сокращению в нижнем участке реки Суны стока на 90%, который направлен через канал Кондопожской ГЭС. Соответственно, р. Суна утратила свои рыбовоспроизводственные функции. Само Онежское озеро также является водохранилищем. В 1951-1953 гг. на р. Свирь построена Верхне-Свирская ГЭС. Подпор образовал Ивенский разлив с площадью при  $H\Pi Y - 276 \text{ км}^2$  и поднял в самом озере уровень воды примерно на 30 см. Лесосплав на приточных водных системах р.Суна, Шуя, Водлица, Мегра, Андома, Муромка, Черная, Водо, Немена и Уница проводился издавна и в 60-70 годы прошлого века достигал объема 3,9 млн. м<sup>3</sup>, из них 2,2 млн. м<sup>3</sup> шло плотинами и кошелями непосредственно по Онежскому озеру. Была создана из 45 водохранилищ с общим регулирующим объемом до 1,1 км<sup>3</sup>.

Наибольший из них — Водлозерское площадью при НПУ  $358 \text{ км}^2 \text{ с}$  полезным объемом  $0,55 \text{ км}^3$ . На систему р. Водлы приходился и наибольший

объем сплава — до 0,8 млн. м<sup>3</sup>. К настоящему времени молевой сплав леса прекращен практически на всех притоках (на р. Водле в 1996 году), но его последствия продолжают иметь место. Онежское озеро является воднотранспортным узлом, связывающим бассейны Белого, Балтийского, Каспийского, Азовского и Черного морей. Общая протяженность судоходных трасс по озеру 1862 км, судоходны также нижние 28 км р. Водлы и 13 км. р. Андомы. Русла р. Певенчанка и Вытегра обустроены в каналы (Беломорско-Балтийский и Волго-Балтийский). Вдоль южного берега озера от р. Свирь до р. Вытегра проложен еще в начале 19 века Онежский обводной канал, который служил до 70 годов. С 1964 года открыто интенсивное движение по Волго-Балту с проектной пропускной способность 16 млн. тонн. Фактически объем перевозок превышает 21 млн. тонн.

Таблица 8 — Среднегодовой сток органических, биогенных техногенных веществ с притоками в Онежское озеро

| Реки           | Сред<br>ний     | Сток осн | овной мас | ссы веп | цеств,  | Загряз  | зняющие і | Фос<br>фор | Всег | O'        |          |
|----------------|-----------------|----------|-----------|---------|---------|---------|-----------|------------|------|-----------|----------|
|                | сток            | TBIC. 1  |           |         |         | CIBa, I | L         |            | об-  |           |          |
|                | во-             | органи-  | взве-     | тан-    | азот    | фе-     | нефте-    | СП         | щий, | ты        | %        |
|                | ды,             | ческих   | шен-      | ниды    | об-     | но-     | продукты  | AB         | Т    | с. т      |          |
|                | км <sup>3</sup> |          | ных       |         | щи<br>й | ЛЫ      |           |            |      |           |          |
| Суна           | 2,42            | 43,7     | 2,8       | 3,8     | 1,67    | 20      | 195       | 457        | 28   | 52,<br>7  | 9,<br>5  |
| Шуя            | 3,05            | 96,0     | 16,9      | 17,8    | 3,49    | 18      | 327       | 178        | 184  | 13<br>4,9 | 24<br>,4 |
| Лосо-<br>синка | 0,12            | 4,4      | 1,2       | н.д.    | 0,11    | н.д.    | 8,4       | н.д        | 8    | 7         | 1, 3     |
| Негли<br>нка   | 0,01            | 0,5      | 0,1       | н.д.    | 0,02    | н.д.    | 1,6       | н.д.       | 1,2  | 1         | 0,<br>2  |
| Мегра          | 0,55            | 21,2     | 2,0       | 2,2     | 0,66    | 1,1     | 99        | 5,5        | 18   | 26,<br>2  | 4,<br>7  |
| Выте-<br>гра   | 0,53            | 10,6     | 6,8       | 3,2     | 0,44    | 1,1     | 64        | 5,5        | 36   | 21,<br>2  | 3,<br>8  |
| Ан-            | 1,05            | 33,9     | 5,0       | 6,3     | 0,90    | 2,1     | 189       | 10         | 46   | 46.       | 8,       |

| Реки  | Сред            | Сток основной массы веществ, |       |      | Загрязняющие веще- |     | Фос      | Всег | O'   |      |    |
|-------|-----------------|------------------------------|-------|------|--------------------|-----|----------|------|------|------|----|
|       | ний             | тыс. т                       |       |      | ства, т            |     |          | фор  |      |      |    |
|       | сток            |                              |       |      |                    |     | 1        |      | об-  |      |    |
|       | во-             | органи-                      | взве- | тан- | азот               | фе- | нефте-   | СП   | щий, | ТЫ   | %  |
|       | ды,             | ческих                       | шен-  | ниды | об-                | но- | продукты | AB   | T    | с. т |    |
|       | км <sup>3</sup> |                              | ных   |      | ЩИ                 | лы  |          |      |      |      |    |
|       |                 |                              |       |      | й                  |     |          |      |      |      |    |
| дома  |                 |                              |       |      |                    |     |          |      |      | 4    | 4  |
| Водла | 4,31            | 122,8                        | 13,3  | 2,8  | 2,27               | 85  | 583      | 125  | 133  | 16   | 28 |
|       |                 |                              |       |      |                    |     |          |      |      | 0,1  | ,9 |
| Про-  | 4,66            | 58,9                         | 7,1   | 33   | 1,94               | 22  | 2445     | 132  | 58   | 10   | 18 |
| чие   |                 |                              |       |      |                    |     |          | 0    |      | 4    | ,8 |
| Об-   | 16,70           | 392,0                        | 55,2  | 88,0 | 11,5               | 140 | 3912     | 211  | 512  | 55   | 10 |
| щий   |                 |                              |       |      |                    |     |          | 0    |      | 3,4  | 0  |
| сток  |                 |                              |       |      |                    |     |          |      |      |      |    |

<sup>\* –</sup>н.д. – нет данных

Грузооборот, собственно, на Онежском озере составляет 10-12 млн. т. По данным Беломорско-Онежского пароходства общий число судозаходов за навигацию составляет 10.3 тысячи (1992 год). На озере действуют порты Петрозаводск, Медвежьегорск с портом-автоматом, Пергуба, крупные пристани, Шала, Кондопога, Шокша, Челмужи, Повенец, Пиндуши, Кижи, Вытегра и Вознесенье. Наибольшие нагрузки от судоходства испытывают участки Вознесенье, Вытегра, Повенец, Петрозаводск, Кондопога и Шала. Флот и моторные лодки с выхлопными газами, сбросом систем охлаждения, утечками загрязняют водную среду преимущественно нефтепродуктами (по нашей оценке порядка 830 т. за навигацию), фенолами (0,5 т.), свинцом (0,1 т), окислами серы, азота и углерода.

Онежское озеро возглавляет список водоемов рыбохозяйственного пользования Карелии и относится к основным промысловым в целом по региону Европейского Севера и Северо-Запада России. Учтенный вылов рыбы в Онежском озере до 90 находился на среднем уровне 2,2 тыс. т., составляя 9-10% от всего регионального объёма добычи из внутренних вод при доле зеркала озера 13% от общего водного фонда (включая водохранилища). Далее последовало, как и в целом по стране, резкое снижение статистики вылова.

Последнее обусловлено в большей мере безучетной реализацией рыбы, существенная часть которой стала добываться децентрализованно.

Таблица 9 – Основные сведения о крупнейших ГЭС Ладожского бассейна

| Станция                          | Расстояние от истока, км | Период ра-<br>боты  | Полезный объем, км <sup>3</sup> | НПУ   | Вид регулирования                  |
|----------------------------------|--------------------------|---------------------|---------------------------------|-------|------------------------------------|
| Лесогорская<br>р. Вуокса         | 26                       | 1937-1940<br>c 1947 | 0,0043                          | 27,5  | Огранич. су-<br>точное             |
| Светогорская<br>р. Вуокса        | 15                       | 1947                | 0,0058                          | 43,5  | Огранич. су-<br>точное             |
| Верхне-<br>Свирская,<br>р. Свирь | 97                       | 1953                | 17,5                            | 31,65 | Многолетнее годовое су-<br>точное  |
| Волховская, р. Волхов            | 197.5                    | 1927                | 3,0                             | 115,5 | Сезонное и<br>полное суточ-<br>ное |
| Нижне-<br>Свирская,<br>р. Свирь  | 145                      | 1934                | 0,024                           | 27,7  | В каскаде многолетнее и суточное   |

#### 2. Методы анализа

#### 2.1. Квантильный анализ

Для анализа многолетней изменчивости уровней озер применялись квантильный анализ, метод регрессии, фильтрация Баттерворта, спектральный анализ.

Каждый временной ряд рассматривается как реализация случайного процесса x(t), за основную вероятностную характеристику которого принимается функция распределения  $F(x_p)$  и ее квантили  $x_p$ .

Квантильный анализ заключается в нахождении квантилей  $X_{min}, X_{0.25}, X_{0.5}, X_{0.75}, X_{max}$  функции распределения F(x) данных в выборке. Алгоритм оценивания перечисленных характеристик следующий:  $X_{min}$  и  $X_{max}$  — минимальное и максимальное значения данных в выборке,  $X_{0.5}$ — медиана. Если количества членов в выборке нечетное, то медиана — центральное значение выборки, если количество членов в выборке четное, то медиана — среднее между двумя центральными значениями.  $X_{0.25}$  и  $X_{0.75}$ , характеризуют центр первой и второй половины выборки, соответственно. Наряду с перечисленными квантилями использовались их линейные комбинации:

размах в пределах выборки

$$R = X_{max} - X_{min}, \tag{2.7}$$

интерквантильное расстояние

$$Q = X_{0.75} - X_{0.25}. (2.8)$$

Для  $X_{0.25}$  и  $X_{0.75,-}$  вводятся барьерные значения,  $X_{\scriptscriptstyle \theta}$  – верхний барьер и  $X_{\scriptscriptstyle H}$  – нижний барьер:

$$X_{\rm B} = X_{0.75} + 1.5Q \tag{2.9}$$

$$X_{\rm H} = X_{0.25} - 1.5Q \tag{2.10}$$

Наряду с медианой, в качестве оценки центра распределения данных в выборке можно использовать среднее арифметическое m и трехсреднее значение  $T^*$ , а совместно с R и Q в качестве оценки масштаба распределения — дисперсию D и среднее квадратическое отклонение  $\sigma = \sqrt{D}$ . Сопоставление среднего m с медианой  $X_{0.5}$  и  $\sigma$  с 0.74Q дает возможность получить предварительную информацию о типе и параметрах распределения данных в выборке.

Трёхсреднее значение оценивается по формуле Тьюки:

$$T^* = 0.25(X_{0.25} + 2 \cdot X_{0.5} + X_{0.75}) \tag{2.11}$$

Если распределение симметрично, то m и  $X_{0.5}$  равны с точностью до выборочной изменчивости. Сопоставление m и  $X_{0.5}$ ,  $\sigma$  и 0.74Q удобно проводить графически. Для этого на график наносятся точки, абсциссы которых соответствуют m или  $\sigma$ , а ординаты  $X_{0.5}$  или 0.74Q. Если точки группируются около биссектрисы координатного угла, то 0.74Q и  $\sigma$ , а также m и  $X_{0.5}$  такие же, как и у нормального распределения.

В качестве другой характеристики асимметрии полезно использовать следующий параметр:

$$As = [(X_{0.75} - X_{0.5}) - (X_{0.5} - X_{0.25})] / (2Q);$$
 (2.6)

Расчеты доверительных интервалов As вычисленные по смоделированным нормальным рядам показали, что выборку целесообразно считать симметричной, если -0.31<As <0.25; имеющий левую асимметрию, если As <-0.31 или правую при As> 0.25.

#### 2.2. Регрессионный анализ

Регрессионный анализ используется с двумя целями. Во-первых, для описания зависимости между переменными и определения причинной связи. Во-вторых, для построения прогнозных значений зависимой переменной. Мерой зависимости является величина коэффициента корреляции.

При регрессионном анализе рассматривается связь между одной зависимой переменной и несколькими другими независимыми переменными. Эта связь выражается с помощью математической модели. Выбор подходящей модели основывается как на статистических доводах, так и на основе содержательного смысла моделируемой зависимости.

С помощью коэффициента регрессии можно определить значение одной величины, зная значение другой. Для этих целей служит уравнение линейной регрессии, которое имеет вид:

$$Y = a + b X, \tag{2.12}$$

где X — значение независимой переменной, Y — значение зависимой переменной, a и b — параметры уравнения (a — коэффициент сдвига, b — коэффициент регрессии).

#### 2.3. Фильтрация Баттерворта

При наличии в структуре временных рядов трендов — медленно меняющихся, гладких функций, под которыми наиболее часто понимается переменное математическое ожидание случайного процесса, применяется фильтрация Баттерворта. Для выделения тенденций или трендов на повышение или понижение значений процесса на отрезках времени в несколько лет или десятилетий используется низкочастотная фильтрация.

Фильтры Баттерворта имеют максимально плоскую амплитудночастотную характеристику (АЧХ) в полосе пропускания и монотонную характеристику в полосе задержания. Квадрат АЧХ фильтра Баттерворта описывается выражением

$$H^{2}(\omega) = \frac{1}{1 + \left(\frac{\omega}{\omega_{c}}\right)^{2n}}$$
 (2.13)

где  $\omega_c$  – граничная частота, n – порядок фильтра.

По мере возрастания порядка n фильтра Баттерворта коэффициент передачи в полосе пропускания все в большей степени приближается k единице, переходная область все в большей степени сужается, а в полосе задержания функция передачи все ближе подходит k нулю. При k0 АЧХ фильтра Баттерворта приближается k1 идеальной величине.

«Одним из методов анализа временных рядов с целью выделения тенденции или трендов на повышение или понижение значений является их фильтрация, которая бывает низкочастотной и высокочастотной, полосовой и режекторной.

Низкочастотная фильтрация — преобразование ряда, при котором исключаются высокочастотные составляющие.

Для анализа многолетней изменчивости гидрометеорологических процессов рекомендуется применять цифровую тангенсную низкочастотную фильтрацию рядов. Это связано с тем, что тангенсная фильтрация обладает такими преимуществами, как простота вычисления коэффициентов передаточной функции фильтра и большая крутизна амплитудно – частотной характеристики вблизи частоты среза.» [7]

«Одна из исчерпывающих характеристик — передаточная функция фильтра  $H(\omega)$ .

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\sum_{k=0}^{K} \beta_k Z^{-k}}{1 + \sum_{l=1}^{L} \alpha_l Z^{-1}},$$
 (2.14)

где  $H(\omega)$  - передаточная функция;

 $X(\omega)$  и  $Y(\omega)$  – их Фурье – изображение;

 $eta_k$ ,  $lpha_l$  - действительные числа, коэффициенты фильтра;

Z=exp(iωΔ);

 $\Delta$  – Интервал дискретизации рядов  $\{xi\}$  и  $\{yi\}$ . [7]

«Передаточная функция фильтра  $H(\omega)$  выражает связь между частотными представлениями рядов  $\{xi\}$  и  $\{yi\}$  и имеет значения в комплексной области, т.е.  $H(\omega)$  можно представить в виде:

$$H(\omega) = |H(\omega)| \exp(\exp(-i\varphi(\omega)), \tag{2.15}$$

$$H(\omega) = \frac{(b_0 + b_1 Z^{-1} + b_2 Z^{-2})^{M_1}}{\prod_{m=1}^{M_1} (1 + a_{1m} Z^{-1} + a_{2m} Z^{-2})},$$
 (2.16)

где

Н(ω) – передаточная функция;

 $b_0, b_1,$  — коэффициенты;

 $b_2, a_{1m}, a_{2m}$  — коэффициенты;

Величина  $M=2M_1$  называется порядком передаточной функции или порядком фильтра.» [7]

«При таком представлении функцию  $|H(\omega)|$  называют амплитудночастотной характеристикой фильтра. В каждой точке частотного диапазона она выражает отношение амплитуд гармоник отфильтрованного и неотфильтрованного ряда с данной частотой. Функцию $\varphi(\omega)$  называют фазовочастотной характеристикой фильтра. Она выражает зависимость сдвига фаз от частоты в отфильтрованном и неотфильтрованном рядах.» [7]

«Тангенсные цифровые фильтры Баттерворта имеют передаточную функцию вида (2.10), что позволяет применить вышеуказанный метод фильтрации, обладающий:

- рекуррентным способом вычисления отфильтрованного ряда;
- возможность повышения порядка фильтра увеличением числа уравнений.» [7]

«Тангенсный низкочастотный фильтр Баттерворта порядка М имеет амплитудно – частотную характеристику

$$|H(\omega)| = \frac{1}{\sqrt{1 + \left[\frac{tg(\frac{\omega\Delta}{2})}{tg(\frac{\omega c\Delta}{2})}\right]^{2M}}},$$
(2.17)

где  $\omega_c$  – частота среза» [7]

#### 2.4 Спектральный анализ

Спектральный анализ — это разновидность обработки данных, связанная с преобразованием их частотного представления или спектра. Спектр получается в результате разложения исходной функции, зависящей от времени (временной ряд) или пространственных координат, в базис некоторой периодической функции.

Цель спектрального анализа - разложить ряд на функции синусов и косинусов различных частот, для определения тех, появление которых особенно существенно и значимо. Один из возможных способов сделать это - решить задачу линейной множественной регрессии, где зависимая переменная наблюдаемый временной ряд, а независимые переменные или регрессоры: функции синусов всех возможных (дискретных) частот. Такая модель линейной множественной регрессии может быть записана как (для k = 1 до q)

$$x_t = a_0 + \sum (a_k \cdot \cos(\lambda_k \cdot t) + b_k \cdot \sin(\lambda_k \cdot t)), \quad x_t = a_0 + \sum (a_k \cdot \cos(\lambda_k \cdot t) + b_k \cdot \sin(\lambda_k \cdot t)),$$

Следующее общее понятие классического гармонического анализа в этом уравнении - (лямбда) - это круговая частота, выраженная в радианах в единицу времени, т.е.

где - константа pi = 3.1416 и

$$\eta_k = \frac{k}{q} \qquad \eta_k = \frac{k}{q}$$

Здесь важно осознать, что вычислительная задача подгонки функций синусов и косинусов разных длин к данным может быть решена с помощью множественной линейной регрессии. Заметим, что коэффициенты при косинусах и коэффициенты при синусах, - это коэффициенты регрессии, показывающие степень, с которой соответствующие функции коррелируют с данными (заметим, что сами синусы и косинусы на различных частотах не коррелированы или, другим языком, ортогональны. Таким образом, мы имеем дело с частным случаем разложения по ортогональным полиномам). Всего существует д различных синусов и косинусов; интуитивно ясно, что число функций синусов и косинусов не может быть больше числа данных в ряде. Не вдаваясь в подробности, отметим, если N - количество данных, то будет N/2+1 функций косинусов и N/2-1 функций синусов. Другими словами, различных синусоидальных волн будет столько же, сколько данных, и вы сможете полностью воспроизвести ряд по основным функциям. (Заметим, если количество данных в ряде нечетно, то последнее наблюдение обычно опускается. Для определения синусоидальной функции нужно иметь, по крайней мере, две точки: высокого и низкого пика).

В итоге, спектральный анализ определяет корреляцию функций синусов и косинусов различной частоты с наблюдаемыми данными. Если найденная корреляция (коэффициент при определенном синусе или косинусе) вели-

ка, то можно заключить, что существует строгая периодичность на соответствующей частоте в данных.

# 3. Особенности многолетней изменчивости уровней воды в озёрах

Для характеристики многолетней изменчивости уровней воды в озёрах использовались ряды средних годовых значений (рис. 1, 2).

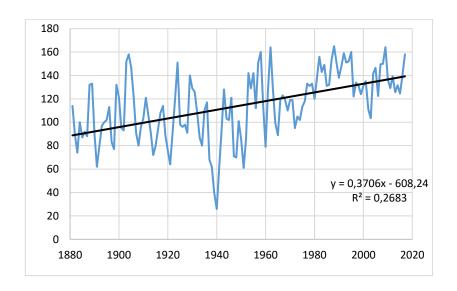



Рисунок 1 — Хронологический график уровней воды в Онежском озере (1881- 2017 гг).

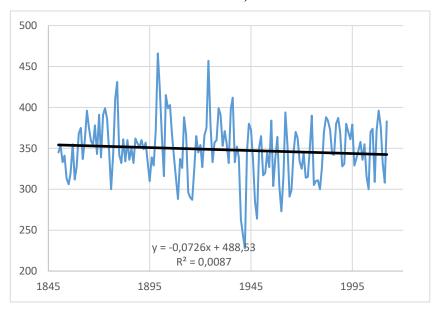



Рисунок 2 — Хронологический график уровней воды в озере Сайма (1850-  $2012~{\rm rr}$ ).

Временные ряды средних годовых уровней прошли проверку на однородность по стандартным критериям Стьюдента и Фишера (табл. 10).

Таблица 10 – Результаты проверки рядов на однородность

| Характеристики            | Онежское озеро | Озеро Сайма |
|---------------------------|----------------|-------------|
| t*                        | 7,40           | 2,47        |
| t <sub>2α=5%</sub>        | 1,98           | 1,97        |
| $H_0:X_1=X_2$             | -              | -           |
| F*                        | 0,74           | 0,92        |
| F <sub>2α=5%</sub>        | 0,69           | 0,70        |
| $H_0:D^*_{\ 1}=D^*_{\ 2}$ | -              | -           |

<sup>\* - –</sup> неоднородный ряд

Выполненный анализ показал, что ряд средних годовых уровней Онежского озера является неоднородным как по критерию Фишера, так и по критерию Стьюдента.

Проверка рядов на наличие трендов показала, что значимым является тренд на повышение уровня Онежского озера (табл. 10). Тренд уровня озера Сайма не значим.

Таблица 11 – Результаты проверки рядов на значимость тренда

| Характеристики тренда | Онежское озеро | Озеро Сайма |  |
|-----------------------|----------------|-------------|--|
| R                     | 0,52           | 0,093       |  |
| $\sigma_R$            | 0,074          | 0,078       |  |
| $ R /\sigma_R$        | 7,04           | 1,19        |  |
| t2a                   | 1,98           | 1,97        |  |
| Значимость R          | +              | -           |  |

Результаты квантильного анализа рядов средних годовых значений позволили выявить для многолетней изменчивости уровней воды в озёрах годы высокого и низкого стояния (рис. 3, 4; табл. 11).

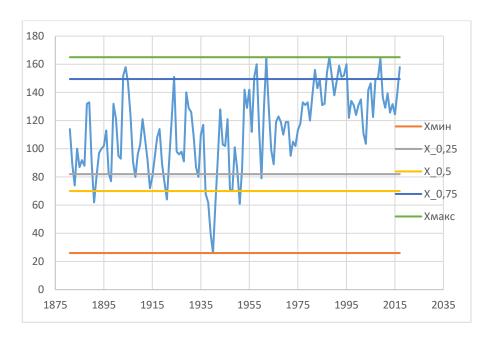



Рисунок 3 — Квантильная диаграмма среднегодовых уровней Онежского озера (1881-2017 гг).

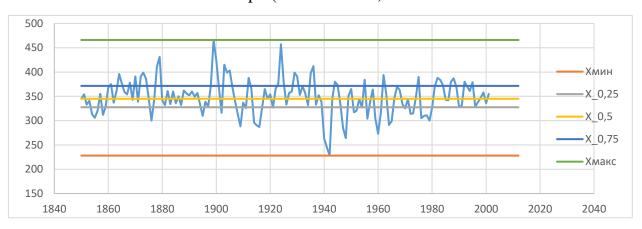



Рисунок 4 – Квантильная диаграмма среднегодовых уровней озера Сайма.

Таблица 12 – Годы высокого и низкого положений уровней Онежского озера

| Годы высокого положения | Годы низкого положения |
|-------------------------|------------------------|
| 1903-1904               | 1883                   |
| 1924                    | 1891-1892              |
| 1957-1958               | 1892                   |
| 1962                    | 1898                   |
| 1982                    | 1908                   |
| 1987-1989               | 1914-1915              |
| 1992-1995               | 1920-1921              |
| 2007-2009               | 1934-1935              |
| 2017                    | 1937-1941              |
|                         | 1947-1948              |
|                         | 1951, 1960             |

Годы высокого и низкого стояния уровня воды в Онежском озере группировались в циклы продолжительностью от 2 до 5 лет. При этом годы низкого положения уровня чаще всего наблюдались до начала 1950-х годов. При этом в 1941 г наблюдался самый низкий уровень Онежского озера. Годы высокого стояния уровня чаще всего наблюдались после 1950-х годов.

Таблица 13 – Годы высокого и низкого положений уровней озера Сайма

| Годы высокого положения | Годы низкого положения |
|-------------------------|------------------------|
| 1955                    | 1956                   |
| 1962                    | 1959-1961              |
| 1967                    | 1964-1965              |
| 1975                    | 1972-1973              |
| 1981-1984               | 1976-1979              |
| 1987-1989               | 2002-2003              |
| 1992-1995               | 2006                   |
| 2004-2005               | 2011                   |
| 2007-2009               |                        |
| 2012                    |                        |
|                         |                        |

Годы высокого и низкого стояния уровня воды в озере Сайма группировались в циклы продолжительностью от 2 до 4 лет. При этом годы низкого положения уровня чаще наблюдались до начала 2003 года. При этом в 1941 г также наблюдался самый низкий уровень озера Сайма. Годы высокого стояния уровня чаще всего наблюдались с 1980-х годов.

Для выделения периодов локальной нестационарности в рядах средних годовых уровней анализируемых озёр применялась низкочастотная фильтрация Баттерворта, результаты которой приведены на рис. 5 и 6. Из рисунков видно, что периоды повышения и понижения уровня воды продолжались несколько лет и сменялись, образуя циклы водности.

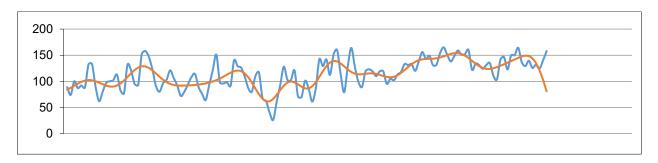



Рисунок 5 - Результаты низкочастотной фильтрации Баттерворта ряда средних годовых уровней Онежского озера.

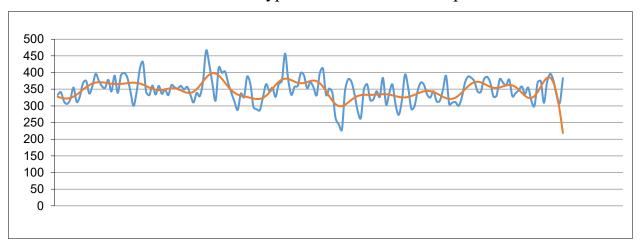



Рисунок 6 — Результаты низкочастотной фильтрации Баттерворта ряда средних годовых уровней озера Сайма.

На графике оценки спектральной плотности, рассчитанной по ряду средних годовых уровней Онежского озера, четко выделяется один максимум, связанный с наличием в многолетней изменчивости процесса значимого тренда на повышение (рис. 7).



Рис. 7 – График оценки спектральной плотности среднегодовых уровней Онежского озера.

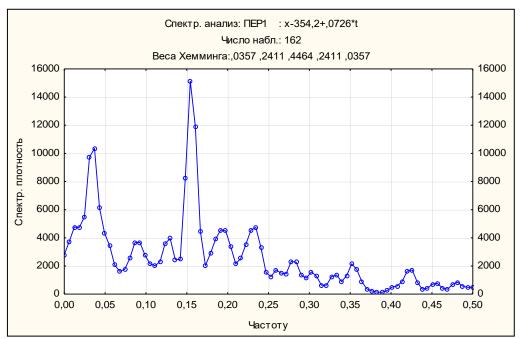



Рис. 8 – График оценки спектральной плотности среднегодовых уровней озера Сайма.

Для спектральной структуры ряда средних годовых значений уровня озера Сайма характерны два значимых максимума на частотах, соответствующих квази — 30-ти летнему и 5-6 летнему колебаниям (рис. 8).

#### 4. Увлажненность территории

Для характеристики многолетней изменчивости увлажненности были рассчитаны временные ряды индексов Де-Мартона  $\alpha^{\rm M}$  в период с 1960 по 2018 г. с использованием данных по метеостанциям г. Петрозаводск, г. Тихвин, г. Выборг и г. Санкт-Петербург. Рассчитанные ряды индексов Де-Мартона  $\alpha^{\rm M}$  с нанесёнными линиями трендов приведены на рис. 9.

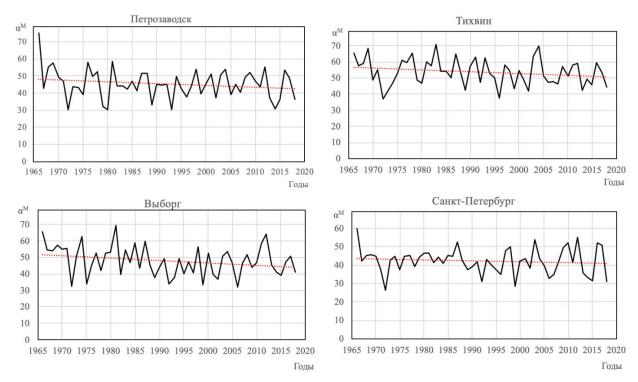



Рисунок 9 – Индексы Де-Мартона.



Рисунок 10 — Интегральный индекс для всего водосбора Онежского бассейна.

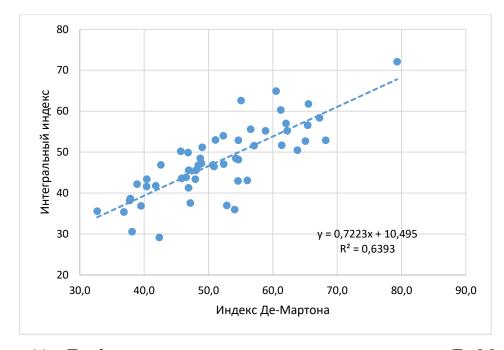



Рисунок 11 — График связи интегрального индекса и индекса Де-Мартона.

На полученных графиках наблюдаются слабо выраженные отрицательные тренды, что свидетельствует об уменьшении увлажненности территорий озёрных бассейнов Ладожской озёрной системы. Это может быть вызвано потеплением климата при незначительном увеличении количества осадков,

что, в свою очередь, может быть связано со сменой циркуляционных эпох, которая достаточно хорошо просматривается через изменение индекса Северо-Атлантического колебания [8].

#### Заключение

Особенности уровенного режима рассмотренных озёр различны. Так, для многолетней изменчивости уровня Онежского озера характерен значимый тренд на повышение, особенно четко выраженный с 1954 года, после строительства Верхне-Свирской ГЭС. Для изменений уровня озера Сайма прослеживается тенденция на незначительное понижение, которая согласуется с аналогичной тенденцией в изменении увлажнённости территории.

На фоне отмеченных общих тенденций наблюдаются периоды локальной нестационарности, которые проявляются в повышении и понижении уровня озер продолжительностью в несколько лет. Ветви роста и спада уровней воды формируют квазициклы продолжительностью в несколько десятилетий.

#### Список литературы

- 1. Богословский Б.Б., Филь С.А. Классификация водоемов по внешнему водообмену // Географо-гидрологический метод исследования вод суши. М.: изд. АН. СССР. Геогр. общ. СССР, 1984, с. 54 60.
- 2. Будыко М.И., Юдин М.И. О колебаниях уровня непроточных озер // Метеорология и гидрология, 1960, № 8, с. 15 19.
- 3. Государственный доклад «О состоянии окружающей природной среды Российской Федерации в 1996 году / Госомэкологии РФ. Зеленый мир. 1997, № 24,25
- 4. Государственный доклад о состоянии окружающей природной среды в Республики Карелия в 1994 году / Минэкология РК, Петрозаводск, 1995. 126 с.
- 5. Государственный доклад о состоянии окружающей природной среды Республики Карелия в 1995 году / Минэкология РК, Петрозаводск, 1996. 138 с.
- 6. Григорьев С.В. Энергетическое значение и использование вод бассейна Онежского озера // Онежское озеро как объект хозяйственного использования-.Л.,Наука, 19703 с. 20-59
- 7. Григорьев А.С. Вероятностные модели влияния климата на гидрологический режим озер: Автореф. Дисс., канд. физ.-мат. наук. СПб., 2000. 18 с.
- 8. Громов А.Ю. Применение цифровых фильтров Баттерворта в океанологии. В кн.: Режимообразующие факторы, информационная база и методы ее анализа. Л.: Гидрометеоиздат, 1989, с. 22 35.
- 9. Догановский А.М. Многолетние колебания уровня Ладожского озера // Современные проблемы гидрометеорологии. СПб.: изд. РГГМУ, 2006, с. 175 183.
- 10. Кириллова В.А. Озеро Ильмень // Природные ресурсы больших озер СССР и вероятностные их изменения. Л. 1984.

- 11. Лемешко Н.А., Сперанская Н.А. Особенности увлажнения Европейской территории России в условиях изменяющегося климата // Современные проблемы гидрометеорологии. СПб.: Астерион, 2006, с. 38 54.
- 12. Лозовик П.А., Сабылина А.В. Изменение режима водоемов Карелии в результате антропогенного воздействия // Водные ресурсы Карелии и экология. Петрозаводск: КНЦ РАН, 1992, с. 45-55
- 13. Мякишева Н.В. Особенности увлажненности бассейнов больших европейских озер в условиях современного климата // Ученые записки РГГ-МУ, вып. № 11: СПб.: изд. РГГМУ, 2009, с. 5 15.
- 14. Мякишева Н.В., Догановский А.М. Водный баланс и уровень воды озера Ильмень в разных временных интервалах // Труды IV Международного симпозиума по Ладожскому озеру. Великий Новгород. Россия. 2 6 сентября 2002 г. СПб.: изд. НИИ химии СПбГУ, 2003, с. 175 179.
- 15. Мякишева Н.В., Трапезников Ю.А. Авторегрессионная модель межгодовой изменчивости гидрометеорологических процессов // Вероятностный анализ и моделирование океанологических процессов. Л.,1984.
- 16. Ресурсы поверхностных вод СССР. Т. 2. Карелия и Северо-Запад. Ч. 1. Л.: Гидрометеоиздат, 1972.
- 17. Рожков В.А. Теория и методы статистического оценивания вероятностных характеристик случайных величин и функций с гидрометеорологическими примерами. Книга 2. СПб. Гидрометеоиздат. 2002. 780 с.
- 18. Рожков В.А., Трапезников Ю.А. Вероятностные модели океаноло-гических процессов. Л.:: Гидрометеоиздат, 1990 270 с.
- 19. Российская Академия Наук //Институт озероведения. Ладога. Под редакцией Академика РАН, проф. В.А. Румянцева д-ра физ.-мат. Наук С.А. Кондратьева, 2013. 560 с.
- 20. Сикан А.В. Методы статистической обработки гидрометеорологической информации. Учебник. Специальность «Гидрология» направления подготовки «Гидрометеорология» СПб.: изд. РГГМУ, 2007. 279 с.

# Приложения

#### Приложение А – Таблицы

#### Среднегодовые уровни Онежского озера

| 1881 | 114 | 1921 | 64  | 1961 | 128 | 2001 | 135 |
|------|-----|------|-----|------|-----|------|-----|
| 1882 | 89  | 1922 | 93  | 1962 | 164 | 2002 | 111 |
| 1883 | 74  | 1923 | 121 | 1963 | 128 | 2003 | 104 |
| 1884 | 100 | 1924 | 151 | 1964 | 99  | 2004 | 142 |
| 1885 | 87  | 1925 | 98  | 1965 | 89  | 2005 | 147 |
| 1886 | 92  | 1926 | 96  | 1966 | 119 | 2006 | 123 |
| 1887 | 88  | 1927 | 98  | 1967 | 123 | 2007 | 150 |
| 1888 | 132 | 1928 | 91  | 1968 | 119 | 2008 | 150 |
| 1889 | 133 | 1929 | 140 | 1969 | 110 | 2009 | 164 |
| 1890 | 90  | 1930 | 129 | 1970 | 119 | 2010 | 136 |
| 1891 | 62  | 1931 | 126 | 1971 | 119 | 2011 | 129 |
| 1892 | 80  | 1932 | 109 | 1972 | 95  | 2012 | 139 |
| 1893 | 97  | 1933 | 87  | 1973 | 105 | 2013 | 126 |
| 1894 | 100 | 1934 | 80  | 1974 | 102 | 2014 | 132 |
| 1895 | 102 | 1935 | 110 | 1975 | 113 | 2015 | 125 |
| 1896 | 113 | 1936 | 117 | 1976 | 118 | 2016 | 140 |
| 1897 | 83  | 1937 | 68  | 1977 | 133 | 2017 | 158 |
| 1898 | 77  | 1938 | 62  | 1978 | 131 |      |     |
| 1899 | 132 | 1939 | 40  | 1979 | 133 |      |     |
| 1900 | 121 | 1940 | 26  | 1980 | 120 |      |     |
| 1901 | 95  | 1941 | 61  | 1981 | 138 |      |     |
| 1902 | 93  | 1942 | 93  | 1982 | 156 |      |     |
| 1903 | 152 | 1943 | 128 | 1983 | 143 |      |     |
| 1904 | 158 | 1944 | 103 | 1984 | 149 |      |     |
| 1905 | 147 | 1945 | 102 | 1985 | 131 |      |     |
| 1906 | 123 | 1946 | 121 | 1986 | 132 |      |     |
| 1907 | 91  | 1947 | 71  | 1987 | 154 |      |     |
| 1908 | 80  | 1948 | 70  | 1988 | 165 |      |     |
| 1909 | 96  | 1949 | 101 | 1989 | 151 |      |     |
| 1910 | 103 | 1950 | 86  | 1990 | 138 |      |     |
| 1911 | 121 | 1951 | 61  | 1991 | 148 |      |     |
| 1912 |     | 1952 | 86  | 1992 | 159 |      |     |
| 1913 | 92  | 1953 | 142 | 1993 | 151 |      |     |
| 1914 | 72  | 1954 | 129 | 1994 | 152 |      |     |
| 1915 | 80  | 1955 | 142 | 1995 | 160 |      |     |
| 1916 | 94  | 1956 | 112 | 1996 | 122 |      |     |
| 1917 | 108 | 1957 | 151 | 1997 | 134 |      |     |
| 1918 | 114 | 1958 | 160 | 1998 | 131 |      |     |
| 1919 | 89  | 1959 | 114 | 1999 | 124 |      |     |
| 1920 | 76  | 1960 | 79  | 2000 | 131 |      |     |
|      | 1   | 1    | 1   | 1    |     | ı    |     |

#### Среднегодовые уровни озера Сайма

| 1850 | 345 | 1888 | 362 | 1926 | 333 | 1964 | 291 | 2002 |
|------|-----|------|-----|------|-----|------|-----|------|
| 1851 | 354 | 1889 | 356 | 1927 | 357 | 1965 | 299 | 2003 |
| 1852 | 333 | 1890 | 352 | 1928 | 360 | 1966 | 345 | 2004 |
| 1853 | 341 | 1891 | 360 | 1929 | 399 | 1967 | 370 | 2005 |
| 1854 | 313 | 1892 | 349 | 1930 | 391 | 1968 | 363 | 2006 |
| 1855 | 306 | 1893 | 357 | 1931 | 353 | 1969 | 334 | 2007 |
| 1856 | 320 | 1894 | 334 | 1932 | 371 | 1970 | 325 | 2008 |
| 1857 | 355 | 1895 | 310 | 1933 | 356 | 1971 | 344 | 2009 |
| 1858 | 312 | 1896 | 339 | 1934 | 332 | 1972 | 314 | 2010 |
| 1859 | 328 | 1897 | 329 | 1935 | 398 | 1973 | 315 | 2011 |
| 1860 | 368 | 1898 | 372 | 1936 | 412 | 1974 | 348 | 2012 |
| 1861 | 375 | 1899 | 466 | 1937 | 333 | 1975 | 390 |      |
| 1862 | 337 | 1900 | 424 | 1938 | 352 | 1976 | 305 |      |
| 1863 | 360 | 1901 | 366 | 1939 | 339 | 1977 | 310 | ]    |
| 1864 | 396 | 1902 | 316 | 1940 | 263 | 1978 | 311 |      |
| 1865 | 376 | 1903 | 415 | 1941 | 245 | 1979 | 300 | ]    |
| 1866 | 359 | 1904 | 399 | 1942 | 228 | 1980 | 326 | ]    |
| 1867 | 354 | 1905 | 403 | 1943 | 346 | 1981 | 370 |      |
| 1868 | 378 | 1906 | 368 | 1944 | 380 | 1982 | 388 | ]    |
| 1869 | 343 | 1907 | 339 | 1945 | 373 | 1983 | 384 | ]    |
| 1870 | 391 | 1908 | 312 | 1946 | 335 | 1984 | 373 |      |
| 1871 | 339 | 1909 | 288 | 1947 | 285 | 1985 | 343 | ]    |
| 1872 | 391 | 1910 | 337 | 1948 | 264 | 1986 | 342 |      |
| 1873 | 399 | 1911 | 326 | 1949 | 351 | 1987 | 380 |      |
| 1874 | 386 | 1912 | 388 | 1950 | 365 | 1988 | 387 | ]    |
| 1875 | 345 | 1913 | 366 | 1951 | 317 | 1989 | 370 |      |
| 1876 | 300 | 1914 | 296 | 1952 | 320 | 1990 | 328 | ]    |
| 1877 | 343 | 1915 | 290 | 1953 | 344 | 1991 | 331 |      |
| 1878 | 411 | 1916 | 287 | 1954 | 327 | 1992 | 380 |      |
| 1879 | 431 | 1917 | 326 | 1955 | 384 | 1993 | 370 | ]    |
| 1880 | 342 | 1918 | 365 | 1956 | 304 | 1994 | 361 |      |
| 1881 | 332 | 1919 | 345 | 1957 | 338 | 1995 | 379 |      |
| 1882 | 361 | 1920 | 354 | 1958 | 364 | 1996 | 329 | ]    |
| 1883 | 334 | 1921 | 327 | 1959 | 304 | 1997 | 338 |      |
| 1884 | 360 | 1922 | 366 | 1960 | 273 | 1998 | 347 |      |
| 1885 | 336 | 1923 | 375 | 1961 | 316 | 1999 | 358 |      |
| 1886 | 350 | 1924 | 457 | 1962 | 394 | 2000 | 336 |      |
| 1887 | 332 | 1925 | 379 | 1963 | 354 | 2001 | 355 |      |

## Среднегодовая температура воздуха на станции Петрозаводск

| Годы | СРГОД                                 | СРГОД+10 |
|------|---------------------------------------|----------|
| 1950 | 2,73                                  | 12,7     |
| 1951 | 2,78                                  | 12,8     |
| 1952 | 2,13                                  | 12,1     |
| 1953 | 2,78                                  | 12,8     |
| 1954 | 3,05                                  | 13,1     |
| 1955 | 0,68                                  | 10,7     |
| 1956 | 0,73                                  | 10,7     |
| 1957 | 3,29                                  | 13,3     |
| 1958 | 1,16                                  | 11,2     |
| 1959 | 3,08                                  | 13,1     |
| 1960 | 2,35                                  | 12,4     |
| 1961 | 4,05                                  | 14,1     |
| 1962 | 2,53                                  | 12,5     |
| 1963 | 1,83                                  | 11,8     |
| 1964 | 2,70                                  | 12,7     |
| 1965 | 1,94                                  | 11,9     |
| 1966 | 0,31                                  | 10,3     |
| 1967 | 3,23                                  | 13,2     |
| 1968 | 1,44                                  | 11,4     |
| 1969 | 0,91                                  | 10,9     |
| 1970 | 2,32                                  | 12,3     |
| 1971 | 1,83                                  | 11,8     |
| 1972 | 3,53                                  | 13,5     |
| 1973 | 2,50                                  | 12,5     |
| 1974 | 4,22                                  | 14,2     |
| 1975 | 4,14                                  | 14,1     |
| 1976 | 1,00                                  | 11,0     |
| 1977 | 2,38                                  | 12,4     |
| 1978 | 0,70                                  | 10,7     |
| 1979 | 2,46                                  | 12,5     |
| 1980 | 2,02                                  | 12,0     |
| 1981 | 3,02                                  | 13,0     |
| 1982 | 2,88                                  | 12,9     |
| 1983 | 3,59                                  | 13,6     |
| 1984 | 3,39                                  |          |
|      | · · · · · · · · · · · · · · · · · · · | 13,3     |
| 1985 | 0,59                                  | 10,6     |
| 1986 | 2,15                                  | 12,2     |
| 1987 | 0,61                                  | 10,6     |
| 1988 | 2,98                                  | 13,0     |

## Уровни воды Онежского озера

| № п/п | Годы | уровни | ранж | № п/п | Годы | уровни | ранж |
|-------|------|--------|------|-------|------|--------|------|
| 1     | 1881 | 114    | 26   | 70    | 1950 | 86     | 119  |
| 2     | 1882 | 89     | 40   | 71    | 1951 | 61     | 119  |
| 3     | 1883 | 74     | 61   | 72    | 1952 | 86     | 119  |
| 4     | 1884 | 100    | 61   | 73    | 1953 | 142    | 119  |
| 5     | 1885 | 87     | 62   | 74    | 1954 | 129    | 120  |
| 6     | 1886 | 92     | 62   | 75    | 1955 | 142    | 121  |
| 7     | 1887 | 88     | 64   | 76    | 1956 | 112    | 121  |
| 8     | 1888 | 132    | 68   | 77    | 1957 | 151    | 121  |
| 9     | 1889 | 133    | 70   | 78    | 1958 | 160    | 121  |
| 10    | 1890 | 90     | 71   | 79    | 1959 | 114    | 122  |
| 11    | 1891 | 62     | 72   | 80    | 1960 | 79     | 123  |
| 12    | 1892 | 80     | 74   | 81    | 1961 | 128    | 123  |
| 13    | 1893 | 97     | 76   | 82    | 1962 | 164    | 123  |
| 14    | 1894 | 100    | 77   | 83    | 1963 | 128    | 124  |
| 15    | 1895 | 102    | 79   | 84    | 1964 | 99     | 125  |
| 16    | 1896 | 113    | 80   | 85    | 1965 | 89     | 126  |
| 17    | 1897 | 83     | 80   | 86    | 1966 | 119    | 126  |
| 18    | 1898 | 77     | 80   | 87    | 1967 | 123    | 128  |
| 19    | 1899 | 132    | 80   | 88    | 1968 | 119    | 128  |
| 20    | 1900 | 121    | 83   | 89    | 1969 | 110    | 128  |
| 21    | 1901 | 95     | 86   | 90    | 1970 | 119    | 129  |
| 22    | 1902 | 93     | 86   | 91    | 1971 | 119    | 129  |
| 23    | 1903 | 152    | 87   | 92    | 1972 | 95     | 129  |
| 24    | 1904 | 158    | 87   | 93    | 1973 | 105    | 131  |
| 25    | 1905 | 147    | 88   | 94    | 1974 | 102    | 131  |
| 26    | 1906 | 123    | 89   | 95    | 1975 | 113    | 131  |
| 27    | 1907 | 91     | 89   | 96    | 1976 | 118    | 131  |
| 28    | 1908 | 80     | 89   | 97    | 1977 | 133    | 132  |
| 29    | 1909 | 96     | 90   | 98    | 1978 | 131    | 132  |
| 30    | 1910 | 103    | 91   | 99    | 1979 | 133    | 132  |
| 31    | 1911 | 121    | 91   | 100   | 1980 | 120    | 132  |
| 32    | 1912 | 107    | 92   | 101   | 1981 | 138    | 133  |
| 33    | 1913 | 92     | 92   | 102   | 1982 | 156    | 133  |
| 34    | 1914 | 72     | 93   | 103   | 1983 | 143    | 133  |
| 35    | 1915 | 80     | 93   | 104   | 1984 | 149    | 134  |
| 36    | 1916 | 94     | 93   | 105   | 1985 | 131    | 135  |
| 37    | 1917 | 108    | 94   | 106   | 1986 | 132    | 136  |
| 38    | 1918 | 114    | 95   | 107   | 1987 | 154    | 138  |
| 39    | 1919 | 89     | 95   | 108   | 1988 | 165    | 138  |
| 40    | 1920 | 76     | 96   | 109   | 1989 | 151    | 139  |
| 41    | 1921 | 64     | 96   | 110   | 1990 | 138    | 140  |

| 42 | 1922 | 93  | 97  | 111 | 1991 | 148 | 140 |
|----|------|-----|-----|-----|------|-----|-----|
| 43 | 1923 | 121 | 98  | 112 | 1992 | 159 | 142 |
| 44 | 1924 | 151 | 98  | 113 | 1993 | 151 | 142 |
| 45 | 1925 | 98  | 99  | 114 | 1994 | 152 | 142 |
| 46 | 1926 | 96  | 100 | 115 | 1995 | 160 | 143 |
| 47 | 1927 | 98  | 100 | 116 | 1996 | 122 | 147 |
| 48 | 1928 | 91  | 101 | 117 | 1997 | 134 | 147 |
| 49 | 1929 | 140 | 102 | 118 | 1998 | 131 | 148 |
| 50 | 1930 | 129 | 102 | 119 | 1999 | 124 | 149 |
| 51 | 1931 | 126 | 102 | 120 | 2000 | 131 | 150 |
| 52 | 1932 | 109 | 103 | 121 | 2001 | 135 | 150 |
| 53 | 1933 | 87  | 103 | 122 | 2002 | 111 | 151 |
| 54 | 1934 | 80  | 104 | 123 | 2003 | 104 | 151 |
| 55 | 1935 | 110 | 105 | 124 | 2004 | 142 | 151 |
| 56 | 1936 | 117 | 107 | 125 | 2005 | 147 | 151 |
| 57 | 1937 | 68  | 108 | 126 | 2006 | 123 | 152 |
| 58 | 1938 | 62  | 109 | 127 | 2007 | 150 | 152 |
| 59 | 1939 | 40  | 110 | 128 | 2008 | 150 | 154 |
| 60 | 1940 | 26  | 110 | 129 | 2009 | 164 | 156 |
| 61 | 1941 | 61  | 111 | 130 | 2010 | 136 | 158 |
| 62 | 1942 | 93  | 112 | 131 | 2011 | 129 | 158 |
| 63 | 1943 | 128 | 113 | 132 | 2012 | 139 | 159 |
| 64 | 1944 | 103 | 113 | 133 | 2013 | 126 | 160 |
| 65 | 1945 | 102 | 114 | 134 | 2014 | 132 | 160 |
| 66 | 1946 | 121 | 114 | 135 | 2015 | 125 | 164 |
| 67 | 1947 | 71  | 114 | 136 | 2016 | 140 | 164 |
| 68 | 1948 | 70  | 117 | 137 | 2017 | 158 | 165 |
| 69 | 1949 | 101 | 118 |     |      |     |     |

# Уровни воды Онежского озера

|    |      | уровни | ранж |
|----|------|--------|------|
| 1  | 1881 | 114    | 26   |
| 2  | 1882 | 89     | 40   |
| 3  | 1883 | 74     | 61   |
| 4  | 1884 | 100    | 61   |
| 5  | 1885 | 87     | 62   |
| 6  | 1886 | 92     | 62   |
| 7  | 1887 | 88     | 64   |
| 8  | 1888 | 132    | 68   |
| 9  | 1889 | 133    | 70   |
| 10 | 1890 | 90     | 71   |
| 11 | 1891 | 62     | 72   |
| 12 | 1892 | 80     | 74   |
| 13 |      |        | 76   |
|    | 1893 | 97     |      |
| 14 | 1894 | 100    | 77   |
| 15 | 1895 | 102    | 80   |
| 16 | 1896 | 113    | 80   |
| 17 | 1897 | 83     | 80   |
| 18 | 1898 | 77     | 80   |
| 19 | 1899 | 132    | 83   |
| 20 | 1900 | 121    | 86   |
| 21 | 1901 | 95     | 86   |
| 22 | 1902 | 93     | 87   |
| 23 | 1903 | 152    | 87   |
| 24 | 1904 | 158    | 88   |
| 25 | 1905 | 147    | 89   |
| 26 | 1906 | 123    | 89   |
| 27 | 1907 | 91     | 90   |
| 28 | 1908 | 80     | 91   |
| 29 | 1909 | 96     | 91   |
| 30 | 1910 | 103    | 92   |
| 31 | 1911 | 121    | 92   |
| 32 | 1912 | 107    | 93   |
| 33 | 1913 | 92     | 93   |
| 34 | 1914 | 72     | 93   |
| 35 | 1915 | 80     | 94   |
| 36 | 1916 | 94     | 95   |
| 37 | 1917 | 108    | 96   |
| 38 | 1918 | 114    | 96   |
| 39 | 1919 | 89     | 97   |
| 40 | 1920 | 76     | 98   |
| 41 | 1921 | 64     | 98   |

| 42         1922         93         100           43         1923         121         100           44         1924         151         101           45         1925         98         102           46         1926         96         102           47         1927         98         103           48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123 </th <th></th> <th></th> <th></th> <th></th>             |    |      |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-----|-----|
| 44         1924         151         101           45         1925         98         102           46         1926         96         102           47         1927         98         103           48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128 </td <td>42</td> <td>1922</td> <td>93</td> <td>100</td>  | 42 | 1922 | 93  | 100 |
| 45         1925         98         102           46         1926         96         102           47         1927         98         103           48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129 </td <td>43</td> <td>1923</td> <td>121</td> <td>100</td> | 43 | 1923 | 121 | 100 |
| 46         1926         96         102           47         1927         98         103           48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132     <                                                   | 44 | 1924 | 151 | 101 |
| 47         1927         98         103           48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132                                                        | 45 | 1925 | 98  | 102 |
| 48         1928         91         103           49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133                                                        | 46 | 1926 | 96  | 102 |
| 49         1929         140         106           50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140                                                        | 47 | 1927 | 98  | 103 |
| 50         1930         129         108           51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142                                                        | 48 | 1928 | 91  | 103 |
| 51         1931         126         109           52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147     <                                                   | 49 | 1929 | 140 | 106 |
| 52         1932         109         110           53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151 </td <td>50</td> <td>1930</td> <td>129</td> <td>108</td> | 50 | 1930 | 129 | 108 |
| 53         1933         87         113           54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                            | 51 | 1931 | 126 | 109 |
| 54         1934         80         114           55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                             | 52 | 1932 | 109 | 110 |
| 55         1935         110         114           56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                              | 53 | 1933 | 87  | 113 |
| 56         1936         117         117           57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                                                                                | 54 | 1934 | 80  | 114 |
| 57         1937         68         121           58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                                                                                                                                  | 55 | 1935 | 110 | 114 |
| 58         1938         62         121           59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                                                                                                                                                                                   | 56 | 1936 | 117 | 117 |
| 59         1939         40         121           60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                                                                                                                                                                                                                                    | 57 | 1937 | 68  | 121 |
| 60         1940         26         121           61         1941         61         123           62         1942         93         126           63         1943         128         128           64         1944         103         129           65         1945         102         132           66         1946         121         132           67         1947         71         133           68         1948         70         140           69         1949         101         142           70         1950         86         147           71         1951         61         151                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58 | 1938 | 62  | 121 |
| 61     1941     61     123       62     1942     93     126       63     1943     128     128       64     1944     103     129       65     1945     102     132       66     1946     121     132       67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59 | 1939 | 40  | 121 |
| 62     1942     93     126       63     1943     128     128       64     1944     103     129       65     1945     102     132       66     1946     121     132       67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60 | 1940 | 26  | 121 |
| 63       1943       128       128         64       1944       103       129         65       1945       102       132         66       1946       121       132         67       1947       71       133         68       1948       70       140         69       1949       101       142         70       1950       86       147         71       1951       61       151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 | 1941 | 61  | 123 |
| 64     1944     103     129       65     1945     102     132       66     1946     121     132       67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62 | 1942 | 93  | 126 |
| 65     1945     102     132       66     1946     121     132       67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63 | 1943 | 128 | 128 |
| 66     1946     121     132       67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64 | 1944 | 103 | 129 |
| 67     1947     71     133       68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 | 1945 | 102 | 132 |
| 68     1948     70     140       69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66 | 1946 | 121 | 132 |
| 69     1949     101     142       70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67 | 1947 | 71  | 133 |
| 70     1950     86     147       71     1951     61     151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68 | 1948 | 70  | 140 |
| 71 1951 61 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69 | 1949 | 101 | 142 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70 | 1950 | 86  | 147 |
| 72 1952 86 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71 | 1951 | 61  | 151 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72 | 1952 | 86  | 152 |
| 73   1953   142   158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73 | 1953 | 142 | 158 |

# Уровни воды Онежского озера

|    |      | уровни | ранж |
|----|------|--------|------|
| 1  | 1954 | 129    | 79   |
| 2  | 1955 | 142    | 89   |
| 3  | 1956 | 112    | 95   |
| 4  | 1957 | 151    | 99   |
| 5  | 1957 | 160    | 102  |
| 6  | 1959 | 114    | 102  |
| 7  | 1960 | 79     | 105  |
| 8  |      |        | 110  |
|    | 1961 | 128    |      |
| 9  | 1962 | 164    | 111  |
| 10 | 1963 | 128    | 112  |
| 11 | 1964 | 99     | 113  |
| 12 | 1965 | 89     | 114  |
| 13 | 1966 | 119    | 118  |
| 14 | 1967 | 123    | 119  |
| 15 | 1968 | 119    | 119  |
| 16 | 1969 | 110    | 119  |
| 17 | 1970 | 119    | 119  |
| 18 | 1971 | 119    | 120  |
| 19 | 1972 | 95     | 122  |
| 20 | 1973 | 105    | 123  |
| 21 | 1974 | 102    | 123  |
| 22 | 1975 | 113    | 124  |
| 23 | 1976 | 118    | 125  |
| 24 | 1977 | 133    | 126  |
| 25 | 1978 | 131    | 128  |
| 26 | 1979 | 133    | 128  |
| 27 | 1980 | 120    | 129  |
| 28 | 1981 | 138    | 129  |
| 29 | 1982 | 156    | 131  |
| 30 | 1983 | 143    | 131  |
| 31 | 1984 | 149    | 131  |
| 32 | 1985 | 131    | 131  |
| 33 | 1986 | 132    | 132  |
| 34 | 1987 | 154    | 132  |
| 35 | 1988 | 165    | 133  |
| 36 | 1989 | 151    | 133  |
| 37 | 1990 | 138    | 134  |
| 38 | 1991 | 148    | 135  |
| 39 | 1992 | 159    | 136  |
| 40 | 1993 | 151    | 138  |
| 41 | 1994 | 152    | 138  |

| 1995 | 160                                                                                                                                                                  | 139                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996 | 122                                                                                                                                                                  | 140                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1997 | 134                                                                                                                                                                  | 142                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1998 | 131                                                                                                                                                                  | 142                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1999 | 124                                                                                                                                                                  | 143                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2000 | 131                                                                                                                                                                  | 147                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2001 | 135                                                                                                                                                                  | 148                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2002 | 111                                                                                                                                                                  | 149                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2003 | 104                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2004 | 142                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2005 | 147                                                                                                                                                                  | 151                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2006 | 123                                                                                                                                                                  | 151                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2007 | 150                                                                                                                                                                  | 151                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2008 | 150                                                                                                                                                                  | 152                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2009 | 164                                                                                                                                                                  | 154                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2010 | 136                                                                                                                                                                  | 156                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 | 129                                                                                                                                                                  | 158                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2012 | 139                                                                                                                                                                  | 159                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2013 | 126                                                                                                                                                                  | 160                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2014 | 132                                                                                                                                                                  | 160                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2015 | 125                                                                                                                                                                  | 164                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2016 | 140                                                                                                                                                                  | 164                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2017 | 158                                                                                                                                                                  | 165                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016 | 1996     122       1997     134       1998     131       1999     124       2000     131       2001     135       2002     111       2003     104       2004     142       2005     147       2006     123       2007     150       2008     150       2009     164       2010     136       2011     129       2012     139       2013     126       2014     132       2015     125       2016     140 |

## Уровни воды озера Сайма

| Nº  | Го-  | уро- | ран | Nº  | Го-  | уро- | ран | Nº  | Го-  | уро- | ран |
|-----|------|------|-----|-----|------|------|-----|-----|------|------|-----|
| п/п | ды   | вень | ж   | п/п | ды   | вень | ж   | п/п | ды   | вень | ж   |
| 1   | 1850 | 345  | 300 | 1   | 1899 | 466  | 228 | 1   | 1950 | 365  | 273 |
| 2   | 1851 | 354  | 306 | 2   | 1900 | 424  | 245 | 2   | 1951 | 317  | 291 |
| 3   | 1852 | 333  | 310 | 3   | 1901 | 366  | 263 | 3   | 1952 | 320  | 299 |
| 4   | 1853 | 341  | 312 | 4   | 1902 | 316  | 264 | 4   | 1953 | 344  | 300 |
| 5   | 1854 | 313  | 313 | 5   | 1903 | 415  | 285 | 5   | 1954 | 327  | 300 |
| 6   | 1855 | 306  | 320 | 6   | 1904 | 399  | 287 | 6   | 1955 | 384  | 304 |
| 7   | 1856 | 320  | 328 | 7   | 1905 | 403  | 288 | 7   | 1956 | 304  | 304 |
| 8   | 1857 | 355  | 329 | 8   | 1906 | 368  | 290 | 8   | 1957 | 338  | 305 |
| 9   | 1858 | 312  | 332 | 9   | 1907 | 339  | 296 | 9   | 1958 | 364  | 308 |
| 10  | 1859 | 328  | 332 | 10  | 1908 | 312  | 312 | 10  | 1959 | 304  | 309 |
| 11  | 1860 | 368  | 333 | 11  | 1909 | 288  | 316 | 11  | 1960 | 273  | 310 |
| 12  | 1861 | 375  | 334 | 12  | 1910 | 337  | 326 | 12  | 1961 | 316  | 311 |
| 13  | 1862 | 337  | 334 | 13  | 1911 | 326  | 326 | 13  | 1962 | 394  | 314 |
| 14  | 1863 | 360  | 336 | 14  | 1912 | 388  | 327 | 14  | 1963 | 354  | 315 |
| 15  | 1864 | 396  | 337 | 15  | 1913 | 366  | 332 | 15  | 1964 | 291  | 316 |
| 16  | 1865 | 376  | 339 | 16  | 1914 | 296  | 333 | 16  | 1965 | 299  | 316 |

| Nº  | Го-  | уро- | ран | Nº  | Го-  | уро- | ран | Nº  | Го-  | уро- | ран |
|-----|------|------|-----|-----|------|------|-----|-----|------|------|-----|
| п/п | ДЫ   | вень | ж   | п/п | ды   | вень | ж   | п/п | ды   | вень | ж   |
| 17  | 1866 | 359  | 339 | 17  | 1915 | 290  | 333 | 17  | 1966 | 345  | 317 |
| 18  | 1867 | 354  | 341 | 18  | 1916 | 287  | 335 | 18  | 1967 | 370  | 320 |
| 19  | 1868 | 378  | 342 | 19  | 1917 | 326  | 337 | 19  | 1968 | 363  | 325 |
| 20  | 1869 | 343  | 343 | 20  | 1918 | 365  | 339 | 20  | 1969 | 334  | 326 |
| 21  | 1870 | 391  | 343 | 21  | 1919 | 345  | 339 | 21  | 1970 | 325  | 327 |
| 22  | 1871 | 339  | 345 | 22  | 1920 | 354  | 345 | 22  | 1971 | 344  | 328 |
| 23  | 1872 | 391  | 345 | 23  | 1921 | 327  | 346 | 23  | 1972 | 314  | 329 |
| 24  | 1873 | 399  | 349 | 24  | 1922 | 366  | 351 | 24  | 1973 | 315  | 331 |
| 25  | 1874 | 386  | 350 | 25  | 1923 | 375  | 352 | 25  | 1974 | 348  | 332 |
| 26  | 1875 | 345  | 352 | 26  | 1924 | 457  | 353 | 26  | 1975 | 390  | 334 |
| 27  | 1876 | 300  | 354 | 27  | 1925 | 379  | 354 | 27  | 1976 | 305  | 336 |
| 28  | 1877 | 343  | 354 | 28  | 1926 | 333  | 356 | 28  | 1977 | 310  | 338 |
| 29  | 1878 | 411  | 355 | 29  | 1927 | 357  | 357 | 29  | 1978 | 311  | 338 |
| 30  | 1879 | 431  | 356 | 30  | 1928 | 360  | 360 | 30  | 1979 | 300  | 342 |
| 31  | 1880 | 342  | 357 | 31  | 1929 | 399  | 365 | 31  | 1980 | 326  | 343 |
| 32  | 1881 | 332  | 359 | 32  | 1930 | 391  | 366 | 32  | 1981 | 370  | 344 |
| 33  | 1882 | 361  | 360 | 33  | 1931 | 353  | 366 | 33  | 1982 | 388  | 344 |
| 34  | 1883 | 334  | 360 | 34  | 1932 | 371  | 366 | 34  | 1983 | 384  | 345 |
| 35  | 1884 | 360  | 360 | 35  | 1933 | 356  | 368 | 35  | 1984 | 373  | 347 |
| 36  | 1885 | 336  | 361 | 36  | 1934 | 332  | 371 | 36  | 1985 | 343  | 348 |
| 37  | 1886 | 350  | 362 | 37  | 1935 | 398  | 373 | 37  | 1986 | 342  | 354 |
| 38  | 1887 | 332  | 368 | 38  | 1936 | 412  | 375 | 38  | 1987 | 380  | 355 |
| 39  | 1888 | 362  | 372 | 39  | 1937 | 333  | 379 | 39  | 1988 | 387  | 358 |
| 40  | 1889 | 356  | 375 | 40  | 1938 | 352  | 380 | 40  | 1989 | 370  | 361 |
| 41  | 1890 | 352  | 376 | 41  | 1939 | 339  | 388 | 41  | 1990 | 328  | 363 |
| 42  | 1891 | 360  | 378 | 42  | 1940 | 263  | 391 | 42  | 1991 | 331  | 364 |
| 43  | 1892 | 349  | 386 | 43  | 1941 | 245  | 398 | 43  | 1992 | 380  | 365 |
| 44  | 1893 | 357  | 391 | 44  | 1942 | 228  | 399 | 44  | 1993 | 370  | 370 |
| 45  | 1894 | 334  | 391 | 45  | 1943 | 346  | 399 | 45  | 1994 | 361  | 370 |
| 46  | 1895 | 310  | 396 | 46  | 1944 | 380  | 403 | 46  | 1995 | 379  | 370 |
| 47  | 1896 | 339  | 399 | 47  | 1945 | 373  | 412 | 47  | 1996 | 329  | 370 |
| 48  | 1897 | 329  | 411 | 48  | 1946 | 335  | 415 | 48  | 1997 | 338  | 370 |
| 49  | 1898 | 372  | 431 | 49  | 1947 | 285  | 424 | 49  | 1998 | 347  | 372 |
|     |      |      |     | 50  | 1948 | 264  | 457 | 50  | 1999 | 358  | 373 |
|     |      |      |     | 51  | 1949 | 351  | 466 | 51  | 2000 | 336  | 374 |
|     |      |      |     |     |      |      |     | 52  | 2001 | 355  | 376 |
|     |      |      |     |     |      |      |     | 53  | 2002 | 316  | 379 |
|     |      |      |     |     |      |      |     | 54  | 2003 | 300  | 380 |
|     |      |      |     |     |      |      |     | 55  | 2004 | 370  | 380 |
|     |      |      |     |     |      |      |     | 56  | 2005 | 374  | 383 |
|     |      |      |     |     |      |      |     | 57  | 2006 | 309  | 384 |
|     |      |      |     |     |      |      |     | 58  | 2007 | 372  | 384 |

| Nº  | Го- | уро- | ран | Nº  | Го- | уро- | ран | Nº  | Го-  | уро- | ран |
|-----|-----|------|-----|-----|-----|------|-----|-----|------|------|-----|
| п/п | ды  | вень | ж   | п/п | ды  | вень | ж   | п/п | ды   | вень | ж   |
|     |     |      |     |     |     |      |     | 59  | 2008 | 396  | 387 |
|     |     |      |     |     |     |      |     | 60  | 2009 | 376  | 388 |
|     |     |      |     |     |     |      |     | 61  | 2010 | 332  | 390 |
|     |     |      |     |     |     |      |     | 62  | 2011 | 308  | 394 |
|     |     |      |     |     |     |      |     | 63  | 2012 | 383  | 396 |

# Уровни воды в озере Сайма

| № п/п | Годы | уровень | ранж | № п/п | Годы | уровень | ранж |
|-------|------|---------|------|-------|------|---------|------|
| 1     | 1850 | 345     | 300  | 26    | 1875 | 345     | 352  |
| 2     | 1851 | 354     | 306  | 27    | 1876 | 300     | 354  |
| 3     | 1852 | 333     | 310  | 28    | 1877 | 343     | 354  |
| 4     | 1853 | 341     | 312  | 29    | 1878 | 411     | 355  |
| 5     | 1854 | 313     | 313  | 30    | 1879 | 431     | 356  |
| 6     | 1855 | 306     | 320  | 31    | 1880 | 342     | 357  |
| 7     | 1856 | 320     | 328  | 32    | 1881 | 332     | 359  |
| 8     | 1857 | 355     | 329  | 33    | 1882 | 361     | 360  |
| 9     | 1858 | 312     | 332  | 34    | 1883 | 334     | 360  |
| 10    | 1859 | 328     | 332  | 35    | 1884 | 360     | 360  |
| 11    | 1860 | 368     | 333  | 36    | 1885 | 336     | 361  |
| 12    | 1861 | 375     | 334  | 37    | 1886 | 350     | 362  |
| 13    | 1862 | 337     | 334  | 38    | 1887 | 332     | 368  |
| 14    | 1863 | 360     | 336  | 39    | 1888 | 362     | 372  |
| 15    | 1864 | 396     | 337  | 40    | 1889 | 356     | 375  |
| 16    | 1865 | 376     | 339  | 41    | 1890 | 352     | 376  |
| 17    | 1866 | 359     | 339  | 42    | 1891 | 360     | 378  |
| 18    | 1867 | 354     | 341  | 43    | 1892 | 349     | 386  |
| 19    | 1868 | 378     | 342  | 44    | 1893 | 357     | 391  |
| 20    | 1869 | 343     | 343  | 45    | 1894 | 334     | 391  |
| 21    | 1870 | 391     | 343  | 46    | 1895 | 310     | 396  |
| 22    | 1871 | 339     | 345  | 47    | 1896 | 339     | 399  |
| 23    | 1872 | 391     | 345  | 48    | 1897 | 329     | 411  |
| 24    | 1873 | 399     | 349  | 49    | 1898 | 372     | 431  |
| 25    | 1874 | 386     | 350  |       |      |         |      |

# Уровни воды в озере Сайма

| № п/п | Годы | уровень | ранж | № п/п | Годы | уровень | ранж |
|-------|------|---------|------|-------|------|---------|------|
| 1     | 1899 | 466     | 228  | 27    | 1925 | 379     | 354  |
| 2     | 1900 | 424     | 245  | 28    | 1926 | 333     | 356  |
| 3     | 1901 | 366     | 263  | 29    | 1927 | 357     | 357  |
| 4     | 1902 | 316     | 264  | 30    | 1928 | 360     | 360  |
| 5     | 1903 | 415     | 285  | 31    | 1929 | 399     | 365  |
| 6     | 1904 | 399     | 287  | 32    | 1930 | 391     | 366  |
| 7     | 1905 | 403     | 288  | 33    | 1931 | 353     | 366  |
| 8     | 1906 | 368     | 290  | 34    | 1932 | 371     | 366  |
| 9     | 1907 | 339     | 296  | 35    | 1933 | 356     | 368  |
| 10    | 1908 | 312     | 312  | 36    | 1934 | 332     | 371  |
| 11    | 1909 | 288     | 316  | 37    | 1935 | 398     | 373  |
| 12    | 1910 | 337     | 326  | 38    | 1936 | 412     | 375  |
| 13    | 1911 | 326     | 326  | 39    | 1937 | 333     | 379  |
| 14    | 1912 | 388     | 327  | 40    | 1938 | 352     | 380  |
| 15    | 1913 | 366     | 332  | 41    | 1939 | 339     | 388  |
| 16    | 1914 | 296     | 333  | 42    | 1940 | 263     | 391  |
| 17    | 1915 | 290     | 333  | 43    | 1941 | 245     | 398  |
| 18    | 1916 | 287     | 335  | 44    | 1942 | 228     | 399  |
| 19    | 1917 | 326     | 337  | 45    | 1943 | 346     | 399  |
| 20    | 1918 | 365     | 339  | 46    | 1944 | 380     | 403  |
| 21    | 1919 | 345     | 339  | 47    | 1945 | 373     | 412  |
| 22    | 1920 | 354     | 345  | 48    | 1946 | 335     | 415  |
| 23    | 1921 | 327     | 346  | 49    | 1947 | 285     | 424  |
| 24    | 1922 | 366     | 351  | 50    | 1948 | 264     | 457  |
| 25    | 1923 | 375     | 352  | 51    | 1949 | 351     | 466  |
| 26    | 1924 | 457     | 353  |       |      |         |      |

# Уровни воды в озере Сайма

| № п/п | Годы | уровень | ранж | № п/п | Годы | уровень | ранж |
|-------|------|---------|------|-------|------|---------|------|
| 1     | 1950 | 365     | 273  | 33    | 1982 | 388     | 344  |
| 2     | 1951 | 317     | 291  | 34    | 1983 | 384     | 345  |
| 3     | 1952 | 320     | 299  | 35    | 1984 | 373     | 347  |
| 4     | 1953 | 344     | 300  | 36    | 1985 | 343     | 348  |
| 5     | 1954 | 327     | 300  | 37    | 1986 | 342     | 354  |
| 6     | 1955 | 384     | 304  | 38    | 1987 | 380     | 355  |
| 7     | 1956 | 304     | 304  | 39    | 1988 | 387     | 358  |
| 8     | 1957 | 338     | 305  | 40    | 1989 | 370     | 361  |
| 9     | 1958 | 364     | 308  | 41    | 1990 | 328     | 363  |
| 10    | 1959 | 304     | 309  | 42    | 1991 | 331     | 364  |
| 11    | 1960 | 273     | 310  | 43    | 1992 | 380     | 365  |

| № п/п | Годы | уровень | ранж | № п/п | Годы | уровень | ранж |
|-------|------|---------|------|-------|------|---------|------|
| 12    | 1961 | 316     | 311  | 44    | 1993 | 370     | 370  |
| 13    | 1962 | 394     | 314  | 45    | 1994 | 361     | 370  |
| 14    | 1963 | 354     | 315  | 46    | 1995 | 379     | 370  |
| 15    | 1964 | 291     | 316  | 47    | 1996 | 329     | 370  |
| 16    | 1965 | 299     | 316  | 48    | 1997 | 338     | 370  |
| 17    | 1966 | 345     | 317  | 49    | 1998 | 347     | 372  |
| 18    | 1967 | 370     | 320  | 50    | 1999 | 358     | 373  |
| 19    | 1968 | 363     | 325  | 51    | 2000 | 336     | 374  |
| 20    | 1969 | 334     | 326  | 52    | 2001 | 355     | 376  |
| 21    | 1970 | 325     | 327  | 53    | 2002 | 316     | 379  |
| 22    | 1971 | 344     | 328  | 54    | 2003 | 300     | 380  |
| 23    | 1972 | 314     | 329  | 55    | 2004 | 370     | 380  |
| 24    | 1973 | 315     | 331  | 56    | 2005 | 374     | 383  |
| 25    | 1974 | 348     | 332  | 57    | 2006 | 309     | 384  |
| 26    | 1975 | 390     | 334  | 58    | 2007 | 372     | 384  |
| 27    | 1976 | 305     | 336  | 59    | 2008 | 396     | 387  |
| 28    | 1977 | 310     | 338  | 60    | 2009 | 376     | 388  |
| 29    | 1978 | 311     | 338  | 61    | 2010 | 332     | 390  |
| 30    | 1979 | 300     | 342  | 62    | 2011 | 308     | 394  |
| 31    | 1980 | 326     | 343  | 63    | 2012 | 383     | 396  |
| 32    | 1981 | 370     | 344  |       |      |         |      |

## Фильтрация Баттерворта

| 1881 | 114 |          |
|------|-----|----------|
| 1882 | 89  | 83,89867 |
| 1883 | 74  | 87,52779 |
| 1884 | 100 | 91,50951 |
| 1885 | 87  | 95,4461  |
| 1886 | 92  | 98,85188 |
| 1887 | 88  | 101,257  |
| 1888 | 132 | 102,3179 |
| 1889 | 133 | 101,9065 |
| 1890 | 90  | 100,1574 |
| 1891 | 62  | 97,46217 |
| 1892 | 80  | 94,41319 |
| 1893 | 97  | 91,7105  |
| 1894 | 100 | 90,04823 |
| 1895 | 102 | 89,99868 |
| 1896 | 113 | 91,90965 |
| 1897 | 83  | 95,82857 |
| 1898 | 77  | 101,4669 |
| 1899 | 132 | 108,2162 |

| 1900 | 121   | 115,2237 |
|------|-------|----------|
| 1901 | 95    | 121,523  |
| 1902 | 93    | 126,2033 |
| 1903 | 152   | 128,5827 |
| 1904 | 158   | 128,3467 |
| 1905 | 147   | 125,6116 |
| 1906 | 123   | 120,8932 |
| 1907 | 91    | 114,9856 |
| 1908 | 80    | 108,7803 |
| 1909 | 96    | 103,0778 |
| 1910 | 103   | 98,43898 |
| 1911 | 121   | 95,11536 |
| 1912 | 106,5 | 93,0665  |
| 1913 | 92    | 92,047   |
| 1914 | 72    | 91,72718 |
| 1915 | 80    | 91,80553 |
| 1916 | 94    | 92,08147 |
| 1917 | 108   | 92,47512 |
| 1918 | 114   | 93,002   |
| 1919 | 89    | 93,7252  |
| 1920 | 76    | 94,71177 |
| 1921 | 64    | 96,01222 |
| 1922 | 93    | 97,66656 |
| 1923 | 121   | 99,72279 |
| 1924 | 151   | 102,244  |
| 1925 | 98    | 105,2824 |
| 1926 | 96    | 108,8134 |
| 1927 | 98    | 112,648  |
| 1928 | 91    | 116,3592 |
| 1929 | 140   | 119,2686 |
| 1930 | 129   | 120,5279 |
| 1931 | 126   | 119,2989 |
| 1932 | 109   | 114,9997 |
| 1933 | 87    | 107,551  |
| 1934 | 80    | 97,53809 |
| 1935 | 110   | 86,21598 |
| 1936 | 117   | 75,32397 |
| 1937 | 68    | 66,7298  |
| 1938 | 62    | 61,98377 |
| 1939 | 40    | 61,90312 |
| 1940 | 26    | 66,3136  |
| 1941 | 61    | 74,04099 |
| 1942 | 93    | 83,17691 |
| 1943 | 128   | 91,56051 |

| 1944 | 103 | 97,3477  |
|------|-----|----------|
| 1945 | 102 | 99,50577 |
| 1946 | 121 | 98,08774 |
| 1947 | 71  | 94,20351 |
| 1948 | 70  | 89,69437 |
| 1949 | 101 | 86,60548 |
| 1950 | 86  | 86,60988 |
| 1951 | 61  | 90,5484  |
| 1952 | 86  | 98,2118  |
| 1953 | 142 | 108,4168 |
| 1954 | 129 | 119,3414 |
| 1955 | 142 | 129,0126 |
| 1956 | 112 | 135,8054 |
| 1957 | 151 | 138,8154 |
| 1958 | 160 | 138,0179 |
| 1959 | 114 | 134,1889 |
| 1960 | 79  | 128,6309 |
| 1961 | 128 | 122,797  |
| 1962 | 164 | 117,9207 |
| 1963 | 128 | 114,7465 |
| 1964 | 99  | 113,4206 |
| 1965 | 89  | 113,5508 |
| 1966 | 119 | 114,4009 |
| 1967 | 123 | 115,156  |
| 1968 | 119 | 115,1793 |
| 1969 | 110 | 114,1961 |
| 1970 | 119 | 112,3595 |
| 1971 | 119 | 110,1912 |
| 1972 | 95  | 108,4218 |
| 1973 | 105 | 107,7788 |
| 1974 | 102 | 108,785  |
| 1975 | 113 | 111,6175 |
| 1976 | 118 | 116,0638 |
| 1977 | 133 | 121,5784 |
| 1978 | 131 | 127,4221 |
| 1979 | 133 | 132,8405 |
| 1980 | 120 | 137,2379 |
| 1981 | 138 | 140,3004 |
| 1982 | 156 | 142,0451 |
| 1983 | 143 | 142,7844 |
| 1984 | 149 | 143,0219 |
| 1985 | 131 | 143,3068 |
| 1986 | 132 | 144,0834 |
| 1987 | 154 | 145,5729 |

| _    | 1        | 1        |
|------|----------|----------|
| 1988 | 165      | 147,7118 |
| 1989 | 151      | 150,1629 |
| 1990 | 138      | 152,3934 |
| 1991 | 148      | 153,8027 |
| 1992 | 159      | 153,8699 |
| 1993 | 151      | 152,288  |
| 1994 | 152      | 149,0507 |
| 1995 | 160      | 144,4732 |
| 1996 | 122      | 139,1375 |
| 1997 | 134      | 133,7753 |
| 1998 | 131      | 129,1158 |
| 1999 | 124      | 125,7357 |
| 2000 | 131      | 123,9501 |
| 2001 | 135      | 123,7728 |
| 2002 | 111      | 124,9564 |
| 2003 | 103,5    | 127,0986 |
| 2004 | 141,5    | 129,7795 |
| 2005 | 146,5    | 132,6846 |
| 2006 | 122,5    | 135,6663 |
| 2007 | 149,5833 | 138,7167 |
| 2008 | 150      | 141,8538 |
| 2009 | 164,1667 | 144,9567 |
| 2010 | 136,4167 | 147,6112 |
| 2011 | 129,0833 | 149,0365 |
| 2012 | 139,3333 | 148,1442 |
| 2013 | 125,6667 | 143,7427 |
| 2014 | 131,6667 | 134,8479 |
| 2015 | 124,5    | 121,0173 |
| 2016 | 140      | 102,6007 |
| 2017 | 158      | 80,81606 |
|      |          | 57,60285 |
|      |          | 35,27456 |
|      |          | 16,05342 |
|      |          | 1,61133  |
|      |          | -7,25875 |
|      |          | -10,7553 |
|      |          | -9,94261 |
|      |          | -6,434   |
|      |          | -1,97888 |
|      |          | 1,930711 |
|      |          | 4,337158 |
|      |          | 4,922725 |
|      |          | 3,941572 |
|      |          | 2,023225 |
|      | <u> </u> | 2,023223 |

|  | -0,08    |
|--|----------|
|  | -1,7257  |
|  | -2,53639 |
|  | -2,4503  |
|  | -1,67428 |
|  | -0,57119 |
|  | 0,474177 |

## Значения элементов фильтров Баттерворта

|          |          |                   | ~               |               |           |
|----------|----------|-------------------|-----------------|---------------|-----------|
| Частота  | Период   | Косинус<br>коэфф. | Синус<br>коэфф. | Периодограмма | Плотность |
| 0,000000 | I        | -1,4513           | 0,0000          | 170,6         | 156883,8  |
| 0,006173 | 162,0000 | 59,6980           | 17,7823         | 314285,2      | 171354,8  |
| 0,012346 | 81,0000  | 28,2697           | -10,6276        | 73881,9       | 123319,4  |
| 0,018519 | 54,0000  | 0,1723            | -26,1116        | 55229,3       | 63399,5   |
| 0,024691 | 40,5000  | -13,2850          | -15,9979        | 35026,4       | 40142,6   |
| 0,030864 | 32,4000  | -19,5286          | 7,4634          | 35402,4       | 26807,8   |
| 0,037037 | 27,0000  | 2,1218            | 1,3713          | 517,0         | 13400,0   |
| 0,043210 | 23,1429  | 9,9641            | 7,7779          | 12942,1       | 9126,1    |
| 0,049383 | 20,2500  | 9,4784            | 1,1591          | 7385,9        | 7936,5    |
| 0,055556 | 18,0000  | 2,7702            | -7,3588         | 5008,0        | 6818,7    |
| 0,061728 | 16,2000  | -2,1032           | -9,8499         | 8217,0        | 7804,4    |
| 0,067901 | 14,7273  | -11,1019          | -0,9843         | 10062,0       | 8414,4    |
| 0,074074 | 13,5000  | -9,0965           | -0,0718         | 6702,8        | 6712,4    |
| 0,080247 | 12,4615  | 5,6217            | 4,3765          | 4111,3        | 4111,6    |
| 0,086420 | 11,5714  | 0,3531            | -1,8075         | 274,7         | 3007,3    |
| 0,092593 | 10,8000  | 5,0021            | -7,4916         | 6572,8        | 3889,7    |
| 0,098765 | 10,1250  | -4,7308           | -1,3057         | 1950,9        | 4328,0    |
| 0,104938 | 9,5294   | -9,1494           | -3,2162         | 7618,4        | 4311,0    |
| 0,111111 | 9,0000   | -2,3633           | 1,8578          | 732,0         | 2516,1    |
| 0,117284 | 8,5263   | -2,3843           | 2,0346          | 795,8         | 1447,8    |
| 0,123457 | 8,1000   | 4,7178            | -3,0479         | 2555,3        | 1579,4    |
| 0,129630 | 7,7143   | 2,2170            | -2,1779         | 782,3         | 1216,3    |
| 0,135802 | 7,3636   | 1,0888            | -3,1441         | 896,7         | 920,2     |
| 0,141975 | 7,0435   | -1,3906           | 0,5215          | 178,7         | 1788,2    |
| 0,148148 | 6,7500   | -3,1910           | 7,6082          | 5513,4        | 3692,6    |
| 0,154321 | 6,4800   | -6,7066           | 1,3275          | 3786,0        | 4862,5    |
| 0,160494 | 6,2308   | 9,1691            | 0,2973          | 6817,0        | 5464,2    |
| 0,166667 | 6,0000   | 7,8671            | 2,2289          | 5415,6        | 4286,6    |
| 0,172840 | 5,7857   | -1,3887           | 0,2384          | 160,8         | 2033,1    |
| 0,179012 | 5,5862   | -3,9459           | -1,5055         | 1444,8        | 1527,1    |
| 0,185185 | 5,4000   | -4,6883           | 0,3809          | 1792,1        | 2701,2    |
| 0,191358 | 5,2258   | -8,3413           | 2,3929          | 6099,6        | 3730,4    |
| 0,197531 | 5,0625   | -0,7398           | 5,0937          | 2146,0        | 2595,2    |
| 0,203704 | 4,9091   | -0,4157           | -1,4330         | 180,3         | 1256,5    |
| 0,209877 | 4,7647   | 4,4991            | -0,5087         | 1660,5        | 1143,9    |
| 0,216049 | 4,6286   | -1,0392           | -3,5937         | 1133,6        | 1057,7    |
| 0,222222 | 4,5000   | 0,2364            | 1,7711          | 258,6         | 1125,3    |
| 0,228395 | 4,3784   | -4,4523           | 2,9543          | 2312,7        | 1953,5    |
| 0,234568 | 4,2632   | 5,0699            | 3,9601          | 3352,2        | 2213,6    |
| 0,240741 | 4,1538   | -1,0244           | 1,5606          | 282,3         | 1582,2    |
| 0,246914 | 4,0500   | 5,3310            | 0,0247          | 2302,0        | 1437,1    |

| 0,253086 | 3,9512 | 0,8423  | -1,7069 | 293,5  | 1719,2 |
|----------|--------|---------|---------|--------|--------|
| 0,259259 | 3,8571 | 6,3338  | -3,4680 | 4223,6 | 2083,5 |
| 0,265432 | 3,7674 | 0,9638  | 0,8858  | 138,8  | 1246,1 |
| 0,271605 | 3,6818 | 1,9909  | -0,1087 | 322,0  | 902,7  |
| 0,277778 | 3,6000 | 3,8174  | 3,5132  | 2180,1 | 1441,6 |
| 0,283951 | 3,5217 | 2,8779  | 2,9462  | 1374,0 | 1534,0 |
| 0,290123 | 3,4468 | 3,7896  | -2,1189 | 1526,9 | 1251,0 |
| 0,296296 | 3,3750 | -0,4101 | -2,2733 | 432,2  | 1005,9 |
| 0,302469 | 3,3061 | -3,7587 | -2,2893 | 1568,9 | 987,8  |
| 0,308642 | 3,2400 | 1,4108  | -2,0208 | 492,0  | 698,2  |
| 0,314815 | 3,1765 | -1,7478 | -0,6613 | 282,9  | 417,1  |
| 0,320988 | 3,1154 | -0,8967 | -2,2283 | 467,3  | 319,6  |
| 0,327160 | 3,0566 | 0,5240  | 0,9700  | 98,4   | 213,6  |
| 0,333333 | 3,0000 | -0,3448 | -0,6386 | 42,7   | 322,2  |
| 0,339506 | 2,9455 | -2,7710 | 2,2319  | 1025,4 | 623,2  |
| 0,345679 | 2,8929 | -2,2973 | 0,3209  | 435,8  | 774,4  |
| 0,351852 | 2,8421 | 1,9718  | 3,4919  | 1302,6 | 849,2  |
| 0,358025 | 2,7931 | 1,3783  | 2,0017  | 478,4  | 620,4  |
| 0,364198 | 2,7458 | 1,1850  | -1,5167 | 300,1  | 329,1  |
| 0,370370 | 2,7000 | 1,2869  | -0,1899 | 137,1  | 159,4  |
| 0,376543 | 2,6557 | -0,1683 | -0,2630 | 7,9    | 109,7  |
| 0,382716 | 2,6129 | -1,1498 | 1,0311  | 193,2  | 216,9  |
| 0,388889 | 2,5714 | 1,4118  | 1,8633  | 442,7  | 391,2  |
| 0,395062 | 2,5313 | 2,4133  | 0,3067  | 479,4  | 544,8  |
| 0,401235 | 2,4923 | 3,1405  | 0,9521  | 872,3  | 589,1  |
| 0,407407 | 2,4545 | 1,3688  | 0,7210  | 193,9  | 459,9  |
| 0,413580 | 2,4179 | 1,4290  | -2,3252 | 603,4  | 382,1  |
| 0,419753 | 2,3824 | 0,3663  | -0,2000 | 14,1   | 370,8  |
| 0,425926 | 2,3478 | -3,2718 | 0,3982  | 879,9  | 443,8  |
| 0,432099 | 2,3143 | 0,0319  | 0,0801  | 0,6    | 404,7  |
| 0,438272 | 2,2817 | 2,0730  | 2,1524  | 723,3  | 473,6  |
| 0,444444 | 2,2500 | 2,3517  | -0,7036 | 488,0  | 414,1  |
| 0,450617 | 2,2192 | -0,7055 | -0,0848 | 40,9   | 251,7  |
| 0,456790 | 2,1892 | 0,7192  | -1,9046 | 335,7  | 249,1  |
| 0,462963 | 2,1600 | -0,8497 | 1,5532  | 253,9  | 273,0  |
| 0,469136 | 2,1316 | -0,1018 | 1,9272  | 301,7  | 249,9  |
| 0,475309 | 2,1039 | 0,6175  | 1,0902  | 127,2  | 227,3  |
| 0,481481 | 2,0769 | 0,3285  | -1,9523 | 317,5  | 285,0  |
| 0,487654 | 2,0506 | -0,1460 | -2,0498 | 342,1  | 367,9  |
| 0,493827 | 2,0250 | -2,2134 | -1,3394 | 542,1  | 378,0  |
| 0,500000 | 2,0000 | -1,0820 | 0,0000  | 94,8   | 328,1  |

## Температура воздуха на станции Петрозаводск

| Годы         | Январь        | Февраль     | Март         | Апрель     | Май        | Июнь       | Июль         | Август       | Сентябрь   | Октябрь | Ноябрь     | Декабрь        |
|--------------|---------------|-------------|--------------|------------|------------|------------|--------------|--------------|------------|---------|------------|----------------|
| 1950         | -16,3         | -8,3        | -4           | 5          | 7,8        | 13,1       | 13,8         | 13,6         | 10         | 4,8     | -1,3       | -5,4           |
| 1951         | -10,6         | -9,7        | -6,9         | 4,4        | 4,5        | 12,8       | 14,2         | 16,9         | 10,7       | 4       | -4         | -3             |
| 1952         | -5,2          | -6,6        | -10,6        | 2,6        | 4,4        | 12,9       | 16           | 13,1         | 7,9        | 0,4     | -3,6       | -5,8           |
| 1953         | -10,1         | -15,8       | -3,2         | 3,6        | 7,5        | 15,9       | 15,3         | 14,6         | 7,1        | 3,9     | -1,4       | -4,1           |
| 1954         | -10,4         | -12,6       | -3,1         | 0,3        | 8,1        | 14,2       | 17,9         | 14,3         | 10,1       | 3,6     | -2,9       | -2,9           |
| 1955         | -9            | -12         | -8,9         | -1,5       | 5,1        | 11,3       | 15,3         | 16,3         | 12,1       | 4,4     | -5,7       | -19,2          |
| 1956         | -12           | -17,3       | -4,6         | -1,8       | 7,5        | 15,5       | 12,2         | 11,8         | 7          | 2       | -7,1       | -4,4           |
| 1957         | -5,8          | -4,4        | -10,4        | 1          | 8,7        | 11,7       | 17,1         | 14,9         | 9,1        | 3,7     | -1,9       | -4,2           |
| 1958<br>1959 | -11,6<br>-8,1 | -10<br>-4,9 | -9,6<br>-0,7 | 0,5<br>1,8 | 5,8<br>7,5 | 11,9<br>15 | 14,4<br>16,4 | 13,1<br>16,1 | 7,6<br>6,5 | 3,8     | 0,2        | -12,2<br>-10,9 |
| 1960         | -13,6         | -12,6       | -5,6         | 2,4        | 9,1        | 14,4       | 19,2         | 14,5         | 8,1        | -0,2    | -2,8<br>-4 | -3,5           |
| 1961         | -6,1          | -2,7        | -2,1         | -0,2       | 7,6        | 16,5       | 16,3         | 13,9         | 7,9        | 6,9     | -1,6       | -7,8           |
| 1962         | -5,9          | -7,9        | -8,5         | 3,8        | 8,2        | 10,4       | 14           | 11,9         | 8,6        | 4,4     | 0,4        | -9             |
| 1963         | -15,4         | -13,3       | -12          | 1,9        | 12,1       | 11,3       | 15,8         | 15,3         | 12,4       | 3,8     | -1,5       | -8,4           |
| 1964         | -6,8          | -10,8       | -7,1         | 1,4        | 8,3        | 13,8       | 15,9         | 13,7         | 8,8        | 5,5     | -4,4       | -5,9           |
| 1965         | -9,7          | -12,6       | -4,9         | 1,2        | 4,6        | 14,7       | 14           | 13,4         | 11,3       | 3       | -6,9       | -4,8           |
| 1966         | -19,7         | -19,6       | -7,6         | -1,4       | 8,9        | 14,8       | 16,3         | 13,3         | 6,5        | 2,9     | -0,2       | -10,5          |
| 1967         | -14,4         | -8,8        | 0,4          | 2,7        | 8,4        | 12,4       | 16           | 16,7         | 10,5       | 6       | 1,3        | -12,4          |
| 1968         | -20,3         | -8,4        | -2,3         | 0,7        | 6,8        | 15,5       | 12,5         | 14,6         | 7,8        | 0       | -3,9       | -5,7           |
| 1969         | -16,8         | -14,6       | -7,3         | 0,9        | 5,6        | 11,4       | 14,8         | 14,3         | 8,3        | 3,5     | -1,4       | -7,8           |
| 1970         | -12           | -12,7       | -3           | 1,1        | 7,6        | 14,4       | 17,1         | 14,6         | 9,5        | 2,9     | -4,6       | -7,1           |
| 1971         | -4,3          | -12,3       | -7,2         | -0,3       | 7          | 11,7       | 14,9         | 14,2         | 7,7        | 1,4     | -3,6       | -7,3           |
| 1972         | -14,3         | -7,3        | -5,1         | 0,8        | 6,6        | 15,7       | 19,9         | 17,4         | 8,6        | 2,9     | -2,8       | 0              |
| 1973         | -8,4          | -7,6        | -4           | 2,6        | 9,4        | 15,7       | 18,1         | 13,8         | 5,3        | 0,3     | -4,9       | -10,3          |
| 1974         | -11,3         | -1,6        | -2,3         | 0,5        | 4,2        | 14,9       | 17,8         | 14,3         | 11,8       | 5       | -0,9       | -1,8           |
| 1975         | -5,3          | -8          | -0,3         | 2,9        | 11,4       | 12,8       | 16,6         | 13           | 11,8       | 2,2     | -2         | -5,4           |
| 1976         | -15,1         | -11,3       | -6,3         | 1,4        | 8,7        | 10,1       | 14,3         | 11,8         | 7,1        | -1,1    | -2,3       | -5,3           |
| 1977         | -10,4         | -10,1       | -4,4         | 1,7        | 8,8        | 13,4       | 16,2         | 13,7         | 7,5        | 1,5     | -0,4       | -8,9           |
| 1978         | -10,5         | -15,9       | -3,6         | -0,5       | 8,3        | 12         | 14,7         | 12,3         | 7,5        | 1,8     | -0,5       | -17,2          |
| 1979         | -12,9         | -12,1       | -3,1         | -1,7       | 11,6       | 13,6       | 15,7         | 14,8         | 8,7        | 1,9     | -0,8       | -6,2           |
| 1980         | -11,5         | -9,1        | -7,6         | 2          | 5,8        | 16,5       | 15,1         | 13,3         | 8,8        | 3,3     | -5,4       | -7             |
| 1981         | -6,5          | -9,8        | -8,2         | -0,3       | 9,8        | 13,8       | 17,8         | 14,3         | 9,1        | 6       | -2,3       | -7,5           |
| 1982         | -15,8         | -7,6        | -2,5         | 2,1        | 8,6        | 9,8        | 16,3         | 13,4         | 9,3        | 2,7     | 1,4        | -3,1           |
| 1983         | -5,6          | -10,1       | -3,9         | 4,2        | 10,1       | 12,8       | 17,2         | 13,8         | 10,5       | 4       | -4,1       | -5,8           |
| 1984         | -7,2          | -7,9        | -5,2         | 3,5        | 11,7       | 13,4       | 16,2         | 13,2         | 8,9        | 4,2     | -2,8       | -8,4           |
| 1985         | -19,7         | -19,3       | -3           | -0,3       | 7,1        | 11,6       | 14,6         | 16,6         | 9          | 4,5     | -3,9       | -10,1          |
| 1986         | -11,9         | -14,8       | -1           | 2,3        | 8,4        | 15,4       | 16,6         | 12,8         | 6,2        | 3,6     | 1,3        | -13,1          |
| 1987         | -22,1         | -9,6        | -6,8         | 0,7        | 7,4        | 13,5       | 14,5         | 11,8         | 8,1        | 5,5     | -5,5       | -10,2          |
| 1988         | -8,5          | -8,1        | -2,9         | -0,1       | 9,4        | 15,4       | 19           | 14,1         | 9,8        | 3,9     | -6,8       | -9,5           |

## Количество атмосферных осадков на станции Петрозаводск

| Годы | Январь | Февраль | Март | Апрель | Май | Июнь | Июль | Август | Сентябрь | Октябрь | Ноябрь | Декабрь |
|------|--------|---------|------|--------|-----|------|------|--------|----------|---------|--------|---------|
| 1966 | 37     | 29      | 69   | 101    | 34  | 62   | 89   | 91     | 98       | 72      | 28     | 64      |
| 1967 | 25     | 15      | 29   | 35     | 61  | 74   | 33   | 95     | 23       | 85      | 34     | 56      |
| 1968 | 29     | 37      | 52   | 57     | 52  | 40   | 79   | 77     | 96       | 55      | 30     | 30      |
| 1969 | 42     | 19      | 15   | 33     | 59  | 21   | 59   | 67     | 119      | 68      | 72     | 57      |
| 1970 | 29     | 13      | 37   | 66     | 25  | 54   | 34   | 52     | 182      | 63      | 28     | 27      |
| 1971 | 57     | 26      | 59   | 11     | 20  | 107  | 43   | 79     | 20       | 46      | 49     | 37      |
| 1972 | 5      | 18      | 21   | 36     | 42  | 18   | 49   | 48     | 32       | 46      | 68     | 30      |
| 1973 | 31     | 27      | 37   | 31     | 25  | 50   | 5    | 113    | 73       | 77      | 42     | 36      |
| 1974 | 20     | 43      | 23   | 24     | 42  | 31   | 77   | 115    | 29       | 80      | 97     | 36      |
| 1975 | 32     | 23      | 23   | 74     | 49  | 53   | 47   | 46     | 52       | 31      | 64     | 59      |
| 1976 | 31     | 12      | 35   | 35     | 30  | 82   | 82   | 149    | 119      | 11      | 27     | 26      |
| 1977 | 14     | 25      | 43   | 32     | 90  | 56   | 94   | 70     | 83       | 36      | 57     | 17      |
| 1978 | 28     | 9       | 48   | 24     | 3   | 68   | 52   | 160    | 89       | 30      | 39     | 14      |
| 1979 | 29     | 22      | 21   | 22     | 25  | 28   | 26   | 54     | 44       | 57      | 51     | 24      |
| 1980 | 24     | 32      | 9    | 26     | 13  | 32   | 23   | 31     | 22       | 53      | 59     | 41      |
| 1981 | 28     | 23      | 40   | 38     | 44  | 132  | 78   | 84     | 64       | 92      | 53     | 86      |
| 1982 | 32     | 10      | 19   | 37     | 53  | 74   | 86   | 70     | 51       | 36      | 53     | 51      |
| 1983 | 41     | 16      | 46   | 18     | 50  | 60   | 93   | 41     | 76       | 60      | 47     | 55      |
| 1984 | 57     | 8       | 17   | 5      | 44  | 33   | 125  | 48     | 89       | 109     | 13     | 17      |
| 1985 | 37     | 15      | 12   | 17     | 48  | 115  | 39   | 43     | 42       | 51      | 21     | 59      |
| 1986 | 36     | 11      | 18   | 53     | 27  | 37   | 41   | 78     | 88       | 36      | 29     | 46      |
| 1987 | 15     | 34      | 25   | 16     | 55  | 71   | 96   | 131    | 44       | 0       | 27     | 37      |
| 1988 | 24     | 28      | 35   | 64     | 30  | 63   | 72   | 152    | 56       | 62      | 34     | 46      |
| 1989 | 42     | 26      | 29   | 9      | 14  | 32   | 54   | 109    | 55       | 66      | 33     | 31      |
| 1990 | 50     | 48      | 40   | 28     | 48  | 64   | 106  | 30     | 54       | 39      | 55     | 41      |
| 1991 | 49     | 29      | 19   | 53     | 54  | 75   | 58   | 82     | 38       | 55      | 52     | 40      |
| 1992 | 30     | 21      | 44   | 90     | 33  | 20   | 49   | 105    | 74       | 55      | 55     | 42      |
| 1993 | 28     | 24      | 41   | 17     | 40  | 54   | 113  | 122    | 37       | 74      | 4      | 52      |
| 1994 | 34     | 8       | 52   | 47     | 29  | 118  | 37   | 53     | 117      | 58      | 34     | 44      |
| 1995 | 54     | 23      | 43   | 43     | 78  | 34   | 76   | 47     | 34       | 51      | 85     | 30      |
| 1996 | 14     | 29      | 7    | 15     | 30  | 86   | 104  | 22     | 42       | 24      | 58     | 50      |
| 1997 | 32     | 29      | 30   | 59     | 59  | 61   | 19   | 33     | 65       | 68      | 60     | 38      |
| 1998 | 33     | 43      | 40   | 6      | 67  | 101  | 92   | 81     | 47       | 60      | 42     | 39      |
| 1999 | 35     | 31      | 14   | 27     | 37  | 53   | 64   | 40     | 40       | 56      | 34     | 97      |
| 2000 | 39     | 34      | 35   | 18     | 41  | 44   | 144  | 62     | 76       | 64      | 63     | 44      |
| 2001 | 24     | 38      | 40   | 23     | 92  | 54   | 64   | 72     | 48       | 80      | 93     | 32      |
| 2002 | 33     | 35      | 32   | 9      | 49  | 40   | 55   | 21     | 73       | 54      | 73     | 17      |
| 2003 | 38     | 7       | 21   | 28     | 23  | 71   | 68   | 206    | 50       | 78      | 37     | 55      |
| 2004 | 29     | 27      | 54   | 9      | 43  | 54   | 178  | 135    | 52       | 40      | 57     | 42      |
| 2005 | 46     | 13      | 38   | 41     | 86  | 44   | 71   | 38     | 29       | 37      | 65     | 50      |

# Индекс Де-Мартона

| 75,1 |
|------|
| 42,7 |
| 55,4 |
| 57,8 |
| 49,5 |
| 46,8 |
| 30,5 |
| 43,8 |
| 43,4 |
| 39,1 |
| 58,1 |
| 49,8 |
| 52,7 |
| 32,3 |
| 30,4 |
| 58,5 |
| 44,4 |
| 44,4 |
| 42,4 |
| 47,0 |
| 41,2 |
| 51,7 |
| 51,4 |
|      |

#### ПРИЛОЖЕНИЕ Б – Рисунки

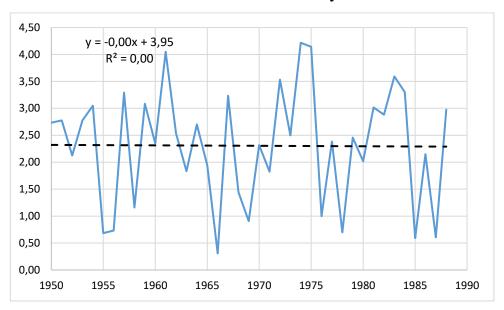



Рисунок 1 — Хронологический график среднегодовых температур воздуха по метеостанции г. Петрозаводска.

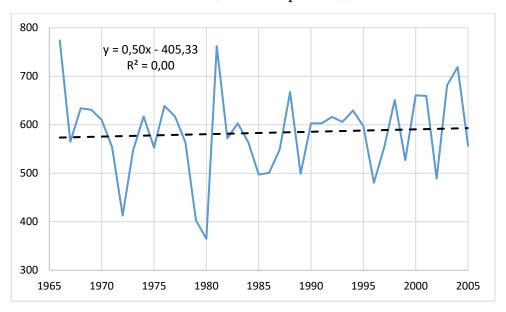



Рисунок 2 — Хронологический график годовых сумм осадков по метеостанции г. Петрозаводска.

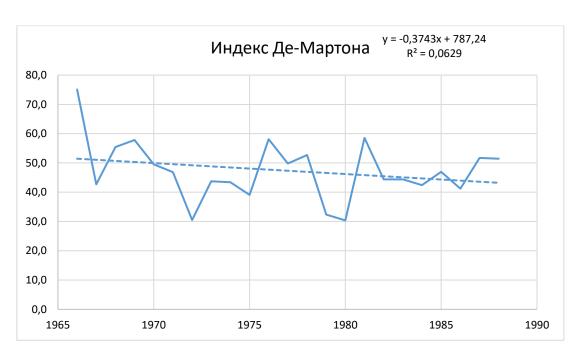



Рисунок 3 – Временной ход индекса Де-Мартона.